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Abstract

Methods to compute 1–factorizations of a complete graphs of even order are presented. For
complete graphs where the number of vertices is a power of 2, we propose several new methods
to construct 1–factorizations. Our methods are different from methods that make use of algebraic
concepts such as Steiner triple systems, starters and all other existing methods. We also show that
certain complete multipartite graphs have 1–factorizations by presenting a method to compute 1–
factorizations of such graphs. This method can be applied to obtain 1–factorizations of complete
graphs with the number of vertices being a multiple of 4 or complete graphs with mn vertices pro-
vided a 1–factorization of Km and a 1–factorization of Kn are known.

Finally, deterministic and randomized back-tracking based algorithms to produce a 1–factorization
for K2n are presented. Both the algorithms always produce a 1–factorization if one exists.
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1 Introduction
A one factor of a graph G is a regular spanning sub-graph of degree one. In other words, a one factor is a
set of pairwise disjoint edges of G that between them contain every vertex. A one factorization of G is a
partition of the edge set of G into edge disjoint one factors. For a graph to possess a one factorization, an
obvious necessary condition is that the graph must have an even number of vertices. Another necessary
condition for a graph to have a one factorization is that it must be regular. However, a regular graph with
a bridge can not have a one factorization. There are also bridge-less regular graphs that do not have one
factorization e.g., complete graphs of odd order 1. It has been conjectured that a regular graph with 2n
vertices and degree greater than n will always have a one factorization. Also, for many classes of graphs
including the class of complete graphs the existence of one factorizations can be proved. There have also
been many works that show how to construct 1-factorizations of complete graphs on an even number of
vertices, see for example [17, 11] and the references therein. In this paper, we use standard notation from
graph theory followed by most books, e.g., West[19].

An immediate application of 1-factorizations is that of edge colouring. A 1-factorization of a given
graph G partitions the edge set into classes so that each class can be coloured with the same colour. For
G = K2n this can be readily seen to produce a valid 2n − 1-edge colouring as a 1-factorization of K2n

consists of 2n−1 factors. In this case, since ∆(K2n) = 2n−1, this is also the best possible for complete
graphs. Similar result holds for also complete bipartite graphs.

The study of 1-factorizations is motivated by other combinatorial applications such as scheduling
tournaments [17], especially round-robin tournaments. Here, the schedule of games played at the same
time can be seen to form a 1-factor of the underlying complete graph. Several variations of tourna-
ments such as ideal tournaments [17, 18, 3] and competition schedules can also be reduced to that of
1-factorizations in graphs. Other applications of 1-factorizations include block designs, 3-designs, and
Room squares and Steiner systems [17, 13].

There are other related notions of 1-factorizations namely sequentially uniform, uniform, and perfect
1-factorizations. A 1-factorization F = {F1, F2, · · · , F2n−1} of K2n is said to be uniform if the union of
any two distinct 1-factors Fi, Fj , i 6= j, is isomorphic to the same graph. The 1-factorization F is said to
be sequentially uniform if the above property holds for any two consecutive (modulo-2n − 1) 1-factors.
Since the union of any two 1-factors is a 2-edge colourable 2-regular graph, it is isomorphic to a disjoint
union of cycles which can be succinctly represented as follows. The multi-set C = (c1, c2, · · · , ck), with
∑k

i=1 ci = 2n, is called the type of a sequentially uniform 1-factorization if Fi∪Fi+1 is isomorphic to the
disjoint union of cycles of length c1, c2, · · · , ck. A 1-factorization is said to be perfect if the union of any
two 1-factors is isomorphic to a Hamiltonian cycle. Perfect 1-factorizations find applications in several
combinatorial problems such as acyclic edge colouring [1, 16, 12] and constructing short length erasure
codes [4]. Perfect 1-factorizations are known to exist for very few classes of graphs, for example Kn

where n is a prime or K2n when 2n−1 is a prime. It is however conjectured that every complete graph on
an even number of vertices has a perfect 1-factorization and the sizes of graphs for which this is known to
be true are 2n = 16, 28, 36, 40, 50, 126, 170, 244, 344, 730, 1332, 1370, 1850, 2198, 3126, 6860, 12168,
16808, and 29792 [2].

There has been a lot of work in devising methods to arrive at 1-factorizations of complete graphs
using algebraic and analytical techniques alike. Given the huge number of possible 1-factorizations,
several questions such as those listed below are still open.

