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Abstract

We consider the problem of probabilistic reliable communication (PRC) over synchronous networks mod-
eled as directed graphs in the presence of a Byzantine adversary when players’ knowledge of the network
topology is not complete. We show that possibility of PRC is extremely sensitive to the changes in play-
ers’ knowledge of the topology. This is in complete contrast with earlier known results on the possibility
of perfectly reliable communication over undirected graphs where the case of each player knowing only its
neighbours gives the same result as the case where players have complete knowledge of the network. Specif-
ically, in either case, (2t+ 1)-vertex connectivity is necessary and sufficient, where t is the number of nodes
that can be corrupted by the adversary [2, 8]. We introduce a novel model for quantifying players’ knowledge
of network topology, denoted by TK. Given a directed graph G, influenced by a Byzantine adversary that
can corrupt up to any t players, we give a necessary and sufficient condition for possibility of PRC over G
for any arbitrary topology knowledge TK.

Keywords: reliable communication, topology knowledge, synchronous networks, directed graphs, Byzantine
adversary
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1 Introduction

A number of non-trivial fault-tolerant distributed computing problems may be abstracted as : For a network
N (modeled as a graph), a problem π, and an adversary A, given any two of them, give a relation of the
third with respect to the other two. For example, supposing problem π and adversary A are given, give the
condition on N such that π is solvable. In all such cases, it is generally assumed that the players in N have
complete knowledge of the network topology, that is, they know the graph G, which makes up N . However,
this assumption is not true in most practical circumstances such as the Internet. Moreover, theoretically, it
is curious to consider the effect of players with varying amounts of knowledge about the network topology in
fault-tolerant distributed computation. In this paper, we refer to the notion of knowledge possessed by a node
about the graph G by Topology Knowledge T K at that node. Considering T K as another parameter in our
abstraction, we ask: For a network N , a problem π, an adversary A, and topology knowledge T K given for
each node in N , give the condition on N such that π is solvable.

To the best of our knowledge, there has not been any focused study in the literature on how T K affects
distributed computability in the presence of an adversary. This is probably the first such attempt. We give
the first results showing that including T K as a parameter affects fault-tolerant distributed computation. We
show our results by taking the problem of probabilistic reliable communication (PRC) between a sender S and
a receiver R as an instance.

In the extant literature, there are studies such as the one on Sense of Direction, which is a topological
labeling property, studied as a part of larger study on structural knowledge. The literature indicates that this
property is a fundamental requirement for distributed computability (See [4, 3]). These studies also have results
on distributed complexity for various topologies. Our work has no current relation with the extant studies in
structural knowledge. In this paper, we consider labeling of the network as fixed, similar to that in [8].

One can easily note that the notion of T K is relevant only in the presence of a suitable adversary. In
the absence of a suitable adversary, each node can let the rest of the players (of course only as far as the
connectivity permits!) know its view of the network in order to end up with a global common picture of the
topology for each of the connected components respectively. Consequently, while the distributed complexity
may increase, the distributed computability is unaffected. However, in the presence of the adversary, any
amount of communication would entail only an (adversary controlled) approximation of the actual topology,
thereby perhaps affecting even the distributed computability. Intuitively though, the adversary can at best
completely hide the edges between two faulty players and if lucky, succeed in partially hiding even the edges
with one faulty end-node. However, useful messages are seldom transmitted via the aforementioned edges. This
gives a feeling that distributed computability may not be affected — in fact, for the case of perfectly reliable
communication it has been proved that the knowledge of one’s neighbors alone is as sufficient as the knowledge
of the global topology; specifically, (2t + 1)-connectivity is necessary and sufficient irrespective of T K, where
up to t players are Byzantine faulty (We refer to this as a t-adversary)[8]. Counter-intuitively, for the case of
probabilistic reliable communication, we show that the optimal fault-tolerance heavily depends on T K.

We now explain as to what we mean by PRC. We consider PRC in synchronous networks (modeled as a
directed graph) in the presence of a Byzantine adversary. In the problem of PRC over a synchronous network
N = (P, E) where P is the set of vertices and E denotes the set of arcs/edges in the network, the sender S ∈
P wishes to send a message m to the receiver R ∈ P in a robust manner such that the message is correctly
received by R with a very high probability, in spite of the presence of up to t Byzantine-faulty nodes in N .

The problem of PRC sits well with the direction of study that we take on topology knowledge (T K) versus
fault-tolerance (FT ). More specifically, our study should be termed T K versus Byzantine FT , as we work with
a Byzantine adversary. The techniques that we adopt (See Section 3,Section 4) to work with an arbitrary T K
in our attempt to find the condition for the possibility of PRC give us a hint at a possible classification (See
Section 3) of distributed computing problems w.r.t. T K versus FT . We have a strong feeling that PRC would
be a primitive in such a classification, if ever it is possible. Moreover, the problem of reliable communication
is a fundamental primitive for any non-trivial distributed protocol. Specifically, if reliable communication
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were possible between all pairs of players in the network (with some arbitrary topology knowledge T K) then
all the non-faulty players can simulate and overlay a complete subgraph among them thereby alleviating the
issues posed by the adversary as well as the (lack of) topology knowledge! Thus, in some sense, the problem
of probabilistic reliable communication is at the core of understanding the effect of topology knowledge on
distributed computing in general.
Related Work: The problem of perfectly reliable communication tolerating a t-adversary over undirected
graphs is introduced by Dolev et al. [2]. PRC over undirected graphs was introduced by Franklin and Wright
[5, 6]. Desmedt and Wang [1] were the first to study the problem of reliable communication over directed
networks. (2t + 1)-connectivity between S and R is necesary and sufficient for all the problems given in the
prequel. Shankar et al. [7] show that the results for the case of possibility of PRC in directed graphs are
strange as opposed to the earlier results, which appear consistent. This supposed strangeness is caused when
“randomization meets directedness” for the possibility of PRC in directed graphs. In this sequence of study,
we introduce and solve the problem of PRC in directed graphs with an additional parameter T K. Our results
in this paper subsume all the results mentioned above and generalize it to include T K as a parameter.

Our focus in this paper is on finding the possibility of PRC protocols, and we do not focus on the complexity
of the protocols. Our constructions to prove the possibility of PRC protocols lead us to protocols with super-
polynomial complexity. We remark that finding polynomial-time solutions for the problem is quite challenging
and we do not rule out the possibility of an exponential lowerbound.

1.1 A Motivating Example
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Figure 1: Graph G

Through an example, we share in brief as to what we do in this paper.
Since we consider that the players’ knowledge of the network topology
is incomplete, let us suppose that the graphs G and G′ in Figure 1 and
Figure 2 respectively represent the possible underlying graphs that make
up the network. That is to say, the players’ have a doubt as to whether
the node w is connected to the node A or node B, and thereby have a
doubt as to which of G or G′ is the actual graph. Let us consider a 1-
adversary on this network, that is, the adversary can corrupt one node in
the network. Also, notice that the graphs in G and G′ are such that each
of them satisfies the possibility of PRC in the presence of an adversary
corrupting one node when each node knows the complete topology of the
network. They satisfy the conditions for the possibility of PRC as detailed
in [7].

