
On Composability of Reliable Unicast and Broadcast

Abstract. In the recent past composability has emerged as a key requirement for various distributed protocols. The robust-
ness of a composable protocol depends on the environment in which the protocol runs. In other words it is not enough for
a protocol to be robust when it runs in isolation or in a “stand-alone” setting but it should be robust even in an environment
where several copies of the same protocol or other protocols are simultaneously running.
We investigate the composability for protocols that tolerate a bounded adversary modelled as a probabilistic polynomial
time Turing machine. We examine composability of protocols for two fundamental problems in distributed computing -
reliable unicast and reliable broadcast. We show that any composable protocol for reliable unicast tolerating an adversary,
that corrupts up to any t nodes, requires 2t + 1 connectivity and any composable protocol for reliable broadcast tolerating
an adversary, that corrupts up to any t nodes, requires n > 3t and 2t +1 connectivity.
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1 Introduction

The problem of reliable communication is one of the fundamental problems in distributed computing. The communication
can be from one node to another (unicast), one to many (multicast), or from one node to all other nodes (broadcast). To
state informally, problem of unicast is a sender S wishes to communicate a message m to a receiver R through an arbitrary
synchronous network, some of whose nodes are under the control of an adversary. It was first studied in detail by Dolev et
al. [9] under the setting of threshold Byzantine adversary that can actively corrupt up to any t nodes in the network. For a
computationally unbounded adversary, it is proved that reliable communication between any pair of nodes is possible if and
only if the network is (2t +1)-connected [9, 16]. In line with the observations of Dolev et al.[9], we completely abstract the
synchronous network as a collection of κ wires connecting the sender and the receiver of which up to t wires may be Byzan-
tine corrupt. In [9], it is proved that such an abstraction is actually without loss of generality in the study of the possibility
of reliable communication. Intuitively, these κ wires represent κ vertex disjoint paths from the sender to the receiver in the
network. Later, the problem of reliable communication was also studied in several other settings. For instance, [25] consider
asynchronous network, [2, 28] work with mobile adversaries; multicast lines and hypergraphs are considered in [16, 17, 30]
while non-threshold adversaries are considered in [21]; the case of directed graphs is dealt with in [7, 29].

The problem of broadcast (Byzantine agreement) was introduced by Pease et al. [23] in 1980. The challenge is to maintain
a coherent view of the world among all the honest players in spite of faulty players trying to disrupt the same. Specifically,
in a Byzantine agreement protocol over a synchronous network of n players, each player starts with an input from a fixed set
V = {0,1}. At the end of the protocol (which may involve finitely many rounds of interaction), even if up to any t of the n
players are faulty, all non-faulty players output the same value u ∈ V and if all non-faulty players start with the same input
v ∈V , then u = v. There exists a very rich literature on the problem of Byzantine agreement (BA) as briefly described below.
Pease et al. [23] showed that a protocol for BA tolerating a t-adversary over a completely connected synchronous network
exists if and only if n > 3t. Later, studies were initiated in this problem under various settings like asynchronous networks
[13], partially synchronous networks [12], incomplete networks [11], hypernetworks [15], non-threshold adversaries [14],
mixed-adversaries [1], mobile adversaries [18], and probabilistic correctness [24] to name a few. An important variant of
BA is the authenticated model proposed by Pease et al. [23]. In this model, which we hereafter refer to as authenticated
Byzantine agreement (ABA), the players are supplemented with “magical” powers (say a Public Key Infrastructure(PKI) and
digital signatures) using which the players can authenticate themselves and their messages. It is proved that in such a model,
the tolerability against a t-adversary can be amazingly increased to as high as t < n. Dolev [10] presented efficient protocols
for ABA thereby confirming the usefulness of authentication in both possibility as well as feasibility of distributed protocols.
Subsequent papers on this subject include [3, 5, 27, 4, 20, 19, 26].

There has been a growing concern on the composability of protocols in the recent past. Traditionally, the robustness of a
protocol was analyzed with a tacit assumption that the protocol is executed in the stand-alone setting. A protocol is said to be
robust in the stand-alone sense, if the protocol is robust under the assumption that it is the only protocol that is to be executed.
However in reality, several protocols are executed simultaneously with each execution oblivious of the existence of other
executions. Thus the stand-alone notion of robustness is grossly inadequate. Especially in the case of reliable communication



which is a fundamental primitive used in design of almost all fault-tolerant distributed protocols, a stand-alone notion of
reliability is highly inappropriate. “Protocol composition” refers to an environment where participating parties are involved
in many protocol executions. Further, each of the executions are oblivious of the other executions. Protocol composition
although does not produce all kinds of environments, it does produce a rich variety of environments. There are several
different protocol compositions that have been studied in literature. We present the definitions of a few of them below:

1. Self Composition : A protocol is said to be self composable if several executions of the same protocol run in a network,
the protocol still remains robust.

