
Co-ordinated Tracking and Planning using Air and
Ground Vehicles

Abraham Bachrach1, Alborz Garamifard1, Daniel Gurdan2, Ruijie He1, Sam
Prentice1, Jan Stumpf2, and Nicholas Roy1

1 Computer Science and Artificial Intelligence Laboratory, MassachusettsInstitute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139.
abachrac@mit.edu,agf@mit.edu, ruijie@mit.edu,
prentice@mit.edu, nickroy@mit.edu

2 Ascending Technologies GmbH. Graspergerstr. 8, 82131 StockdorfGermany.
daniel.gurdan@asctec.de, jan@asctec.de

1 Introduction
The MAV ’08 competition in Agra, India focused on the problemof using air and
ground vehicles to locate and rescue hostages being held in aremote building. Ex-
ecuting this mission required addressing a number of technical challenges. The first
such technical challenge was the design and operation of a micro air vehicle (MAV)
capable of flying the necessary distance and carrying a sensor payload for localizing
the hostages. The second technical challenge was the designand implementation of
vision and state estimation algorithms to detect and track ground adversaries guard-
ing the hostages. The third technical challenge was the design and implementation
of robust planning algorithms that could co-ordinate with the MAV state estimates
and generate tactical motion plans for ground vehicles to reach the hostage location
without detection by the ground adversaries.

In this paper we describe our solutions to these challenges.Firstly, we summarize
the design of our micro air vehicle, focusing on the navigation and sensing payload.
Secondly, we describe the vision and state estimation algorithms used to track ground
features through a sequence of images from the MAV, including stationary obstacles
and moving adversaries. Thirdly, we describe the planning algorithm used to gen-
erate motion plans to allow the ground vehicles to approach the hostage building
undetected by adversaries tracked from the air. Finally, weprovide results of our
system’s performance during the mission execution.

2 The Micro Air Vehicle
Our vehicle design consists of a custom-designed carbon-fiber airframe, with 6
brushless motors as the propulsion system. The vehicle is 28cm rotor-tip to rotor-tip
and weighs 142 grams without the navigation electronics, camera or communication
hardware. The vehicle is shown in figure 1. The total flight time of the vehicle is

2 Bachrach et al.

10-12 minutes, with maximum speed of 10 m/sec, depending on wind conditions,
temperature, etc..

Fig. 1. Our six-rotor helicopter with bird’s-eye video camera. The helicopter is 28cm in diam-
eter and weighs 142g without the navigation electronics, camera or communication hardware.

The navigation system consists of a 60MHz Philips ARM microprocessor,µ-
blox GPS receiver, compass, IMU and pressure sensor. The ARMmicroprocessor
integrates the IMU and GPS measurements to provide a consistent state estimate at
1000 Hz. The on-board software accepts waypoints in the GPS (world) co-ordinate
frame and uses PID control to achieve the desired position. The height estimate is
relative to the position of the vehicle on take-off. The waypoint controller attempts
to achieve the desired waypoint first to within 15m accuracy,and then to within 2.5
m accuracy. If the waypoint error is not reduced from 15 m to 2.5 m in 30 seconds,
the control software assumes that external factors (i.e., wind) are interfering and
holds the current position. In this way, we are guaranteed some baseline level of
performance (15m), and the vehicle will attempt to achieve ahigher level of accuracy
without excessive time delays.

The vehicle additionally carries a Digi 900MHz Xtend RF module operating at
100 mW. We communicate with the MAV with a USB-serial converter to the Xtend
base station; the bandwidth is such that we typically receive telemetry at 40 Hz.

The camera sensor is a Black Widow KX141 480 line CCD camera with 90◦

field-of-view. Additionally, we use a Black Widow TD240500TX 2.4 GHz 500 mW
transmitter, and a YellowJacket YJS24 2.4 GHz diversity receiver at the ground sta-
tion. This camera and transmitter provide excellent video capability at long ranges,
and the 2.4 GHz frequency does not interfere with our 900 MHz data link. The cam-
era is mounted on a small servo that provides 90◦ motion along one degree of free-
dom, allowing the camera to tilt from directly forward to straight down.