It follows from the characterization of our Theorem 5.1 that as long
as the players possess only the knowledge of their neighbours (both in-
neighbours and out-neighbours) and are in doubt as to which of G or G′

is the underlying graph making up the network, then PRC is impossible
when the network has one corrupt node. Now, then, how far must you see to hear reliably? Notice that
when players’ know their neighbours’ neighbours, PRC is possible! In this example, if the players’ know their
neighbours’ neighbours, they would get to know the complete graph.
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Figure 2: Graph G′

The proof of Lemma 5.1.4 gives an explanation as to why the knowledge of neighbours is insufficient to
thwart the adversary to disrupt communication between S and R. In brief, it says that with the adversary
exhibiting a fail-stop behaviour, and in two parallel executions of the protocol, one over G and the other over
G′, with A and B being correspondingly corrupt, all the messages to R through A in the first execution and
all the message to R through B in the second execution are not forwarded to R. In each case, R receives a
null message, and it cannot distinguish the two cases, hence cannot fix which of A or B is corrupt at a time,
and hence cannot accept any message coming from them, resulting in the failure of PRC between S and R.
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Organization of the Paper: In Section 2, we give a formal characterization of what T K entails. In Section 3,
we reduce the task of deciding the computability of any problem π with an arbitrary and complex T K to the
task of deciding the computability of π with well-defined and simple T K. We use a reduction from T K to
a uniform T K so as to solve for possibility of PRC with ease, this is shown in Section 4. Subsequently, we
apply our reduction to the problem of PRC and in Section 5.1 prove a necessary and sufficient condition on
T K for the existence of protocols for PRC with a specified fault-tolerance. Implicit in our results is the fact
that optimal fault-tolerance increases as knowledge of the network topology improves.

2 Model and Definitions

The network is modeled as a directed graph N = (P, E) where P is the set of vertices and E denotes the set of
arcs/edges in the directed graph. The system is assumed to be synchronous, that is, the protocol is executed in
a sequence of rounds wherein in each round, a player can perform some local computation, send new messages
to his out-neighbors, receive the messages sent in that round by his in-neighbors (and if necessary perform some
more local computation), in that order. In the graph, we assume that the channels are secure. In other words,
if (u, v) ∈ E then the player u can securely send a message to player v in one round. During the execution,
the adversary may corrupt up to any t players. We work with a Byzantine adversary that may completely
control all the corrupted players and make them behave in arbitrary fashion. Every honest player that receives
a message from its in-neighbor knows the sender as it can identify the channel along which the message is
received. We give a couple of definitions before detailing our model further.

Definition 1 (Topology Knowledge of player i (T Ki)) In a given network N = (P, E), we define Topol-
ogy Knowledge of player i T Ki as the knowledge possessed by player i about the network N . It is represented
by a set of graphs,i.e. T Ki = {Gi

ki
}, with a condition that one of the graphs from the set T Ki is the actual

graph N where 1 ≤ ki < 2|P|2 and 1 ≤ |T Ki| < 2|P|2

Definition 2 (Topology Knowledge T K) We define the notion Topology Knowledge T K as the collection
of all the individual T Ki’s (for all the players in P). Specifically, T K = {T Ki|i ∈ P}.

We assume each player i knows the following at the outset: (a) Set of vertices in N , i.e,P; (b) Topology
Knowledge of player i, T Ki. We also assume the worst-case scenario where the adversary knows all the T Ki’s
for i ∈ P as well as is aware of the actual graph G.

We explain now, as to why T Ki is so defined. In order that a set of graphs be considered a model of the
notion of knowledge possessed by player i about the network N , we require that the set contains the actual
graph N . The intuition behind this way of modeling is based on the assumption (a) above. Given that a
player i knows the set of players, he also knows that the actual graph G must be one of the 2|P|2 directed
graphs that are ever possible among the players. Note that if T Ki contains all possible graphs it captures the
situation where the player i is completely oblivious of the edges in G (including his own neighbors). At the
other extreme, if T Ki contains just a single graph G it captures the scenario where the player i is completely
knowledgeable about the topology of the network (including the edges between two faulty players!). Note that
neither of these extreme cases are likely to occur at runtime since one usually knows at least (the number) of
his neighbors and one usually can never be sure about the presence/absense of edges between faulty players.

Note that it is not necessary to represent T Ki by physically enumerating all the graphs that T Ki con-
tains. This would certainly be an impractical representation. Rather, it may be enough if the player i has
a program/circuit which on input a graph H can decide whether or not H ∈ T Ki. For instance, if player
i is aware of his neighbors, then T Ki would contain only those graphs which are consistent with respect to
player i’s neighborhood. This of course can easily be represented by a program that on input a graph H,
tests the neighborhood of i in H and decides whether or not H belongs to T Ki. However, we remark that
a simple counting argument suggests that there exists a T Ki that cannot be decided via any efficient circuit
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(or for that matter, inefficiency is inexorable irrespective of what representation is used). Such a T Ki may
entail a super-polynomial surge in the complexity of any protocol wishing to use its knowledge fully. While
a practical approach may be to approximate T Ki to the “nearest” efficiently decidable T K′

i (thereby losing
some information), we stress that this work is about computability in the presence of the adversary and we
therefore, without loss of generality, take the liberty of not focussing on issue regarding the representation of
T Ki. In other words, we model the players (as well as the adversary) as interactive Turing machines with
unbounded computing power and not as probabilistic polynomial-time Turing machines (PPT). We leave the
task of studying the effects of topology knowledge in a model where the players are PPT’s as an interesting
open problem.

Note 3 When each of the graphs is written in G = (V,E) form, we note that Gi
k = (P, E i

ki
), and only the

edge-set keeps changing across the graphs for each of the players. Therefore, we can replace every graph Gi
ki

in
the set T Ki with the set of its edge-sets {E i

ki
} for each player i to make matters more convenient. We will be

using T Ki synonymously with {E i
ki
} from now on.

A comment on the above modeling is due: The notion of knowledge of the network topology has a number
of elements in it – such as the size of the network, the labeling of the network, edge-sets, location awareness
etc. Modeling all the elements of the topology knowledge so as to make it as general as possible is not the focus
of this paper. We assume that all other parameters are published but for the edge-set of the network. Thus,
our focus is on the effect of the knowledge of edge-set (with other topological aspects as public information)
on fault-tolerance in distributed computing. Notice that our model offers flexibility for one to choose between
various levels of edge information that may be provided to the players. This concludes our discussion on
modeling T K.

Definition 4 (k-sized T Ki and k-sized T K) A k-sized T Ki is defined as T Ki where |T Ki| = k. If there
exists an integer k such that every T Ki in the collection T K is `-sized for some ` ≤ k, then the topology
knowledge T K is defined as a k-sized T K.

Note 5 The edge knowledge of a player with 2-sized T Ki is greater than the edge knowledge of a player with
k-sized T Ki, k > 2. This follows from the fact that a player with 2-sized T Ki has only 2 edge-sets one of which
is the correct one as opposed to a player with k-sized T Ki who has k edge-sets with the knowledge that one of
them is the correct edge-set. That is, the respective probabilities of choosing the correct edge-set is much higher
at 1/2 for the former case as opposed to 1/k for the latter.

In the next two sections, we present techniques to handle arbitrary T K. We use these techniques to show
the existence of protocols for probabilistic reliable communication. In Section 3, we show that the solvability
of problems with certain properties in the presence of an N -sized T K can be reduced to the solvability of the
problems in the presence of several 2-sized T Ks. We give the properties that are to be satisfied by the problems
and also show that the problem of PRC satisfies the same. Working with a 2-sized T K involves working with
different players having different views of the topology, and this can get cumbersome. We further reduce the
solvability of the problems with a 2-sized T K to the solvability of the problems with all possible 2-sized T Kis,
each of which is globally declared, so as to result in the network possessing nodes that either know the graph
or are confused between the corresponding graphs in the globally declared 2-sized T Ki. This uniformity in the
knowledge possessed by the nodes makes it convenient to work with.

3 From N-sized T K to 2-sized T K
In this section, we show that those problems π that satisfy certain conditions have a property that, over a
network N working with an N-sized T K is equivalent to working with (several) 2-sized T K with respect to the
solvability of π. This equivalence works only for those problems that satisfy the conditions in the Note 6.These
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conditions are a prerequisite for the correctness of majority voting which we employ to show the equivalence.
Majority voting is applied to the outputs obtained on solving π for various different-sized T Ks.

