
Unconditionally Reliable Message Transmission in Directed Networks

Bhavani Shankar∗

shankar@research.iiit.ac.in

Prasant Gopal∗

prasant a@students.iiit.ac.in

Kannan Srinathan∗

srinathan@iiit.ac.in

C. Pandu Rangan†

rangan@iitm.ernet.in

Abstract
In the unconditionally reliable message transmission
(URMT) problem, two non-faulty players, the sender S and
the receiver R are part of a synchronous network modeled
as a directed graph. S has a message that he wishes to
send to R; the challenge is to design a protocol such that
after exchanging messages as per the protocol, the receiver
R should correctly obtain S’s message with arbitrarily small
error probability δ, in spite of the influence of a Byzantine
adversary that may actively corrupt up to t nodes in the
network (we denote such a URMT protocol as (t, (1 − δ))-
reliable). While it is known that (2t + 1) vertex disjoint
directed paths from S to R are necessary and sufficient for
(t, 1)-reliable URMT (that is with zero error probability),
we prove that a strictly weaker condition, which we define
and denote as (2t, t)-special-connectivity, together with just
(t+1) vertex disjoint directed paths from S to R, is necessary
and sufficient for (t, (1− δ))-reliable URMT with arbitrarily
small (but non-zero) error probability, δ. Thus, we demon-
strate the power of randomization in the context of reliable
message transmission. In fact, for any positive integer k > 0,
we show that there always exists a digraph Gk such that
(k, 1)-reliable URMT is impossible over Gk whereas there
exists a (2k, (1− δ))-reliable URMT protocol, δ > 0 in Gk.

In a digraph G on which (t, (1 − δ))-reliable URMT is

possible, an edge is called critical if the deletion of that edge

renders (t, (1 − δ))-reliable URMT impossible. We give an

example of a digraph G on n vertices such that G has Ω(n2)

critical edges. This is quite baffling since no such graph

exists for the case of perfect reliable message transmission (or

equivalently (t, 1)-reliable URMT) or when the underlying

graph is undirected. Such is the anomalous behavior of

URMT protocols (when “randomness meet directedness”)

that it makes it extremely hard to design efficient protocols

over arbitrary digraphs. However, if URMT is possible

between every pair of vertices in the network, then we

present efficient protocols for the same.

∗Center for Security, Theory and Algorithmic Research (C-
STAR), International Institute of Information Technology, Hy-
derabad, 500032, India.

†Department of Computer Science and Engineering, Indian
Institute of Technology, Madras, Chennai, 600036, India.

1 Introduction

Consider a synchronous network (modeled as a directed
graph) denoted by N = (P, E), where P is the set of
nodes and E ⊆ P×P is the set of (directed) links. In the
unconditionally reliable message transmission (URMT)
problem over N , the sender S ∈ P wishes to send a
message m to the receiver R ∈ P, in a robust manner
such that the message is correctly received by R with
a very high probability, in spite of presence of up to
t Byzantine-faulty nodes in N . Specifically, a URMT
protocol is said to be (t, 1 − δ)-reliable if R outputs
the correct message with a probability of at least (1−δ).

A protocol for URMT is one of the fundamental
primitives used by almost all fault-tolerant distributed
algorithms since without reliable communication little
that is truly collaborative is possible. In fact, several
popular fault-tolerant distributed algorithms, like (ran-
domized) Byzantine agreement etcetera, assume that
the underlying network is a complete graph, thereby
implicitly assuming the existence of a URMT protocol
that can simulate a complete graph overlaid in the
actual underlying network (for the actual connectivity
is seldom complete in practice). Notwithstanding its
applications in distributed computing, the problem of
URMT is nevertheless, in principle, interesting and
challenging in own right.

We use a digraph to capture the underlying
communication network. We stress that in practice
not every communication channel admits bi-directional
communication (for instance, a base-station may
communicate to even a far-off hand-held device but the
other way round is not possible) and hence the digraph
model is practically well-motivated. Furthermore,
directed graphs are a strict generalization and hence
the results of this paper are adaptable/applicable to
the undirected graph model too. Curiously enough,
there is yet another reason for studying protocols
across directed graphs. In [4], it is proved that across
an undirected graph G influenced by an adversary A,

an r-round URMT protocol exists if and only if there
exists a URMT protocol in a digraph H influenced by
a “related” adversary B wherein H and B are easily
computed given G,A, and r. Since one could perform a
binary-search for the optimal r, it is clear that charac-
terizing the possibility of URMT in digraphs amounts
to algorithmically characterizing the round-optimality
of URMT over undirected graphs! Thus, even if one is
hesitant in studying directed graphs per say, he would
now like to study the same as a part of his toolkit
needed for the design of optimal URMT protocols in
undirected graphs!