Co-ordinated Tracking and Planning using Air and Ground Vehicles 3

3 Object Detection and Tracking

The first phase of the MAV ’08 mission involved visual surveillance of the field to
identify obstacles and mines, followed by tracking the guard vehicle. Once an object
was located in an image, the known position of the MAV from GPSand a calibrated
camera model were then used to geolocate the object (assuming the object was on the
known ground plane). However, due to the noisy estimates of the vehicle pose, it was
necessary to combine projections from multiple images to achieve a more accurate
geolocation estimate. Given the minimal prior informationof the appearance of the
guards, obstacles and mines, we did not have enough information regarding a specific
color, shape, or motion to allow general object detection. As a result, we focused on
object tracking, where given an initial example of the object in an image, we could
track it in successive images. To accomplish this, we used a modified version of the
classifier-based adaptive ensemble tracker, developed in [1]. While this approach did
not allow completely autonomous operation, it significantly reduced the amount of
attention required from the operator.

3.1 Learning Object Appearance Models

To find the object in an image, the tracking problem is posed asa classification prob-
lem, where a classifier is trained in an online fashion to separate the pixels belonging
to the object from the background pixels. To train the classifier, we assume that the
object is localized within a knownn × n sub-block of the image; pixels within that
sub-block are given positive labels, and pixels outside that sub-block are given neg-
ative labels. Each pixel is described byd local features, e.g., local color features
and a histogram of local oriented gradient features [3]. Each pixel i is therefore a
separate training instance consisting ofd-dimensional feature vectorxi and a label
yi. AdaBoost requires a weak classifier, which in this algorithm is implemented as a
separating hyperplaneh, such that

ŷ(xi) = sign(hT
xi) (1)

whereŷ(x) is the classifier output label for instancex. The separating hyperplane for
a set of examples is computed using weighted least squares given a training data set
consisting of pixel features and labels,{xi, yi}. We then boost to learn an ensemble
of classifiersh1, . . . , hn with associated weightsα1, . . . , αn. In addition, we train
a separate ensemble of classifiers for each ofw image scales in order to capture
the distinctive appearance characteristics at different scales. Finally, we classify the
pixels of a new image using the multi-scale boosted ensembleclassifier, such that
each pixel receives a (normalized) weighted vote for each label from each classifier.
The output of the classifier is a new image where each pixel represents the probability
that a given pixel belongs to tracked object.

Figure 2(a) illustrates an example training image, where the pixels in the inner
block are positive training instances and the pixels in the outer block are negative
training instances. Figure 2(b) shows the response of the classifiers to the same image
after training. Notice that the classifiers have the most response along the sharply
distinct color boundaries.

4 Bachrach et al.

(a) Original Image (b) Ensemble Filter
Response

Fig. 2. (a) An example training sub-block. The pixels in the smaller, inner block are assumed to
be positive training instances, and the pixels in the outer block are negativetraining instances.
(b) The response of the weighted classifiers across the sub-image of the detected car.

During tracking, the object appearance will vary over time;for instance, the ori-
entation of edge features will change as objects rotate in the image. We therefore
continually learn new classifiers on the incoming images. After tracking is completed
on each image, the image is used as a new training instance. Thek best classifiers are
retained, andn − k additional classifiers are trained, again using boosting. In order
to ensure that this retraining of the classifier does not cause the original concept to
become lost over time, we also investigated a model in whichm of the originaln
classifiers are kept, regardless of their weight. This ensures that at least some of the
classifiers where trained with labels that were known to be correct.

3.2 Object Tracking

In [1], a mean-shift tracker is applied to the probability image to update the estimate
of the object location, in which a region of the image is classified and the maximum
likelihood pixel in the image is assumed to be the new center of object. While this
approach works quite well for relatively stationary cameras, we found that the mean-
shift approach was not able to handle the fast motion of the helicopter platform.

For example, considering the EOD vehicle in figure 2(a) and figure 3(a), the
tracker is able to follow both objects for the entire time that they are in the field
of view, usually 10-20 seconds. This is due to the fact that the objects had distinc-
tive appearances, which allowed the computed features to bevery discriminative.
In addition, the relatively large object sizes made the motion of the helicopter less
significant. In contrast, tracking the mine in figure 3(b) andthe walking person in
figure 3(c), is more challenging. Tracking the mine was particularly difficult due to
the extremely small size, and non-distinct circular shape.Similarly, the person is
very small in the image, although relatively distinct; as a result, the motion of the
helicopter makes the tracker lose track almost immediatelywithout the ego-motion
estimation.