2. General Composition : The protocol needs to be robust even when it is run along with several executions of other
protocols.

3. Sequential Composition : In sequential composition, there is only one execution of a particular protocol at one point of
time.

4. Parallel Composition : In parallel composition, there can be several executions running simultaneously.

In [6] the notion of universal composability was introduced. This model is used to prove the security of protocols under
general composition. In general, one would expect that when the adversary is computationally bounded, we can achieve
greater fault tolerance than against the adversary who has unlimited computational powers. To motivate our study we now
give an example where the above intuition does not hold good.

2 Our Model

We consider a set of n players, denoted by P, communicating over a synchronous network. That is, the protocol is executed
in a sequence of rounds where in each round, a player can perform some local computation, send new messages to all the
players, receive the messages sent to him in the same round by the players (and if necessary perform some more local com-
putation), in that order. We further assume that the communication channels between any two processors is perfectly reliable.
During the execution, the adversary may take full control of up to any t players in that execution. We denote by t-adversary
an adversary that controls up to t of the n players. For the purpose of unicast we assume two special nodes S and R apart
from P. We further assume that adversary A cannot corrupt S and R. We also assume existence of a (signature/authentication)
scheme where the sender signs the message to be sent. No player can forge any other player’s signature and the receiver can
uniquely identify the sender of the message using the signature.

We also assume that players can run more than one executions of the same protocol in parallel . For our purpose we deal
only with stateless composition of protocols, i.e. use of session key or any other kind of execution identifier is not permitted.
The adversary A can use messages from one execution of the protocol in other executions of the same protocol.

3 Motivation

We now show that the stand-alone notion of robustness is not a satisfactory model and we need to examine the protocol for its
composability properties. For the problem of reliable unicast in the stand alone setting even the “sign-flood-verify” protocol
(given in Figure 1) is easily seen to tolerate a bounded adversary who can corrupt up to t = κ−1 wires. However, when the
adversary has unlimited computational powers, it is well known that perfect reliable communication protocol exists if and
only if κ > 2t [9].

We show that when majority of nodes (of any vertex cut-set) in a communication network is faulty, it is impossible to
design a composable protocol for reliable unicast. In the case where majority of the nodes are non-faulty, we also design a
single round bit optimal composable protocol that, with an arbitrarily high probability, is reliable.
For the case of reliable broadcast, the study on effects of composability was initiated by Lindel et al. [22]. They proved that
for Byzantine agreement under composition, the additional power of authentication is rendered useless. Specifically, they
showed that protocols for authenticated Byzantine agreement over complete graphs can be composed if and only if n > 3t
as compared to the bound of n > t in stand alone setting. These results, in conjunction with the extant literature, imply that
bounding the powers of adversary does not improve either fault tolerance or the communication complexity for the problem
of reliable communication.

Our first major and interesting result is the impossibility of parallel self composable protocols for reliable unicast when
the number of faults t ≥ dκ

2 e even under the assumption that the adversary is computationally bounded. Since this result
matches the bound established in [9], we arrive at an interesting conclusion that, in the composability setting the weaker
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Sign-and-Flood Protocol

The protocol assumes a PKI (Public key infrastructure) for authentication of messages. The sender wishes to send a
message m to the receiver.

1. The sender digitally signs the message m with his private key using a well-known digital signature algorithm (say
DSS); let SIGNS(m) denote the resultant data.

2. The sender sends m,SIGNS(m) to the receiver along all the κ wires.
3. The receiver receives, say, mi,ci along the ith wire.
4. The receiver verifies the validity of the received ci’s, 1≤ i≤ κ, using the (corresponding) verification algorithm with

the sender’s public key. Let i∗ be the minimum index such that the verification of ci∗ succeeded.
5. The receiver outputs the message mi∗ corresponding to signature ci∗ .