Note 6 The conditions and the corresponding equivalence between solvability of problems with N -sized T K and the
solvability of problems using some k-sized T K. where k <= N , are as follows:

• IO Condition: The problem should be such that its Input-Output relation must be a function, that is, for a
given input, there is only a unique output.

• Input Honesty Condition: Is there a requirement for the input givers to be honest?

– If yes, then there is an equivalence that can be shown from N -sized T K to 2-sized T K.

– If not, Output Agreement Condition: Is there a requirement for agreement amongst the outputs?

∗ If yes, Output Secrecy Condition: Is there a requirement for the secrecy of outputs?
· If yes, then there is an equivalence that can be shown from N -sized T K to k-sized T K, where
k > 2.

· If not, then there is an equivalence that can be shown from N -sized T K to 2-sized T K.
∗ If not,then the equivalence is dependent on the Input-Output relation. In other words, it is sensitive

to input-output relation and equivalence is not generically obtained.

Definition 7 Given a graph G = (P, E) with N-sized T K = {T K1, T K2, . . . , T K|P|}, N > 2, where each
T Ki = {E i

1, E i
2, . . . , E i

k}, k ≤ N , and a 2-sized topology knowledge Z = {Z1,Z2, . . . ,Z|P|} with each Zi =
{Ai

0, A
i
1}, 1 ≤ i ≤ |P|, such that one of the Ai

j’s is exactly the edge-set E (the edge-set of G) while the other
is an edge-set (different from E) that is present in T Ki. In other words, there exists a j ∈ {0, 1} such that
E = Ai

j and Ai
j
∈ T Ki, we say that Z is derived from T K.

Note that an N-sized T K can have up to (N − 1)|P| distinct 2-sized topology knowledge sets derived from it.

Theorem 3.1 A protocol Π that solves a problem π, satisfying either IO Condition and Input Honesty Condi-
tion or IO Condition and Output Agreement Condition in Note 6, over a network N with N -sized T K (N > 2)
influenced by an adversary A exists if and only if, for each of the 2-sized topology knowledge (Z) that can be
derived from T K , there exists a protocol solving π with topology knowledge Z.

Proof: The proof follows an induction on the size of T K, making use of majority voting. Refer to Appendix B
for the exact proof.

We wish to remark that the problem of PRC satisfies both the cases of IO Condition and Input Honesty
Condition or IO Condition and Output Agreement Condition in Note 6. Even if we assume that the sender S
were dishonest, since there is only one output from the receiver R, the Output Agreement condition is satisfied.
Our proof for Theorem 3.1 gives the glimpse as to how the equivalences in Note 6 can be obtained. When
there is a requirement of secrecy of outputs, note that, majority voting would reveal the output, hence, there
is a need to consider ways in which you hide the output, and this could be done by an equivalence to a k-sized
T K where k > 2. If there is no input-output relation, then we cannot use this approach. Note that if problems
could be classified based on the conditions in Note 6, then PRC seems to be primitive, as it has an equivalence
to the minimum sized T K possible w.r.t. T K versus FT .

4 Towards a More Uniform T K
From the prequel, it is enough to characterize the possibility of PRC for a 2-sized T K. For a set of players P,
a 2-sized T K = {T K1, T K2, . . . , T K|P|}, where each T Ki = {E i

0, E i
1}, ∀i ∈ P. Notice that each player can have

a different T Ki, and working with varying T Kis can become cumbersome. In our characterization, we avoid
working directly with 2-sized T K for this reason. In this section, we show that for any problem π, working
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with a 2-sized T K can be brought down to working with a modified T K, say, T K′ which is formed by the
intersection of each of the T Kis in 2-sized T K and a set denoted by 2-sized T KG which in all respects has the
properties of a 2-sized T Ki and is known globally to all the players. There are 2|P|2 possibilities for 2-sized
T KG. We show that solving π using a 2-sized T K is possible if and only if π can be solved for all the 2|P|2

possibilities for T K′. Following this, we give a necessary and sufficient condition for the possibility of PRC
given T K′.

4.1 From 2-sized T K to T K′

We begin with the following definitions:

Definition 8 (Global T KG and k-sized T KG) For a given network N = (P, E), a global T KG is defined as
a globally published topology information accessible to all the players in the network N . Its representation and
properties are similar to that of T Ki. It is represented as a set of graphs, i.e. T KG = {Gi} with the condition
that one of the graphs in T KG is the actual graph N , where 1 ≤ |T KG| < 2|P|2. If |T KG| = k, then the T KG

shall be called k-sized T KG. Similar to Note 3, T KG can be represented using the corresponding edge-sets of
the graphs in it.

Definition 9 (T K′
i and T K′) Given a network N = (P, E), a T KG and a T K, then we define T K′

i as the
updated topology knowledge of player i from knowing T KG. Collection of all such T K′

is forms T K′,i.e., T K′ =
{T Ki ∩ T KG} ∀i ∈ P. Similar to Note 3, T K′ can be represented using the corresponding edge-sets of the
graphs in it.

Theorem 4.1 A protocol Π that solves a problem π over a network N with 2-sized T K influenced by an
adversary A exists if and only if, for each of the T K′ sets formed from the 2|P|2 possibilities for the 2-sized
T KG, there exists a protocol solving π with T K′.

Proof: Only-If part: This is the easier part. It is evident that the topology knowledge T K′ is higher than the
topology knowledge T K, since every T Ki is a superset of T K′

i = T Ki ∩T KG. Therefore, if a protocol Π works
correctly over T K, it would vacuously be a correct protocol over T K′ too.
If part: Let there exist protocols for problem π for each of the valid 2-sized T KGs. We now show that this implies
that there exists protocols for π for any valid 3-sized T KG. Specifically, let a 3-sized T KG be T = {E1, E2, E3}.
Consider the three 2-sized subsets, namely, X1 = {E1, E2}, X2 = {E2, E3} and X3 = {E1, E3}. Note that at least
two of the above three Xi’s are valid global T KG’s (that is they contain the actual edge set). Suppose the
players execute the protocol for solving π for each of these two T KGs, their outputs must exactly match since
the problem is solved over the same network with the same inputs! However, the players are unaware of which
of the two Xi’s are valid global T KGs. It turns out that this does not matter since the players could execute
protocols for all the three Xi’s and perform a majority voting on the outputs to obtain the correct output for
problem π for the 3-sized T KG, namely T .

By induction, one can now solve the problem π for any given 4-sized T KG (since any 4-sized T KG can be
split into three subsets of size ≤ 3 such that at least two of them valid and yield exactly the same output).
Continuing further, we find that solving π with any m-sized T KG (where 2 < m ≤ 2|P|2) is possible if and only
if pi is solvable for each of its 2-sized subset T KGs. Notice that the case of m = 2|P|2 is nothing but the case
where T K is exactly equal to T K′. Hence the theorem.

5 Complete Characterization of PRC given T K′

We begin with a few definitions and lemmas.

Definition 10 (Strong Path) A sequence of vertices v1, v2, v3, . . . , vk is said to be a strong path from v1 to
vk in the network N = (P, E) if for each 1 ≤ i < k, (vi, vi+1) ∈ E. Furthermore, we assume that there vacuously
exists a strong path from a node to itself.
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Definition 11 (t-(S,R,)-strong-connectivity) A digraph is said to be t-(S,R)-strong-connected if the graph
is such that there exists at least t vertex disjoint strong paths from S to R.

Definition 12 (Semi-Strong Path) A sequence of vertices v1, v2, v3, . . . , vk is said to be a semi-strong path
from v1 to vk in the network N = (P, E) if there exists a 1 ≤ j ≤ k such that the sequence vj to v1 as well as
vj to vk both are strong paths in the network. We call the vertex vj as the head of the semi-strong path.

