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Abstract

Three decades ago, Pease et al. introduced the problem of Byzantine Agreement [PSL80]
where nodes need to maintain a consistent view of the world in spite of the challenge posed by
Byzantine faults. Subsequently, it is well known that Byzantine agreement over a completely
connected synchronous graph of n nodes tolerating up to t faults is (efficiently) possible if and
only if t < n/3. Pease et al. further empowered the nodes with the ability to authenticate
themselves and their messages and proved that agreement in this new model (popularly known
as authenticated Byzantine agreement (ABA)) is possible if and only if t < n. (which is a
huge improvement over the bound of t < n

3
in the absence of authentication for the same

functionality).
To understand the utility, potential and limitations of using authentication in distributed

protocols for agreement, Gupta et al. [GGBS10] studied ABA in new light. They generalize
the existing models and thus, attempt to give a unified theory of agreements over the authen-
ticated and non-authenticated domains. In this paper we extend their results to synchronous
(undirected) arbitrary graphs and give a complete characterization of agreement protocols in
the aforementioned family of graphs.

As a corollary, we show that agreement can be strictly easier than all-pair point-to-point
communication. It is well known that in a synchronous graph over n nodes of which up to
any t are corrupted by a Byzantine adversary, BA is possible only if all pair point-to-point reli-
able communication is possible [Dol82, DDWY93]. Specifically, in the standard unauthenticated
model, (2t+1)-connectivity is necessary whereas in the authenticated setting (t+1)-connectivity
is sufficient. Thus, a folklore in the area is that maintaining global consistency(Agreement) is at
least as hard as the problem of all pair point-to-point communication. Equivalently, it is widely
believed that protocols for BA over incomplete graphs exist only if it is possible to simulate an
overlay-ed complete graph. Surprisingly, we show that the folklore is not always true. Thus,
it seems that agreement protocols may be more fundamental to distributed computing than
reliable communication.

Keywords: Byzantine Agreement, reliable communication, arbitrary graphs, authentication.

1 Introduction

Informally, the goal of Byzantine Agreement (BA) is to maintain a consistent view of the world in
spite of the challenge posed by (Byzantine) faults. The problem was first introduced by Pease et
al. [PSL80]. They went on to show that BA(in a synchronous and non-authenticated setting) is
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possible if and only if 2/3 of the nodes are non-faulty. In a seminal paper, Fisher et al. [FLP85]
proved the impossibility of BA tolerating even a single fail-stop in the asynchronous model. Being
a fundamental problem in the area of distributed algorithms, BA has been studied in wide variety
of models such as partially synchronous graphs [DDS87], incomplete graphs [Dol82, Lyn96], hyper-
graphs [FM00], non-threshold adversaries [HM00], mixed-adversaries [AFM99], mobile adversaries
[Gar94], and probabilistic correctness [Rab83] to name a few.

Owing to its high fault tolerance, an important variant on BA is the authenticated model
proposed by Pease et al. [PSL80]. Since generation of authenticated signature for every message
is costly, some works choose to consider alternatives for authentication and avoid the excess use
of signatures. Specifically, Borcherding [Bor95, Bor96b] investigated the case when signatures are
used in only some rounds but not all. A different approach was taken by Srikanth and Toueg [ST87]
where authenticated messages are simulated by non-authenticated sub-protocols. In another line of
work, Borcherding [Bor96a] considered different levels and styles of authentication and its effects on
the agreement protocols. His work focuses on the properties of authentication scheme that allows
us to build faster protocols for BA. Katz et al. [KK07] investigated the use of other tools such
as Verifiable Secret Sharing (VSS) to achieve Byzantine agreement in constant number of rounds.
Gong et al. [GLR95] studied the assumptions required for the authentication mechanism in protocols
for BA that use signed messages. They present new protocols for BA that add authentication to
oral message protocols so that additional resilience is obtained with authentication. In all, ABA
has been fairly well studied by researchers.

Gupta et al. [GGBS10] consider the problem of Authenticated Byzantine Agreement(ABA)
under a mixed adversary model. They give completeness theorems for ABA protocols over a
complete graph. In this work, we extend their results to arbitrary (undirected) graphs.

1.1 Motivating Example
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Figure 1: Graph G

For starters, consider the graph Figure 1. Imagine the case
when either 1 or 3 is Byzantine faulty but both of them have
the capability to authenticate themselves; while 2, 4 are non-
faulty but do not have the power to authenticate their mes-
sages. We claim that in such a scenario 2 cannot reliably send
a message across to 4.

In particular, consider the following executions E1 and
E3: In E1, 2 intends to send α to 4, and during E3, 2 wants to send β (different from α). Now, the
adversary employs the following strategy: In Eγ

1, adversary corrupts γ and sends what an honest
γ would have sent in Eγ . It can be shown that the messages received by 4 in both the executions
are same and thus, 4 cannot distinguish between E1 and E3. The actual views can be proved to
be same using inductive arguments. However, we do not take this up in any more detail. We, also,
note that we do not use this fact elsewhere in the article.

Thus, it seems that in the aforementioned scenario, nodes in G (ref. Figure 1) cannot have
Byzantine agreement(BA) given the parties can’t establish a reliable communication channel –
which is fundamental to every distributed protocol. But, interestingly, our theorems show that
nodes can agree in spite of nodes 2 and 4 not being able to establish a reliable communication link.