Fig. 1. A Naı̈ve Protocol for Reliable Unicast Tolerating Computationally Bounded Adversaries.

adversary does not lead to higher fault tolerance. Observe that composability needs to be examined only for the case where
the adversary is computationally bounded. Our next major result is concerned with a single round δ-reliable protocol (A
protocol is said to be δ-reliable if it succeeds to reliably transmit a message with a probability greater than 1−δ ). Note that
the reliability of protocols tolerating bounded adversaries are based on certain assumptions on hardness of problems which
are basically probabilistic in nature. In other words every such protocol may be viewed as a δ-reliable protocol for some
appropriate δ corresponding to the problem. However, we have observed that these protocols are not composable, Hence
a natural question is can we design an efficient composable protocol that is δ-reliable? We provide an affirmative answer
by designing a δ-reliable protocol tolerating an unbounded adversary. It turns out that our protocol is trivially composable
and hence environmentally robust. Further we reliably send ` field elements by communicating O(`) field elements which is
optimal up to a constant factor. Thus, our results imply that contrary to the intuition that we may incur higher communication
cost in a composable protocol, we have obtained a composable protocol with an optimal cost. For the case reliable broadcast,
we give complete characterization of the graphs over which ABA is possible. We show that ABA over a synchronous graph G is
possible if and only if n > 3t and G is 2t +1 connected. Note that these conditions are same as those for the case of Byzantine
agreement over graph G without use of authenticators. This shows under composition, additional power of authentication
breaks down.

4 Composability of Reliable Unicast

4.1 Impossibility of Parallel Composability

In this section, we prove the impossibility of universally composable reliable communication when the number of faulty
wires t ≥ dκ

2 e. Infact we prove a much stronger result that there exist no protocol for reliable communication that is parallel
composable even twice.

The proof relies heavily on the fact that there are no unique session IDs that the sender S and the receiver R have agreed
upon. Intuitively it is impossible in a stateless model for the sender and receiver to agree on a session ID, because agreeing
on a unique session ID would amount to communication which itself is the objective of the protocol.

Theorem 1. There exists no reliable protocol under parallel self composition (for even just two executions) that can tolerate
dκ

2 e or more faults.

Proof: On the contrary let us assume that there exists a protocol Π for reliable unicast that remains reliable under parallel self
composition and tolerates dκ

2 e faults. Let the sender S and the receiver R be connected by a set W = {w1,w2 . . .wκ} of κ wires
out of which the adversary A can corrupt any set of dκ

2 e wires. Let Γ1,Γ2 be two concurrent executions of the protocol Π

between S and R. Let m1,m2 be the inputs to the executions Γ1,Γ2. Without loss of generality we can assume that the protocol
Π terminates within N rounds.

Let W1 be the set of wires {w1,w2, . . . ,wd κ

2 e
}. Similarly let W2 be the set of wires {wd κ

2 e+1, wd κ

2 e+2 . . .wκ}. Then consider
the two scenarios depicted in the figure 2. The nodes S1 and S2 denote the sender side of the two executions Γ1 and Γ2, while
the nodes R1 and R2 denote the receiver side.
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Fig. 2. The two indistinguishable Scenarios S1 and S2.

Scenario S1
The inputs to protocol executions Γ1 and Γ2 are m1,m2 respectively. The adversary corrupts the wires W1 and does the

following.

– Swap the messages of Γ1 and Γ2 along the wires W1. More formally if msgi(A,B,wk) denotes the message sent from A to
B in round i along wk then
• The adversary sends msgi(S1,R1,wk) along wire wk to R2 and the message msgi(S2,R2,wk) to R1.
• The adversary sends msgi(R1,S1,wk) along wire wk to S2 and the message msgi(R2,S2,wk) to S1.

Scenario S2
The inputs to protocol executions Γ1 and Γ2 are m2,m1 respectively. The adversary corrupts the wires W2 and does the

following.

– Swap the messages of Γ1 and Γ2 along the wires W2. More formally let msgi(A,B,wk) denotes the message sent from A
to B in round i along wk. Then for each wk ∈W2,
• The adversary sends msgi(S1,R1,wk) along wire wk to R2 and the message msgi(S2,R2,wk) to R1.
• The adversary sends msgi(R1,S1,wk) along wire wk to S2 and the message msgi(R2,S2,wk) to S1.

We prove that the messages received by S and R are the same for both the scenarios. In order to prove this, we proceed by
induction on the number of rounds. At the beginning of the protocol, trivially the view of the receiver is the same in both the
scenarios. Let us say the view of the receiver is the same in both the scenarios is the same for the first r−1 rounds. In the rth

round

– In scenario S1, the node S1 sends the message m11,m12 to receiver R1, and node S2 sends the message m21,m22 to node
R2. Because of adversarial strategy the receiver receives the messages m21,m12 at node R1 and messages m11,m22 at node
R2.

– In scenario S2, the node S1 sends the message m21,m22 to receiver R1, and node S2 sends the message m11,m12 to node
R2. The receiver receives the messages m21,m12 at node R1 and messages m11,m22 at node R2.