As a result, we use a motion model coupled with Bayesian filtering to update the
object position estimate. This allows us to more robustly estimate the object position
in the image by making use of an ego-motion estimate to bias the motion update. This
ego-motion estimate proved to be very important as it was able to compensate for the
unpredictable motion of the camera, which would have otherwise caused the tracker

Co-ordinated Tracking and Planning using Air and Ground Vehicles 5

(a) EOD Vehicle (b) Mine (c) Person

Fig. 3. Examples of the variety of objects tracked. (a) The EOD vehicle for mine disposal.
(b) A mine embedded in a route between covered positions. (c) A walking person. (a) was
relatively easy to track, but (b) and (c) required a better motion prediction model.

to get lost. The motion estimate is computed using the Pyramidal-Lucas-Kanade
optical flow implementation available in OpenCV [2]. Optical flow computes a set
of displacements for features in the image, which we then cluster using expectation-
maximization to identify the single largest flow direction,and then compute the affine
transform that best explains the apparent motion.

We can then use the affine transformation as a motion model andthe ensemble
tracker as the sensor model, in order to more accurately estimate the object trajectory
We use a particle filter to implement the probabilistic estimatep(xt|z0:t), wherext

is the location of the object in the image at timet, p(xt|z0:t) is the probability of the
object at the location after having received measurementsz0:t, such that

p(xt|z0:t) = αp(zt|xt)

∫
Xt−1

p(xt|xt−1)p(xt−1|z0:t−1)dt, (2)

p(xt−1|z0:t−1) is the object distribution on the previous time-step, andp(zt|xt) is our
sensor model (the likelihood of detecting the object at position zt given the object
is at xt. p(xt|xt−1) is a model of how the object moves, which we assume to be
Gaussian motion with some fixed variance. In contrast to moreconventional filtering
techniques such as the Kalman filter [5], the particle filter is useful for modeling the
non-linear sensor and motion models and the non-Gaussian noise distributions. The
motion of the MAV is particularly non-linear, and large swings of the MAV generally
cause very large displacements of the object in the image.

Returning to figure 3(b) and 3(c), when tracking the person, we were able to
maintain the track for over 2 minutes requiring human intervention only once when
the person went out of the frame for a couple seconds. This wasmade possible by the
motion model provided by optical flow, helped by relatively stable hovering of the
helicopter. Similarly, when tracking the mine in figure 3(c), given the motion model
from optical flow, the tracker was able to track for over 30 seconds, only needing
human intervention once due to an abrupt movement of the helicopter.

4 Ground Vehicle Planning
Given the ability of the MAV to estimate the guard position and trajectory, the sec-
ond challenge was to be able to plan a trajectory for the commandos to the hostage
building without their being detected by the guard vehicle.Additionally, when the

6 Bachrach et al.

MAV found mines, we wanted to be able to plan a trajectory for the EOD vehicle to
the mines, also without being detected. We treated these problems symmetrically as
a motion planning problem for a generic ground vehicle (GV).

Standard motion planning algorithms are generally based onsearch strategies
through a discretized state space. Although the specific planning problem in the MAV
’08 problem was centered around routes between cover points, we developed a gen-
eral purpose motion planner that would be more flexible to unexpected guard motion
and allow us to express a wide range of trajectories that may not exactly follow
straight-line routes between cover points.

Our motion planner therefore begins with a discretization of the planning area.
We use a regular grid, and assume the GV can move from a grid cell x to any of
the 4-connected neighbors. We assume that such a motion incurs a cost, and the goal
is to find the lowest cost sequence of states from the start to the goal without being
detected by the guard vehicle. The guard has360◦ field of view with finite range, and
we have a prior map of the environment giving the location of obstacles that would
obstruct the guard field of view, occluding the GV from the guard. Additionally, the
planner assumes that the current position of the guard vehicle is known, and there is
a model of the guard dynamics that allows the guard position to predicted into the
future. The planner must therefore incorporate this model of the temporal behavior of
the guard in generating paths that avoid detection. The temporal constraint typically
requires planning in both space and time, which can lead to substantial computational
complexity. Given the large size of the map, planning in space and time may not be
feasible, and so we examine three different strategies for planning with respect to the
guard vehicle dynamics, to identify a strategy that scales well with minimal loss in
planner performance.