Graph G turns out to be a classic example, which seems to suggest - “Perhaps, BA is more
fundamental to Distributed Computing than all pair point-to-point communication”. We give a
simple protocol in Table 1 that solves BA over G. The proof of correctness is simple yet beautiful

1Let γ ∈ {1, 3} and define γ to be 3 if γ = 1 or 1 otherwise.
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and we establish it via Theorem 8. This is one of the many interesting examples where it seems
that a BA protocol cannot exist - but our characterization gives an “efficient” way to identify if a
protocol can indeed exist or not.

2 Model and Definitions

We consider a set of n nodes, communicating over a synchronous graph. That is, the protocol is
executed in a sequence of rounds wherein in each round, a node can perform some local computation,
send new messages to its neighbours, receive the messages sent to him in that round by the nodes
(and if necessary perform some more local computation), in that order. The communication network
is abstracted as an undirected graph. We further assume that there is a communication channel
for each edge of the graph. Also, the communication channel between any two nodes is perfectly
reliable and authenticated. We remark that all the nodes are aware of the topology of the graph.
During the execution, the adversary may corrupt up to t nodes. The adversary can make the
corrupted node behave in an arbitrary way. Further, the adversary can read the internal states of
up to another k nodes. We refer to such an adversary as (t,k)-adversary. One may view such an
adversary as a mixed adversary. We restrict ourselves to a static, threshold adversary.

We also assume existence of authentication tools such as Public Key Infrastructure (PKI) and
Digital Signature Schemes (DSS). Nodes can authenticate themselves and their messages with
these authentication tools. We assume that every node has a secret key SK and a signature scheme
Sign(SK,mesg) that allows it to sign message mesg with its signature. Also, we assume that any
node can verify if a message carries a valid signature of a node. It is assumed that the nodes sign
whenever they send any message and also discard any received message that does not have a valid
signature on it. This ensures that the receiver can uniquely identify the sender of the message.
Since the adversary can look into the internal states of k nodes outside its control, it can forge the
signature of all the k. So, in all the adversary can forge/generate the signatures of (t + k) nodes.
From now on, we use the term κ-connected graph to denote a κ-vertex connected graph. Also,
throughout the paper we use n to denote the number of nodes in the graph. Every node starts
with an input value from the set V = {0, 1}.

Definition 1 (Byzantine Agreement). • Agreement: All non-faulty nodes decide on the
same value u ∈ V .

• Validity: If all non-faulty nodes start with the same initial value v ∈ V , then u = v.

• Termination: All non-faulty nodes eventually decide.

Here a node is considered as faulty if and only if he deviates from the delegated protocol.
Therefore, the nodes that do not deviate from the designated protocol are non-faulty nodes. A
node who follows the designated protocol diligently, even if adversary has complete access to his
internal state is referred as passively corrupt node. A node is honest if he follows the designated
protocol, and over whom adversary has absolutely no control. In particular, the adversary cannot
replicate/forge the signature of honest nodes. For the purpose of this paper, we refer to both honest
and passively corrupt nodes together as non-faulty .

Definition 2 ((t,k)-BA Protocol). A protocol is a (t, k)-BA protocol if it accomplishes Byzantine
agreement (ref. Definition 1) in the presence of a (t,k)-adversary.

Definition 3 ((2t,t)-Connectivity). A graph N = (P, E) is (2t, t)-Connected if its minimum degree
is at least 2t and it is (t+ 1)-connected.
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3 Results and Contributions

The contributions of this paper are many fold :

1. Complete Characterization: We give the necessary and sufficient condition(s) for designing
protocols for agreement over (undirected) arbitrary graphs. We prove that BA Protocols over
a n node graph tolerating a (t,k)-adversary exist if and only if n > 2t+ min(t, k) and the
graph is

(t+ 1)-connected if n > (2t+ k)
(2t, t)-connected if (t+ k) < n ≤ (2t+ k)

(2t+ 1)-connected if n ≤ (t+ k)

The above holds for k > 0. For k = 0 it reduces to n > t and graph should be (t+1)-connected.

2. Unification: In the standard authenticated model (ABA) [PSL80] the adversary can forge
messages only on behalf of corrupt nodes. On the other hand in the unauthenticated model
(BA) every node can be treated as passively corrupt node2. Thus, characterizing possibility
of BA protocols for the entire spectrum leads to unification of the extant literature on BA.
As an elaboration consider the result presented in previous paragraph. It says if n ≤ (t+ k)
then 2t + 1 connectivity is necessary and sufficient – which is characterization of BA over
non-authenticated setting. To elaborate, n ≤ (t + k) implies there are no honest nodes
with a signature scheme that the adversary cannot forge and thus, collapses to the setting of
non-authenticated BA.

3. Agreement can be easier than all pair point-to-point communication: From the results pre-
sented in this paper, it is evident that for all graphs with n > (2t + k), (t + 1)-connectivity
is sufficient for agreement. We, now, show that if k > 0 then for simulating point-to-point
communication (2t+ 1)-connectivity is necessary. Consider a scenario where the Sender, say
S, is non-faulty but the adversary can sign for S; in such a scenario, it is well-known that
if the graph is not (2t + 1)-connected, there must exist a node j such that reliable message
transmission from S to j is impossible[DDWY93]. From the above argument one can see that
BA is easier than all pair point-to-point communication.