Thus the receiver R receives the same messages in both the scenarios. Similarly it can be seen that the messages received
by S in round r in both the scenarios are the same. Hence by induction, the messages received by R is the same in both the
scenarios. Thus it is impossible for the receiver to distinguish between the two scenarios. This implies that it is impossible
for R to decide whether the output message for Γ1 is m1 or m2. Hence no protocol for reliable unicast is parallel composable
even two times when the number of faults t ≥ dκ

2 e. ut
The above result imposes a serious limitation on the possibility of fault tolerant distributed protocols over an incomplete

network. All protocols for fault tolerant distributed protocols on an incomplete network heavily rely on reliable message trans-
mission protocol for communication between players that are not connected by a direct link. Therefore parallel composable
fault tolerant distributed protocols over an incomplete network is impossible whenever the number of faults t ≥ dκ

2 e.
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4.2 Sequential Composability

Theorem 2. No r-round protocol for Reliable Message Transmission that tolerates t ≥ dκ

2 e faults is sequentially composable
more than 2r +1 times.

Proof: The impossibility result is derived by showing that for any deterministic protocol Π r-rounds of execution of the two
scenarios shown in figure 2 above can be simulated by 2r +1 sequential executions of Π.

Assume by contradiction that there exists a deterministic r-round protocol Π for Reliable message transmission that
tolerates t ≥ dκ

2 e and is sequentially composable 2r +1 times. The adversary can simulate one round of execution in scenario
S1 by two sequential executions of Π. For this purpose consider 2r sequential executions {Π1,Π2, . . .Π2r}of Π. For each
i,1 ≤ i ≤ r the inputs to Π2i−1 ,Π2i are m1, m2 respectively. Hence the odd executions Π2i−1 are used to simulate S1,R1 while
the even executions Π2i simulate S2,R2. We denote by msg j(A,B,wi) the message sent by A to B along wire wi in the jth

round of a protocol execution. The adversary follows the following strategy to simulate Scenario S1.

– Execution 2k−1: The adversary A corrupts the set of wires W1. For each j < k , the adversary A works as follows in the
jth round of Π2k−1
• On each wire wi ∈W1, A communicates msg j(S2,R2,wi) to R1.
• On each wire wi ∈W1, A communicates msg j(R2,S2,wi) to S1

Note that the for all j < k the messages msg j(S2,R2,wi),wi ∈W1 were obtained in the previous execution. In round k the
adversary records the messages msgk(S1,R1,wi) and msgk(R1,S1,wi) for all wi ∈W1.

– Execution 2k: The adversary A corrupts the set of wires W1. For each j < k , the adversary A works as follows in the jth

round of Π2k
• On each wire wi ∈W1, A communicates msg j(S1,R1,wi) to R2.
• On each wire wi ∈W1, A communicates msg j(R1,S1,wi) to S2.

Note that the for all j < k the messages msg j(S1,R1,wi),wi ∈W1 were obtained in the previous execution. In round k the
adversary records the messages msgk(S2,R2,wi) and msgk(R2,S2,wi) for all wi ∈W1.

At the end of the round 1 of the second execution Π2 the views of S and R is the same as the view of S2 and R2 at the
end of round 1 in scenario S1. Then in the fourth sequential execution Π4 the messages received by S and R are in the first
round is the same as those received by S2 and R2 in round 1 of Scenario S1. Since Π is a deterministic protocol, the messages
sent by S and R in round two of Π4 are same as the messages sent by S2 and R2 in round two of Scenario S1. Thus even after
round 2 the messages received by S and R are consistent with their views in Scenario S1. Using the same argument, we have
that for every i, the views of S and R in Π2i for the first i-rounds are identical to the views of S2 and R2 for the first i-rounds
of Scenario S1. Similarly the views of S and R in Π2i−1 for the first i-rounds are identical to the views of S1 and R1.

By symmetry, it is possible for the adversary to simulate Scenario S2 in 2r sequential executions of Π. The protocol
Π terminates within r rounds. Therefore after the r-rounds in Π2r, S and R must terminate with output message. But it is
impossible since the view of S and R at the rth round of Π2r is the same as that of S2 and R2 after r rounds in Scenario
S1. Hence there does not exist an r-round protocol for reliable message transmission that tolerates t ≥ dκ

2 e faults and is
sequentially composable more than 2r−1 times. ut

4.3 Randomized Composable Reliable Unicast for Free

We now present a single phase universally composable protocol that with a high probability reliably transmits ` field elements
with a overall communication complexity of O(`) field elements. We represent the block of field elements M that S wishes
to send to R as M = [m0 m1 . . . mκ(κ−t)]. In other words, a finite field F is so chosen that the message can be represented as
a concatenation of κ(κ− t) elements from F. The protocol is given in the Figure 3 where κ is the number of wires (or more
generally the number of vertex disjoint paths from the sender to the receiver) denoted as W = {w1,w2, . . . ,wκ}. Let ε be a
bound on the probability that the protocol does not work correctly. We require that the size of the field F be Ω(Q(κ)