TIME-STATE A*

The TIME-STATE-A* algorithm, developed by Fraichard [4], represents the state of
the GV as both a position and time. In order to account for the guard vehicle, we ex-
trapolate the 2-D space into the time domain, creating a three-dimensional cost map
(or “cube”), where each cell represents a separate (x, y, t). All actions are assumed
to have the same, constant duration. In addition to the four motion commands, we
add a PAUSE action that only changes the time variable by the same constant amount
as motion commands. Longer pauses can be achieved by executing PAUSE twice. We
then search through the cube using standard A* as before, butlimiting the actions
from every cell to be the 5-connected grid cell in the next time step. (The cube is 5-
connected because the legal transitions are the four motions and the PAUSE action).
The Manhattan distance between the robot’s current position and the final goal in the
2-D space is used as the heuristic. This algorithm again assumes that A* has access
to a cost map that includes the obstacles.

Notice that the input to A* are now states with an explicit time variable, and
that this algorithm includes as the input a maximum time,tmax, in order to prevent
infinite search depth resulting from multiple PAUSE actions.

There is a slight abuse of notation in that the goal state of the A* process is
(xgoal, ·, tmax), which we use to denote a goal state of the search where the guard can

Co-ordinated Tracking and Planning using Air and Ground Vehicles 7

be in any position. By modeling time explicitly during the search process, the TIME-
STATE A* algorithm can express a wider variety of plans to incorporate plans that
deliberately wait for the guard vehicle to move. Additionally, the search incorporates
knowledge of the guard vehicle more accurately by includingthe changing guard
position as part of the search in the state-time domain. However, the computational
cost of increasing the number of actions (and therefore the branching factor of the
search), and furthermore substantially increasing the state space by including time,
may have a significant effect on the ability of the search process to find good plans.

WINDOWED TIME-STATE A* (WST-A*)

Since the search grows exponentially with the search depth,by reducingtmax, the
search space can itself be reduced, only including plans of length at mosttmax.
However, this may significantly reduce the ability to find good plans when plans need
to be longer thantmax, which is likely across a 1 km distances. We also examine an
intermediate approach by iterating TIME-STATE-A* search in limited time window.

Algorithm 1 : WINDOWED TIME-STATE A* (WTS-A*)
Require: xstart, xgoal, xguard, tmax, twindow

1: πapprox ← A* (xstart,xgoal)
2: {π̂i} ← DIVIDE(πapprox, twindow)
3: t← 0
4: for π̂i ∈ {π̂i} do
5: x← π̂i[1]
6: x

′ ← π̂i[end]
7: πtail ← A* ((x,xgoal, t), (x

′, ·, tmax))
8: if πtail == null then
9: return null

10: end if
11: π ← π + πtail

12: t← t + length(πtail)
13: end for
14: return π

The complete algorithm is shown in Algorithm 1. First, an approximated plan
is computed using STATE-A*, ignoring the guard position. This plan is then divided
into sub-plans according to a window size, and for each startand end state of the sub-
plan, the plan between these states is regenerated using TIME-SPACE-A*. Notice
that thet variable is used to maintain the time required to execute each subplan̂πi,
to ensure a proper connection between each section of the path.

Finally, to determine if the additional complexity of planning in time and space
can be avoided, we also examined the performance of planningonly in the state
space of the GV, using a conventional search process throughonly the state space,
STATE-A*.

Figure 4 depicts the runtime and the quality of the resultingplan for STATE-
A*, T IME-STATE-A*, and WTS-A* with different window sizes. As expected, on

8 Bachrach et al.

average, TIME-STATE-A* was the most time consuming algorithm (figure 4-a). It is
interesting that on average, WTS-A* outperformed STATE-A* in terms of runtime.
On the other hand, the quality of the paths found by WTS-A* were on par with
those found by TIME-STATE-A*, shown in figure 4(b). The plan performance found
by the WTS-A* was within 97% of the optimal plan (found by TIME-STATE-A*),
while STATE-A* suffered a drop around 12% from the optimal.

(a) (b)

Fig. 4. Averaged results of State-A*, Time-State A*, WST-A*(Small), and WTS-A*(Large)
across planning problems of different sizes.

