
On Composition of Authenticated Byzantine Generals

(Extended Abstract)

Anuj Gupta Prasant Gopal Piyush Bansal Kannan Srinathan
Center for Security, Theory and Algorithmic Research

International Institute of Information Technology, Hyderabad, India
{anujgupta@research. prasant@research. piyush bansal@research. srinathan@}iiit.ac.in

Abstract

Pease et al. introduced the problem of Authenticated Byzantine Generals (ABG) where players
are augmented with digital signatures to thwart the challenge posed by Byzantine faults in protocols
for agreement in a distributed environment. It is well known that ABG among n players tolerating
up to any t malicious players is possible if and only if n > t, which is a remarkable improvement
over the lower bound of n > 3t for same functionality in absence of digital signatures. Subsequently,
Lindell et al. surprisingly prove that if n ≤ 3t, there does not exist any protocol for ABG that can
compose in parallel even twice (assuming no joint state). However on a more optimistic note, they
show that if each run of the protocol is further augmented with a unique session identifier, protocols
for ABG which compose in parallel for any number of executions can be designed tolerating t < n
faults.

Contrary to the state-of-the-art, we prove that if n < 2t, there cannot exist any protocol for
ABG, in spite of unique session identifiers, that composes in parallel even twice. Further, for
n ≥ 2t, we design ABG protocols that compose in parallel. From the extant literature one might
be encouraged to search for a good and realistic model strictly weaker than authentication with
unique session identifiers, where the bound of n > t still holds. Our work shows that any such
quest is futile. Rather, our results indicate that in order to attain the bound of n > t, one needs
a model strictly stronger than that of authentication with unique session identifiers which might
only make it more unrealistic.

Keywords: Authenticated Byzantine Generals, protocol composition, unique session identifiers.

1

1 Introduction

Consider a set of n players P={p1, p2 . . . pn} over a completely connected synchronous network. Any
protocol in this setting is executed in a sequence of rounds where in each round, a player can perform
some local computation, send new messages to all the players, receive messages sent to him by other
players in the same round, (and if necessary perform some more local computation), in that order. The
notion of faults in the system is captured by a virtual entity called adversary. During the execution,
the (polynomial-time) adversary1 may take control of up to any t players and make them behave in
any arbitrary fashion. Such an adversary is called as a t-adversary. We further assume that the com-
munication channel between any two players is perfectly reliable and authenticated. We also assume
existence of a (signature/authentication) scheme via which players authenticate themselves. This is
modeled by all the players having an additional setup-tape that is generated during the preprocessing
phase. Note that keys cannot be generated with in the system itself. It is assumed that the keys are
generated using a trusted system and distributed to players prior to running of the protocol similar
to [29]. Typically in such a preprocessing phase, signatures and verification keys are generated. That
is, each player gets his own private signature key, and in addition, public verification keys for all the
other players. No player can forge any other player’s signature and the receiver can uniquely identify
the sender of the message using the signature. However, the adversary can forge the signature of all
the t players under its control. Further, we assume that each run of a protocol is augmented with
unique session identifiers (USIDs).

Informally, in an authenticated Byzantine Generals (ABG) protocol the General starts with an
input v and the goal is to ensure that after a finite number of rounds of information exchange, all the
honest players must consistently output a value u such that if the General is honest, u = v. Further,
the goal must be met in spite of several parallel executions of the protocol. A brief literature survey
is presented in Section 8.

Our Results: The contributions of this paper are three fold: (1) Contrary to the results in extant
literature [29, 30], we show that n > t is not sufficient for solving ABG under parallel composition
even with USIDs. (2) We prove that over a completely connected synchronous graph of n nodes, of
which up to any t are controlled by adversary, protocols with USIDs for ABG compose for any number
of parallel executions if and only if n ≥ 2t. (3) Lindell et al. [29, 30] raise the question of finding a
realistic computation model for ABG that does allow parallel and concurrent composition for n/3 or
more corrupted players – our results imply that using authentication with additional power of unique
session identifier helps in increasing the fault tolerance but only to an extent, i.e, if one wishes to
achieve a tolerance to any number of faults i.e. n > t, one needs an even more powerful model than
authentication with USIDs which might only make it more “unrealistic”.

2 Defining Composable ABG

We directly adopt the definition of [29] to capture the notion of parallel composition of ABG protocols.

Definition 1 (Composable ABG [29]) Let p1, . . . , pn be players for an ABG protocol Π. Then, Π
remains secure under parallel composition if for every polynomial time adversary A, the requirements
for ABG (which is elaborated in Definition 2) hold for Π for every execution within the following
process: Repeat the following process in parallel until the adversary halts:

1Digital signatures based authentication necessitates the assumption of a polynomial-time adversary. Our impossi-
bility proofs do not need this assumption but our protocols require a “magical” means to authenticate if the adversary
is powerful.

2

1. The adversary A chooses the input v for the General Gen.

2. All players are invoked for an execution of Π (using the strings generated in the preprocessing
phase and an unique session identifier for this execution). All the messages sent by the corrupted
players are determined by the adversary A, whereas all other players follow the instructions of
Π.

Furthermore, as noted by Lindell et al., Definition 1 implies that all honest players are oblivious of
the other executions that are taking place in parallel. In contrast, the adversary A can coordinate
between the parallel executions, and the adversary’s view at any given time includes all the messages
received in all the executions.

We use the well established ideal/real process simulation paradigm to define the requirements of
ABG. Both the ideal process and the real process have the set P of n players including the General
Gen as common participants. Apart from these, the ideal process has a TTP (trusted third party)
and an ideal process adversary S whereas the real process has a real process adversary A. We start
by defining the ideal process for ABG.

Ideal process (Ψideal): We assume that all message transmissions in the following protocol are per-
fectly secure. (1) Gen sends his value v to TTP and TTP forwards the same to S. (2) TTP also sends
v to all the n players and S. (3) All honest players output v. S determines the output of faulty players.