ε
), for

some polynomial Q(κ), but this is of course acceptable since the complexity of the protocol increases logarithmically with
field size. We now discuss the correctness of the protocol. As usual, we focus only on the case wherein both the sender S
and the receiver R are honest throughout the protocol. It is sufficient to prove that (a) If R does not output “FAILURE” then
R always recovers the correct message M, and (b) There exists a suitable choice of F such that protocol terminates with a
non-“FAILURE” output with probability (1− ε), for any ε > 0. We do exactly this in the following two lemmas.
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The Single Phase δ-Reliable Universally Composable Unicast Protocol

1. S selects (κ−t) polynomials pi,0 < i≤ (κ−t) over F, each of degree κ−1 with the coefficients assigned as follows:
the coefficient of x j in polynomial pi is assigned to be miκ+ j. From these (κ− t) polynomials, S “extrapolates”
another t polynomials each of degree κ−1 by having the coefficients of x j in all these κ polynomials (pi’s) lie on a
κ− t −1 degree polynomial.

2. S sends the polynomial pi through wi.
3. S chooses another κ2 field elements at random, say ri j, 0 < i, j ≤ κ.
4. S sends along wire wi, the n ordered pairs (ri j, p j(ri j)), for all j. Let vi j = p j(ri j).
5. Let p′i and (r′i j,v

′
i j) be the values received by R. Among all the wires in W , we say that wire wi contradicts wire w j

if: v′i j 6= p′j(r
′
i j).

6. Among all the wires in W , R checks if there is a wire contradicted by at least t +1 wires. All such wires are removed.
7. If there is at least one contradiction among the remaining wires, R outputs “FAILURE” and halts.
8. If there is no contradiction left, R checks whether the coefficients of x j for the remaining polynomials (that is, after

excluding those that are eliminated in the step 6) lie on a (κ−t−1) degree polynomial. If not, R outputs “FAILURE”
and halts. If yes, R corrects the polynomials pi(x) of each corrupted wire wi (i.e, he “corrects” those wires) using
the polynomials received along the uncorrupted wires. R now knows all the polynomials pi(x).

9. R recovers M from the coefficients of the first (κ− t) polynomials.

Fig. 3. An Optimal Single Phase δ-Reliable Universally Composable Unicast Protocol.

Lemma 1. If R does not output “FAILURE” then R always recovers the correct message M.

Proof. Consider the runtime environment E, modeled as a Turing machine that freely interacts with the adversary, and initiates
several protocols (with possibly different inputs), including many concurrent copies of the present protocol. We now show
that irrespective of what E does, it cannot stop R from recovering the message M provided R does not output failure.

Note that any corruption among the wires involves changing the polynomial corresponding to that wire. Consequently,
no corrupted wire can escape undetected since their coefficients lie on a (κ− t − 1) degree polynomial. This is because if
no more than t wires accused a wire among the κ wires, then at least κ− t of them are honest wires, each of them carrying
a point on the polynomial which implies that the polynomial is unchanged. Therefore, at the start of “if yes” part of step 8,
all the wires which are used in calculation of the output could not have corrupted their polynomials. This guarantees that R’s
output in step 9 is correct, irrespective of how that environment E has helped the adversary modify the data sent along the
corrupted wires. However, we stress that this holds only as long as fresh randomness is used in each and every initiation of
the protocol1. Since S is assumed to be honest, this is indeed the case. ut

Lemma 2. The protocol terminates with an output that is not a “FAILURE” with high probability.

Proof. No matter what the runtime environment is, we know that no uncorrupted wire changes the value sent on that wire.
Therefore, it follows that no honest wire can contradict another honest wire. Thus, if wire i contradicts wire j, then either wire
i or wire j is faulty. From this it is easy to see that an honest wire can be contradicted by at most t other wires, and therefore
any wire that is contradicted t +1 or more wires has to be faulty. Hence R can be sure that all the wires removed by him are
indeed faulty.