Definition 13 (Weak Path) A sequence of vertices v1, v2, v3, . . . , vk is said to be a weak path from v1 to vk

in the network N = (P, E) if for each 1 ≤ i < k, either (vi, vi+1) ∈ E or (vi+1, vi) ∈ E . Furthermore, we
assume that there vacuously exists a weak path from a node to itself.

Definition 14 (PRC Protocol) Let N = (P, E) be a network, with topology knowledge T K, under the influ-
ence of a Byzantine adversary that may corrupt up to any t players. We say that a protocol for transmitting a
message from S to R is (t, δ)-reliable if for any valid adversary strategy, the probability that R outputs m given
that S has sent m, is at least δ where the probability is over the random inputs of all the players and random
inputs of the adversary.

Definition 15 ((Player p)-Group) (Player p)-group is defined with respect to two t-sized subsets of P, say
B1 and B2. A p-group in graph G is the set of all players q (including p) such that q has a strong path from it
to p not passing through any node in (B1 ∪B2).

Note 16 Following Definition 17, network N can be divided into four components for a given two t-sized sets,
B1 and B2 as follows: R-group, B1, B2 and the rest of the players together as one, say C = P \ (B1 ∪ B2∪
R-group). Since the sender S and the receiver R are honest, clearly S ∈ C. R-group has no knowledge of the
actual graph N , and each player in R-group has the same topology knowledge as that of the globally declared
2-sized T KG, made of two edge-sets {E0, E1}. Set X ⊂ C. Set Z ⊂ C. Players in P \ (X∪ R-group) all have
the same topology knowledge {E0, E1}.

Theorem 5.1 (Main Theorem) A PRC protocol between S and R in the network N = (P, E) with a
2-sized T K tolerating a t-adversary exists if and only if for every B1, B2 of size at most t,such that B1 ⊂ P,
B2 ⊂ P in the network, Critical Combination [Definition 17] does not occur in N .

Proof. Necessity: For Necessity,we must show that a network N that is in Critical Combination guarantees
that no PRC protocol from S to R exists in N . We now take each of the conditions described for a network to
be in Critical Combination (Definition 17) and show that no PRC protocol can exist between S and R when
the condition is true.

Note that if the T K′
i of all the players, following the inputs given in the Definition 17, is a singleton set,

that is all the players have identified the actual graph N of the network, then the requirement for the PRC
protocol is, as per the conditions in [7]. The results in [7] have a strong receiver R-specificity. With our results
we gain a better insight into this R-specificity. In fact, we show that the knowledge of the actual graph or the
absence of it for the receiver R is the key for the existence or non-existence of the PRC protocol. The following
four lemmas shall capture the requirement of our necessity proof.

Lemma 5.1.1 Following Definition 17, if either B1 or B2 cut across all strong paths between S and R in N
, then a PRC protocol between S and R does not exist.

Proof: It is obvious to see that in this case, an adversary that can corrupt up to any t players can corrupt the
set B1 or B2 that cuts across all strong paths between S and R, and thereby disconnect the two in which case
no PRC protocol can ever exist.
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Definition 17 (Critical Combination) Given the following:

• A network N = (P, E), where P is the set of players, and E, the set of edges between the players in P.

• Two players identified as S (denoting sender) and R (denoting receiver) such that {S,R} ∈ P.

• Two t-sized sets - B1 and B2, such that B1 ⊂ P, B2 ⊂ P in the network N .

• A 2-sized T KG = {E0, E1} for the network N .

• A 2-sized T K for the network N .

• A set X of players, X = {i|T K′
i = N and i ∈ (P \B1 ∪B2 ∪ R-group)}; Let C = (P \B1 ∪B2 ∪ R-group);

X is a set of players in C which know the actual graph N after knowing T KG.

• X ∩ R-group = ∅.

• A set Z ⊂ C of players that are part of all weak paths from S to R and those players that have a semi-strong
path from itself to R.

Network N is said to be in a Critical Combination if any of the following hold:

• Either B1 or B2 cut across all strong paths between S and Rs.

• B1 ∪B2 cut across all weak paths between S and R.

• ∃W such that every weak path p that avoids both B1 and B2 between S and R has a node, say w, that has both
its adjacent edges (along p) directed inwards and w ∈W and the following hold:

– Both B1 and B2 are vertex cutsets between w and R. In other words, every strong path from w to R
passes through both B1 and B2.

– For α ∈ {0, 1}, B1 is a vertex cutset between all nodes in (W ∪(Z∩X)) and R in the edge-set Eα ∈ T KG

and B2 is a vertex cutset between all nodes in (W ∪ (Z ∩X)) and R in the edge-set Eα ∈ T KG.

Lemma 5.1.2 Following Definition 17,if B1 ∪ B2 cut across all weak paths between S and R, then a PRC
protocol between S and R does not exist.

Lemma 5.1.3 Following Definition 17, if ∃W such that every weak path p that avoids both B1 and B2 between
S and R has a node, say w, that has both its adjacent edges (along p) directed inwards and w ∈ W and both
B1 and B2 are vertex cutsets between w and R, then a PRC protocol between S and R does not exist. In other
words,if every strong path from w to R passes through both B1 and B2, then a PRC protocol between S and R
does not exist.

Proofs of Lemmas 5.1.2 and 5.1.3 are given in Appendix A.

Lemma 5.1.4 Following Definition 17, if ∃W such that every weak path p that avoids both B1 and B2 between
S and R has a node, say w, that has both its adjacent edges (along p) directed inwards and w ∈ W and for
α ∈ {0, 1}, B1 is a vertex cutset between all nodes in (W ∪ (Z ∩X)) and R in the edge-set Eα ∈ T KG and B2

is a vertex cutset between all nodes in (W ∪ (Z ∩X)) and R in the edge-set Eα ∈ T KG. then a PRC protocol
between S and R does not exist.

Proof: We now give the topology knowledge effect on the possibility of PRC through this proof. Notice that,
in the network N , X ∩ R-group = ∅, and therefore the entire R-group has the same 2-sized T K′

i. Further,
the state of the network N following Definition 17 is such that players either know the actual edge-set or those
players that have a doubleton set as their updated topology knowledge shall all have the same T K′

i which is
set to the edge-sets in T KG. All nodes in Z ∩X have complete knowledge of the topology of the network, and
since they have semi-strong paths from themselves to R, each of these players can share a common key with
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R, through the head of the semi-strong paths, that is unknown to the adversary. Nodes in W can have strong
paths passing through one of B1 or B2, and since they are part of S to R weak paths of which some may be
semi-strong paths, those that have semi-strong paths can share a key with R through the corresponding head
of the semi-strong path. Each of these nodes can potentially influence R by exchanging information in secret
without the knowledge of the adversary making use of their shared key. We shall be showing that in our case
here, the presence of a common key between the players and R is rendered useless. Here is how:

Now, suppose the set B1 were Byzantine corrupt in the edge-set E0 and B2 were Byzantine corrupt in the
edge-set E1 for two parallel executions of the same protocol. Assuming that the Byzantine faulty players act in
a fail-stop fashion. R cannot distinguish between the case where the set B1 blocks a message from any node,
say x in (W ∪ (Z ∩X)) to R in the edge-set Eα and the case where the set B2 blocks a message from x to R in
Eα (α ∈ {0, 1}) as R receives a null message in each case. Since all strong paths between x to R are blocked,
communication between x and R fails.Further, R cannot identify which of the sets in B1 and B2 is corrupt,
because both the scenarios appear equally possible to R given that it is not sure of the actual edge-set. Thus,
there is no change in the state of the receiver R, which in turn renders PRC impossible in this case.

This completes the necessity part of the proof for Theorem 5.1.
Proof. Sufficiency: For Sufficiency, Network N that is not in Critical Combination guarantees the existence
of a PRC protocol from S to R in N . So, we prove by giving a protocol and its proof of correctness. Note 16
gives us the glimpse of the state of the network N following Definition 17.