Let IDEALTTP,S(v, rS ,−→r) denote a vector of outputs of all n players running Ψideal where Gen has
input v, S has random coins rS and −→r = r1, r2 . . . rn, rTTP are the random coins of n players and the
TTP respectively. Let IDEALTTP,S(v) denote the random variable describing IDEALTTP,S(v, rS ,−→r)
when rS and−→r are chosen uniformly at random. Let IDEALTTP,S denote the ensemble {IDEALTTP,S(v)}v∈{0,1}.

Real life process (Ψreal(Π)): Unlike in the ideal process, here the players interact among themselves
as per a designated protocol Π and the real process adversary A. Specifically: (1) Every honest player
proceeds according to the protocol code delegated to him as per Π. (2) The adversary A may send
some arbitrary messages (perhaps posing as any of the corrupt players) to some/all of the players. (3)
Honest players output a value as per Π. A determines the output of faulty players.

Let REALΠ,A(v, rA,−→r) denote a vector of output of all n players running Ψreal(Π) where Gen has
input v, and rA,−→r = r1, r2 . . . rn are the random coins of the adversary and n players respectively. Let
REALΠ,A(v) denote the random variable describing REALΠ,A(v, rA,−→r) when rA and −→r are chosen
uniformly at random. Let REALΠ,A denote the ensemble {REALΠ,A(v)}v∈{0,1}.

Definition 2 (ABG) A protocol Π is said to be an ABG protocol tolerating a t-adversary if for any
subset I ⊂ P of cardinality up to t (that is , |I| ≤ t), it holds that for every probabilistic polynomial-
time real process adversary A that corrupts the players in I in Ψreal(Π), there exists a probabilistic
polynomial-time ideal process adversary S in Ψideal that corrupts the players in I, such that the en-
sembles IDEALTTP,S and REALΠ,A are computationally indistinguishable.

3 Corrupting Less Can Damage More!

We now argue that it may not always be in the best interest of the adversary to corrupt players at
full-throttle in every concurrent execution. We present two scenarios, where it seems that a protocol
may be required to do more work if the adversary chooses not to corrupt same set of players in every
concurrent execution. Consider a protocol (with USIDs) over completely connected 3 players {a, b, c}

3

tolerating a 2-adversary that solves ABG and composes in parallel twice (existence of such a protocol
is well known as n > t). W.l.o.g a is the Gen.

Ideal Process
Adversary

TTP

ba c

E E1 2

TTP

ba c

Figure 1: Corresponding ideal pro-
cess execution for a scenario s1.

Consider a scenario s1: let {a, b, c} run two parallel execu-
tions of the protocol, say E1 and E2. Real process adversary A
corrupts players a, b in both the executions. The Gen a starts
with input value 0. Consider the corresponding ideal process
execution as shown in Figure 1. In ideal execution, player c
(encircled) in both E1 and E2 is bound to receive correct value
from the TTP. The protocol has to ensure that in both E1 and
E2, player c decides on a correct value (this could be either 0
or 1 as the Gen is corrupt).

Consider another scenario s2: {a, b, c} run two parallel ex-
ecutions of the protocol, say E1 and E2. A corrupts player a
in E1 and player b in E2. The Gen a starts with value 0 in E1

and value 1 in E2. Consider the corresponding ideal process
execution as shown in Figure 2. In ideal execution, players b, c
in E1 and players a, c in E2 receive correct value from the TTP.
The protocol has to ensure that players b, c in E1 decide on
same value (this could be either 0 or 1 as the Gen is corrupt).
However in E2, protocol must ensure that players a, c decide
on value 1. It appears as though in scenario s2 the protocol
is required to do much more work as compared to scenario s1

since scenario s2 requires different people to agree in different
executions.

Ideal Process
Adversary

TTP

ba c

E E1 2

TTP

ba c

Figure 2: Corresponding ideal pro-
cess execution for a scenario s2.

It is conceivable that for scenarios such as s2, the protocol may not ensure correct agreement in
each of the parallel executions. In section 4, we prove that there does not exist any protocol(with
USID) that composes in parallel twice and solves ABG for n = 3, t = 2. In the same section we
prove that n > t is not sufficient for parallel composition of protocols for ABG (with USID). Rather
in section 5 we go on to prove a much stronger statement that n ≥ 2t is necessary and sufficient for
parallel composition of protocols for ABG (with USID).

Note that in context of concurrent executions, a t-adversary may corrupt t players in the all the
executions or may choose to corrupt less than t players in some parallel execution. That is, the
adversary may choose to corrupt say t1 players (t1 < t) in one execution and another t2 players
(such that t1 + t2 ≤ t) in some other parallel execution2. We claim that the proof given in extant
literature [29, 30] for sufficiency of n > t for parallel composition of protocols (using USIDs) for ABG
implicitly assumes that the adversary always corrupts same set of players across all parallel executions.
In section 7, we formally show that if the above assumption is not true, the proof for sufficiency of
n > t in the state-of-the-art breaks down.

4 n > t is not Sufficient for Parallel Composition of ABG

We now formally show that n > t is not sufficient for parallel composition of protocols (using USIDs)
solving ABG. We substantiate our claim by proving that there does not exist any protocol Π using
USIDs that solves ABG and composes in parallel even twice over a completely connected graph

2A player running multiple executions can be visualized as a processor running parallel threads. Adversary can attack
a player, ask him to execute a code different from the protocol in some(or all) of the threads. This is same as adversary
corrupting this player in some(or all) executions.

4

G(Figure 3) of 3 players P={A,B,C} influenced by a 2-adversary (2-out-of-3). For the rest of the paper
we refer to a protocol Π using USIDs that composes in parallel k times and solves ABG[definition 1]
as Πk, USID.