4. BA is easier than Byzantine Generals (BG) [PSL80, LSP82]: Informally, the problem of
reliable broadcast in presence of Byzantine faults is also studied under the name of BG. Note
that if a protocol for BG exists, then it vacuously is also a protocol for reliable point-to-point
message transmission. Till this juncture, BA and BG have been isotopic forms. That is,
in the authenticated and un-authenticated models, BA iff BG. However, we show that BA
and BG are two different problems and in fact BA is more primitive and fundamental to
distributed computing than BG. In other words, there are several graphs over which BA is
possible whereas BG is impossible, in spite of having an overwhelming non-faulty majority.

3.1 Organization of the paper

From now on, we assume that k > 0. We, also, assume that, w.l.o.g, either n > (2t + k) or
(t+ k) < n ≤ (2t+ k) or n ≤ (t+ k). We consider these cases in Sections 4, 5 and 6 respectively.
We establish the main theorem of the paper in Theorem 14.

2A node not having no authentication facility at all can also be visualized as passively corrupt and therefore, the
adversary can forge messages on his behalf
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4 The Good: When the honest are in abundance

Lemma 1. (t, k)-BA protocol over any general graph N = (P, E), |P| > (2t+ k), exists if and only
if N is (t+ 1)-connected.

Proof. Necessity: The necessity of (t+ 1)-connectivity is straight forward due to the presence of t
Byzantine faults. Elaborating further, the adversary may crash t nodes and disconnect the graph.
Sufficiency: We assume that every node i has a secret key SKi and a signature scheme Sign(SKi,mesg)
that allows i to sign message mesg with i’s signature. Also, we assume that any node can verify
if a message carries a valid signature. It is assumed that the nodes sign whenever they send any
message and also discard any received message that does not have a valid signature on it. Nodes
run the Flood-Set protocol given in Algorithm 1.3

Algorithm 1 Flood-Set(N , i, σ) Node i starts with its input σ ∈ {0, 1}

Ω[n] = ∅ ⊲ Maintain a set for each node in the graph, Initially empty
for each j : (i, j) ∈ E do

Send(σ, j) ⊲ i sends its input to its neighbours
end for
Round← 1
while Round ≤ 2n do ⊲ Flood for 2n rounds

for each j : (i, j) ∈ E do
Receive(j)
∀x ∈ P, Ω[x] = Ω[x] ∪ Messages originating from node x and received from j

end for
for each j : (i, j) ∈ E do

Send(Ω, j) ⊲ Send messages to neighbours
end for
Round = Round+ 1 ⊲ Increment Round

end while

Lemma 2. All non-faulty nodes will have a consistent view of whether node i’s execution was clean
or dirty.

Proof. We define a contradiction as if at some point in the execution, a node i receive at least
two valid messages with different content. If in any round R ∈ {1, ..., (n − 1)} a non-faulty node
encounters a contradiction, then from the specification of the protocol, all non-faulty nodes see a
contradiction in round R+ n, all agree that the run was dirty, and all output a default value.

However, assume that no non-faulty node observes a contradiction before the beginning of round
n. In order to observe a contradiction in round n, i must receive two messages, each of the messages
carrying with n signatures. Recall, however, that the adversary can forge at most n− 1 signatures,
since n > t + k4, and therefore some honest node, a node with a secure signature scheme, must
have signed both messages in one of the previous round. This contradicts our assumption that no
non-faulty node saw a contradiction prior to round n. Hence, all non-faulty nodes can agree up on
the status of any execution.

3This protocol is essentially the Dolev-Strong protocol [DS83] followed by n rounds of flooding.
4This is a weaker condition than n > 2t + k, but we shall use Flood-Set protocol as a sub-routine for the cases

when only this weaker condition is met.
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Lemma 3. If node i is honest, then all non-faulty nodes agree on the sender’s input and i’s
execution is clean for any non-faulty node.

Proof. Since j is an honest node, whose signature cannot be forged by an adversary, and the graph
is (t+ 1)-connected it simply implies that j’s location in Ω is consistent across all non-faulty i.

Theorem 4. Flood-Set Protocol, given as Algorithm 1, is a (t, k)-BA protocol, given n > (2t+ k)
and the graph is (t+ 1)-connected.

Proof. Termination is obvious. For validity, since n > 2t+ k this implies (n− t− k) > t. Notice
that (n− t− k) denotes the number of honest nodes(that is, nodes with a good signature scheme).
And hence, we can conclude that the honest nodes out number the corrupt nodes. Since, all honest
nodes start with the same value v, from Lemma 3, the decision rule simply implies that v is the
only possible decision. For agreement, Lemma 2 implies that all for any two non-faulty nodes i, j
Ω is consistent across both of them. And since the same decision rule is applied across the nodes,
agreement is guaranteed.

Node x deems the execution/invocation of the flood-set protocol by node j as dirty if he detects
the Byzantine influence(i.e., if x received two different inputs from j with a valid signature of j or
never receives any messages with valid signature of j); otherwise we say that the execution is clean
for i. (Note that in our setting an execution can be dirty when either j is either faulty or passively
corrupt.)

At the end of Flood-Set protocol, x modifies Ω in the following way: the jth location of this
tuple is changed to a ⊥ if node j’s flood-set execution is dirty, else if it is clean (and thus, had
a single value v), then Ω[j] = v. x takes a majority over Ω and outputs it as its decision value;
otherwise, it outputs a default value. The proof of correctness hinges on the fact that n > 2t+ k.
Rearranging the terms, (n− t− k) > t, means that the honest nodes are in strict majority. Thus,
the clean runs of the honest nodes carries us through.