The problem of perfectly reliable message transmis-
sion (PRMT) was first studied in [2]. It is shown in
[2] that across a synchronous undirected network/graph
under the influence of a Byzantine adversary that may
corrupt up to any t nodes in the network, (t, 1)-reliable
URMT from S to R is possible if and only if there exist
(2t+1) vertex disjoint paths from S to R in the network.
Subsequently, in [3], the above result was extended for
any δ > 1

2 ; in other words, it is proved that (t, δ)-reliable
URMT from S to R is possible if and only if there exist
(2t + 1) vertex disjoint paths from S to R in the net-
work. Furthermore, it follows from the results of [1] that
across a directed network, (t, 1)-reliable URMT from S
to R is possible if and only if there exist (2t + 1) vertex
disjoint directed paths from S to R in the network. We
now ask what is the necessary and sufficient condition
for the possibility of (t, δ)-reliable URMT, δ > 1

2 , across
a synchronous directed network influenced by a Byzan-
tine adversary that can corrupt up to any t nodes in the
network? Of course, we expect it to be something in
the lines of: “across a directed network, (t, δ)-reliable
URMT, δ > 1

2 , from S to R is possible if and only if
there exist (2t + 1) vertex disjoint directed paths from
S to R in the network.” Surprisingly, we show that this
is far from true! We present, in Section 4, a simple
yet strange characterization for δ-reliable URMT in di-
rected graphs tolerating threshold Byzantine adversary
that corrupts up t nodes in the network. Note that such
an anomalous behavior of reliable communication when
“randomization meets directedness” is already known in
the literature for the case of generalized non-threshold
adversaries [4]. However, unlike our characterization,
due to the generality of non-threshold adversaries the
characterization in [4] is very complex.

2 Model and Definitions

The network is modeled as a directed graph N = (P, E)
where P is the set of vertices and E denotes the set
of arcs/edges in the directed graph. The system is
assumed to be synchronous, that is, the protocol is

executed in a sequence of rounds wherein in each
round, a player can perform some local computation,
send new messages to his out-neighbors, receive the
messages sent in that round by his in-neighbors (and
if necessary perform some more local computation), in
that order.

In the graph, we assume that the channels are
secure. In other words, if (u, v) ∈ E then what it
means is that the player u can securely send a message
to player v in one round. During the execution, the
adversary may be corrupted up to any t players/nodes.
The adversary may completely control all the corrupted
players and make them behave in an arbitrary way.

We now define what we mean by a URMT protocol.
We assume that the sender S and the receiver R are
honest.

Definition 2.1. (URMT protocol) Let N = (P, E)
be a network under the influence of a Byzantine adver-
sary that may corrupt up to any t nodes. We say that
a protocol for transmitting a message from S to R is
(t, 1− δ)-reliable if for any valid adversary strategy, the
probability that R outputs m given that S has sent m,
is at least (1− δ) where the probability is over the ran-
dom inputs of all the players and random inputs of the
adversary.

Definition 2.2. (Strong Path) A sequence of ver-
tices v1, v2, v3, . . . , vk is said to be a strong path from v1

to vk in the network N = (P, E) if for each 1 ≤ i < k,
(vi, vi+1) ∈ E. Furthermore, we assume that there vac-
uously exists a strong path from a node to itself.

Definition 2.3. (t-(S,R)-strong-connectivity)
A digraph is said to be t-(S,R)-strong-connected if the
graph is such that there exists at least t vertex disjoint
strong paths from S to R.

Definition 2.4. (Weak Path) A sequence of ver-
tices v1, v2, v3, . . . , vk is said to be a weak path from v1

to vk in the network N = (P, E) if for each 1 ≤ i < k,
either (vi, vi+1) ∈ E or (vi+1, vi) ∈ E .

We now define the notion of (t1, t2)-(S,R)-
special-connectivity which will be directly used in our
characterization theorems. Note that it is a strange
definition markedly different from the standard ex-
pected definitions of connectivity. Also note that the
definitions depend on who the receiver R is.