Theorem 1 There does not exist any Π2, USID tolerating a 2-adversary over a completely connected
graph G of 3 nodes.

Proof sketch: We assume there exists a protocol Π2, USID over G tolerating 2-adversary. Our proof
essentially demonstrates that there exist two parallel executions of Π2, USID, where the real process
adversary A (t=2) can ensure that honest players in one of the executions do not have a consistent
output. In contrast, in the ideal execution honest players are guaranteed to have a consistent output.
This implies that there does not exist any ideal process adversary S who can ensure that the output
distributions are indistinguishable, thus violating Definition 1.

0

0

1

0

1

1

G

A

C

B

A’

B C

A

B’C’

L

Figure 3: Graph G and System L.

Using the proof technique developed by Fis-
cher et al. [16], we show that A can ensure that in
one of the parallel executions of Π2, USID, hon-
est people exhibit contradictory behavior. Using
Π2, USID we create a protocol π′[Definition 3] in
such a way that if Π2, USID exists then so does
π′(Lemma 2). Using two copies of π′ we con-
struct a system L (as shown in Figure 3), and
show that L must exhibit contradictory behav-
ior. This implies impossibility of the assumed
protocol Π2, USID.

Formally, system L is a synchronous system with a well defined output distribution for any partic-
ular input assignment. We show that for a particular input assignment, no such well defined behavior
is possible. Further, no player in L knows the complete system. Each player in aware of only his
immediate neighbors. Let E1 and E2 be two parallel executions of Π2, USID over G. Let, α1 be a
scenario in E1 where A is the General starting with input 0 and adversary A corrupts C. Let α2

be another scenario in E1 where A is the General, A corrupts A and makes it to behave with B as
if it started with input 0 & behave with C as if it started with input 1. In scenario α3 in E1, A is
the General starting with input 1 and A corrupts B. Similarly, let α4 be a scenario in E2 where A
corrupts A. Further, let α be an execution of L where each player starts with input value as shown in
Figure 3. All the players in α are honest and follow the designated protocol correctly.

We claim that in E1, A can ensure that whatever view (informally view of a player refers to all
the messages the player ever gets to see during the entire protocol execution. Formal definition of
view is given in [?]) A,B get in α, A can generate the same view for A,B in α1 i.e. both A and B

cannot ever differentiate between α1 and α (dubbed α1
A∼ α and α1

B∼ α). From the definition of ABG
[Definition 1], in α1, both A,B should decide on value 0. Since view of A,B is same in α1 and α,
both A,B in α will also decide on value 0. Similarly, both A,C in α3 should decide on value 1. A
can ensure that α3

C∼ α and α3
A′
∼ α. Thus both A′, C in α will decide on value 1. Similarly B,C in

α2 should agree on same value, then so should B,C in α. But B,C have already decided upon values
0 and 1 respectively in α. This implies L must exhibit contradictory behavior. This contradicts our
assumption of a protocol Π2, USID over G tolerating 2-adversary.

To complete the proof sketch, we show as to how A can ensure that α1
A∼ α and α1

B∼ α. Consider
a run Γ of L which is exactly same as α except that in Γ A′ starts with input value 0. Since in α,
no message from B′ or C ′ can ever reach any of A,B,C or A′, A can ensure that A and B get same
messages in Γ and α1 (All A has to do is to make C start with value 1 and follow the designated
protocol). Now in α, all messages received by A and B respectively are same as those in Γ except

5

those messages that have been processed by A′ at least once(since A′ starts with input value 0 in Γ
and input value 1 in α). If in α1, A can simulate this difference between α and Γ, we can say that A
can make view of A and B same in α and α1. We now claim that for any round i, i ≥ 1, it is always
possible for A to do so. Note that owing to the typical construction of S, in α A′ can send a message
to A (and B) only via C. This ensures that in α, any message from A′ can reach A (and B) only after
it has been processed by C. Now in α1, C is faulty, so if A can generate messages in α1 similar to
messages sent by C to A (and B) in α, it can make the views same. In α1, A is honest and starts with
input 0. However, since A is corrupt in α4, A can read the private key used by A for authenticating
his messages. This essentially means A can forge messages on behalf of A. Specifically, in round i of
α1, A sends to A and B what an honest C would have sent to A and B in α1 if A would have started
with input value 1. Note that messages sent by A in round i of α1 depends on the internal state of
A till round i − 1 of α1 and the code executed by A. The internal state consists of player A’s input
value, authentication key, session identifier used for this execution (E1) and messages received by A
till round i− 1. Note that since A is corrupt in α4, A can always pull the all the relevant information
regarding internal state of A in α1 via A in α4

3. Similarly one can show that A can always ensure
α2

B∼ α and α2
C∼ α, and α3

C∼ α and α3
A′
∼ α

We now formally define π′ and prove that π′ exists if Π2, USID exists.

Definition 3 (π′) For all players a, b ∈ P, any statement in Π2, USID of the kind “b sends message
m to a” is replaced by “b multicasts message m to all instances of a(i.e. a,a′) 4 which are connected
by a directed edge from b to a” in π′. Similarly any statement of the kind “c sends message m to a” is
replaced by “c multicasts message m to all instances of a. Rest all statements in π′ are same as those
in Π2, USID.

Lemma 2 If Π2, USID exists, then π′ exists.

Proof : Implied from Definition 3.

Formally, one can prove the following lemma. Here viewφ
X represents view of player X during entire

execution φ. Detailed proofs are given in [?].

Lemma 3 Adversary A can ensure the following:
viewα

A ∼ viewα1
A and viewα

B ∼ viewα1
B .

viewα
B ∼ viewα2

B and viewα
C ∼ viewα2

C .

viewα
A′ ∼ viewα3

A and viewα
C ∼ viewα3

C .

As an interesting observation, it appears that the proof of Lemma 3 requires directed system, unlike
undirected systems used in extant literature [16, 29].