Since there are n players, and t can be corrupted, there are
(|P|

t

)
options in front of the adversary,that is

there are exactly
(|P|

t

)
distinct ways of corrupting exactly t players. Let each of the

(|P|
t

)
distinct subsets of

size t be represented as {B1, B2, B3, . . . , B(|P|
t )} where Bi ⊂ P and |Bi| = t. First, we show how to design a

“PRC” sub-protocol assuming that the adversary is allowed to choose only from two of the
(|P|

t

)
options that

originally existed. In other words, we are only concerned about an adversary that may corrupt the players in
the set Bα or the set Bβ, where 1 ≤ α, β ≤

(|P|
t

)
and α 6= β. Let us denote the resulting sub-protocol as Παβ .

In the sequel, we show how to use all the sub-protocols Παβ (there are clearly
((|P|

t )
2

)
of them) to design a grand

protocol Π that can be proved to be the required PRC protocol. In the Definition 17, the two t-sized sets B1

and B2 can be understood as the sets of players that an adversary may corrupt in one of the instances of Bα

and Bβ.
An honest player is the player not corrupted by the adversary. An honest path is understood as the path

that avoids the sets Bα and Bβ. An honest player in the network in possession of the actual edge-set behaves
differently from an honest player which has a doubleton set. When the player knows E , all their communication,
that is, sending and receiving messages is along the lines of edges in E only. When the player has a doubleton
set as its T Ki, it sends messages along both, the edges in actual edge-set E and the other edge-set in its T Ki.
It is never sure which of its message is valid, because all communication along the false edges is lost, and the
identity of the false edges is not with the player. Now, an honest player with a doubleton set as its T Ki accepts
all messages that it receives which it identifies as valid, that is, those belonging to the edges in any of the two
edge-sets in its T Ki. All players corrupted by the adversary, w.l.o.g.,can be assumed to know T K and the
actual edge-set E . This is a modest assumption when dealing with an adversary. An honest player drops all
messages from a player if it identifies that it is corrupted by the adversary.

Designing the sub-protocol Παβ: Critical Combination does not occur in network N and this implies all that
all the conditions that cause critical combination are falsified. We see the consequences of the same here, and
use this to design our sub-protocol. Neither of Bα or Bβ cut across all strong paths between S and R. Since
Bα and Bβ are the sets chosen by adversary one of which it can corrupt, there must be at least one honest
strong path from S and R that does not pass through either Bα or Bβ in N . The deletion of both the sets Bα

and Bβ from the network N does not cut across all weak paths between S and R. There must exist at least
one honest weak path from S to R in N that avoids both the sets Bα and Bβ. We start with this honest weak
path, say p. We consider the following two cases in the design of the sub-protocol Παβ :

10



Case (1) :The path p is such that w = S: In this case, the path p contains a player y (which may be S or R
too) such that p is the combination of the strong path from y to S and the strong path from y to R. In other
words, y ∈(S-group ∩R-group). We know that R-group has the edge-sets {E0, E1} as its topology knowledge.
If S-group∩X 6= ∅, then S would know the actual graph, else, it would have the same topology knowledge as
R-group, {E0, E1}. We give the protocol for the case where both S and R do not have the actual graph N
and are in possession of {E0, E1}, one of which is known to be N , as per the Definition 8. The other case is
similar and follows the same approach.
Notice that y ∈ R-group, so even y has {E0, E1} as its topology knowledge. Each of these edge-sets is such
that each has a weak path that does not pass through the two sets Bα and Bβ. Let the path along the actual
edge-set (w.l.o.g, say E0) be p and along E1 be p′. In p′, we have a y′ which has a strong path from it to S
and R. The state as defined in Note 16 is the same in both the edge-sets. Note that all players in p and p′ are
honest. The protocol that is run on one path p is correspondingly replicated on p′. We give the protocol for p:
First, y sends to both S and R,along its both edge-sets, a message with two parts: one, a set of random keys,
two, an array of signatures. Each player appends its signature to the second part of the message as it forwards
the message to the next player in the path p. The random keys K1,K2 and K3, along with the list of signatures
of the players that the messages have seen, is sent to both S and R along the path p. S, R receive two sets of
the same three keys along the actual edge-set, and E1 from y in p. Along p′, suppose the random keys sent by
y′ be K ′

1,K
′
2 and K ′

3. If S, R receive these three keys along both the edge-sets E0 and E1, then they accept
them as they cannot distinguish between the two edge-sets as to which is the correct one. S,R end up with
two distinct sets of keys - (K ′

1,K
′
2 and K ′

3) and (K1,K2 and K3). Next,S computes two values: ψ, ψ1; two
signatures: χ,χ1; where ψ = (M+K1), χ = (K2(M+K1)+K3) and ψ1 = (M+K ′

1), χ1 = (K ′
2(M+K ′

1)+K
′
3),

and M is the message that needs to be reliably transmitted. S sends two messages in each edge-set E0 and
E1

1 to R along all the vertex-disjoint strong paths each containing: a value (ψ/ψ1), a signature(χ/χ1), and
an array of signatures. Each player appends its signature to the array of signatures as it forwards the message
to the next player in the path p or correspondingly in p′. Now, R receives two values - two each of ψ′ and
ψ′

1; two signatures - two each of χ′ and χ′
1 along two different paths as are given in each of the edge-sets E0

and E1. Notice that, R has knowledge of (K1,K2 and K3) and (K ′
1,K

′
2 and K ′

3). Hence it can easily verify if

χ′ ?= K2 ∗ ψ′ +K3 (correspondingly it verifies for χ′
1). R reacts as follows: If the received value ψ′ has a valid

signature (χ′ = K2 ∗ ψ′ +K3), then R outputs (ψ′ −K1) (correspondingly it outputs (ψ′
1 −K ′

1) in the other
edge-set); furthermore, among all the received values, at least one of them is guaranteed to be valid (because at
least one honest strong path exists!). The probability that R outputs the same message in both the edge-sets
is high,namely 1− 1

|F| ,which can be made (1− δ) by suitably choosing F.
Case (2): The path p is such that there are k > 0 players like w (w 6= S ), say w1, . . . , wk along p: We

will first consider the case when k = 1. For each of the subsequent cases (k > 1), we repeat the appropriate
protocols given below on all wi’s (1 ≤ i ≤ k) and in the sequel succeed in establishing reliable communication
between S and R with a high probability. Detailed proofs are given in Appendix C.

6 Conclusion

We have provided a complete characterization for the problem of Probabilistic Reliable Communication given
topology knowledge as a parameter. The significance of our results can be understood from the following
implications: (a) Generalization: Our results are a strict generalization of the existing results for probabilistic
reliable communication [7]; (b) The “Randomization-effect”: It is well known that for perfectly reliable com-
munication, fault-tolerance is independent of nodes’ knowledge of the network topology [8]; we show that in the
case of probabilistic reliable communication, fault-tolerance is extremely sensitive to changes in the knowledge
of network topology. (c) Optimization: Our results may be used to answer the question: what is the optimal
fault-tolerance that is achievable in reliable communication for a specified T K and vice-versa.

1Note that S can verify if it has at least one honest strong path from it to R or not, and distinguish it with E1
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A Proof of Lemma 5.1.2, Lemma 5.1.3

Lemma A.0.5 Following Definition 17,if B1 ∪ B2 cut across all weak paths between S and R, then a PRC
protocol between S and R does not exist.

Note 16 gives us the glimpse of the state of the network N following Definition 17.

It is evident from the definition of R-group that there do not exist vertices u ∈ C and v ∈ R-group, such that
the edge (u, v) is in N . When B1 ∪B2 cut across all weak paths between S and R, there do not exist vertices
u ∈ C and v ∈ R-group, such that the edge (v, u) is in N .