The most interesting result occurred as we varied the numberof dynamic obsta-
cles. Figure 5 shows that as the number of dynamic obstacles increases, the extra cost
of re-planning for STATE-A* dominates the cost of planning in the Time-State space
(figure 5-a), indicating that as the number of obstacles increases, re-planning needed
to occur more frequently. While TIME-STATE-A* has to search in a larger space,
most plans found by STATE-A* are infeasible, leading to more re-planning. Even-
tually after 100 obstacles, this re-planning cost dominated the planning in the larger
space. The side-effect of such excessive re-planning can beobserved in figure 5-b.
The quality of the solutions found by STATE-A* drops rapidly. TIME-STATE-A* is
guaranteed to find the optimal solution. (In contrast, both versions of the WTS-A*
achieve the best of both worlds: their running time is less than of both STATE-A*
and TIME-STATE A*, while the cost of the plans found is nearly optimal (about98%
of the optimal TIME-STATE A*).

(a) (b)

Fig. 5. Runtime and optimality results of 30 runs for State-A*, Time-State A*, WTS-A*(15),
and WTS-A*(30) averaged across different numbers of dynamic obstacles.

Co-ordinated Tracking and Planning using Air and Ground Vehicles 9

(a) Phase 1
Maximum height: 35.7 m
Distance traveled: 1759.2 m
Total flight time: 710.0 secs

(b) Phase 2
Maximum height: 13.0 m
Distance traveled: 1247.2 m
Total flight time: 621.1 sec

(c) Phase 3
Maximum height: 28.8m
Distance traveled: 1290.5m
Total flight time: 644.7 sec (d) Expected GV Path

Fig. 6. (a-c) The paths executed by the MAV. (d) The expected plan executed by the comman-
dos and EOD vehicle.

5 Mission Performance in MAV ’08
As described in section 2, our vehicle has a top speed of 10 m/sec, and the battery
provides a total flight time of 10-12 minutes. We therefore divided the mission into
multiple phases of mine detection, mine disposal and guard surveillance. Between
each phase of the mission, we planned to return the MAV to the launch point to
replace the battery. Figure 6(a-c) shows the actual paths flown by the MAV on each
mission. Figure 6(d) shows the expected trajectory of the GVcomputed using the

10 Bachrach et al.

WTS-A* algorithm. In the final mission scenario, the guard vehicle motion was
extremely deterministic and did not require much variationin the timing constraints
so the timing information is not shown in the image. The path from cover point to
cover point took 3 minutes and reliably avoided detection. The actual path taken by
the vehicles changed from this expected path to the futtock (midline) path based on
detected mines, obstacles and the resultant replanning.

6 Conclusion
This paper described critical hardware and software components of a combined mi-
cro air vehicle and ground vehicle system for performing a remote rescue task, as part
of the MAV ’08 competition organized by the US and Indian governments. While our
system performed to our satisfaction and was awarded Best Mission Execution, there
are a number of key technical questions that remain unsolvedbefore co-ordinated air
and ground systems can become commodities.

Firstly, while the object detection and tracking system helped the human opera-
tors considerably in geolocating objects, more work remains to be done in learning
appearance-based methods and compensating for large camera motions to generate
robust autonomous object detection and tracking. Secondly, there has been consid-
erably work in planning under uncertainty for multi-agent systems but we have not
yet taken advantage of these methods to keep the system complexity at a manageable
level. However, in the future, we plan to extend the planner to incorporate deliber-
ate sensing actions at appropriate points in time, to allow more flexible response to
environmental dynamics. Finally, the overall mission specification provided by the
organizers allowed very simple task planning and rigid taskexecution. However, to
allow more flexibility in planning surveillance, tracking and trajectory execution be-
tween the air and ground vehicles, we expect that more intelligent task planning will
be required in the future.

References

1. Shai Avidan. Ensemble tracking. InProceedings of IEEE Conference on Computer Vision
and Pattern Recognition, 2005.

2. Intel Corporation. Open source computer vision library (opencv).
http://www.intel.com/technology/computing/opencv/index.htm.

3. Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2005.

4. T. Fraichard. Trajectory planning in a dynamic workspace: a ‘state-time’ approach, 1999.
5. Emil Kalman, Rudolph. A new approach to linear filtering and prediction problems.Trans-

actions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