5 Characterization of ABG under Parallel Composition

We now give the necessary and sufficient conditions for existence of Πk, USID over any completely
connected synchronous network. We first show impossibility of Π2, USID over a complete graph H (Fig-
ure 4) of four nodes P = {A,B, C, D} tolerating adversary basis A = {((A,D), (B)), ((B), (A)), ((C), (B))}.

3using our earlier visualization of a player running concurrent executions as a processor running concurrent threads,
A can always ask A to execute a code in thread E2 which can pull information out of another thread E1 being run in
same processor.

4a and a′ are independent copies of the player a with same authentication key.

6

Here ((x1 . . . xi)(y1 . . . yj)) represents a single element of adversary basis such that adversary can cor-
rupt all x1 . . . xi in one execution and corrupt all y1 . . . yj in the second concurrent execution. The
proof technique is similar to one used for proving impossibility of 2-out-of-3 (Theorem 1) in section 4.

Theorem 4 There does not exist any protocol Π2, USID over a complete graph H of four nodes,
tolerating adversary basis A = {((A,D), (B)), ((B), (A)), ((C), (B))}.

Proof sketch: We assume there exists a protocol Π2, USID tolerating adversary basis A = {((A,D), (B)),
((B), (A)), ((C), (B))} over a complete graph H (Figure 4). We show that there exist two parallel ex-
ecutions of Π2, USID, where the real process adversary A (characterised by Ā) can ensure that honest
players in one of the executions do not have consistent output. In the corresponding ideal execution
honest players are guaranteed to have a consistent output. Thus there does not exist any ideal pro-
cess adversary S which can ensure that the output distributions are indistinguishable, thus violating
Definition 1.

Similar to proof of Theorem 1, from Π2, USID we create a protocol η in such a way that if Π2, USID

exists then so does η. Using two copies of η, we construct a system M (as shown in Figure 4), and
show that M must exhibit contradictory behavior. This contradicts our assumption about existence
of Π2, USID.

0

0

1

1

1

1

0 1

D’ C’

AD

C B

B

C

A

D

A’

B’
M

H

Figure 4: Graph H and System M .

We do not know what system M solves. All we
know is that M is a synchronous system with a well
defined output distribution for any particular input
assignment. We show that for a particular input
assignment, no such well defined behavior is pos-
sible. Further no player in L knows the complete
system. Each player in aware of only his immediate
neighbors. Let E1, E2 be two parallel executions
of Π2, USID over H. Let β1, β2 and β3 be three
distinct scenarios in E1. In β1, B is the General
starting with input 0 and A,D are corrupt. Similarly, in β2 B is the General. Adversary corrupts B
and makes him behave with C as if it started with input 0 & behaves with A,D as if it started with
input 1. In β3, D is the General with input value 1 and adversary corrupts C. In E2, β4 is a scenario
where A corrupts B and in β5, A corrupts A. Further, let β be an execution of M where each player
starts with input value as shown in Figure 4. All the players in β are honest and follow the designated
protocol correctly.

Similar to proof of Theorem 1, one can show that whatever view B,C get in β, adversary can
ensure that B,C get the same in β1. As per Definition 1, in β1, both B,C should decide on value
0. Then so should B,C in β. Similarly, whatever view A′, B′ and D get in β, adversary can ensure
the same for A,B and D respectively in β3. Since A,B and D in β3 decide upon 1, then so should
A′, B′ and D in β. Whatever view C,D and A′ get in β, adversary can ensure the same for C,D and
A respectively in β2. As per Definition 1, in β2, all C,D and A are required to output same value.
Then so should be for C,D and A′ in β. But in β, C and D,A′ have already decided on 0 and 1
respectively. Thus M exhibits a contradictory behavior.

Similar to section 4, one can prove the following Lemma.

Lemma 5 Adversary can ensure the following:

viewβ
B ∼ viewβ1

B and viewβ
C ∼ viewβ1

C .

viewβ
C ∼ viewβ2

C , viewβ
D ∼ viewβ2

D , viewβ
A′ ∼ viewβ2

A .

7

viewβ
A′ ∼ viewβ3

A , viewβ
B′ ∼ viewβ3

B , viewβ
D ∼ viewβ3

D .

We now give the main theorem of this paper.

Theorem 6 (Main Theorem) There exists a protocol Πk, USID tolerating t-adversary over a com-
pletely connected graph of n nodes if and only if n ≥ 2t.

Proof : Necessity: We first prove impossibility of any protocol (η2,USID) using USID solving ABG
that composes in parallel even twice over a complete graph of n nodes for n ≤ 2t1 +min(t1, t2), t2 > 0.
Here t1,t2 refer to the number of players the t-adversary corrupts in two parallel executions E1 and
E2 respectively such that t1+t2 ≤ t (dubbed as (t1,t2)-adversary). Then using t1=t − 1 and t2=1 in
n ≤ 2t1 + min(t1, t2) one gets the impossibility for n < 2t.

To prove the impossibility of η2,USID, we start by assuming that there exists a protocol η2,USID

over a complete graph of n nodes tolerating (t1,t2)-adversary when n ≤ 2t1+min(t1, t2), t2 > 0. Using
η2,USID we construct a protocol Π2, USID over a complete graph of four nodes {A,B, C, D}, tolerating
A = {((A,D), (B)), ((B), (A)), ((C), (B))}. We then show that if η2,USID satisfies definition 1, then
so does Π2, USID. But this contradicts Theorem 4. Thus our assumption that there exists a solution
η2,USID for n ≤ 2t1 + min(t1, t2) is wrong.