Definition 2.5. ((t1, t2)-(S,R)-special-connectivity)
A network N = (P, E) is said to be (t1, t2)-(S,R)-
special-connected if on the deletion of any set D of

at most t1 nodes (that is |D| ≤ t1) from N other
than S and R, there exists a weak path p in the rest
of the network (namely, the sub graph induced by N
on (P \ D)) such that for every node w in the path p
that has both its adjacent edges (along path p) directed
inward towards w the following holds: it should not be
possible to divide the set D into two sets D1 and D2,
|D1| ≤ t2, |D2| ≤ t2, D1 ∪ D2 = D, such that in the
original network N , both D1 and D2 are vertex cut-sets
between w and R, that is, every strong path from w to
R passes through nodes in both D1 and D2.

D

C

S R

A

F

E

Figure 1: Example of a (4, 2)-(S,R)-special-connected
graph.

3 Our Results

In Section 4 we present an elegant characterization
for the possibility of URMT in directed networks
influenced by (static) Byzantine adversary. Specifically,
we prove that URMT is possible if and only if the
network is both (2t, t)-(S,R)-special-connected and
(t + 1)-(S,R)-strong-connected. From this result, it
follows that there are several digraphs across which
PRMT (or equivalently (t, 1)-URMT) is impossible
whereas URMT (with a arbitrary small error prob-
ability) is possible. The power of randomization in
the context of fault-tolerance in reliable communi-
cation is thus brought to the fore. However, we do
not focus on the complexity of the designed URMT
protocols; in fact, our naive constructions to prove the
existence/possibility of URMT protocols invariably
lead to super-polynomial complex solutions. We leave
the design of efficient URMT protocols (whenever
URMT is possible at all) as open. We remark that
achieving polynomial complexity is quite challenging
and actually we have not yet ruled out the possibility
of a super-polynomial lower bound.

In Section 5, we show that for any positive integer
k > 0, there always exists a digraph Gk such that
(k, 1)-reliable URMT is impossible over Gk whereas
there exists a (2k, (1 − δ))-reliable URMT protocol,
δ > 0 in Gk. Furthermore, the achieved “gap”, namely,
by a factor of two is provably optimal.

In a digraph G on which (t, (1− δ))-reliable URMT
is possible, an edge is called critical if the deletion of
that edge renders (t, (1−δ))-reliable URMT impossible.
In Section 6 we give an example of a digraph G on n
vertices such that G has Ω(n2) critical edges. This is
quite baffling since no such graph exists for the case
of PRMT (or equivalently (t, 1)-reliable URMT) when
the underlying graph is undirected. Such anomalies
are the evidences for our conjecture that the design of
efficient URMT protocols for general graphs is highly
non-trivial.

Next, in Section 7 we present efficient URMT
protocols over a class of graphs, namely, ones in which
URMT is possible between every pair of nodes.

4 Characterizing URMT in Directed Graphs

Theorem 4.1. (t, (1− δ))-reliable URMT, for an arbi-
trarily small but positive δ, from S to R in the network
(directed graph) N = (P, E) tolerating a static Byzan-
tine adversary characterized that may corrupt up to any
t nodes, is possible if and only if the network N is (2t, t)-
(S,R)-special-connected as well as (t+1)-(S,R)-strong-
connected.

Proof. Sufficiency: We now prove that if the network is
(2t, t)-(S,R)-special-connected as well as (t + 1)-(S,R)-
strong-connected, then a protocol for (t, (1−δ))-reliable
URMT exists. The proof outline is as follows: it is clear
that the adversary can corrupt no more that t nodes
in the network; we design a protocol by assuming that
the adversary always uses his full power and corrupts
exactly t nodes. It is straightforward to see that such a
protocol would also withstand an adversary that does
not always corrupt t nodes.

Now, our modified adversary has
(
n
t

)
options in

front of him of which he may choose one — that is
there are exactly

(
n
t

)
distinct ways of corrupting exactly

t nodes. Let us enumerate these options by writing
down each of the

(
n
t

)
distinct subsets of size t each, say,

{B1, B2, B3, . . . , B(n
t)} where Bi ⊂ P and |Bi| = t.

First, we show how to design a “URMT sub-
protocol” assuming that the adversary is allowed to
choose only from two of the

(
n
t

)
options that originally

existed. In other words, we are only concerned about
an adversary that may corrupt the nodes in the set Bα

or the set Bβ , where 1 ≤ α, β ≤ (
n
t

)
and α 6= β. Let us

denote the resulting sub-protocol as Παβ . In the sequel,
we show how to use all the sub-protocols Παβ (there

are clearly
((n

t)
2

)
of them) to design a grand protocol Π

that can be proved to be a (t, (1 − δ))-reliable URMT
protocol.

