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a b s t r a c t 

We offer a blazingly brief review of evolution of shape analysis methods in medical imaging. As the 

representations and the statistical models grew more sophisticated, the problem of shape analysis has 

been gradually redefined to accept images rather than binary segmentations as a starting point. This 

transformation enabled shape analysis to take its rightful place in the arsenal of tools for extracting and 

understanding patterns in large clinical image sets. We speculate on the future developments in shape 

analysis and potential applications that would bring this mathematically rich area to bear on clinical 

practice. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

The study of anatomical shape changes and of their relationship

ith disease processes is one of the central topics in medical im-

ge analysis. For example, many neurodegenerative disorders cause

idespread brain shape changes that can be observed in 3D brain

RI scans, as illustrated in Fig. 1 . Identifying statistical shape dif-

erences between healthy subjects and patients affected by a dis-

ase promises to provide new clinical insights and ultimately im-

rove diagnosis and treatment. In this paper, we briefly review the

volution of representations and statistical modeling techniques

sed for anatomical shape analysis and highlight recent develop-

ents that take us closer to routine applications of shape analysis

ased on large collections of medical images. 

. Shape representation 

Shape representations commonly used in medical image anal-

sis include landmarks, implicit representations, parametric rep-

esentations, medial models, and deformation-based descriptors.

any variants have been proposed in the field based on these fun-

amental descriptors. 

Landmarks are points on the object’s boundary that can be

dentified reliably ( Cootes et al., 1995; Bookstein, 1997 ). Landmarks

re detected automatically or placed manually based on geomet-

ic properties of the surface, such as curvature, and image inten-

ity. Since the quality of landmarks directly affects the statisti-

al efficiency of the resulting shape model, substantial research

ffort has been focusing on selecting distinct and reproducible
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andmarks, including automatic methods for achieving compact

epresentations of the group variability ( Davies et al., 2001 ).

andmark-based methods most often characterize the object

oundary and ignore the structure of the object’s interior. 

To overcome the sensitivity of the descriptor to the placement

f the landmarks, a distance transform is commonly used as an

mplicit representation of the object’s boundary ( Leventon et al.,

0 0 0 ). While more robust to the noise in the boundary, such im-

licit descriptors give rise to a highly non-linear space, necessi-

ating approximations when modeling shape distributions ( Golland

t al., 2005 ). 

Parametric descriptors represent the object boundary in a par-

icular functional basis and thus reduce the representation to a

mall number of discrete coefficients that capture the entire con-

inuous boundary. Examples include the Fourier basis in 2D ( Staib

nd Duncan, 1992 ) and the spherical harmonics in 3D ( Brechbühler

t al., 1995 ). While offering computational efficiency and robust-

ess to noise in landmark locations, this inherently global descrip-

or makes it challenging to localize shape changes. 

Based on the original work of Blum (1973) , the medial axis de-

criptor represents the shape as an envelope of spheres whose cen-

ers define the object’s “core” and whose radii determine the ob-

ect’s thickness at each point of the core. The original medial axis

epresentation is sensitive to the noise in the binary label map that

efines the object, which is overcome by robust fitting methods

pplied to medial representations of constrained topology ( Pizer

t al., 1999 ). 

In contrast to the earlier descriptors that focused on binary

egmentations of a specific organ, deformation-based representa-

ions capture shape information in the entire image ( Christensen

t al., 1993; Rueckert et al., 2003 ). With the underlying

http://dx.doi.org/10.1016/j.media.2016.06.025
http://www.ScienceDirect.com
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Fig. 1. Axial slices of example scans of a healthy subject and a patient from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The red contour 

highlights changes in the shape of the ventricles due to brain tissue atrophy in 

Alzheimer’s disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Graphical representation of BPGA. 
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assumption that the geometric information in the deformations

conveys a shape, descriptors in this class arise naturally by match-

ing a template to an input image with smoothness constraints on

the deformation field. In many applications, it is natural to require

the deformation to be a diffeomorphism, i.e., a differentiable, bijec-

tive mapping with a differentiable inverse. While biological moti-

vation for using diffeomorphic deformations may exist in some ap-

plications, the biggest advantage of using diffeomorphisms is com-

putational. Employing diffeomorphic transformations greatly facil-

itates the mapping between the atlas and subject coordinate sys-

tems. Moreover, the theoretical framework of Large Deformation

Diffeomorphic Metric Mapping (LDDMM) defines a metric in the

space of deformations that in turn induces a distance metric on

the shape space ( Beg et al., 2005 ). 