5 The Bad: When faulty outnumber the honest

We now take a detour and limit our focus to 2-connected graphs. Specifically, we first construct
(1, ψ)-BA protocol on a 2-connected graph, where ψ ∈ [2, n − 2]. Our approach can be outlined
as follows: we design a protocol Π for the weakest case, that is to say the adversary always uses
his full power and corrupts exactly 1 node actively and (n − 2) nodes do not have the power to
authenticate themselves. It is straightforward to see that such a protocol would also work for
the stronger assumptions in which more nodes have the power to authenticate themselves or the
adversary does not corrupt anyone. Finally, we extend Π to a more general setting where the
adversary controls t ≥ 1 nodes.

5.1 Π: The baby protocol

Designing Π: Nodes exchange messages as per the Flood-Set protocol, given as Algorithm 1. Node
i applies a “modified” decision rule, which is as follows: If a majority exists over all the clean runs,
then i outputs it as his decision and halts. Else, if the number of nodes which had a clean run is
more than 2, i outputs 0 and halts. However, if the number of clean runs is only 2: Say, only runs
of nodes a and b are clean. Notice that, one of the nodes a or b must be honest while the other
node may be corrupt.
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We now make a big assumption (and later show how to get rid of it): We assume that both a and
b are non-faulty. Node x, x ∈ P− {a, b}, sends his input to node a using the following routing
strategy: (a) through the direct edge(if it exists), (b) otherwise a and b have at least 2 vertex
disjoint paths between them and all the nodes in these paths must use these paths only. (c) else let
χ = {p1, p2..., pj} be the set of paths to a from x, if any such path includes b, x chooses it otherwise
it chooses the shortest path to a. x also sends its input to b along an analogous set of rules. Nodes
a and b are required to sign with their signature and send them back to x along the same path. If
a and b receive more than one value from a node or not along the routing protocol given, a and b
do not respond. Suppose, x receives, say, α and β from a and b respectively. If either a or b do not
match with his input bit, x drops that message (Note that he cannot infer anything whether the
node who signed on the toggled bit is corrupt or not).

Now, every node tries to get its input signed by a and b. After that, every node runs the
Flood-Set protocol, given as Algorithm 1, twice. The first time with its input bit signed by a and
the next time with its input signed by b. If both these runs turn out to be clean but the values
contradict each other – both runs of i are overruled to be dirty. And if i has both its runs clean
and consistent – then i’s run is declared clean. At the end of Flood-Set protocol, i take a majority
among all clean runs including the two runs of a and b; otherwise it decides on a default value(say,
0) and the protocol terminates. This would work as along as one of the node’s execution in the
flood-set protocol is clean. We, now, prove that if both a and b are non-faulty, then at least one
node will have a clean run.

Lemma 5. If both a and b are non-faulty, at least one node shall have a clean run.

Proof. Since N is 2-connected, there can be two cases: (a) a, b are a vertex cut-set5 in N . (b)
a, b are not a vertex cut-set. In the former, it is easy to see that the claim is maintained as there
shall be at-least two components upon removing a and b and it is clear that the adversary may be
present only in one component. Thereby, the nodes in the other component can get the signature
of a and b and hence, they will be able to sent their value to all other nodes successfully - one of a
or b is honest and the other is non-faulty - so either both the runs will be clean with a consistent
value or one of the runs will be clean and the other will be dirty - and from the protocol, both
these cases are deemed to be clean runs. The case of both runs being clean with a contradictory
value can happen only if one of a, b and the node is faulty.

In the later, there is only one component upon removing a and b. If a and b are adjacent, notice
that the both a as well as b are sure to have a neighbors which is other than b and a respectively (as
N is 2-connected, neighborhood of each node is at least 2). In this case, one of them is guaranteed
to be non-faulty and hence from the routing method it is easy to see that, one of these node’s will
have a clean run (arguments go similar to previous case). If a and b are neither vertex cut-sets
nor adjacent then there are at least 2 vertex disjoint paths between a and b. And active adversary
resides in only one of them. Hence, at least of the nodes in the other path will send its input bit to
get signed from a, b as per the routing algorithm. Hence, it easy to see that such a node always ex-
ists and hence at least one of the nodes modulo a, b will have a clean run. And, thus the Lemma.

Observe that, all nodes would have agreed, under the big assumption that both a and b were
non-faulty. However, if the protocol has not had the clean run - Lemma 5 implies that either a or b
is faulty. Depending on whether nodes a and b are a vertex cut-set or not, nodes do the following.

5A vertex cut-set in a graph is a set of vertices whose removal from the graph makes it disconnected.

7



5.1.1 The shallow side

If a and b are not a vertex cut-set, a publicly chosen (say, the node with the least UID outside a, b)
non-faulty node i may send his input to everyone using paths outside a and b. i sends his input to
a through a path avoiding b and to b via path avoiding a. Note that these paths are bound to exist
as it is a 2-connected graph. This completes the construction of Π when a and b are not a cut-set.