Designing the sub-protocol Παβ: We know that the
total number of nodes in the set Bα ∪ Bβ is at
most 2t. On the other hand, since the network
is (2t, t)-(S,R)-special-connected, there must exist
(2t + 1) vertex disjoint weak paths from S to R.
Thus, at least one of these vertex disjoint paths is
completely honest. Let p be that honest path. Now,
we consider the following two cases in the design of Παβ :

Case 1: The path p is such that there is no node w
along p with both the adjacent edges directed in-ward
towards w: In such a case, it is apparent that the path
p must contain a node y (which may be S or R too)
such that p is the combination of the strong path from
y to S and the strong path from y to R. Consider the
following protocol: First y sends three random keys
K1,K2 and K3 (all elements of a finite field F, and all
computations in the sequel are performed over F) to
both S and R using the path p. Next, S sends a value
ψ and a signature χ through all the (t+1) strong paths
to R, where ψ = (M + K1), χ = (K2(M + K1) + K3)
and M is the message that needs to be reliably
transmitted. Now, R receives a value(ψ′) and its
signature(χ′) based on the keys (Notice that, R has
knowledge of K1,K2 and K3 and hence can easily
verify if χ′ ?= K2 ∗ ψ′ + K3). R reacts as follows:
If the received value ψ′ has a valid signature (χ′ =
K2 ∗ ψ′ + K3), then R outputs (ψ′ −K1); furthermore,
among the (t + 1) received values, at least one of them
is guaranteed to be valid.1 Thus, R, with a high proba-
bility (namely 1− 1

|F| here which can be made (1−δ) by
suitably choosing F) will output the correct message M .

Case 2: The path p is such that there are k > 0 nodes
w1, . . . , wk along p such that each wi has both the
adjacent edges directed in-ward towards itself, for all
1 ≤ i ≤ k: We will first consider the case when k = 1.
By definition of (2t, t)-(S,R)-special-connectivity, there
must exist a strong path Q from w1 to R that does
not pass through nodes in either the set Bα or the set
Bβ . Recall that p must contain a node y (which may

1Since the adversary may corrupt only upto t nodes, at least
one of t + 1 paths must be honest.

be R) such that there is strong path from y to w1

(along p) and there is a strong path from y to R (also
along p). Consider the following protocol: First y sends
three random keys K1, K2 and K3 (all elements of a
finite field F, and all computations in the sequel are
performed over F) to both w1 and R using the path p.
Next, w1 sends a value ψ and a signature χ through Q
to R, where ψ = (M +K1), χ = (K2(M +K1)+K3) and
M is the message that needs to be reliably transmitted.
Now, R receives a value(ψ′) and its signature(χ′)
based on the keys along the path Q (Notice that, R
has knowledge of K1,K2 and K3 and hence can easily
verify if χ′ ?= K2 ∗ ψ′ + K3). R reacts as follows:
if the received value ψ′ has a valid signature(χ′ =
K2 ∗ ψ′ + K3), then R outputs (ψ′ − K1); else (that
is if either the signature is invalid(χ′ 6= K2 ∗ ψ′ + K3)
or the original message is not received), R knows the
identity (among the two possibilities of α or β) of the
set that is the corrupt set. How? This is because, the
path Q completely avoids the nodes from one of these
sets say Bj , j ∈ {α, β}; this clearly means that a faulty
path Q (since a wrong message was delivered) entails
that set Bj is corrupt (where j = {α, β} − {j}).

Thus, what the above sub-protocol achieves is the
following (under the big assumption that the adversary
can corrupt one among only the two sets Bα or Bβ):
If the set Bj , j ∈ {α, β}, is not corrupt (which means
that the other set may be corrupt), then R receives the
correct message with certainty while the adversary has
no information about the message. On the other hand,
if the set Bj is corrupt, then though the adversary still
has no information about the transmitted message,
he has complete control over R’s output. R’s output
could therefore either be a valid message or a null
message with the knowledge that (any subset of) Bj is
corrupt. Moreover, if R receives a valid message, it is
the correct message with a very high probability.

Now, since there are (t + 1) strong paths from S
to R, one of them must avoid Bj . Thus if S sends
the message along all these paths, the knowledge that
Bj is corrupt is sufficient for R to recover the correct
message. Thus, if R must not receive the message
yet, he must not know the identity of the corrupted
set which in turn means that we have, with a very
high probability, simulated an edge from w1 to R
(this simulation fails only when R is able to get S’s
message which is what we are anyway striving for).
Assuming this edge from w1 to R, we find that the
number of nodes along the path p such that it has
both the adjacent edges directed in-ward towards it-
self has effectively reduced by one and induction follows.