We need to show that if a wire is corrupted, then it will be contradicted by all the honest players with high probability. Let
πi j be the probability that the corrupted wire j will not be contradicted by an honest wire i. This means that the adversary can
ensure that p j(ri j) = p′j(ri j) with a probability of πi j. Since there are only κ−1 points at which these two polynomials inter-
sect, this allows the adversary to guess the value of ri j with a probability of at least πi j

κ−1 . But since ri j was selected uniformly
in F, and the random coins are independent of those used by the other protocols initiated by the runtime environment, the
probability of guessing it is at most 1

|F| . Therefore we have πi j ≤ κ−1
|F| for each i, j. Thus the total probability that the adversary

can find i, j such that corrupted wire j will not be contradicted by i is at most ∑i, j πi j ≤ κ2(κ−1)
|F| .

Since F is chosen such that |F| ≥ Q(κ)
ε

, it follows that the protocol outputs a non-“FAILURE” value with probability
≥ 1− ε if we set Q(κ) = κ3. ut

1 It can be easily shown that if randomness is re-used among several invocations of the protocol, then the environment may help the
adversary to adroitly modify the messages along corrupted wires such that R is duped into accepting an erroneous M with a non-
negligible probability.
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A Discussion on Our Composable Protocol: The single phase δ-reliable universally composable communication protocol
of Figure 3 is a special kind of a δ-reliable communication protocol in that the receiver R actually knows if the protocol
outputs the correct message or not. Note that according to our definition of δ-reliable communication, it is acceptable even if
R is unable to “detect” every occurrence of an error. Thus, fortunately, our protocol has a strictly stronger property than what
is needed — nevertheless, since the protocol is optimal, one need not search for a more efficient definition-adhering protocol.
Of what use is such a special property? We state the three main advantages of such a “detection” property below:

1. Even the most ardent opponent of randomized (i.e. non-zero error-prone) algorithms will not hesitate to deploy an algo-
rithm that detects every erratic execution.

2. Due to the error-detection capabilities of our protocol, it is easy to convert our protocol’s error-probability into its
termination-probability. Specifically, whenever R detects that the execution is erroneous, he may inform S about it and
re-run the protocol. As a result, we end up having designed a protocol for perfectly reliable communication (that is, δ = 0)
with the property that it terminates with a very high probability in a single phase!2

3. Lastly, the special property concerned is for free — recall that ` field elements cannot be sent by communicating less than
O(`) field elements.3

5 Composability of Reliable Broadcast

We first formally define ABA where the expected consistency is that all honest players (who are outside the adversary’s
control) must agree. Note that the problem of reliable broadcast can be reduced to the problem of ABA (and vice-versa) in
the case of honest majority.

Definition 1 (ABA). Each player starts with an input from a fixed set V = {0,1}. The goal is for the players to eventually
output decisions from the set V upholding the following conditions, even in the presence of a t-adversary:

– Agreement: All non-faulty players decide on the same value u ∈V .
– Validity: If all non-faulty players start with the same initial value v ∈V , then u = v.
– Termination: All non-faulty players eventually decide.

5.1 Impossibility of Parallel Composition

In this section we show the impossibility of composition of protocol for ABA over a general graph. First, we prove that given
n > 3t, there does not exists any ABA protocol over general graph that composes in parallel and remains secure when connec-
tivity is at most 2t4. This result when combined with the result of Lindell et al. [22], shows that the advantage gained by use
of authentication for Byzantine Agreement over any graph is lost when the protocols for ABA is composed in parallel.

Intuition: We first provide some intuition as to why added power of authentication in Byzantine Agreement is rendered useless
during composition. In the stand alone model for ABA, players use authentication and send messages to each other. Since the
authentication scheme is assumed to be unforgeable, adversary A cannot alter the message sent by an honest player but can
atmost act in a fail-stop fashion. For ABA over complete graph, PSL [23] showed that the fault tolerance can be as high as
n > t. However during parallel composition, A can use messages from one execution in another execution, thus A can exhibit
byzantine behavior even w.r.t value of honest players. For such a case Lindell et al. [22] showed that parallel composition
protocols of ABA over complete graphs is possible if and only if t < n

3 . It is not difficult to see that ABA over general graph G
in a stand-alone model is possible if and only if n > t and G is t +1 connected. The reason behind t +1 connectivity is evident
from the fact that given adversary can corrupt upto t nodes, two honest players using authentication can communicate reliably
if they have t + 1 node disjoint paths between them. But this still will leave atleast one path via which honest players can
communicate. However when composed in parallel, situation changes. In parallel composition adversary can use values from
different executions, thus can send different messages on behalf of an honest player. In such a case A can ensure that an honest
player gets different messages for another honest player, yet both the messages are properly authenticated. This is similar to
setting of Byzantine agreement over incomplete graphs. Dolev [8] proved that Byzantine agreement over incomplete graph G

2 Recall that for the kind of fault-tolerance being discussed, no single phase perfectly reliable unicast (that is, δ = 0) protocol can exist [9]!
Thus, the existence of an expected-single phase perfectly reliable unicast protocol is quite a pleasant surprise! Moreover, such a protocol
also turning out to be bit-optimal — is wonderful!