We prove the impossibility even for the best case where every other edge (other than those between C and
R-group) exists and when every player knows the actual graph.

Define two executions E0 and E1 as follows. In both executions the vertices in R-group hold the random inputs
{ρu|u ∈ R-group }. In the execution Eα ∈ {E0,E1}, the Byzantine set Bα is corrupt and the message mα is
transmitted by S, the random inputs of the vertices in (C ∪Bα)2 are {ρu|u ∈ (C ∪Bα)}. The behavior of the
Byzantine set Bα in the execution Eα is to send no message whatsoever to C ∪ Bα and to send to R-group
exactly the same messages that are sent to R-group by the honest Bα in the execution Eα. In order for the
Byzantine set Bα to behave as specified in the execution Eα, the adversary needs to simulate the behavior of
(C ∪ Bα) in the execution Eα. To achieve this task, the adversary simulates round-by-round the behavior of
the vertices in (C ∪Bα) for the execution Eα using {ρu|u ∈ (C ∪Bα)} as the random inputs for the vertices in
(C ∪ Bα). At the beginning of each round, each simulated player has a history of messages that it got in the
simulation of the previous rounds and its simulated local random input. The simulated player sends during the
simulation the same messages that the honest player would send in the original protocol in the same state. The
simulated messages that (players in) Bα sends to R are really sent by the players. All other messages are used
only to update the history for the next round. The messages which are added to the history of each simulated
vertex are the real messages that are sent by players in R-group and the simulated messages that are sent by
the vertices in (C ∪Bα). No messages from Bα are added to history. The history of messages of each simulated
vertex in execution Eα is the same as the history of the vertex in execution Eα. Therefore, the messages sent
by B1 and B2 to members of R-group in both executions are exactly the same and the members of R-group
and in particular the receiver R receive and send the same messages in both executions. Thus, the receiver
R cannot distinguish whether the set B1 is corrupt and the message transmitted by S is m1 or the set B2 is
corrupt and the message transmitted by S is m2. Now, consider all the pairs of executions where the random
inputs range over all possible values. In each pair of executions, whenever R accepts the correct message in
one execution it commits an error in the other. Thus, for any strategy by R for choosing whether to receive
m1 or m2 there is some α such that when mα is transmitted, the receiver accepts mα with probability at most
1
2 .

Lemma A.0.6 Following Definition 17, if ∃W such that every weak path p that avoids both B1 and B2 between
S and R has a node, say w, that has both its adjacent edges (along p) directed inwards and w ∈ W and both
B1 and B2 are vertex cutsets between w and R, then a PRC protocol between S and R does not exist. In other
words,if every strong path from w to R passes through both B1 and B2, then a PRC protocol between S and R
does not exist.

Proof: Note 16 gives us a glimpse of the state of the network N following Definition 17.

2We denote 1 = 2 and viceversa.
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In Lemma 5.1.2, we proved that when there are no weak paths between S and R that avoid B1 and B2, PRC
protocol does not exist. We now show that in spite of the presence of multiple such weak paths between S
and R that avoid B1 and B2, if they have a node of the type w, with both its edges inwards towards w along
the path, PRC protocol does not exist when both B1 and B2 are vertex cutsets between w and R. We take
the case where every player complete knowledge of the topology in spite of which PRC is shown to be impossible.

At least one edge from these weak paths must be from a node in R-group to another node in C (since these
are paths outside (B1 ∪ B2) and from S to R). We will show that removing that edge has no effect on the
possibility of PRC thereby proving the required result.

Firstly, how can these edges be useful? The answer is that they can be used by players in R-group to send
some secret messages to the players in C such that the adversary, oblivious of these messages, cannot simulate
the messages of C without being distinguished by R-group. However, if we are able to show that no such secret
information can help PRC from S to R, then we are through. We do the same now.

A node x is said to have no influence on R if the output of R is independent of values sent by x. Otherwise
x is said to influence R. Consider an edge (y, x) in N such that y ∈ R-group and x ∈ C. We need to know
whether x can influence R by using the data received from y. Suppose we manage to show that it cannot then
we are through since what it means is that data sent along the edge (y, x) has no effect on R and hence can
be ignored. We now proceed to prove the same.

Suppose that the node R can be influenced by x. This (at least) means that there must be a path x,w1, w2, . . . , wq,R
in N such that x transmits some information to w1, then w1 transmits some information to w2 that depends
on the information it got from x and so on until some information gets to R.3

Given that every path from x to R passes through some node(s) in Bα followed by some node(s) in Bα for
some α ∈ {1, 2}, the adversary if it corrupts the αth set in A = {B1, B2}, does the following: let wj be the first
vertex in Bα on a path from x to R. The corrupt wj ignores the real messages that it gets from the players in
C ∪Bα and thus the messages that it sends do not depend on the message sent by x. Similarly, the messages
sent by x when Bα simulates the players in C do not influence the messages it sends to R since the path from
x to R passes through at least one vertex from Bα and no messages are sent by players in Bα during the
simulation. Thus even if R may know that the correct secret (that was exchanged using the edge (y, x)) was
not used, he will not know which set in A to blame. Thus the simulated messages of x have no influence on
the messages received by R and can be ignored. Hence, the impossibility of PRC proved in Lemma 5.1.2 is not
altered by using the edges from R-group to C.

B Proof of Theorem 3.1

Theorem B.1 A protocol Π that solves a problem π, satisfying either IO Condition and Input Honesty Condi-
tion or IO Condition and Output Agreement Condition in Note 6, over a network N with N -sized T K (N > 2)
influenced by an adversary A exists if and only if, for each of the 2-sized topology knowledge (Z) that can be
derived from T K , there exists a protocol solving π with topology knowledge Z.

Proof: Necessity: We need to prove that if π cannot be solved with one of the 2-sized topology knowledge Z
derived from T K then π cannot be solved with T K. The proof is trivial following Note 5. If a protocol does

3Since the network is synchronous, it may be possible to transmit information without actually sending message bits. However,
even such transmissions are possible only between nodes that can actually exchange some message-bits as well. Thus, an information-
path is necessarily a physical path too.
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not exist to solve a problem using a greater topology knowledge Z, then it certainly cannot solve using lesser T K.

Sufficiency: We need to prove the statement: If there exists a protocol Πj that can solve the problem π for
the jth 2-sized topology knowledge Zj derived from T K, then there exists a protocol Π that can solve π with
topology knowledge T K. We give a proof by induction on the size of T Ki.

Base Case: In this case, N = 3. Let T Ki = {E i
1, E i

2, E i
3}, 1 ≤ i ≤ |P|. Let Π1 be the protocol that solves π using

the topology knowledge Z1 where Z1 differs from T K only with respect to player 1, namely, in Z1 the topology
knowledge of player 1 is set as Z11 = {E1

1 , E1
2} and let Π2 be the protocol that solves π using the topology

knowledge Z2 where Z2 differs from T K only with respect to player 1, namely, in Z2 the topology knowledge
of player 1 is set as Z12 = {E1

1 , E1
3} and let Π3 be the protocol that solves π using the topology knowledge Z3

where Z3 differs from T K only with respect to player 1, namely, in Z3 the topology knowledge of player 1 is
set as Z13 = {E1

2 , E1
3}. Notice that using above three protocols Π1,Π2 and Π3, the problem π can be solved

even if the player 1 is not aware of the actual topology. Specifically, all the players run all the three protocols
Π1,Π2 and Π3 and obtain three outputs O1, O2 and O3 respectively. Note that the actual graph is part of all
the individual player’s topology knowledge in at least two of the three cases. Thus, at least two of the three
outputs must be same and equal to the output that a protocol solving π would produce. Note that this follows
from IO Condition and Input Honesty Condition or IO Condition and Output Agreement Condition in Note 6.
IO Condition and Input Honesty Condition together imply that there is a unique output for a given input for
the problem π. IO Condition and Output Agreement Condition force the inputs to be consistent so as to make
the outputs same. Thus, every player can take the majority of the three outputs and thereby solve π. Thus,
a protocol for π with topology knowledge T K exists if and only if a protocol for solving π exists with each of
the two valid topology knowledges (i.e. those that contain the actual edge-set) among Z11,Z12 and Z13.