This completes our exercise of constructing the
sub-protocol Παβ that is guaranteed to work correctly
only if one of Bα or Bβ is chosen by the adversary.

Using all the sub-protocols, Παβ’s, 1 ≤ α, β ≤ (
n
t

)
and

α 6= β, to design the actual protocol Π: It is clear from
the prequel that if the network is (2t, t)-(S,R)-special-
connected as well as (t + 1)-(S,R)-strong-connected,
then all the

((n
t)
2

)
Παβ sub-protocols will exist. We now

construct the final (t, (1 − δ))-reliable URMT protocol
Π using these sub-protocols. The construction is as
follows: S and R execute all the

((n
t)
2

)
Παβ sub-protocols

with the same message M . At the end of all these sub-
protocols, R would have received

((n
t)
2

)
values. We now

show how R can recover M locally using these values.
Note that R can simulate the sub-protocol Παβγ

which assumes that one among the three sets Bα or
Bβ or Bγ is chosen by the adversary. The simulation
is done as follows: R takes the majority among the
outputs of the three protocols Παβ , Πβγ and Παγ . A
majority is bound to exist since any set chosen by the
adversary is tolerated in two of the three protocols.
Next, R can simulate the sub-protocol which behaves
like a URMT protocol as long as any one among a
collection of four sets is chosen by the adversary. Con-
tinuing further, R will be able to simulate the protocol
that behaves correctly if one among the collection of(
n
t

)
sets is chosen by the adversary. This protocol by

definition is a (t, (1− δ))-reliable URMT protocols from
S to R!

This completes the sufficiency part of the proof of
the theorem.

Necessity: The necessity of (t + 1)-(S,R)-strong-
connectivity is obvious for otherwise the adversary can
disconnect R from S. What is left is to show the neces-
sity of (2t, t)-(S,R)-special-connectivity.

We show that if the network is not (2t, t)-(S,R)-
special-connected then no URMT protocol from S to R
can exist. By definition, in a non-(2t, t)-(S,R)-special-
connected network, one can find a two sets D1 and D2,
|D1| ≤ t and |D2| ≤ t such that the deletion of (D1∪D2)
has one of the following two effects:

• it removes all weak paths from S to R

• every remnant weak path from S to R has a node
w such that w has both its adjacent edges directed
inwards and both D1 and D2 cut across all strong
paths from w to R.

In either of the above cases, we show the impossibil-

ity of URMT from S to R. Define the set Y ⊂ P as the
set of vertices that have a strong path to R in N that
does not use any vertex from (D1 ∪D2). Furthermore,
let X = P \ (D1 ∪D2 ∪ Y). Since the sender S and the
receiver R are honest, clearly S ∈ X and R ∈ Y . More-
over, it is evident from the definition of Y that there
do not exist vertices u ∈ X and v ∈ Y such that the
edge (u, v) is in N . We first consider the first of the
aforementioned effects, namely, that there do not exist
vertices u ∈ X and v ∈ Y such that the edge (v, u) is in
N .

Lemma 4.1. The conditions of the Theorem 4.1 are
necessary for the existence of URMT over network N
if there do not exist vertices u ∈ X and v ∈ Y such that
the edge (v, u) is in N .

Proof. We will prove the impossibility even for the best
case where every other edge (other than those between
X and Y) exists. Define two executions E0 and E1

as follows. In both executions the vertices in Y hold
the random inputs {ρu|u ∈ Y }. In the execution
Eα ∈ {E0,E1}, the Byzantine set Dα is corrupt and
the message mα is transmitted by S, the random inputs
of the vertices in (X ∪ Dα)2 are {ρu|u ∈ (X ∪ Dα)}.
The behavior of the Byzantine set Dα in the execution
Eα is to send no message whatsoever to X ∪Dα and to
send to Y exactly the same messages that are sent to Y
by the honest Dα in the execution Eα. In order for the
Byzantine set Dα to behave as specified in the execution
Eα, the adversary needs to simulate the behavior of
(X ∪ Dα) in the execution Eα. To achieve this task,
the adversary simulates round-by-round the behavior
of the vertices in (X ∪Dα) for the execution Eα using
{ρu|u ∈ (X∪Dα)} as the random inputs for the vertices
in (X ∪ Dα). At the beginning of each round, each
simulated player has a history of messages that it got in
the simulation of the previous rounds and its simulated
local random input. The simulated player sends during
the simulation the same messages that the honest player
would send in the original protocol in the same state.
The simulated messages that (players in) Dα sends to
R are really sent by the players. All other messages
are used only to update the history for the next round.
The messages which are added to the history of each
simulated vertex are the real messages that are sent by
players in Y and the simulated messages that are sent
by the vertices in (X ∪ Dα). No messages from Dα