The deformation-based approach to shape representation trans-

formed shape analysis from requiring binary segmentations to op-

erating on raw images. This change enabled many new applications

of shape analysis for which no robust segmentation methods are

available. 

3. Statistical analysis 

Principal component analysis (PCA) is widely used in combi-

nation with various shape representations to capture anatomical

variability in a population ( Cootes et al., 1995; Staib and Duncan,

1992; Leventon et al., 20 0 0; Brechbühler et al., 1995 ). Many de-

scriptors give rise to non-linear spaces, which require statistical

analysis to account for the non-linearities in the model. Examples

of such non-linear modeling methods include kernel PCA ( Twining

and Taylor, 2001 ), principal geodesic analysis (PGA) that estimates

lower-dimensional geodesic subspaces by minimizing the sum-of-

squared geodesic distances ( Fletcher et al., 2003 ), and cluster-

ing ( Sabuncu et al., 2009 ). And while most sophisticated meth-

ods for modeling high-dimensional distributions that capture low-

dimensional phenomena has been attempted in the context of

shape analysis, PCA and its manifold variants remain a workhorse

of this field. 

4. Deformation-based representations meet statistics on 

manifolds 

In this section, we illustrate the ideas reviewed above in the

context of a contemporary formulation based on a Bayesian vari-

ant of PGA. This particular approach encodes shape in the space of

deformations parameterized through the so called geodesic shoot-

ing construction ( Miller et al., 2006 ). The model employs an auto-

matic relevance determination prior to encourage a compact rep-

resentation. Detailed derivations of the statistical model and of the

resulting inference algorithm can be found in ( Zhang and Fletcher,

2015 ). 
.1. Diffeomorphisms for shape representation 

We define diffeomorphic transformations on a d -dimensional

orus � = R 

d / Z 

d . The tangent space of diffeomorphisms at iden-

ity is the space V of smooth vector fields on �. For any two vector

elds v, w ∈ V , there exists a weak Sobolev metric such that 

 v , w 〉 V = 

∫ 
�
(L v (x ) , w (x )) dx, (1)

here L is a symmetric, positive-definite, differential operator that

nduces a metric on the shape space. Diffeomorphisms are gener-

ted by flows of time-varying velocity fields as a solution to an

rdinary differential equation 

dφ(t, x ) 

dt 
= v (t, φ(t, x )) , (2)

here v and φ are the time-varying velocity field and the resulting

iffeomorphic transformation, respectively. 

Given an initial velocity field at time t = 0 , the geodesic path

n the manifold of diffeomorphisms is uniquely determined by

he Euler-Poincaré equations (EPDiff) ( Arnol’d, 1966; Miller et al.,

006 ): 

dv 
dt 

= −L −1 
[
(D v ) T (L v ) + D (L v ) v + (L v ) div v 

]
, (3)

here D is the Jacobian and div is the divergence operator. This

rocess is known as geodesic shooting ( Miller et al., 2006 ). This

onstruction provides a representation of diffeomorphisms via ini-

ial velocities. 

With a slight abuse of notation, in the remainder of the paper

e use v to denote the initial velocity field and φ to denote the

orresponding final deformation. 

.2. Image likelihood 

Fig. 2 illustrates the graphical model for Bayesian principal

eodesic analysis (BPGA), first presented in Zhang and Fletcher

2015) . Given a set of N deformation fields { φn }, we treat the input

mages { J n } as iid samples from a Gaussian distribution induced

y the model of the image noise ( n = 1 , · · · , N). In particular, in-

ut image J n is generated by applying deformation φn to the image

emplate I : 

p(J n | φn ; I, σ 2 ) ∝ exp 

(
− 1 

2 σ 2 

∥∥J n − I ◦ φ−1 
n 

∥∥2 

L 2 

)
, (4)

here σ 2 is the image noise variance. The norm inside the expo-

ent is the L 2 (�, R ) norm defined on a finite discretized grid. More

ophisticated models of image noise can be readily converted into

 likelihood model for the observed images. 