5.1.2 The far side: Diamond protocol
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Figure 2: Graph N ′

If a and b are a vertex cut-set, say a and b partition the
graph N into x components c1, c2, . . . cx. Now, nodes choose
a representative from each of these components, say ni from
is chosen from ci (via some function on UID’s). Nodes, now,
create a (virtual) overlay-ed graph N ′ whose vertices include
ni’s, a and b. An edge appears between any two vertices only
if there is an edge between the components represented by
them. Note that we are not looking for a direct edge between
ni’s, we are looking for edge between Ci’s and a, b (each edge
may have to be simulated via one or more nodes). Notice
that every ni has to be connected to both a and b (follows
from 2-connectivity of N ). Thus, N ′ (ref. Figure 2) has to be
2-connected (follows from N being 2-connected and that a, b
are a cut). Now, we pair every node in N ′ (other than a and
b) with another node (pairings are chosen via a pre-decided strategy)6. Consider one such pairing
(nx, ny). Now, nodes a, b, nx and ny simulate graph G in Figure 1. Specifically, a, b, nx and ny
simulate nodes 1, 3, 2 and 4 respectively. They execute rounds 1 and 2 of the Diamond protocol
(Table 1). It is assumed that nodes sign on all the messages they send and discard any received
message with an invalid signature. The rest of the nodes, merely, act as routers relying messages.
The only difference w.r.t. the Diamond protocol is that in lieu of rounds 3 and 4, node 4(that is,
ny) executes the Flood-Set protocol given in Algorithm 1 on graph N with the tuple containing
inputs ψ1 and ψ3. If it is a clean run, nodes decide on that value and halt.

Claim 6. If node 4 does not receive the input value of node 2 by the end of this protocol, node 2
can identify the Byzantine faulty node.

Proof. Let node 2 starts with a input bit α ∈ {0, 1} and let node 4 receive values α, β7 through
the two vertex disjoint paths. w.l.o.g, β can take the values either α, α 8 or a null. In case β is α,
then 4 does not receive 2’s input. However, as per protocol 4 now sends the value α via the other
path, which is non-faulty and thus, sends them across to 2. While, the value that is received along
the other path cannot be toggled to α as it has the signature of a non-faulty node which cannot be
forged. Upon receiving this, 2 can easily see either of 1 or 3 is faulty by looking at the signatures
on the message. In the other two cases, 4 would have received 2’s input bit.

Claim 7. Node 2 can sense if his input value has been reliably communicated to node 4.

Proof. If 2’s input is reliably transmitted to 4, we will show that the adversary cannot prevent 2
from being ignorant of the same. Notice that as per the protocol, 4 sends the values received from

6A node can be involved in multiple pairings
7Note that since of the two paths is non-faulty, at least one of the values that node 4 receives is α.
8we use the notation α to denote the complement of input value of node 2.
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Code for node 1:

Let node 1 start with an input σ1 ∈ {0, 1}.

1. Receives the values sent by nodes 2 and 4 and them

across to 4 and 2 respectively.

2. Do nothing.

3. Receive ψ from node 4 and send it to 2.

4. Do nothing.

5. Receive from 2 and output the same.

Code for node 3:

Let node 3 start with an input σ3 ∈ {0, 1}.

1. Receives the values sent by nodes 2 and 4 and them

across to 4 and 2 respectively.

2. Do nothing.

3. Receive ψ from node 4 and send it to 2.

4. Do nothing.

5. Receive from 2 and output the same.

Code for node 2:

Let node 2 start with an input σ2 ∈ {0, 1}.

1. Sends σ2 to nodes 1 and 3.

2. Receive ψ1 and ψ3 from nodes 1 and 3 respectively.

3. Do nothing.

4. Receive ψ′
31

from node 1 and ψ′
13

from node 2. If any

of these values is a ⊥ then replace it with his input

value, σ2.

If ψ′
13

= ψ′
31

= σ2, then decide on σ2.

Else if ψij 6= σ2, then decide on ψj .

5. Send the value decided upon to 1 and 3.

Code for node 4:

Let node 4 start with an input σ4 ∈ {0, 1}.

1. Sends σ4 to nodes 1 and 3.

2. Receive ψ1 and ψ3 from node 1 and node 3 respec-

tively.

3. Send the value ψ3 to node 1 and ψ1 to node 3.

4. Create a set W from ψ1 and ψ3. If |W | = 1 decide

on that element, else output σ4.

5. Do nothing.

Table 1: Diamond protocol.

1 via 3 and vice-versa. By arguments similar to those in Claim 6, we can see that if 4 received
2’s value, then at the end of protocol, 2 will not receive a toggled value of his input. So, he either
receives either ⊥ via both paths or a ⊥ along one of the paths. Notice that in both these cases, 2
can always be assured that 4 received his input.

Theorem 8. Protocol given in Table 1 accomplishes BA protocol on graph G, when either 1 or 3
is corrupt by the Byzantine adversary and 2, 4 have no authentication schemes.

Proof. Termination is obvious. For validity - observe that at the end of the BA protocol in Table 1,
nodes output either the input value of node 2 or 4 (both these nodes are non-faulty) and hence,
validity will always hold. For Agreement, by Claim 7, it easy to see that node 2 can sense whether
4 has reliably received its input. If 4 does not receive node 2’s input, by Claim 6 2 can find out the
adversary. w.l.o.g say 1 is the adversary, and hence node 4’s input value (it needs to consider the
input value of node 4 received from node 2). Once, node 2 knows what value to be agreed upon, it
sends this value to nodes 1 and 3 and thus, agreement is attained.

Notice that if nodes have not agreed on any value, we can invoke Claim ?? to infer that node
2(here it is, nx) can identify the adversary (between a, b). If nodes haven’t decided yet: nodes nx
and ny swap their codes, that is, nx deploys the code of 4 and vice-versa and then, they re-execute
the Diamond protocol given above. If nodes still did not agree, both nx and ny can identify the
faulty node is (out of a and b). The executions proceed until nodes have decided and halted or

9



when all the pairings have tried their luck. When all the pairings are exhausted, notice that all
ni’s can identify the adversary and this as good as the adversary making himself public!