are added to history. The history of messages of each
simulated vertex in execution Eα is the same as the
history of the vertex in execution Eα. Therefore, the
messages sent by D1 and D2 to members of Y in both

2We denote 1 = 2 and viceversa.

executions are exactly the same and the members of Y
and in particular the receiver R receive and send the
same messages in both executions. Thus, the receiver
R cannot distinguish whether the set D1 is corrupt and
the message transmitted by S is m1 or the set D2 is
corrupt and the message transmitted by S is m2. Now,
consider all the pairs of executions where the random
inputs range over all possible values. In each pair of
executions, whenever R accepts the correct message in
one execution it commits an error in the other. Thus, for
any strategy by R for choosing whether to receive m1 or
m2 there is some α such that when mα is transmitted,
the receiver accepts mα with probability at most 1

2 .
This completes the proof of Lemma 4.1. ¤

Now, we turn our attention to the case of the
second effect, namely if a weak path exists but has a
node w with both its adjacent edges directed inward
as well as has both D1 and D2 disconnecting R from
w. We will now prove that every such weak path
between X and Y is essentially “useless” thereby
maintaining the impossibility of URMT as projected
by the Lemma 4.1. At least one edge from these weak
paths must be from a node in Y to another node in X
(since these are paths outside (D1 ∪ D2) and from S
to R). We will show that removing that edge has no
effect of the possibility of URMT thereby proving the
required result.

Firstly, how can these edges be useful? The
answer is that they can be used by players in Y
to send some secret messages to the players in X
such that the adversary, oblivious of these messages,
cannot simulate the messages of X without being
distinguished by Y . However, if we are able to
show that no such secret information can help URMT
from S to R, then we are through. We do the same now.

A node x is said to have no influence on R if
the output of R is independent of values sent by x.
Otherwise x is said to influence R. Consider an edge
(y, x) in N such that y ∈ Y and x ∈ X. We need to
know whether x can influence R by using the data
received from y. Suppose we manage to show that it
cannot then we are through since what it means is that
data sent along the edge (y, x) has no effect on R and
hence can be ignored. We now proceed to prove the
same.

Suppose that the node R can be influenced by
x. This (at least) means that there must be a path
x,w1, w2, . . . , wq,R in N such that x transmits some
information to w1, then w1 transmits some information
to w2 that depends on the information it got from x and

so on until some information gets to R.3

Lemma 4.2. If there exists an α ∈ {1, 2} such that
every strong path from x to R in N passes through some
node(s) in (Dα) followed by some node(s) in Dα, then
x cannot influence R (using the data received from y).

Proof. Given that every path from x to R passes
through some node(s) in Dα followed by some node(s)
in Dα for some α ∈ {1, 2}, if the adversary corrupts
the αth set in A = {D1, D2}, does the following: let
wj be the first vertex in Dα on a path from x to R.
The corrupt wj ignores the real messages that it gets
from the players in X ∪ Dα and thus the messages
that it sends do not depend on the messages sent by x.
Similarly, the messages sent by x when Dα simulates
the players in X do not influence the messages it sends
to R since the path from x to R passes through at
least one vertex from Dα and no messages are sent by
players in Dα during the simulation. Thus even if R
may know that the correct secret (that was exchanged
using the edge (y, x)) was not used, he will not know
which set in A to blame. Hence the lemma. ¤

Note that we actually know that every path from
x ∈ X to R passes through some node(s) in (Dα)
followed by some node(s) in Dα for some α ∈ {1, 2}.
Otherwise, it contradicts the definition of (2t, t)-special-
connectivity. Thus the simulated messages of x have no
influence on the messages received by R and can be
ignored. Hence, the impossibility of URMT proved in
Lemma 4.1 is not altered by using the edges from Y to
X. ¤

5 URMT versus PRMT

Theorem 5.1. For any positive integer k > 0, there
always exists a digraph Gk such that (k, 1)-reliable
URMT is impossible over Gk whereas there exists a
(2k, (1− δ))-reliable URMT protocol, δ > 0 in Gk.