3 We have assumed throughout the paper that the message space is incompressible.
4 We are considering only stateless compositions.
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in a stand-alone model is possible iff n > 3t and G is 2t +1 connected. We now show that same holds when protocol for ABA
over incomplete graph G is composed parallely.

Basic Outline: We assume there exists a protocol π that solves ABA for four players A,B,C,D over two connected graph
where atmost one player may be byzantine faulty. We further assume that π remains secure even when composed in parallel
twice. Let the original system of four players be G. We construct a new system S as shown in figure 4 . Each player in S runs
π. We now formally define S and further show that there exists a contradiction in π.

Construction of S: Take two copies of each player in G and construct an octagonal system S that interwines two independent
copies of π as shown in Figure 4. Player A is connected to B,D′; B is connected to A,C,D′; C is connected to B,D and so on.
A node a behaving in a byzantine fashion with a pair of honest nodes, is captured by connecting one of the honest nodes to
a and other to a′. a and a′ are independent copies of a with same authentication keys. Also note that each player in S knows
only its immediate neighbors and not the complete graph. Also, in reality a player may be connected to either of a or a′, but
it cannot differentiate between the two. It knows its neighbor only by its local name which may be a. Here we neither know
what system S is supposed to do nor what π solves and therefore the definitions of ABA does not tell us anything directly
about what the players’ output should be. All we know is that S is a synchronous system and π has a well defined behavior.

Let α0 be an execution of π in G where A,B and C are honest players and start with input 0. Adversary A corrupts D in
byzantine fashion. Let α1 is an execution of π in G in which A,B and C are honest players and start with input 1. A corrupts
D in byzantine fashion. Let α2 is an execution of π in G in which A,C and D are honest players and start with input values 1,0
and 0 respectively. A corrupts B in byzantine fashion. Let α is an execution of π in S in which each player starts with input
value as shown in Figure 4. Notice that all the players in S are honest and follow the prescribed protocol correctly.
We now describe the adversary strategy. Let msgi(a,b) denote the message send by player a to b in ith round of execution of
protocol π.

1. Send outgoing messages of round i: A obtains the messages msgi(D,A),msgi(D,B) and msgi(D,C) from D in α0. (these
are round i messages that D would have sent to players A,B and C if D would have been honest).Similarly, A obtains the
messages msgi(D′,A′), msgi(D′,B′) and msgi(D′,C′) from D′ in α1 (these are round i messages that D′ would have sent
to players A′,B′ and C′ if D′ would have been honest).

– In α0, A sends the messages msgi(D′,A′), msgi(D′,B′) and msgi(D,C) to A,B and C respectively. Thus, the directed
edges (D,A) and (D,B) are replaced by directed edges (D′,A) and (D′,B) respectively.

– In α1, A sends msgi(D,A),msgi(D,B) and msgi(D′,C′) to A′,B′ and C′ respectively. Thus, the directed edges (D′,A′)
and (D′,B′) are replaced by directed edges (D,A′) and (D,B′) respectively.

2. Receive incoming messages from round i: In α0, A obtains the messages msgi(A,D),msgi(B,D) and msgi(C,D) via player
D. Similarly, in α1, A gets msgi(A′,D′), msgi(B′,D′) and msgi(C′,D′) via player D′.

– A passes the messages msgi(A′,D′),msgi(B′,D′) and msgi(C,D) to D in α0. Thus, the directed edges (A,D) and
(B,D) are replaced by directed edges (A′,D) and (B′,D) respectively.
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– A passes the messages msgi(A,D),msgi(B,D) and msgi(C′,D′) to D′ in α0.Thus, the directed edges (A′,D′) and
(B′,D′) are replaced by directed edges (A,D′) and (B,D′) respectively.

We now show that no protocol can achieve ABA for graph G under composition of protocol. Evidently, the above statement
completes the contradiction to the assumption that consensus is possible under composition. This, therefore, completes the
proof. We show the following two lemmas as a prelude to proving above statement.

Lemma 3. Players A, B and C output 0 in the system S.