• What other methods exist to construct 1-factorizations?

• How to produce a random 1-factorization?

• What are other classes of graphs for which one-factorizations can be shown to exist and con-
structed?

1However, complete graphs of odd order are known to have what is called a near 1-factorization.
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In this paper we answer the above three questions by producing few methods of arriving at 1-factorizations
of K2n, presenting an algorithm to construct a random 1-factorization, and showing that certain com-
plete multipartite graphs also have (perfect) 1-factorizations. A one-factorization of complete multipar-
tite graphs yields another way to construct 1-factorizations of complete graphs. Apart from the above,
we also present a deterministic algorithm to construct a 1-factorization of complete graphs of even order.

1.1 Related Work
There exist many different one factorizations of K2n [18, 17]. One of the one factorizations of K2n is
a patterned factorization, GK2n obtained from the patterned starter or the staircase method of Bileski
[7]. The factorization G2n is a uniform factorization for all n ≥ 1 and when 2n − 1 is prime then it is
a perfect 1-factorization as well. Another one factorization of K2n that is not isomorphic to GK2n for
n ≥ 4 is WK2n [10]. This is obtained by a family of starters different from patterned starters. Another
method to give one factorization is by viewing K2n as the union of three graphs: two disjoint copies of
Kn and a copy of Kn,n. Factorizations obtained using this method are called twin factorizations, GA2n

[18].
Various one factorizations have been constructed from Steiner triple systems [5]. Steiner triple

systems have also found application in constructing sequentially uniform one-factorizations [5]. Bi-
nary projective Steiner triple systems can be used to construct uniform 1-factorizations of K2n of type
[4 4 4 · · · 4] if n is a power of 2 [11]. Perfect Steiner triple systems which give rise to uniform one
factorizations of type [2n − 4 4] are also known [8]. Uniform one factorizations of type [4 6 6 · · · 6]
exist and can be constructed from Hall triple systems if n is a power of 3. When p is an odd prime there
is a one factorization of Kps+1 of type {p + 1 2p 2p · · · 2p} [11].

There has been some work on classifying 1-factorizations according to isomorphism. Two one-
factorizations are called isomorphic if there exists a bijection that maps one-factors onto one-factors.
Recently, Kaski and Ostergard provided a classification of 1-factorizations of regular graphs on 12 ver-
tices [9] extending the results known for graphs on at most 10 vertices [15, 14].

Dinitz and Stinson [6] designed a hill climbing algorithm to produce a random one factorization of
K2n, for a particular value of 2n. Their algorithm has the disadvantage that it reaches a local optimum
and cannot proceed further towards the global optimum. However, as the authors note in [6], in over a
million trials it never happened but it is not proven that such a situation never occurs.

1.2 Our Results
This paper presents several recursive methods to obtain a 1-factorization of a complete graph where the
number of vertices is a power of 2. The resulting 1-factorizations and our methods are different from
existing methods.

Another problem we turn our attention to is that of producing a random 1-factorization. We propose
a randomized algorithm to iteratively construct a random 1-factorization of a given graph. Our algorithm
relies on backtracking and is guaranteed to stop by producing a 1-factorization if one exists or report
failure otherwise by exploring the space of 1-factorizations systematically to produce the output. We
also implemented our algorithm and tabulated the results of our experiments for inputs being complete
graphs on an even number of vertices. The results are shown in Section 3. A deterministic variant that
uses backtracking is also studied and implemented.

We then describe a method to construct a 1-factorization of complete multi-partite graphs. Later,
using this, we show to how to arrive at a 1-factorization of a complete graph on mn vertices, Kmn,
provided the 1-factorizations of Km and Kn. Thus, our method allows one to construct a 1-factorization
of a complete graph where the number of vertices is a multiple of 4 easily.
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1.3 Organization of the paper
The rest of the paper is organized as follows. Section 2 presents methods to construct 1-factorizations
of Kn where n is a power of 2. In Section 3 we present our incremental algorithms to construct 1-
factorizations for K2n and also show some implementation results. In Section 4 we show how to con-
struct a 1-factorization for complete multipartite graphs and use it to provide a 1-factorization for Kn

when n is a multiple of 4. The paper ends with some concluding remarks.