We now show as to how η2,USID can be transformed into a solution Π2, USID for four players
completely connected, tolerating A = {((A,D), (B)), ((B), (A)), ((C), (B))}. Divide n players into four
sets: IA, IB, IC , ID, such that their respective sizes are min(t1, t2),min(t1, t2), t1, (t1−min(t1, t2)). Let
E1 and E2 be the two parallel executions of η2,USID. Adversary A can corrupt any of the following
sets IA, IB, IC , ID, (IA∪ID), (IB∪ID) in E1 and any of the sets IA, IB, ID in E2. Let the corresponding
two parallel executions of Π2, USID be E′

1 and E′
2. Each of the four players A,B,C and D in execution

E′
i simulates all the players in IA, IB, IC , ID respectively in execution Ei. Player i in E′

i simulates
players in Ii in Ei as follows: player i keeps track of the states of all the players in Ii. Player i assigns
its input value to every member of Ii, and simulates the steps of all the players in Ii as well as the
messages sent and received between pairs of players in Ii. Messages from players in Ii to players in Ij

are simulated by sending same messages from player i to player j. If any player in Ii terminates then
so does player i. If any player in Ii decides on a value v, then so does player i.

We now show that if η2,USID satisfies definition 1 when n ≤ 2t1 + min(t1, t2), t2 > 0, then so does
Π2, USID tolerating Ā = {((A,D), (B)), ((B), (A)), ((C), (B))}. Consider two honest players i and j
(i 6= j) in execution E′

i. Each of them simulates atleast one player in Ii and Ij in execution Ei. Since
both i and j are honest in E′

i, then so are all the players in Ii and Ij in execution Ei. If the General
Gen is corrupt in E′

i, then so is the General in Ei. If players in Ii, Ij in execution Ei decide on value
u, then so does players i, j in E′

i. If the General is honest in E′
i and starts with a value v, then in Ei

too the General is honest and starts with a value v. Then as per definition 1 all the players in Ii, Ij

in execution Ei decide on value v, then so should players i, j in E′
i. This implies Π2, USID satisfies

definition 1 and tolerates A = {((A,D), (B)), ((B), (A)), ((C), (B))}. But from Theorem 4, we know
there does not exist any such Π2, USID. This contradicts our assumption of η2,USID. This completes
the necessity proof.

Sufficiency: For sufficiency, we give a protocol for ABG using USIDs for n ≥ 2t and prove its
correctness in stand alone setting. The protocol is given in section 5.1. We now prove that the
proposed protocol composes for any number of parallel executions. The proof technique is essentially
similar to one developed by Lindell et al. [29, 30] wherein the security of the protocol under composition
is reduced to security of the protocol in stand alone setting. In order to accommodate the fact that
under parallel composition adversary can still forge signatures of a fraction of honest players, we tweak
the stand alone settings as follows: Consider the adversary as (tb, tp)-adversary where by adversary
can corrupt up to any tb players actively and another tp players passively such that adversary can

8

forge signatures of all tb + tp players. We further require all the passively corrupt players to be always
part of the agreement with the condition that if the Gen in not Byzantine corrupt and starts with
input value v, then all honest and passively corrupt players should decide on v. For this problem,
Gupta et al. [24] prove the tight bound of n > 2tb + min(tb, tp). Putting tb=t − 1, tp=1, one gets
n ≥ 2t as necessary and sufficient for this problem. Let π(1) . . . π(l) be l parallel executions of our
EIG protocol. We now prove that if there exists an adversary that can attack and succeed in some
execution π(i), i ∈ (1, l), then we can construct an adversary A′ that is bound to succeed against
stand alone execution of the protocol considered by Gupta et al.

Formally, let π(id1) . . . π(idl) be l parallel executions of EIG protocol where execution π(idi) uses
session identifier idi. Let there exists an adversary A that succeeds in some execution π(i). i ∈ (1, l).
Players use signature scheme ((Gen,Sid,Vid),S¬id) developed by Lindell et al. [29, 30]. Using A we
construct adversary A′ that is bound to succeed against stand alone execution Π(id) of the protocol
considered by Gupta et al. Let players in π(idi) be partitioned into 3 parts Ib, Ip and Ih where Ib

are those which are byzantine faulty in π(idi), Ip are those which are honest in π(idi) but corrupt in
execution π(idk), k 6= i, k ∈ {1 . . . l} and Ih are those which are honest in π(idi) as well as all other
executions π(idk), k 6= i, k ∈ {1 . . . l}. Further let Xb be Byzantine faulty, Xp be passively corrupt
and Xh be honest players in Π(id). Let all the players in Xi simulate all the players in Ii as follows:
each player in Xi keeps track of the states of all the players in Ii. Player i assigns its input value to
every member of Ii, and simulates the steps of all the players in Ii as well as the messages sent and
received between pairs of players in Ii. Messages from players in Ii to players in Ij are simulated by
sending same messages from Xi to every player in Xj . If any player in Ii terminates, then so does all
the players in Xi. If any player in Ii decides on value v, then so does all the players in Xi.
A′ internally incorporates A and attacks Π(id) as follows: A′ randomly selects an execution i ∈

{1 . . . l} and sets id=idi. Then A′ invokes A and emulates the concurrent executions of π(id1) . . . π(idl)
for A. A′ does this by playing the roles of the honest players in all but the execution π(idi). In π(idi),
A′ externally interacts with the honest players and passes messages between them and A. Since A′

is given access to the signing oracles S¬id(sk1, .), . . . , S¬id(skn, .), it can generate signature on behalf
of honest players in all execution π(idj), j 6= i. The proof hinges on the fact that in π(idi), A can
forge signature on behalf of only those honest players which belong to set Ip. Note that in Π(id),
players corresponding to Ip are those in set Xp. Since players in Xp are passively corrupt, A′ can forge
signature on behalf on any player belonging to Xp. Thus whatever messages A can forge in π(idi),
A′ can forge the same in Π(id). Therefore, the emulation by A′of the concurrent executions for A is
perfect. Thus if A succeeds in breaking π(idi), then A′ should also succeed in breaking Π(id). But
from the results of Gupta et al. [24], we know that there cannot exist any such A′. This contradicts
our assumption about existence of A.