Proof. First we show that whatever messages D and D′ send to A, B and C in α, A can send the same to A, B and C in α0. In
the execution α all the players follow π except from that the player D is connected to A′ and B′ in place of A and B and D′ is
connected to A and B in place of A′ and B′. However, from the adversary strategy it is evident that this change in connectivity
does not make any difference to the views of A,B and C i.e. A,B and C receive same messages in α and α0. Thus to A,B and
C, α and α0 are indistinguishable. α

A∼ α0, α
B∼ α0, and α

C∼ α0. From the validity condition of ABA we can say that A,B and
C will eventually output 0 in α0. Since α

A∼ α0, α
B∼ α0, and α

C∼ α0, A,B and C in α will output 0.5 ut

Lemma 4. Players A′, B′ and C′ output 1 in the system S.

Proof. The faulty party here is D′ and the proof works in the same way as above. Players A′,B′ and C′ started with initial
values 1 and hence they output 1 in the system S. ut

Theorem 3. ABA when composed in parallel over graph G cannot tolerate even one byzantine fault.

Proof. Suppose there exists a protocol π which achieves ABA under composition when the executions α0, α1 and α2 are
run in parallel. Let α2 be an execution with players C, D and A′ being honest and B as corrupt. On similar lines as proof of
Lemma 3, we can show that C and A′ will output the same value in system S. But, C and A′ have already decided on 0 and 1
respectively( Lemma 3 and Lemma 4 ). This contradicts the agreement condition for ABA. Thus, there does not exists such a
π. ut

Theorem 4. ABA tolerating t-adversary cannot be composed in parallel over a general network N if n ≤ 3t or N is not
2t +1 connected

Proof. The necessity and sufficient condition of n≤ 3t is shown by Lindell et al. [22]. For the connectivity part, suppose there
exists a protocol π′ that solves ABA in network N tolerating upto t faulty players, with n ≥ 3t and N is 2t connected. Let π

solves ABA in graph G(see Figure 4) for nodes A,B,C and D. Partition players of π′ into four nonempty sets IA, IB, IC and ID
such that sets IB and ID contains at most t players each . Each player A,B ,C and D in G keeps track of all the players in sets
IA, IB, IC, ID respectively. Each player i in G assigns its own initial value to every member of Ii and simulates the steps of all
the players in Ii as well as the messages between pairs of players in Ii . Messages from players in Ii to players in another set
I j are sent from player i to player j in G. If any player in Ii decides on a value v, then i decides on the value v. If there are
more of such values, then i can choose any one from those values. Note that if we remove all the nodes in IB and ID, then the
nodes in IA and IC get disconnected. The edges in graph G can now be considered as the bundle of edges between the groups
IA, IB, IC and ID in N . Put all the faulty processes in N to either IB or ID. Since B or D in G simulate all the faulty players in
N , there are at most t faulty players in N .

Fix any particular execution β′ of π′ with at most one faulty process and let β be the simulated execution of π Since π′ is
assumed to solve ABA for n players with at most t faults under composition of protocols, the usual agreement, validity and
termination conditions for ABA hold in β′. We argue that these conditions carry over to β.
For termination, let i be a nonfaulty player in G. Then i simulates at least one process, j, of N , and j must be nonfaulty since
i is. The termination condition for β′ implies that j must eventually decide and hence i decides. For validity, if all non faulty
players of π begin with a value v, then all non faulty players in π′ also begin with v. Validity for β′ implies that v is the only
decision for a nonfaulty player in β′. Then v is the only decision value for a nonfaulty player in β. For agreement, suppose i
and j are nonfaulty players of π. Then they simulate only nonfaulty players of π′. Agreement for β′ implies that all of these
simulated players agree, so i and j also agree.
We conclude that π solves ABA for four players under composition tolerating one fault. But this contradicts Theorem 3. Thus,
there does not exists any such protocol π′. ut

5 We are able to make claims regarding player’s outputs in α as views of players are same as those in α0. Thus by analyzing outputs in
α0, we can determine outputs in S.
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6 Conclusion

Our first result shows that any composable protocol for reliable unicast tolerating bounded adversaries requires that κ > 2t.
As the bounds for tolerating an unbounded adversary is also the same, we conclude that a weaker adversary does not result in
improved fault tolerance for the problem. This is in line with the impossibility of Authenticated Byzantine agreement when
n < 3t + 1 shown in [22] which makes digital signatures useless in the case of Byzantine agreement. Our second result es-
tablishes something in the other direction. We have designed a constant overhead δ-reliable unicast protocol for a sufficiently
large field size (we require |F|= Ω(κ3

δ
)). The optimality of the communication complexity encourages us to design protocols

tolerating unbounded adversaries instead of weaker bounded adversaries. Summarizing, bounding the powers of adversary
does not improve either fault tolerance or the communication complexity for the problem of reliable communication. Since
reliable communication is a primitive used by almost all multiparty protocols these results are relevant for general distributed
computation as well.
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