Proof. For any given k > 0, we construct a graph Gk =
(V, E1 ∪ E2) with

V = {v1, v2, v3, . . . , v2k+1,S,R}

E1 = {(S, v1), (v1,R), . . . (S, vk+1), (vk+1,R)}

E2 = {(vk+2,S), (vk+2,R), . . . (v2k+1,S), (v2k+1,R)}

3Since the network is synchronous, it may be possible to
transmit information without actually sending message bits.
However, even such transmissions are possible only between nodes
that can actually exchange some message-bits as well. Thus, an
information-path is necessarily a physical path too.

The graph for k = 2 is illustrated in figure 2 for
clarity.

S R

v

v

v

v

v1

2

3

4

5

Figure 2: The Graph G2 for k = 2.

The graph Gk thus constructed is clearly (k + 1)-
(S,R) strong connected. Hence (k

2 , 1)-reliable URMT is
possible, while (k, 1)-reliable URMT4 is impossible over
Gk. But it is (2k, k)-(S,R)-special-connected, hence by
our characterization in section 4, (k, (1 − δ)) -reliable
URMT protocol is possible over Gk. ¤

Theorem 5.2. The factor 2 in the theorem 5.1 is tight.

Proof. Suppose there exists a ((2+ ε)k, (1−δ)) -reliable
URMT protocol on any Gk, ε > 0, it implies that
Gk should be at least (2 + ε)k-(S,R)-strong-connected.
Thus, (k, 1)-reliable URMT will be possible over Gk. ¤

Consider the network shown in the Figure 2. Note
that the graph is 3-(S,R)-strong-connected and (4-
2)(S,R)-special-connected. Therefore, the given net-
work can tolerate adversary of size one in case of PRMT
whereas it can tolerate adversary of size 2 in the case of
URMT. Thus, it is clear that the gap is significantly high
in terms of tolerability of adversary between PRMT and
URMT protocols.

6 Digraphs with Ω(n2) Critical Edges

Definition 6.1. In a digraph G on which (t, (1 − δ))-
reliable URMT is possible, an edge is called critical if the
deletion of that edge renders (t, (1− δ))-reliable URMT
impossible.

In the case of PRMT, network is abstracted
to (2t + 1) wires and the message is transmitted
along those wires where t is the maximum number
of nodes that can be corrupted by an adversary.

4The graph Gk is not (2k + 1)-(S,R) strong connected.

Therefore, the critical edges in case of PRMT are those
edges that are part of the abstracted (2t + 1) wires.
Thus, the number of critical edges is always O(n) edges.

Similarly in the case of URMT in undirected graphs,
from the results of [3], we know that the network is again
abstracted to (2t+1) wires. Following similar arguments
as in the previous case of PRMT, we can show that
even in the case of URMT in undirected graphs, any
graph can have only O(n) critical edges. However,
surprisingly, we show that in the case of URMT in
directed graphs, for every n there exist networks even
with Ω(n2) critical edges.

For any given n > 3, we construct a graph Gt =
(V, E1 ∪ E2 ∪ Er) with

V = {v1, v2, v3, . . . , v2t+1,S,R}

E1 = {(S, v1), (v1,R), . . . , (S, vt+1), (vt+1,R)}

E2 = {(S, vt+2), (R, vt+2), . . . (S, v2t+1), (R, v2t+1)}

Er =
t−1⋃

i=0

{(vt+2+i, v1), (vt+2+i, v2), . . . , (vt+2+i, vt+1)}

S R

v

v

v

v

1

2

v3

4

5

Figure 3: The Graph G2 for t = 2.

Consider the example shown in figure 3. G2 is
3-(S,R) strong-connected and (4,2)-(S,R) special-
connected. However, observe that each edge is critical
as removal of even one edge makes G2 intolerable to any
(2, (1 − δ))-reliable URMT protocol. Based on similar
arguments, we may see that the total number of edges
required in the graph Gt is t(t+1)+2(2t+1). Since t is
bn−3

2 c in Gt, the number of critical edges in Gt is Ω(n2).