5.1 Protocol for n ≥ 2t

The proposed protocol is obtained by a sequence of transformations on EIG [2]. A detailed description
of the construction of EIG tree is available in [31, page 108]. The General sends his input to every
player. Each player starts with this as input value and exchanges messages with others as per EIGStop
protocol in [31, page 110] for t + 1 rounds. The reason for giving a EIG based protocol is its ease of
understanding. Using well known techniques given in [2], our EIG protocol can be converted into an
efficient protocol.

Definition 4 (Prune(EIG)) : This method takes an EIG tree as an input and returns it with sub-
trees say subtreej

i (subtreej
i refers to a subtree in i’s EIG tree such that the subtree is rooted at node

whose’s label is j) of i′s EIG tree deleted. The criteria for selecting subtreej
i is as follows: for each

subtree subtreej
i, where label j ∈ P, a set Wj is constructed which contains all distinct values that

ever appear in subtreej
i. If |Wj | > 1, subtreej

i is deleted else not.

9

At the end of t+1 rounds of EIGStop protocol, we invoke Prune(EIG). Player i applies the following
decision rule. Namely, Player i takes a majority of the values at the first level 5 of its EIG tree (note
that he does not need to take a majority over the entire EIG tree). If a majority exists, player i
decides on that value; otherwise, i decides on a default value, v0.

Informally the correctness of protocol in standalone model is evident from that fact that A can
forge messages only on behalf of at most t players. And subtrees of all such faulty players in any
honest player’s EIG tree will be deleted. This is because the flood set protocol ensures that if one
honest player ever gets two different values from any player, then so does every other honest player.
We only state our lemmas.

Lemma 7 The subtreej
i, i and j are honest players, never gets deleted by Prune(EIG) operation.

Lemma 8 After t + 1 rounds, if a subtreej
i has more than one value then ∀ k, subtreej

k also has
more than one value, there by ensuring that all ∀ k, subtreej

k are deleted (i, j, k are not necessarily
distinct), where i, k are honest.

Lemma 9 subtreej
i and subtreej

k in the EIG trees of any two honest players i, k will have same
values after the subjecting the tree to Prune(EIG).

We now show that our protocol meets definition 2.

Lemma 10 EIG solves ABG as per definition 2.

Proof sketch: The decision rule ensures that if the Gen is honest and starts with value v, then all
honest players at the end of the protocol output value v. The ideal process adversary S cannot not
corrupt the Gen. In the corresponding ideal process execution, the Gen starts with value v and thus
every honest players decides on v. If the real world adversary A corrupts the Gen, as per decision rule,
all honest players decide on v0. In the corresponding ideal process execution, S corrupts the Gen and
on behalf of Gen sends value v0 to TTP. Thus all honest players in ideal execution will output v0. S
always ensures that faulty players in ideal process execution always output same as what they output
in the protocol execution. This ensures that the ensembles IDEALTTP,S and REALPrune(EIG),A are
computationally indistinguishable.

6 Conclusion

Unique session identifiers aid in improving the fault-tolerance of ABG protocols (that compose in
parallel) from n > 3t to n ≥ 2t. Note that stand-alone ABG is possible for n > t. Thus surpris-
ingly, USID’s may not always achieve their goal of truly separating the protocol’s execution from its
environment. However, for most functionalities, USID’s indeed achieve their goal, as is obvious from
Canetti’s universal composition theorem [6]. The anomaly with respect to ABG, as pointed out in
Section 3, is that the worst-case adversary (with respect to a given execution) is not the one that
corrupts players at full-throttle across all protocols running concurrently in the network. Therefore,
there may be several other problems apart from ABG which could potentially hinder with the power
and role of USID’s. It is an intriguing open question to characterize the set of all such problems.

5all nodes with labels l such that l ∈ P.

10

7 On Contradiction with the Literature

We now elaborate on the shortcoming in the proof for sufficiency of n > t for protocols with USIDs for
parallel composition of ABG [29, 30]. For the benefit of the reader, a brief overview of the proof is given
in Appendix A. We claim that the proof implicitly assumes that the adversary cannot corrupt different
players in different parallel executions. We now formally show that if above mentioned assumption
does not hold, the proof breaks down.

Formally, the proof assumes that under concurrent executions, for a particular execution π(idk),
A cannot ever forge signature of any honest player in π(idk). This is because S¬idk

(sk,m) = ⊥ in
case the prefix of message m = idk. However, if the adversary chooses to corrupt different players
in different executions, then for all honest players in π(idk), S¬idk

(sk,m) = ⊥ need not necessarily be
true. This is because A may choose to corrupt a particular player (who is honest in π(idk)) in some
other execution, forge messages on behalf of him and use the same in π(idk). Specifically, let p1 be an
honest player in execution π(idk). A corrupts p1 in some other execution say π(idl). In order to use a
forge message say m′ on behalf of p1 in some round i of π(idk), A needs to construct m′ on behalf of
p1 with session identifier of π(idk). For this A needs the signature key and the internal state of p1 just
prior round i in π(idk) (Internal state of a player at an round includes his input value, signature key,
USID, and view of the player till this round). Since p1 is an honest player in π(idk), A cannot do the
forgery in execution π(idk). However, in π(idl) p1 is corrupt. Via p1 in execution π(idl), A can pull
signing key and internal state of p1 just before round i in π(idk). Using this A can construct relevant
message m′ such that m′ uses the session identifier of π(idk). Since m′ uses same session identifier
as used for π(idk), in π(idk) m′ will not be rejected by any protocol which filters messages based on
incorrect session identifiers. Note that since PA is an honest player in π(idk), this amounts to forgery.