2 1-Factorization of K2r , r > 1

In this section we report some polynomial time approaches to arrive at a 1-factorization of the complete
graph on n vertices where n is a power of 2. Our interest in exploring the space of 1-factorizations for
K2r is to investigate non-algebraic ways of constructing them unlike [5] where Steiner systems were
used to arrive at uniform 1-factorizations of K2r . Moreover, our initial experiments have suggested that
when using a simple backtracking strategy presented in Section 3.1 to arrive at 1-factorizations for K2n,
no backtracking is required when n is a power of 2. This led us to study the reason behind this.

The complete graph on 2n vertices can in general be represented as the union of 3 graphs: two Kn’s
that are indexed by vertices 1 through n and n + 1 through 2n respectively, and a complete bipartite
graph Kn,n with n vertices in each side of the partition. This representation allows us to represent
the 1-factorization of K2n for n being a power of 2 as combining the 1-factorization of two Kns along
with a 1-factorization for Kn,n. The 1-Factorizations obtained this way are termed as twin factorizations
in [17] where also a method to construct them is described. Here we report several different methods
that can be used to construct twin factorizations recursively. We can then use this approach to build the
1-factorization of Kn. The recursion stops when n = 2 where the 1-factorization is simply the single
edge in K2.

Let 2n be a power of 2. The 1-factorization of Kn consists of n − 1 1-factors each containing n/2
edges. Thus, putting the 1-factorization of both the Kns together will result in (n − 1) 1-factors each
containing n edges. The 1-factorization of Kn,n will have n 1-factors each containing n edges. Thus,
totally we have n − 1 + n = 2n − 1 1-factors containing a total of n(2n − 1) edges, which is the
number of edges in K2n. Since each edge of K2n belongs to exactly one 1-factor, this method results in
a 1-factorization of K2n.

What is left unspecified is how to generate the 1-factorization of Kn,n. One standard 1-factorization
of Kn,n is described in [18]. We have found several strategies to arrive at the 1-factorization of Kn,n

and we call the one reported in [18] as the shift-and-rotate (S-R) strategy. We describe other strategies
called the butterfly strategy and the class of shift-rotate strategies below. We also include an example to
describe the approaches. Here we mention that the 1-factorizations we obtain for K2r are different from
GA2n and GK2n reported in [18], except the one in Section 2.1.

2.1 The Shift-And-Rotate Strategy (S-R)
In the S-R strategy, to build a 1-factorization for Kn,n, we note that each 1-factor has 1, 2, · · · , n as
the first end-points of the n edges in order and n + 1 through 2n as the second end-points. The sec-
ond end-points are paired up differently in each 1-factor starting with the 1-factor (1, n + 1), (2, n +
2), · · · , (n, 2n). To build the ith 1-factor, shift-and-rotate the sequence n + 1, n + 2, · · · , 2n by i places
to the left giving rise to the 1-factor (1, n + 1 + i), (2, n + i + 2), · · · , (n, 2n + i − n).

To show that the resulting 1-factors form a 1-factorization, we can formally argue as follows. In the
1-factors corresponding to the edges of Kn,n, each edge of the Kn,n appears exactly in one 1-factor.
Given an edge (i, j) with 1 ≤ i ≤ n and n + 1 ≤ j ≤ 2n, in our ordering of 1-factors the edge (i, j)
appears in the j − i + 1th 1-factor as the end-point of i.
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2.2 The Butterfly Strategy
The butterfly strategy is another strategy to build a 1-factorization for Kn,n. By convention we list each
1-factor as n edges where the first end-points are from 1 through n. So a typical 1-factor looks as
(1, v1), (2, v2) , · · · , (n, vn) where n + 1 ≤ v1, v2, · · · , vn ≤ 2n. For ` = 0 the 1-factor F0, which we
call the identity factor is simply {(1, n), (2, n + 1), (3, n + 2), · · · , (n, 2n)}. For ` = 1, 2, · · · , n − 1,
the `th 1-factor Fi is computed as follows. If ` is a power of 2 then we compute F` as follows. The edge
(i, j) ∈ F` if the edge (i′, j′) ∈ F0 such that i′ = (i + `) mod n and j ′ = j. Otherwise, let `′ = 2blog2 `c

and r = ` − `′. Let F`′ be the `′th factor. Now (i, j) ∈ F` if (i′, j′) ∈ F`′ such that i′ = (i + r) mod n
and j′ = j.

Using this recursively, a 1-factorization for K16 is shown in the example below.