All the ni’s agree on the input of the non-faulty node (out of a and b). Now, each of these ni’s
send the decision to the nodes in the connected component represented by ni and also to a and b.
This completes the construction of Π ((1, n− 2)-BA protocol).

Lemma 9. For every 2-connected graph on n nodes, Π is a (1, n− 2)-BA protocol.

Proof. Termination is obvious. For agreement, the use of Flood-Set (Algorithm 1) and the
Diamond protocol for communication ensures that all the non-faulty nodes have consistent values
and hence the decision rule simply implies that all of them agree on the same value. If all non-
faulty nodes start with same input σ, every node’s input (modulo the faulty ones) has to be σ
and the protocol decides only upon receiving at least inputs from three nodes. Thus, if all the
non-faulty nodes start with the same input, σ is the only possible output. Hence, by definition, it
is a (1, n− 2)-BA protocol over a 2-connected graph.

5.2 Beyond 2-connected networks

We, now, extend Π to an arbitrarily connected network. Before that, we introduce new machinery.
It is convenient to model the threshold adversary as a non-threshold adversary [HM97, FM98,
HM00]. Informally, a non-threshold adversary captures the faults by a fault structure, that is, an
enumeration of all the possible “snapshots” of faults in the network. Note that a single snapshot
can be described by an ordered pair (B,K), where B,K ⊆ p and B ∩K = ∅, 9 which means that
the nodes in the set B are Byzantine faulty while the nodes in the set K are passively corrupt.
A fault structure is a collection of such pairs. More precisely, we define the fault structure by A,
where A ⊆ 2p×p. The adversary is allowed to corrupt any pair from the fault structure. The fault
structure is monotone in the sense that if (B1,K1) ∈ A, then ∀(B2,K2) such that B2 ⊆ B1 and
K2 ⊆ K1, (B2,K2) ∈ A. We note that A can be uniquely represented by listing the elements in its
maximal basis A which we define below. In what follows, unless specified otherwise, we work with
only the maximal basis of A.

Definition 4 (Maximal Basis of A). For any monotone fault structure A, its maximal basis A is
defined as A = {(B,K)|(B,K) ∈ A, ∄(X,Y ) ∈ A, (X,Y ) 6= (B,K), X ⊇ B and Y ⊇ K}

Another way of representing the adversary is via an Fault Basis A given in definition 4 with
the understanding that the any one pair (Bi,Ki) from A is under the control of adversary and it
may corrupt the nodes in Bi in Byzantine fashion and nodes in Ki passively. It is evident that a
(t, k)-fault is characterized by a fault basis A = {(B,K)||B| ≤ t, |K| ≤ k,B ∩K = ∅}. We define
the size of the fault-basis to be the number of (B,K) pairs in the set A. From now on, we work
with the maximal basis of A.

5.2.1 The case of 3-sized structures.

We first give the characterization for the case of 3-sized structures and then extend it to any
adversary structure. We begin by setting the stage for constructing protocols on N tolerating A.
Since (t+ k) < n (and thus, |Bi|+ |Ki| < |p|), there is at least one honest node. Let us denote the
honest node when the adversary corrupts (Bi,Ki) by hi.

9This is not a serious assumption as if there some nodes common to both sets, such nodes can w.l.o.g placed solely
in set B.
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Assume that upon removing the nodes in (B1 ∪ B2 ∪ B3), say N is partitioned into x compo-
nents, namely, c1, c2, . . . cx. Let us denote the honest node when the adversary corrupts (Bi,Ki)
by hi. Now, we choose a representative from each of B1, B2, B3 and each of the components in the
following fashion: If any of them have a hi’s, it is chosen as the representative; otherwise, the node
with the lowest UID is picked. Note that, at most two of the three hi’s, say hα and hβ , may lie
within a Bi (this follows from the definition of hi). Our goal is to ensure the presence of an honest
representative. Consider the case when h2 and h3 lie inside B1. In this case, if B1 is corrupt, h1

is honest and will have an honest representative and our target is achieved. However, when B1 is
not corrupt, one of h2 or h3 is honest (follows from definition of hi’s), but we are not sure which of
them is honest. So, we need to be a little smarter in picking up a representative. Hence, we create
a virtual node and use it as a representative in case both h2 and h3 lie inside B1. The virtual node
we create has the following property: Either it is honest or faulty but never passively corrupt. As
with every virtual node, it is crucial to define its simulation, the notion of send/receive for the
virtual node and its signature. For an exposition on virtual nodes, we refer the readers to [HM00].

Simulation of virtual node. Nodes h2 and h3 combine to simulate the virtual node. Since,
they may not be adjacent, we need to specify how they communicate. If h2 and h3 have a path
consisting of nodes exclusively from B1 and those outside the B2 and B3, they use this path to
communicate and agree10. However, if all paths between h2 and h3 have a node either from B2

or B3, communication is carried out as follows: They send the values to each other via any two
paths (chosen deterministically) such that one of them avoids nodes in B2 and the other avoids
B3(such paths are guaranteed to exist as the network is (t + 1)-connected). h2 and h3, now, take
a majority over these values among the values obtained in the clean runs11. If they share a path
exclusively in B1 - when B1 is not corrupt, the objective of creating an honest is achieved as h2, h3

are non-faulty and they share a good path and when it is corrupt, the simulation is allowed to fail.
When the construction uses 2 paths (one from B2 and the other from B3), if either h2 or h3 has
a signature scheme which the adversary cannot replicate (in other words, honest) - the only value
that can be received consistently is the value of the honest node. Thus, the simulation is consistent.
While if one of them is faulty, the protocol does not rely on the simulation and we are allowed to fail.