8 Related Work

Byzantine Generals Problem (BGP) was first introduced by Pease et al. [27]. It is well known that
BGP over completely connected synchronous network is possible if and only if n > 3t [32, 27]. Later
on the problem was studied in many different settings [17, 14, 13, 19, 18, 1, 21, 20, 34] to name a
few, giving both possibility (protocols) and impossibility results. An important variant of BGP is
authenticated Byzantine Generals (ABG) introduced by [27, 32], where the players are supplemented
with ‘magical’ powers (say a Public Key Infrastructure(PKI) and digital signatures) to authenticate
themselves and their messages. Pease et al. proved that for such a model, tolerability against a t-
adversary can be amazingly increased to n > t which is a huge improvement over n > 3t. Subsequent
work in this subject includes [12, 3, 5, 36, 4, 26, 23, 35, 30].

Some of the first work on composition of protocols was on the problem of zero-knowledge and
concurrent zero-knowledge [11, 15, 22]. Canetti [6] introduced the notion of Universal Composability
to study the implications on security of protocols when run in arbitrary any unknown protocols.
Some of the subsequent papers in this line are [28, 10, 9, 33, 8, 7]. In continuation, Lindell et
al. [29, 30] introduced the problem of ABG under parallel composition. They proved for n < 3t there
does not exist any protocol solving ABG that composes in parallel even twice. They further prove
that protocols for ABG over a completely connected synchronous network of n players, tolerating
t-adversary, compose in parallel (for any number of executions) if and only if n > 3t. In the same
work, they show that if one assumes additional facility of unique session identifiers, fault tolerance
for ABG under parallel composition can be restored back to n > t.

11

References

[1] Bernd Altmann, Matthias Fitzi, and Ueli M. Maurer. Byzantine agreement secure against general
adversaries in the dual failure model. In Proceedings of the 13th International Symposium on
Distributed Computing, pages 123–137, London, UK, 1999. Springer-Verlag.

[2] Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and H. Raymond Strong. Shifting gears: changing
algorithms on the fly to expedite byzantine agreement. In PODC ’87: Proceedings of the sixth
annual ACM Symposium on Principles of distributed computing, pages 42–51, New York, NY,
USA, 1987. ACM Press.

[3] Malte Borcherding. On the number of authenticated rounds in byzantine agreement. In WDAG
’95: Proceedings of the 9th International Workshop on Distributed Algorithms, pages 230–241,
London, UK, 1995. Springer-Verlag.

[4] Malte Borcherding. Levels of authentication in distributed agreement. In WDAG ’96: Proceedings
of the 10th International Workshop on Distributed Algorithms, pages 40–55, London, UK, 1996.
Springer-Verlag.

[5] Malte Borcherding. Partially authenticated algorithms for byzantine agreement. In ISCA: Pro-
ceedings of the 9th International Conference on Parallel and Distributed Computing Systems,
pages 8–11, 1996.

[6] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In
Proceedings of the 42nd Symposium on Foundations of Computer Science (FOCS), pages 136–145.
IEEE, 2001. Full version available at http://eprint.iacr.org/2000/067.

[7] R. Canetti and M. Fischlin. Universally Composable Commitments. In Proceedings of Advances
in Cryptology CRYPTO ’01, volume 2139 of Lecture Notes in Computer Science, pages 19 – 40.
Springer-Verlag, 2001.

[8] R. Canetti and H. Krawczyk. Universally Composable Notions of Key Exchange and Secure
Channels. In Proceedings of Advances in Cryptology - EUROCRYPT ’02, volume 2332 of Lecture
Notes in Computer Science (LNCS), pages 337–351. Springer-Verlag, 2002.

[9] R. Canetti and T. Rabin. Universal Composition with Joint State. In Proceedings of Advances in
Cryptology - CRYPTO ’03, volume 2729 of Lecture Notes in Computer Science (LNCS), pages
265–281. Springer-Verlag, 2003.

[10] Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryp-
tology: the journal of the International Association for Cryptologic Research, 13(1):143–202, 2000.

[11] Ran Canetti, Joe Kilian, Erez Petrank, and Alon Rosen. Black-box concurrent zero-knowledge
requires Ω (logn) rounds. In STOC ’01: Proceedings of the thirty-third annual ACM symposium
on Theory of computing, pages 570–579, New York, NY, USA, 2001. ACM.

[12] D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agreement. SIAM Journal
on Computing, 12(4):656–666, 1983.

[13] Danny Dolev. The byzantine generals strike again. Technical report, Stanford, CA, USA, 1981.

[14] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism needed for
distributed consensus. J. ACM, 34(1):77–97, 1987.

12

[15] Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge. J. ACM, 51(6):851–
898, 2004.

[16] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for dis-
tributed consensus problems. In PODC ’85: Proceedings of the fourth annual ACM symposium
on Principles of distributed computing, pages 59–70, New York, NY, USA, 1985. ACM.

[17] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed con-
sensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[18] Matthias Fitzi and Ueli M. Maurer. Efficient byzantine agreement secure against general adver-
saries. In International Symposium on Distributed Computing, pages 134–148, 1998.

[19] Mattias Fitzi and Ueli Maurer. From partial consistency to global broadcast. In STOC ’00:
Proceedings of the thirty-second annual ACM symposium on Theory of computing, pages 494–
503, New York, NY, USA, 2000. ACM.

[20] J. A. Garay. Reaching (and Maintaining) Agreement in the Presence of Mobile Faults. In
Proceedings of the 8th International Workshop on Distributed Algorithms – WDAG ’94, volume
857 of Lecture Notes in Computer Science (LNCS), pages 253–264, 1994.

[21] Juan A. Garay and Kenneth J. Perry. A continuum of failure models for distributed computing.
In WDAG ’92: Proceedings of the 6th International Workshop on Distributed Algorithms, pages
153–165, London, UK, 1992. Springer-Verlag.

[22] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof systems. SIAM
J. Comput., 25(1):169–192, 1996.

[23] L. Gong, P. Lincoln, and J. Rushby. Byzantine agreement with authentication: Observations and
applications in tolerating hybrid and link faults, 1995.