Note that in a valid Zjk, the number of elements in the first player’s topology knowledge is two (and not
three). Now, we repeat the idea for player 2; that is, we create three more topology knowledges from each of the
three Zjk’s with the second player’s topology knowledge split into three parts such that each edge-set occurs in
two of them. This would imply that a protocol for π with topology knowledge T K exists if and only if a protocol
for solving π exists with (several) valid topology knowledges with the size of the topology knowledges of the
players 1 and 2 being of size two. Repeating this process of all the |P| players, we can say that if some protocol
solves a problem for each of its 2-sized T Ks derived from 3-sized T K, then Π solves the problem with 3-sized T K.

Induction Hypothesis: Let us suppose that the statement is true for up to any m-sized T K. That is to say,
If π is solvable for each of its 2-sized T Ks derived from the m-sized T K, then π can be solved with topology
knowledge T K.

Induction: Let T Ki be m+ 1-sized T Ki. Since m+ 1 > 3, we can partition T Ki into 3 sets, say A,B,C each
of which is of size less than m+ 1 such that every element in T Ki occurs in two among A,B and C. From our
induction hypothesis, we know that π can be solved with topology knowledge XA (which differs from at player
i’s topology knowledge, namely T Ki is replaced with A) if it can be solved for each of the 2-sized topology
knowledges derived from XA. Similarly for XB and XC . Also, if π is solved over two of the valid topology
knowledges among XA, XB and XC , then it can be solved with T K too (by majority voting). Note that in
each of the two valid topology knowledges among XA, XB and XC , the size of topology knowledge of player
i is less than m. Repeating the above process across all players, we can bring down the size to the topology
knowledge to less than m for all players.

Thus, the statement is true for an m+ 1-sized T K.Therefore, by induction, it is true ∀m ∈ N.
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C Sufficiency Proof of Theorem 5.1

Proof. Sufficiency: For Sufficiency, Network N that is not in Critical Combination guarantees the existence of
a PRC protocol from S to R in N . So, we prove by giving a protocol and its proof of correctness.

Note 16 gives us the glimpse of the state of the network N following Definition 17.

Since there are n players, and t can be corrupted, there are
(|P|

t

)
options in front of the adversary,that is there

are exactly
(|P|

t

)
distinct ways of corrupting exactly t players. Let each of the

(|P|
t

)
distinct subsets of size t

be represented as {B1, B2, B3, . . . , B(|P|
t )} where Bi ⊂ P and |Bi| = t. First, we show how to design a “PRC”

sub-protocol assuming that the adversary is allowed to choose only from two of the
(|P|

t

)
options that originally

existed. In other words, we are only concerned about an adversary that may corrupt the players in the set
Bα or the set Bβ, where 1 ≤ α, β ≤

(|P|
t

)
and α 6= β. Let us denote the resulting sub-protocol as Παβ . In

the sequel, we show how to use all the sub-protocols Παβ (there are clearly
((|P|

t )
2

)
of them) to design a grand

protocol Π that can be proved to be the required PRC protocol. In the Definition 17, the two t-sized sets B1 and
B2 can be understood as the sets of players that an adversary may corrupt in one of the instances of Bα and Bβ.

An honest player is the player not corrupted by the adversary. An honest path is understood as the path
that avoids the sets Bα and Bβ. An honest player in the network in possession of the actual edge-set behaves
differently from an honest player which has a doubleton set. When the player knows E , all their communication,
that is, sending and receiving messages is along the lines of edges in E only. When the player has a doubleton
set as its T Ki, it sends messages along both, the edges in actual edge-set E and the other edge-set in its T Ki.
It is never sure which of its message is valid, because all communication along the false edges is lost, and the
identity of the false edges is not with the player. Now, an honest player with a doubleton set as its T Ki accepts
all messages that it receives which it identifies as valid, that is, those belonging to the edges in any of the two
edge-sets in its T Ki. All players corrupted by the adversary, w.l.o.g.,can be assumed to know T K and the
actual edge-set E . This is a modest assumption when dealing with an adversary. An honest player drops all
messages from a player if it identifies that it is corrupted by the adversary.

Designing the sub-protocol Παβ: Critical Combination does not occur in network N and this implies all that
all the conditions that cause critical combination are falsified. We see the consequences of the same here, and
use this to design our sub-protocol.

Neither of Bα or Bβ cut across all strong paths between S and R. Since Bα and Bβ are the sets chosen by
adversary one of which it can corrupt, there must be at least one honest strong path from S and R that does
not pass through either Bα or Bβ in N .

The deletion of both the sets Bα and Bβ from the network N does not cut across all weak paths between S
and R. There must exist at least one honest weak path from S to R in N that avoids both the sets Bα and
Bβ.

We start with this honest weak path, say p. We consider the following two cases in the design of the sub-
protocol Παβ :

Case (1) :The path p is such that w = S: In this case, the path p contains a player y (which may be S or R
too) such that p is the combination of the strong path from y to S and the strong path from y to R. In other
words, y ∈(S-group ∩R-group). We know that R-group has the edge-sets {E0, E1} as its topology knowledge.
If S-group∩X 6= ∅, then S would know the actual graph, else, it would have the same topology knowledge as
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R-group, {E0, E1}. We give the protocol for the case where both S and R do not have the actual graph N
and are in possession of {E0, E1}, one of which is known to be N , as per the Definition 8. The other case
is similar and follows the same approach. case (i): Notice that y ∈ R-group, so even y has {E0, E1} as its
topology knowledge. Each of these edge-sets is such that each has a weak path that does not pass through the
two sets Bα and Bβ. Let the path along the actual edge-set (w.l.o.g, say E0) be p and along E1 be p′. In p′, we
have a y′ which has a strong path from it to S and R. The state as defined in Note 16 is the same in both the
edge-sets. Note that all players in p and p′ are honest. The protocol that is run on one path p is correspondingly
replicated on p′. We give the protocol for p: First, y sends to both S and R,along its both edge-sets, a message
with two parts: one, a set of random keys, two, an array of signatures. Each player appends its signature to
the second part of the message as it forwards the message to the next player in the path p. The random keys
K1,K2 and K3, along with the list of signatures of the players that the messages have seen, is sent to both S
and R along the path p. S, R receive two sets of the same three keys along the actual edge-set, and E1 from
y in p. Along p′, suppose the random keys sent by y′ be K ′

1,K
′
2 and K ′

3. If S, R receive these three keys along
both the edge-sets E0 and E1, then they accept them as they cannot distinguish between the two edge-sets as
to which is the correct one. S,R end up with two distinct sets of keys - (K ′

1,K
′
2 and K ′

3) and (K1,K2 and K3).
Next,S computes two values: ψ, ψ1; two signatures: χ,χ1; where ψ = (M +K1), χ = (K2(M +K1) +K3) and
ψ1 = (M+K ′

1), χ1 = (K ′
2(M+K ′

1)+K
′
3), and M is the message that needs to be reliably transmitted. S sends

two messages in each edge-set E0 and E1
4 to R along all the vertex-disjoint strong paths each containing: a

value (ψ/ψ1), a signature(χ/χ1), and an array of signatures. Each player appends its signature to the array of
signatures as it forwards the message to the next player in the path p or correspondingly in p′. Now, R receives
two values - two each of ψ′ and ψ′

1; two signatures - two each of χ′ and χ′
1 along two different paths as are

given in each of the edge-sets E0 and E1. Notice that, R has knowledge of (K1,K2 and K3) and (K ′
1,K

′
2 and

K ′
3). Hence it can easily verify if χ′ ?= K2 ∗ ψ′ + K3 (correspondingly it verifies for χ′

1). R reacts as follows:
If the received value ψ′ has a valid signature (χ′ = K2 ∗ ψ′ +K3), then R outputs (ψ′ −K1) (correspondingly
it outputs (ψ′

1 −K ′
1) in the other edge-set); furthermore, among all the received values, at least one of them

is guaranteed to be valid (because at least one honest strong path exists!). The probability that R outputs
the same message in both the edge-sets is high,namely 1− 1

|F| ,which can be made (1−δ) by suitably choosing F.