Example 2.1 We demonstrate the butterfly strategy by building a 1-factorization for K16. We first
list the 1-factors corresponding to the cross edges of K16 by starting with the identity factor F0 =
{(1, 9), (2, 10),(3,11) , (4, 12), (5, 13), (6, 14), (7, 15), (8, 16)}.

For K16, using the butterfly strategy for each of the 1-factors coming from the cross edges, the first
end-point is from the set {1, 2, 3, 4, 5, 6, 7, 8}. The 1-factors F0 and F1 are shown in the Figure 1.

1,10 2,9 3,12 4,11 5,14 6,13 7,16 8,15

Figure 1: The 1-factors F0 and F1.

The 1-factors F2 and F3 are shown in the figure below.

1,11 2,12 3,9 4,10 5,15 6,16 7,13 8,14
1,12 2,11 3,10 4,9 5,16 6,15 7,14 8,13

Figure 2: The factors F2 and F3.

We now show the four 1-factors corresponding to F4 through F7. Putting together the 1-factorization
of K8 and another K8 with vertices numbered 1 through 8 and 9 through 16 recursively, we arrive at a
1-factorization of K16 as shown in Figure 4.

Remark 2.2 It can be observed that using the MIN strategy, explained in Section 3, one would have
arrived at the same 1-factorization that will be obtained using the butterfly strategy. This is the reason
why for an input of K2n with 2n a power of 2, the MIN algorithm requires no backtracking.

Remark 2.3 Notice that the 1-factorization for Kn,n we have described above are also perfect 1-
factorizations for Kn,n. The 1-factorization for K2n, n being a power of 2, is also uniform of the
type [4 8 16 · · · 2n], i.e., there exists cycles of all powers of 2 till 2n.

2.3 Other Methods to Compute 1-Factorizations of K2r , r > 1:
Apart from the above two, there exist other approaches to generate perfect 1-factorizations for Kn,n and
hence K2n where n is a power of 2. A simple observation is that to construct a 1-factorization of Kn,n,
we can start with any of the n! 1-factors as F1 and employ shift-and-rotate strategies described as follows.
Consider the 1-factor F1 and let us represent each edge in F1 as {(ui, vi)}

n
i=1 where all uis are in the

1,13 2,14 3,15 4,16 5,9 6,10 7,11 8,12
1,14 2,13 3.16 4,15 5,10 6,9 7,12 8,11
1,15 2,16 3,13 4,14 5,11 6,12 7,9 8,10
1,16 2,15 3,14 4,13 5,12 6,11 7,10 8,9

Figure 3: The factors F4 through F7.
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1,2 3,4 5,6 7,8 9,10 11,12 13,14 15,16
1,3 2,4 5,7 6,8 9,11 10,12 13,15 14,16
1,4 2,3 5,8 6,7 9,12 10,11 13,16 14,15
1,5 2,6 3,7 4,8 9,13 10,14 11,15 12,16
1,6 2,5 3,8 4,7 9,14 10,13 11,16 12,15
1,7 2,8 3,5 4,6 9,15 10,16 11,13 12,14
1,8 2,7 3,6 4,5 9,16 10,15 11,14 12,13
1,9 2,10 3,11 4,12 5,13 6,14 7,15 8,16
1,10 2,9 3,12 4,11 5,14 6,13 7,16 8,15
1,11 2,12 3,9 4,10 5,15 6,16 7,13 8,14
1,12 2,11 3,10 4,9 5,16 6,15 7,14 8,13
1,13 2,14 3,15 4,16 5,9 6,10 7,11 8,12
1,14 2,13 3,16 4,15 5,10 6,9 7,12 8,11
1,15 2,16 3,13 4,14 5,11 6,12 7,9 8,10
1,16 2,15 3,14 4,13 5,12 6,11 7,10 8,9

Figure 4: The 1-factorization of K16 obtained using the butterfly strategy.

same partition and the vis belong to another partition. Let us call the uis as the first end-points and vis as
the second end-points. When using shift-and-rotate strategies, we keep either uis or vis fixed throughout
the other 1-factors. The other set of end-points, say {u1, u2, · · · , un} are shifted with rotation to get the
other 1-factors. The effect of the shift operation on {u1, u2, · · · , un} is {u2, u3, · · · , un, u1} when we
shift to the left (with rotation). In the class of shift-and-rotate strategies, we can shift the first end-points
or the second end-points of the edges in F1 to obtain F2 through Fn−1.