[24] Anuj Gupta, Prasant Gopal, Piyush Bansal, and Kannan Srinathan. Authen-
ticated Byzantine Generals Strike Again. Technical report, Center for Secu-
rity, Theory and Algorithmic Research (CSTAR), International Institute of Infor-
mation Technology, Hyderabad, India, 2008. A complete version is available at
http://research.iiit.ac.in/~anujgupta/BA with authentication web version.pdf.

[25] Anuj Gupta, Prasant Gopal, Piyush Bansal, and Kannan Srinathan. Composi-
tion of authenticated Byzantine Generals Revisited. Technical report, Center for Se-
curity, Theory and Algorithmic Research (CSTAR), International Institute of Infor-
mation Technology, Hyderabad, India, 2008. A complete version is available at
http://research.iiit.ac.in/~anujgupta/Composition of ABG report.pdf.

[26] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agree-
ment. 2007.

[27] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem. ACM
Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[28] Y. Lindell. Composition of Secure Multi-Party Protocols: A Comprehensive Study, volume 2815
of Lecture Notes in Computer Science (LNCS). Springer–Verlag, 2003.

[29] Y. Lindell, A. Lysysanskaya, and T. Rabin. On the Composition of Authenticated Byzantine
Agreement. In Proceedings of the 34th Symposium on Theory of Computing (STOC), pages 514–
523. ACM Press, 2002.

13

[30] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. On the composition of authenticated byzan-
tine agreement. J. ACM, 53(6):881–917, 2006.

[31] N. Lynch. Distributed Algorithms. Morgan Kaufmann, San Mateo, CA, USA, 1996.

[32] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. J. ACM,
27(2):228–234, 1980.

[33] M. Prabhakaran and A. Sahai. New Notions of Security: Achieving Universal Composability
without Trusted Setup. In Proceedings of the 36th Symposium on Theory of Computing (STOC),
pages 242–251. ACM Press, June 13–15 2004.

[34] M. O. Rabin. Randomized byzantine generals. In Proc. of the 24th Annu. IEEE Symp. on
Foundations of Computer Science, pages 403–409, 1983.

[35] Ulrich Schmid and Bettina Weiss. Synchronous byzantine agreement under hybrid process and
link failures. Research Report 1/2004, Technische Universität Wien, Institut für Technische
Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2004.

[36] T. K. Srikanth and S. Toueg. Simulating authenticated broadcasts to derive simple fault-tolerant
algorithms. Distributed Computing, 2(2):80–94, 1987.

14

A Appendix

We present an overview of the proof for sufficiency of n > t for parallel composition of protocols
for ABG in USID model. [29, 30]. The proof essentially reduces the security of protocols for ABG
with USIDs for any number of parallel compositions to the security of a stand alone execution of the
protocol. They define a signature scheme as (Gen,S,V) where S,V are are algorithms for signing and
verification of any message. Gen is used to generate signature and verification keys for a particular
player (say Pk) and defined as a function: (1)n → (vk, sk). A signature scheme is said to be a valid one
if honestly generated signatures are almost always accepted. Formally, with non negligible probability,
for every message m, V(vk,m,S(sk,m)) = 1, where (vk, sk) ← (1)n. They model the valid signatures
that adversary A can obtain in a real attack via a signing oracle S(sk, ·). A is defined to succeed in
generating a forged message m∗ if A given vk, access to oracle S(sk, ·) can generate a pair (m∗, σ∗)
such that if Qm is the set of oracle queries made by A then V(vk,m∗,σ∗) = 1 holds true if m∗ 6∈ Qm. A
signature scheme is said to be existentially secure against chosen-message attack if A cannot succeed in
forging a signature with greater than non-negligible probability. They further model any information
gained by A from any query with another oracle Aux(sk,.). However, this oracle cannot generate
any valid signature but provides any other auxiliary information about the query. They assume some
scheme say (Gen,S,V) to be secure against chosen-message attack and show how to construct a secure
scheme (Gen,Sid,Vid) from it where Sid(sk,m) = S(sk,id ◦ m) and Vid(vk,m,σ) = V (vk,id ◦ m,σ).
For the new scheme they define the oracle Aux(sk,·) = S¬id(sk,m) where S¬id(sk,m) = S(sk,m) if
the prefix of m is not id else S¬id(sk,m) = ⊥. Further, they assume π to be a secure protocol for
ABG using signature scheme (Gen,S,V). They define modified protocol π(id) to be exactly same
as π except that it uses signature scheme (Gen,Sid,Vid) as defined above. They further prove as to
why ((Gen,Sid,Vid), S¬id) is secure against chosen-message attack. Intuition behind the proof is the
fact that if the prefix of m 6= id, then S¬id(sk,m) = S(sk,m) which is of no help to the adversary
as any successful forgery must be prefixed with id and all oracle queries to S¬id must be prefixed
with id′ 6= id. Formally they show how an adversary A′ for a single execution of π(id) can simulate
an adversary A for concurrent executions π(id1) . . . π(idl), thus reducing the security of concurrent
executions to security of stand alone execution. If A attacks concurrent executions and succeeds in
breaking in some execution say π(idi), then A′ can internally incorporate A and succeed in breaking
single execution π(idi). A′ randomly selects an execution i ∈ {1, . . . l} and sets id=idi. A′ invokes
A and emulates concurrent executions π(id1) . . . π(idl) for A. A′ does so by playing roles of honest
players in all but the ith execution π(idi). In π(idi), A′ externally interacts with the honest players and
passes messages between them and A. Since A′ has access to signing oracles S¬id(sk1), . . . S¬id(skn),
A′ can generate messages on behalf of honest players in all executions π(idj) for j 6= i. This implies
that A′ can perfectly simulate A, thus A′ should be able to break security of stand alone execution of
π(idi).

15