7 Efficient Protocols for All-Pairs URMT

We show how to design efficient (t, (1 − δ))-reliable
URMT protocols from S to R for the class of digraphs
that support a (t, (1 − δ))-reliable URMT protocol
between any two nodes in the digraph/network. First,
it is obvious that such a connected network must have
at least (2t + 1) vertex disjoint weak paths from S to
R and also (t + 1) vertex disjoint strong paths from S
to R (note that these two sets of vertex disjoint paths
may have several common vertices between them).
Let the vertex disjoint weak paths be denoted by
q1, q2, . . . , q2t+1 (ignoring the others if there are more
that (2t + 1) such paths) and the vertex disjoint strong
paths be denoted by p1, p2, . . . , pt+1 (note that a path
from the pi’s and another from the qi’s may intersect
each arbitrarily without any restriction).

Next, we show how to design an efficient (t, (1−δ))-
reliable URMT protocol Πi assuming that there exists
an i such that no nodes occurring in the path qi is
corrupted. In other words, Πi would work for us if we
were lucky enough that the adversary chose to corrupt
all the t nodes outside of the nodes in the path qi.

Subsequently, we will use the (2t+1) sub-protocols,
namely Πi’s, 1 ≤ i ≤ 2t+1, to construct a new protocol
Π that would then be proved to be a (t, (1− δ))-reliable
URMT protocol.

Designing the efficient sub-protocol Πi: If the path
pi does not contain any nodes with both its adjacent
edges directed inward, then the protocol designed in
the Case 1 of the sufficiency proof of Theorem 4.1 works
for us. However, if there do exist such a node, say w, in
the path pi, in a general graph we were unable to help
much but here we know that w has t + 1 vertex disjoint
strong paths to R. Therefore, the protocol in Case 2 of
the sufficiency proof works for all the Bα and Bβ pairs
that avoid nodes from the path pi. Thus, instead of((n

t)
2

)
different protocols, we can cover the same with

O(|P|) distinct protocols.

Using Πi’s to design the efficient protocol Π: In
this case, there are only a linear number of efficient
protocols to be executed which can help R recover the
correct message M in an analogous manner as was done
when super-polynomial sub-protocols were executed.

Note that using the above technique it is possible
to design efficient URMT protocols in all cases wherein
there are t+1 vertex disjoint paths from w to R, were w
represents a node in a weak path with both its adjacent
edges directed inward.

8 Concluding Remarks

The characterizations of the possibility of reliable mes-
sage transmission over synchronous networks in the
extant literature include the well-known (2t + 1)-
connectivity for PRMT in undirected graphs [2], (2t+1)-
connectivity again for URMT in undirected graphs [3]
and (2t + 1)-strong-connectivity for PRMT in directed
graphs [1]. Note that all of the above are quite pleasing
to the mind and of course, more importantly, easy to
verify on any give input. However, the truth for URMT
in directed graphs, for the first time in the history of re-
liable communication problem, is marked different from
the above simple characterizations as we have shown
in this work. We leave it as an interesting open prob-
lem to design efficient algorithms to compute the maxi-
mum t such that a given digraph is (2t, t)-(S,R)-special-
connected. At first glance, this does not appear to
be easy and perhaps it may even be NP-Hard. The
fundamental and inherent complexity of (2t, t)-(S,R)-
special-connectivity not only makes it difficult to verify
it but also affects the design of general purpose efficient
URMT protocols. Again, since one cannot yet rule-out
the possibility of a super-polynomial lower bound on
the complexity of general URMT protocols, a study in
that direction may be worthwhile. Yet another interest-
ing line of research is from an extremal graph theoretic
viewpoint wherein we may ask “for a given t, what is
the minimum number of edges required by an n node
digraph such that URMT is possible over it”. Finally, it
is also interesting to study the relative difficulty of com-
puting the optimal round complexity of URMT among
various classes of graphs.

References

[1] Y. Desmedt and Y. Wang. Perfectly Secure Message
Transmission Revisited. In Proceedings of Advances in
Cryptology EUROCRYPT ’02, volume 2332 of Lecture
Notes in Computer Science (LNCS), pages 502–517.
Springer-Verlag, 2002.

[2] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Per-
fectly Secure Message Transmission. Journal of the As-
sociation for Computing Machinery (JACM), 40(1):17–
47, January 1993.

[3] M. Franklin and R.N. Wright. Secure Communication
in Minimal Connectivity Models. Journal of Cryptol-
ogy, 13(1):9–30, 2000.

[4] Kannan Srinathan and C. Pandu Rangan. Possibil-
ity and complexity of probabilistic reliable communi-
cations in directed networks. In Proceedings of 25th
ACM Symposium on Principles of Distributed Com-
puting (PODC’06), 2006.