An example of a 1-factorization obtained using the shift-and-rotate class is as follows for n = 16.
The first end-points of the 8 factors of K8,8 are 1 through 8 and the second end-points are 16 down to
9. Thus in the 1-factorization of Kn,n we construct, F1 = {(1, 16), (2, 15), · · · , (8, 9)}. Now, shift and
rotate the first end-points to the left to get the remaining n− 1 factors. Using this recursively, we get the
following 1-factorization for K16.

1,8 2,7 3,6 4,5 9,16 10,15 11,14 12,13
2,8 3,7 4,6 1,5 10,16 11,15 12,14 9,13
3,8 4,7 1,6 2,5 11,16 12,15 9,14 10,13
4,8 1,7 2,6 3,5 12,16 9,15 10,14 11,13
1,4 2,3 5,8 6,7 9,12 10,11 13,16 14,15
2,4 1,3 6,8 5,7 10,12 9,11 14,16 13,15
1,2 3,4 5,6 7,8 9,10 11,12 13,14 15,16
1,16 2,15 3,14 4,13 5,12 6,11 7,10 8,9
2,16 3,15 4,14 5,13 6,12 7,11 8,10 1,9
3,16 4,15 5,14 6,13 7,12 8,11 1,10 2,9
4,16 5,15 6,14 7,13 8,12 1,11 2,10 3,9
5,16 6,15 7,14 8,13 1,12 2,11 3,10 4,9
6,16 7,15 8,14 1,13 2,12 3,11 4,10 5,9
7,16 8,15 1,14 2,13 3,12 4,11 5,10 6,9
8,16 1,15 2,14 3,13 4,12 5,11 6,10 7,9

Figure 5: A 1-factorization of K16 obtained from the class of shift-rotate strategies.
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Figure 6: Figure (a) shows the time taken and (b) shows the number of backtrackings required by the
MIN algorithm.

3 Experimental Results
In this section, we consider incremental methods of constructing an one-factorization of K2n using some
heuristics. It can be easily seen and also verified that a one-factorization F of K2n has 2n − 1 perfect
matchings in it. Each perfect matching has n edges in it. Let F be =

{

F1, F2, F3 . . . , F2n−2, F2n−1

}

.
Note that,

{

Fi ∩ Fj

}

= φ ∀ i, j ∈ [1, 2n − 1] if i 6= j and
∣

∣F1 ∪ F2 ∪ F3 . . . ∪ F2n−1

∣

∣ = (2n −
1) · (n). In this section, we not only build F incrementally but also in a lexicographic order. To extend
a matching, we need to add an edge that is not included in any of the previous perfect matchings of
F . For picking up this edge, we do not go totally random. A matching Fi always has (1, i) as its
first edge in it and is then incrementally extended so that Fi becomes a perfect matching. At any step
if we are constructing a jth edge, (uj , vj), for the Fi

th matching, we may have the choice of adding
edges only from the set E \

{

F1 ∪ F2 . . . ∪ Fi−1 ∪ Ei

}

, where Ei = {eii , ei2 , ei3 , . . . eij−1
} and eik

is the kth edge chosen for the F th
i matching. For convenience, we choose our first vertex uj as the

minimum 2 of all the available vertices V ′ =
{

v1, v2, v3 . . . vi

}

where vi ∈ V ′ if and only if it is not
saturated by Fi. The second vertex vj can be chosen using the MIN and RAND methods. So, any
Fi =

{

(1, i), (u1, v1), (u2, v2), (u3, v3), . . . . . . (un−2, vn−2), (un−1, vn−1)
}

where, ui = minimum of
all vertices unsaturated by Fi and vi = vertex chosen using MIN or RAND method.

3.1 The MIN Method
In this method, to choose a jth edge, (uj , vj), for the F th

i matching, the minimum of all the unsaturated
vertices by Fi, is chosen as its first vertex uj . To pick up the second vertex, we again follow the same
strategy used for picking up the first one. If the edge (uj , vj) is already used in the one-factorization F ,
then the next minimum vertex, vj ∈ V ′, is chosen as vj . This process is continued until a suitable edge
can be picked up so that Fi can be extended. If we are unsuccessful in extending Fi using all the vertices
available to us, then we backtrack and rearrange the previous edge (uj−1, vj−1) of this matching. If
j = 0 then we rearrange the last edge of the factor Fi−1.