Signature. The notion of signature for a virtual node is a natural extension of the simulation.
Any message which has to be signed by the virtual node contains a sequence of signatures from
h2, h3 and the nodes along the communication path. The verification relies on the fact that every
node knows h2, h3 and the nodes involved in the simulation.

Send/Receive. The virtual node sending a message to node i is defined as follows: h2 and h3

exchange messages using the aforementioned paths and then, they run the Flood-Set protocol to
send the transcripts to i. i, then, takes a majority among the clean runs of the Flood-Set to extract
the transcript and thus, the message of the virtual node. The Flood-set works when the virtual
node is honest. If it is not honest, the flooding is allowed to fail. i sending a message to the virtual
node is equivalent to - i sending message separately to h2 and h3 and they exchange the messages
they received from i and then, take a majority over the clean runs. The consistency of send, receive
rely on the paths chosen and the fact that one of the paths is always good. The signatures of the
nodes along the path play a crucial role in allowing i to verify the transcripts.

10which is only possible when both are non-faulty. However, when they are a faulty they cannot agree and the
simulation fails. However, in this case the protocol does not rely on this virtual node to provide a honest representative.

11Clean runs are those in which only one message with a valid signature is received.
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Lemma 10. (t, k)-BA protocol over any general network N = (P, E), when (t+k) < |P| ≤ (2t+k),
tolerating a 3-sized fault basis A = {(B1,K1), (B2,K2), (B3,K3)}, ∀(Bi,Ki) ∈ A, |Bi| = t and
|Ki| = k, exists if and only if N is (2t, t)-connected.

Proof Sufficiency: Say ni is chosen from ci (components formed after removing B1, B2 and
B3 from N ) and bi from Bi, i ∈ {1, 2, 3}. We, now, create a overlay-ed network N ′(this con-
struction is similar to Section 5.1.2) on ni’s and bi’s in which an edge appears between any two
nodes(representatives) only if there is a edge between the components represented by them. Each
of these ni’s is connected to at least two bi’s (Since, N is (t + 1)-connected). N ′ is a 2-connected
with at most one of the bi’s being faulty and at least one of the representatives being honest. Nodes
in N ′ now execute Π and by Lemma 9 all the (non-faulty) representatives agree. After the repre-
sentatives agree, they distribute their decision across their components and to the representatives
of Bi’s. For nodes inside a Bi, since the network N is (2t, t)-connected (Definition 2), every node
has a degree at least 2t. This implies that any node in Bi has a direct edge to a node outside
all Bi’s OR has a direct edge to one node from each of the Bi’s. In the former, it can decide on
the value obtained from outside Bi’s. In the latter, it takes a majority among the three values
received from each of the Bi’s. This is bound to work as two of the three Bx’s are non-faulty and
would have agreed in the execution of Π. The proof of correctness stems from the fact that once
the representatives agree (similar to Lemma 9), it is easy that all the nodes in their respective
components also agree. This completes the sufficiency.
Necessity: We shall now prove that a (t, k)-BA protocol over a graph N on n nodes, (t+ k) < n ≤
(2t + k), does not exist if N is not (2t, t)-connected. If a graph is not (2t, t)-connected it implies
that either N is not (t+ 1)-connected or N has a node, call it u, with a neighborhood of at most
(2t− 1) nodes. We let B0 and B1 to be any partition of u and the neighbours of u into two equal
halves.

The necessity of the (t + 1)-connectivity is straight forward as there can be as many as
t Byzantine faults. For the latter, we shall prove the impossibility for a 2-sized fault basis
A = {(B0,P \ (B1 ∪B0)), (B1,P \ (B1 ∪B0))}. Note the sizes of both B0 and B1 are still bounded
by t and |P| = 2t+k, where k = |P−{B0∪B1}|. Define two executions E0 and E1 as follows. In the
execution Eα ∈ {E0,E1}, the set Bα is Byzantine corrupt and all nodes except those in Bα ∪Bα

12

are passively corrupt. In both executions, u starts with an input 0 and is not corrupted by the
adversary. In Eα, all the nodes in P−{Bα∪{u}} start with input α. The behavior of the Byzantine
set Bα in the execution Eα is to send no message whatsoever to anyone other than u. And to u,
it sends exactly the same messages that are sent by an honest Bα in the execution Eα. In order
for the Byzantine corrupt Bα to behave as specified in the execution Eα, it needs to simulate the
behavior of P−Bα in the execution Eα. To this end, the adversary simulates round-by-round the
behavior of the vertices in P−Bα using their respective inputs in the execution Eα. Notice that in
Eα the set Bα does not any send messages to anyone except u. Thus, during Eα, Bα neither needs
to simulate Bα nor forge the signature of nodes in Bα. Also, the adversary can sign on behalf of
the rest of the nodes (P − Bα). So, the adversary has all the details to carry out the simulation
and all that remains is to construct the simulation.