.3. Generative model of shape 

We let the columns of matrix W ∈ R 

d×K represent the K prin-

ipal modes of variation in the d -dimensional space of the initial

elocity fields. We let x n ∈ R 

K denote a vector of K latent load-

ng weights such that the initial velocity field v n = W x n generates

iffeomorphism φn in Eq. (4) . Similar to the Bayesian variant of
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Fig. 3. Top to bottom: axial, coronal and sagittal views of shooting the estimated image template I along the first principal mode W 1 . Left to right: log determinant of the 

Jacobian at −3 γ −1 
1 

W 1 , resulting image at {−3 , −1 . 5 , 0 , 1 . 5 , 3 } × γ −1 
1 

W 1 respectively. (For interpretation of the references to color in the text, the reader is referred to the 

web version of this article.) 
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CA ( Bishop, 1999 ), we impose a Gaussian prior on the loading fac-

ors: 

p(x n | W ) ∝ exp 

(
−1 

2 

‖ 

W x n ‖ 

2 
V 

)
. (5)

n contrast to Bayesian PCA, this distribution includes principal

omponents W to ensure the smoothness of the resulting geodesic

hooting path. The prior distribution on W encourages sparsity

y suppressing small principal initial velocity values towards zero,

hus providing dimensionality reduction through automatic rele-

ance determination ( Bishop, 1999 ): 

p(W ;γ ) ∝ 

K ∏ 

k =1 

(
γk 

2 π

d 
2 

)
exp 

(
−γk 

2 

‖ W k ‖ 

2 
V 

)
, (6) 

here W k is the k th principal component of the model and γ k is

he precision of the principal component W k . 

.4. Learning and inference 

The maximum likelihood estimates of the image template I ,

he noise variance σ 2 , and the precision hyperparameters { γ k }

re obtained through an iterative algorithm that is derived by

bserving that maximizing the likelihood of the input images is

quivalent to minimizing the cost function that leads to geodesic

hooting ( Miller et al., 2006 ). The optimization procedure produces

stimates of the hyperparameters { γ k } that often tend to infin-

ty. Since high precision is equivalent to concentration around zero,

his process yields sparse solutions. Other choices of sparsity, such

s Laplacian priors, can also be used to implement dimensionality

eduction. Once the algorithm converges, the maximum a posteriori

stimates of the latent loading weights x n provide a compact rep-

esentation of the anatomical shape in image J n and can be used

or further analysis in clinical studies. 

Fig. 3 illustrates the application of this approach in a study of

rain shape variability based on a set of 3D MRI scans of healthy

ubjects in ADNI. We display regions of expansion (in red) and

ontraction (in blue) captured in the first principal component, as

ell as the anatomical variability represented by this component.

e observe that ventricle size change is a dominant factor in brain

hape variability in this cohort. 
. Conclusions and discussion 

In this paper, we briefly reviewed the evolution of statistical

hape representations, from landmarks to diffeomorphisms, and of

he statistical methods that have been employed to capture the

ariability in the resulting shape descriptors. We illustrated a con-

emporary approach to shape analysis by demonstrating one pos-

ible combination of diffeomorphism-based shape representation

oupled with the Bayesian principal geodesic analysis to extract

rincipal modes of variation in the brain anatomy of healthy ag-

ng population. 

In addition to ever increasing sophistication in the mathemati-

al methods for capturing shape and its variation, the field under-

ent an exciting development of realizing shape analysis on raw

mages rather than requiring accurate segmentation as a prereq-

isite step. While this transformation alleviated the challenges of

btaining high quality segmentations, it came at a cost of com-

utational complexity. Since deformation-based shape descriptors

xist in a high dimensional space defined by the image grid, ma-

ipulating these descriptors requires substantial computational re-

ources and specialized programming techniques. We expect the

uture turns of the spiral in shape analysis evolution to produce

fficient deformation representations that still capture all the in-

ricate and clinically relevant anatomical detail. As an additional

enefit, such representations will also bring us closer to efficient

mplementations of image alignment and practical applications of

hape analysis in large scale studies of anatomical change in devel-

pment, aging and disease. 

We conclude by observing that shape analysis has not yet made

ts way into the standard medical practice or clinical research.

hile technical challenges of characterizing complex anatomical

hape have been successfully addressed by the evolution of meth-

ds in medical image computing, the challenge of translation re-

ains for the current and future researchers in this area. Only

hen clinical researchers and practitioners rely on shape analy-

is tools in the everyday decision making, can we confidently state

hat the research reviewed in this paper has lived up to its true

otential. 
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