Case (2): The path p is such that there are k > 0 players like w (w 6= S ), say w1, . . . , wk along p: We will first
consider the case when k = 1. For each of the subsequent cases (k > 1), we repeat the appropriate protocols
given below on all wi’s (1 ≤ i ≤ k) and in the sequel succeed in establishing reliable communication between
S and R with a high probability. Owing to space constraints rest of the proof is given in Appendix C.

Since we start with the assumption that conditions on Definition 17 are falsified, note that every strong path
from w to R does not pass through both Bα and Bβ for a w ∈ W that is on the honest weak path p from w1

to R. That is, there must exist a strong path Q from w1 to R that does not pass through nodes in either the
set Bα or the set Bβ.

Recall that p must contain a node y (which may be R) such that there is strong path from y to w1 (along p)
and there is a strong path from y to R (also along p). In other words, y ∈ (w1− group∩R− group). We know
that R-group has the edge-sets {E0, E1} as its topology knowledge. If w1-group ∩ X 6= ∅, then w1 would
know the actual graph, else, it would have the same topology knowledge as R-group, {E0, E1}. The protocol
we give below is in two parts. Part I deals with the protocols to for communication between w1 and R for each
of the four cases given above. Part II deal with how, from Part I, we move on to ensure reliable communication
between S and R with a very high probability.

Part I: Protocols for communication between w1 and R: case (i): We give the protocol for the case where both
4Note that S can verify if it has at least one honest strong path from it to R or not, and distinguish it with E1
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w1 and R do not have the actual graph N and are in possession of {E0, E1}, one of which is known to be N ,
as per the Definition 8. The other case is similar and follows the same approach. The protocol for w1, y,R is
similar to the case (i) in Case 1 above till each of w1, R end up with two distinct sets of keys - (K ′

1,K
′
2 and

K ′
3) and (K1,K2 and K3) just as S, R do.

Next, w1 computes two values: ψ, ψ1; two signatures: χ,χ1; where ψ = (Mw1 +K1), χ = (K2(Mw1 +K1)+K3)
and ψ1 = (Mw1 +K ′

1), χ1 = (K ′
2(Mw1 +K ′

1)+K
′
3), and Mw1 is the message from w1 that is to be reliably trans-

mitted to R. Let the path along the E0 be Q and along E1 be Q′. w1 sends two messages in each edge-set (E0

and E1) to R along Q and Q′ each containing: a value (ψ/ψ1), a signature(χ/χ1), and an array of signatures.
Each player appends its signature to the array of signatures as it forwards the message to the next player in
the path Q or correspondingly in Q′. Now, R receives two values - two each of ψ′ and ψ′

1; two signatures - two
each of χ′ and χ′

1 along two different paths as are given in each of the edge-sets E0 and E1. R verifies using

both the set of keys in its possession. Using these, it can easily verify if χ′ ?= K2 ∗ ψ′ +K3. It verifies on all
combinations of ψ′,ψ′

1,χ
′ and χ′

1. R reacts as follows: If the received value ψ′ has a valid signature on at least
one of the combination (say χ′ = K2 ∗ ψ′ +K3), then R outputs (ψ′ −K1); else (that is if either the signature
is invalid(χ′ 6= K2 ∗ ψ′ + K3) or the original message is not received), R knows the identity (among the two
possibilities of α or β) of the set that is the corrupt set.

Since we start with the assumption that conditions on Definition 17 are falsified, we note that ∀ nodes in
(W ∪ (Z ∩X)), for i ∈ {0, 1}, B1 is not a vertex cutset to R in the edge-set Ei ∈ T KG, and B2 is not a vertex
cutset to R in the edge-set Ei ∈ T KG, the path Q completely avoids the players from one of these sets say Bj ,
j ∈ {1, 2}; This clearly means that a faulty path Q (since a wrong message was delivered) entails that set Bj

is corrupt (where j = {1, 2} − {j}).

In Case (2) and its sub-cases above, if the set Bj , j ∈ {1, 2}, is not corrupt (which means that the other set may
be corrupt), then R receives the correct message with certainty while the adversary has no information about
the message.On the other hand, if the set Bj is corrupt, then though the adversary still has no information
about the transmitted message, he has complete control over R’s output. R’s output could therefore either be
a valid message or a null message with the knowledge that (any subset of) Bj is corrupt. But, if R receives a
valid message, it is the correct message with a very high probability.

Protocols for the four cases in Part I aim at one of the following: (a) Simulating a direct edge (in other sense,
having a strong path that passes only through honest players) between w1 and R so that message from w1 can
be successfully communicated to R (or) (b) Simulation of the direct edge fails, and R identifies which of the
two sets in Bα, Bβ is corrupt.

Part II: If a protocol in Part I succeeds in (a) above, then depending on whether w1 (and thereby all such wi’s)
belongs to S-group or vice-versa, that is, w1 ∈ S-group or S ∈ w1-group we have two cases. Note that, there
will exist wi’s where neither wi ∈ S-group nor S ∈ wi-group. It is precisely for this reason that we repeat the
appropriate protocols given below on all wi’s (1 ≤ i ≤ k) so as to arrive at a case where one of these two cases
occurs.

If w1 ∈ S-group, then, there exists a direct path from w1 to S. From the protocol in Part I, there is a direct
path from w1 to R. That is, w1 ∈ R-group, which implies that w1 ∈ (S-group ∩ R-group). Notice that w1 is
similar to the player y in path p in Case (1) of the sub-protocol Παβ . So, in this case, we follow the protocol
in Case (1) to establish reliable communication between S and R. If S ∈ w1-group, then S sends the message
that it wants to reliably communicate to R through the path between w1 and R. Since the path is secure, and
passes only through honest players, reliable communication takes place.

18



If a protocol in Part I succeeds in (b) above, then we do the following: Since there exists at least one honest
strong path from S to R, it must avoid Bj . S sends the message along its both edge-sets which has two parts:
the message M and an array of player indices. Each player appends its index to the array of player indices
as it forwards the message to the next player along all these paths to R. The knowledge that Bj is corrupt is
sufficient for R to recover the correct message passing through the honest path.

Note that this gives us the protocol for our uniform topology knowledge built with the help of T KGs. To give
the protocol for a given 2-sized T K, we use the means shown in the If part proof of the Theorem 4.1 given
in Section 4. This completes our exercise of constructing the sub-protocol Παβ that is guaranteed to work
correctly only if one of Bα or Bβ is chosen by the adversary.

Note that R can simulate the sub-protocol Παβγ which assumes that one among the three sets Bα or Bβ or
Bγ is chosen by the adversary. The simulation is done as follows: R takes the majority among the outputs
of the three protocols Παβ , Πβγ and Παγ . A majority is bound to exist since any set chosen by the adversary
is tolerated in two of the three protocols. Next, R can simulate the sub-protocol which behaves like a PRC
protocol as long as any one among a collection of four sets is chosen by the adversary. Continuing further, R
will be able to simulate the protocol that behaves correctly if one among the collection of

(
n
t

)
sets is chosen by

the adversary. This protocol by definition is the PRC protocol from S to R! We conclude the sufficiency part
of the proof.
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