3.2 The RAND Method
In this method, to add a jth edge, (uj , vj), for the F th

i matching, vertex uj is chosen as the minimum
vertex in V ′. Vertex vj is then picked up uniformly at random from the set V ′ \ {uj}. If the edge
(uj , vj) cannot be used in the extension of Fi, then we keep choosing vertex vj uniformly at random

2Each vertex can be enumerated.
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from V ′ \ {uj} until we find an edge that can be used in the extension of Fi. If we are unsuccessful
in extending Fi using all the vertices available to us, then we backtrack and rearrange the previous
edge (uj−1, vj−1) of this matching. If j = 0 then we rearrange the last edge of the factor Fi−1. The
RAND method is justified in its name as the one-factorizations it generates spans the entire space of one-
factorizations. The RAND method can produce any 1-factorization via suitable random choices during
every step. The only difference is that we build and list the 1-factorizations in a lexicographic order.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 40  45  50  55  60  65  70  75  80  85  90  95  100

Ti
m

e 
In

 S
ec

on
ds

(O
n 

a 
lo

g 
sc

al
e)

Size

Rand

(a)

 0

 4

 8

 12

 16

 20

 24

 28

 0  10  20  30  40  50  60  70  80  90  100

Nu
m

be
r O

f B
ac

kT
ra

ck
in

gs
 (O

n 
a 

lo
g 

sc
al

e)

Size

Rand

(b)

Figure 7: Figure (a) shows the time taken and (b) shows the number of backtrackings required by the
RAND algorithm.

Both of our methods are better than the hill climbing algorithm [6] provided by Dinitz and Stinson
for one-factorizations of k2n. This is because our methods are known to terminate with certainty by
producing a one-factorization when one exists and report otherwise 3 in case no one-factorization exists
where as the hill climbing algorithm [6] does not guarantee to produce an one-factorization.

3.3 Experimental Setup and Observations
The experiments are conducted on a 4 * 3.00GHz, Intel(R) Xeon(TM) processor with 2 Ghz of main
memory. The language used for implementing the RAND and MIN methods is ANSI C. The results
obtained so were averaged over hundred rounds. It should be noted that since MIN is a deterministic
approach the number of backtrackings will be system and time independent.

We shall now try to analyze our experiments from the above plots. For the MIN method, the time
taken blows up heavily after a size of 42 or so. This is due to the large number of backtrackings required.
However, the RAND method does not seem to require that many backtrackings and hence saves on time.

It can also be noticed that n a power of 2, the MIN method requires no backtracking where as
RAND may require some as RAND does not follow any order in choosing the 1-factors. It is the lack of
backtracking for the MIN method on complete graphs where the number of vertices is a power of 2 that
led us into investigate the reason behind this.

Another interesting observation is with regard to the MIN method. Notice that the time taken and
the number of backtrackings required resemble the function sinc(x) = sin(x)

x with zeroes (and minimum
time) at n being a power of 2. This suggests that there might exist a mechanism via which we can obtain
a 1-factorization of K2r+2 or K2r−2 given a 1-factorization of K2r by systematically adding an edge and
deleting an edge respectively. As can be observed, RAND does not show such connections but runs fast
compared to MIN for most input sizes.

While we performed the experiments only on complete graphs, the MIN and the RAND method are
however implemented in a general way so that they work also for any input graph. Both these methods

3For any input graph apart from K2n.
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also report a 1-factorization if one exists and report otherwise of no 1-factorization can be found for the
input graph.

4 1-Factorizations for m-partite Graphs
In this section we describe how to obtain 1-factorizations for a complete m-partite graph where each
partition has size n. This is denoted as Kn,n,··· ,n where there are a total of mn vertices. We require that
m and n be even. We say that the graph has n parts and the vertices in the ith part, i ∈ [n], are numbered
from (i − 1) · n to i · n. In the above, [n] denotes the set of natural numbers {1, 2, · · · , n}.

To arrive at a 1-factorization of Kn,n,··· ,n we first define the following graph H = (VH , EH) where
VH = [m] and (u, v) ∈ EH if and only if there is an edge from some vertex in the uth part of Kn,n,··· ,n to
some vertex in the vth part of Kn,n··· ,n. The graph H can be seen as the graph obtained by compressing
each part of the the m-partite graph into a single vertex and deleting multiple edges resulting out of the
compression. The resulting graph is a Km, the complete graph on m vertices.