The adversary simulates the behaviour of a node round by round. At the beginning of each
round, each simulated node has a history of messages that it got in the simulation of the previous
rounds. It uses them to simulate the messages for the next round. The real messages sent by u
to Bα are added to the history and used in simulation whenever the need arises. The simulated

12α is used to denote the complement of α
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node sends the same messages that the node would have sent during the same round in Eα. The
messages that the simulation sends to u are the real messages sent by Bα to u. By definition,
these messages are exactly the same as the ones sent by Bα in the execution Eα. The rest of
the simulation is only used/maintained to update the history for the next round. The history
of messages of each simulated vertex in execution Eα is the same as the history of the vertex in
execution Eα. Therefore, the messages sent by B0 and B1 to u in both executions are exactly the
same. Hence, u cannot distinguish whether it is in E0 or E1 and remains in a bivalent state. Thus,
the adversary can ensure that some non-faulty node will remain bivalent for as long as it wants!
This completes the necessity and thus, the proof of Lemma 10.
We, now, extend the characterizations over a 3-sized fault basis to an n-sized fault basis.

Lemma 11. (t, k)-BA protocol over a graph N tolerating a n-sized fault basis A exists if and only
if there exists (t, k)-BA protocols for every 3-sized fault basis B, B ⊆ A.

Proof. This extension is based on the works of [HM97, HM00].
Sufficiency: We construct a protocol using induction on the size on the fault basis.
Base Case: Lemma 10 gives us a protocol for every 3-sized fault basis. So, induction starts when
size is 3.
Inductive hypothesis: Assume that protocols tolerating fault sizes less than n are given.
Inductive step: We construct protocols for n-sized fault structure A. We partition A into four
non-empty sets A1, A2, A4 and A4.

13 Now, consider the fault basis Ai = {A − Ai}. By inductive
hypothesis, we have protocols for all (n−1)-sized fault basis. Denote the protocol for BA tolerating
A1 by ψ1. Define ψ2, ψ3, ψ4 analogously. It is easy to see that every element of A belongs to at
least three of the Ai’s. Hence, any x ∈ A is tolerated by at least three of the four ψ’s. Using the
ψi’s, we create four virtual nodes with the guarantee that at least three of them are honest.

The four virtual nodes, call them v1, ....v4, are constructed as follows: All nodes take part in the
simulation. Node vi sending its input to vj is same as the nodes running ψj on the output of ψi.
This establishes the notion of sending a message between any two virtual nodes. The virtual nodes,
now, simulate a (1, 3)-BA protocol [Lyn96], call it Π1

4. Informally, it is the BA protocol tolerating
a single Byzantine fault in the non-authenticated setting on 4 nodes. At the end of the simulation
of Π1

4 protocol, each node in P takes a majority on the decision value of these four virtual nodes
(Each node was a part of 4 virtual players and hence, it has one decision value for each of the
virtual player).

A comment on the majority voting is due. Since, only one of the ψ’s can fail for every x inA, one
of the virtual nodes is faulty. This virtual node may deviate in a arbitrary way from the protocol
and produce bizarre outputs. However, note that the other three virtual nodes are non-faulty w.r.t
x and hence, they must agree. Now, every node simulating the four virtual players will have the
same decision value for 3 out of 4 virtual nodes. Hence, a majority vote will satisfy the agreement
and validity conditions of BA. Thus, we have successfully tolerated a n-sized fault basis. This
completes the construction of a protocol tolerating a n-sized fault basis from protocols tolerating
a n− 1-sized fault basis.

Necessity: If BA tolerating a 3-sized fault basis is impossible, then it remains impossible w.r.t a
n-sized fault basis.

Lemma 12. (t, k)-BA protocol over a graph N = (P, E), (t+ k) < n ≤ (2t+ k), exists if and only
if N is (2t, t)-Connected.

Proof. By invoking Lemma 10 and Lemma 11.

13 Notice that ∀i, j ∈ {1, 2, 3, 4} Ai ∩ Aj = ∅ and |Ai| 6= 0.
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6 The Ugly: When only faulty can authenticate

Lemma 13. (t, k)-BA Protocol over N , n ≤ (t+ k), exists if and only if N is (2t+ 1)-connected.

Proof. Since n ≤ (t + k), it basically means that the signatures schemes of all nodes outside
adversary’s control can be forged and hence the power of authentication is entailed useless. Hence,
proofs from the standard unauthenticated model of BA [Lyn96, Dol82] will lead us here.

Theorem 14 (Main Theorem). (t, k)-BA protocol over a graph N = (P, E), |P| = n, exists if and
only if n > 2t+ min(t, k) and N is

(t+ 1)-connected if n > (2t+ k)
(2t, t)-connected if (t+ k) < n ≤ (2t+ k)

(2t+ 1)-connected if n ≤ (t+ k)

Proof. By invoking Lemma 1, Lemma 12 and Lemma 13 and the result of Gupta et al. [GGBS10],
we establish the theorem.

7 Concluding Remarks

Possibly, for the first time in literature we show that there are graphs over which agreement is
possible even though not all non-faulty nodes can reliably communicate with each other. In essence,
all-node global consistency is strictly easier than all-pairs point-to-point communication. In this
perspective, it appears that the problem of agreement could be a more fundamental primitive to
general distributed computing than what (even the ubiquitous problem of) reliable communication
is.

The focus of this work has been, primarily, to establish (im)possibility results for BA. Hence,
the protocols presented in this paper are sub-optimal and there is a definite scope for improving the
same. Further, it will be interesting to study this problem in more generic settings such as directed
graphs, asynchronous networks and may be under the influence of a non-threshold adversary.
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