Let Km and Kn have a known 1-factorization. Let a 1-factorization of Km be denoted as F =
{F1, F2, · · · , Fm−1}. Now given a 1-factorization of Km, consider factor Fi = (u1, v1), (u2, v2), · · · ,
(um/2, vm/2). The edges of Fi pair up vertices of Km. Now suppose we expand each vertex u in Fi as
a set Su of n vertices and pair up the corresponding sets. That is, for the edge (uj , vj) ∈ Fi we pair up
the set Su with Sv. In fact, the set Su corresponding to vertex u is the set of vertices in the uth partition.
Thus each 1-factor of Km partitions the m-partite graph into m/2 disjoint bipartite sub-graphs. So we
can treat each edge (uj , vj) in any 1-factor Fi of Km to be expanded to a 1-factorization of the bipartite
graph with Su and Sv being the two sides of the bipartition. Moreover, each 1-factor of Km will be
indeed expanded into n 1-factors for Kn,n,··· ,n as the bipartite graph KSu,Sv has n 1-factors. Of course,
we can consider any way of generating 1-factorization of a complete bipartite graph Kr,r as described
in the Section 2. But in this section we restrict ourselves to the 1-factorization obtained by Shift-and-
Rotate strategy. For Kr,r let us denote the 1-factors thus obtained as J1, J2, · · · , Jn. We now describe
the formation of the n 1-factors corresponding to Fi.

Let Fi = {(ui,`, vi,`)}
m/2
`=1 be a 1-factor of Km. Then the n 1-factors of Kn,n,··· ,n corresponding to

Fi are given as follows. Let the n 1-factors of the bipartite graph corresponding to the edge (ui,`, vi,`),
1 ≤ ` ≤ m/2 be Hj

ui,`,vi,`
, where j ∈ [n]. Then,

{Gj}
n
j=1 = Hj

ui,1,vi,1
∪ Hj

ui,2,vi,2
∪ · · · ∪ Hj

ui,`,vi,`
, j ∈ [n]

are the n 1-factors corresponding to the factor Fi of Km. In the above union, Hj
ui,`,vi,`

corresponds to
the jth 1-factor in the complete bipartite graph corresponding to the `th edge in the ith 1-factor of Km.

Thus, for each 1-factor Fi of Km we have n 1-factors of kn,n,··· ,n. This results in (m − 1) · n 1-
factors for Kn,n,··· ,n each containing m · n/2 edges. The total number of edges in Kn,n,··· ,n is exactly
m(m − 1)n2/2 as Kn, n, · · · , n can be viewed as

(m
2

)

individual Kn,n graphs.
Further, each edge of Kn,n,··· ,n will appear in exactly one 1-factor as can be shown in the following.

Consider the edge (u, v). Let u belong to the ith partition and v belong to the jth partition. Now the
1-factorization of Km has edge (i, j) in some 1-factor, say Fk. Then when we expand the 1-factor Fk

we create n 1-factors corresponding to the bipartite graph KS1,S2
with S1 = [(i − 1) · n + 1, i · n] and

S2 = [(j − 1) · n + 1, j · n]. The edge (u, v) will appear in exactly one of these n 1-factors. Hence we
have the following claim.

Claim 4.1 There is a polynomial time algorithm to construct a 1-factorization of the m-partite complete
graph on mn vertices, Kn,n,··· ,n where m and n are even.

We see an example of the above approach in the next subsection along with an application.
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4.1 Application: 1-Factorization for KN , where N a multiple of 4
To illustrate the algorithmic usefulness of the above approach consider the case where m and n are both
even. Then, for N = m · n which is a multiple of 4, let us try to construct a 1-factorization of KN . We
can represent KN as the union of m complete graphs of size n vertices each and a complete m-partite
graph Kn,n,··· ,n. To arrive at a 1-factorization of KN we can then proceed as follows.

Let the vertices of each KN be numbered from 1 through N with the vertices in the range [(i − 1) ·
n, i ·n] being the ith group for i ∈ [m]. So KN = (∪m

i=1Ki)∪Kn,n,··· ,n. Let F i denote a 1-factorization
of the ith Km. Then a 1-factorization of KN is as follows:

F =
(

∪i∈[m−1]

)

G ∪ H

where
Gi = ∪`∈[n]Ji,`

with Ji,` being the ith 1-factor in a 1-factorization of the `th Km, and H is a 1-factorization of the
complete m-partite graph Kn,n,··· ,n. It can be observed that the above procedure does generate a 1-
factorization of KN using arguments similar to that of [18]. Hence the following claim.

Claim 4.2 The above procedure constructs a 1-factorization of KN , N being a multiple of 4, in polyno-
mial time.

We now explain the above approach with an example.

Example 4.3 If we take N = 12, and n = 2, then we are representing KN as m paths of length 2 plus
the complete N/2-partite graph where each part has just 2 vertices. We know that the 1-factorization of
K2 is simply (i, j) when the vertices are numbered i, j. The standard numbering we can use is to number
the vertices of the ith K2 as i and i + 1. Then, to construct a 1-factorization of KN we first write the
1-factor corresponding to each K2 as shown:

F1 = (1, 2), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12)

Below we construct a 1-factorization for the complete 6-partite graph with each partition having 2 ver-
tices as described earlier. Let the resulting 1-factorization be F2, F3, · · · , F11. Then the set of 1-factors
F1, F2, · · · , F11 is a 1-factorization of K12.

A known 1-factorization for K6 is:

(1, 2) (3, 4) (5, 6)
(1, 3) (2, 6) (4, 5)
(1, 4) (2, 5) (3, 6)
(1, 5) (2, 3) (4, 6)
(1, 6) (2, 4) (3, 5)

So on expanding each of the above factors as described earlier and using the Shift-and-Rotate for arriving
at a 1-factorization of a complete bipartite graph we get the following set of 1-factors for K12. Here,
1-factors F2 and F3 are obtained from the 1-factor {(1, 2), (3, 4), (5, 6)} of K6 as follows. The edge
(1, 2) would be expanded to a 1-factorization of the complete bipartite graph with the partitions being
vertices {1, 2} and {3, 4} of K12. Similarly the edge (3, 4) would be expanded to a 1-factorization of
the complete bipartite graph with partition {5, 6} and {7, 8} and the edge (5, 6) would be expanded to a
1-factorization of the complete bipartite graph with partition {9, 10} and {11, 12}. This is because for
the 6–partite complete multipartite graph K2,2,2,2,2,2 each part has 2 vertices according to our numbering
scheme. The other 1-factors F4 through F11 are obtained by similarly expanding the 1-factors of K6.
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F1 = {(1, 2) (3, 4) (5, 6) (7, 8) (9, 10) (11, 12)}
F2 = {(1, 3) (2, 4) (5, 7) (6, 8) (9, 11) (10, 12)}
F3 = {(1, 4) (2, 3) (5, 8) (6, 7) (9, 12) (10, 11)}
F4 = {(1, 5) (2, 6) (5, 11) (6, 12) (7, 9) (8, 10)}
F5 = {(1, 6) (2, 5) (5, 12) (6, 11) (7, 10) (8, 9)}
F6 = {(1, 7) (2, 8) (3, 9) (4, 10) (5, 11) (6, 12)}
F7 = {(1, 8) (2, 7) (3, 10) (4, 9) (5, 12) (6, 11)}
F8 = {(1, 9) (2, 10) (3, 5) (4, 6) (7, 11) (8, 12)}
F9 = {(1, 10) (2, 9) (3, 6) (4, 5) (7, 12) (8, 11)}
F10 = {(1, 11) (2, 12) (3, 7) (4, 8) (5, 9) (6, 10)}
F11 = {(1, 12) (2, 11) (3, 8) (4, 7) (5, 10) (6, 9)}

We note that the results of this section can also be viewed in an existential sense that if Km and Kn

have a known 1-factorization then a 1-factorization for Kmn can be found. However, we were not able to
use the above approach when m or n is odd due to the fact that complete graphs of odd order only have
a near-1-factorization.

5 Conclusions and Open Problems
While we have reported new methods of arriving at 1-factorizations of complete graphs, several questions
remain to be answered. One open question is to see whether we can extend(contract) a 1-factorization
of K2r to a 1-factorization of K2r+2 (resp. K2r−2) without any backtracking. Also interesting problems
are to find non-algebraic ways of generating uniform or sequentially uniform 1-factorizations. Although
there are estimates of the number of 1-factorization of K2n [17], we are not aware of any estimates for
the number of 1-factorization of Kn,n. It would be interesting to count the number of 1-factorization of
Kn,n.
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