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Summary. In this paper we address the problem of trajectory planning with impesfats
information. In many real-world domains, the position of a mobile agenhagbe known
perfectly; instead, the agent maintains a probabilistic belief about its pasRianning in
these domains requires computing the best trajectory through the sppossible beliefs.
We show that planning in belief space can be done efficiently for lineas&tau systems by
using a factored form of the covariance matrix. This factored form allsgweral prediction
and measurement steps to be combined into a single linear transfer fynetiding to very
efficient posterior belief prediction during planning. We give a beliefegpvariant of the
Probabilistic Roadmap algorithm called the Belief Roadmap (BRM) and shawitta BRM
can compute plans substantially faster than conventional belief spacengawe also show
performance results for planning a path across MIT campus withofeqidéocalization.

1 Introduction

Sequential decision making with incomplete state inforamais an essential ability
for most real world autonomous systems. For example, robitt®ut perfect state
information can use probabilistic inference to computestriliution over possible
states from sensor measurements, leading to robust stat&tsn. Incorporating
knowledge of the uncertainty of this state distribution betief, into the planning
process can similarly lead to increased robustness anaimgmperformance of the
autonomous system. Unfortunately, despite the recentthrofvapproximation al-
gorithms and considerable progress in the applicabilitglgbrithms such as the
partially observable Markov decision process (POMDP) [1pfanning in belief
space has met limited success in addressing large reathpmblems. These mod-
els almost always rely on a discrete representation of tbkatagjate, dynamics and
perception and finding a plan usually requires optimizingkcg across the entire
belief space, inevitably leading to problems with scalghil

In contrast, the motion planning community has realizedsa®rable success in
using direct search to find paths through configuration spattealgorithms such
as the Probabilistic Roadmap [3] or Rapidly-Exploring Raméized Trees [4]. How-
ever, adapting these search algorithms to belief spacesmasajly not been feasible.
Computing the reachable part of belief space can be expensigdicting the evo-
lution of the agent’s belief over time involves costly namelar operations such as
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matrix inversions. Secondly, the reachable belief spapemfgs on the initial condi-
tions of the robot and must be re-computed when the robatte sistimate changes.
Therefore, any work done in predicting the effect of a seqaesf actions through
belief space must be completely reproduced for a query froewastart position.

In this paper, we present a formulation for planning in Hedace which allows
us to compute the reachable belief space and find minimunctegheost paths ef-
ficiently. Our formulation is inspired by the ProbabilisiRoadmap, and we show
how a graph representation of the reachable belief spacbeaonnstructed for an
initial query and then re-used for future queries. We dqvélos formulation us-
ing the Kalman filter, a common form of linear Gaussian stateration. We first
provide results from linear filtering theory and optimal troh[5] showing that the
covariance of the Kalman filter can be factored, leading tmear update step in
the belief representation. As a result, the mean and caowvaieesulting from ase-
guenceof actions and observations can be combined into a singtiqgtien step for
planning. The factored form allows an initial graph of thaakable belief space to
be computed while avoiding expensive non-linear companatiand the graph can
be efficiently updated for additional queries based on netiairconditions. Opti-
mal paths can therefore be found in time linear with the sfzbegraph, leading to
greatly accelerated planning times compared to existiclgiigues. We give experi-
mental results demonstrating this algorithm for motiomplag of a mobile robot.

2 Trajectory Planning and Search

Given a map, model of robot kinematics, and the start and jgasitions, the goal

of trajectory planning is to find the minimum-cost collisitnee path from start to
goal. We will restrict the discussion in this paper to kinéimenotion planning; we
plan to extend this work to kinodynamic planning in futureriwoC denotes the
configuration space [9], the space of all robot po§gs,. is the set of all collision-
free poses (based on the map of obstacle positionsgngd is the set of poses
resulting in collision with obstacles, so thét= C¢,c. U Copse. When the state is
fully observable, the Probabilistic Roadmap (PRM) aldomt3] can be used to find

a path througtCy,.. by generating a discrete graph approximatiorCef... The
PRM computes vertices in the graph by sampling poses ff@nd rejecting those
samples that lie irC,;s: (i.€., that collide with obstacles). Edges in the graph are
placed between mutually-visible vertices, i.e., whergaigit-line path between the
vertices also lies entirely i@¢.... The PRM then finds a feasible path by searching
through the graph from the start vertex to the goal vertexe pbwer of the PRM
resides in the fact that evend¥,... cannot be tractably computed, it is relatively
efficient to determine if an arbitrary vertex or edge lie€ jf...

3 Belief Estimation in Linear Gaussian Systems

If, however, the agent does not have access to perfect sfateniation, it cannot plan
robustly in the configuration space and must instead plahdrspace of beliefs, or
possible distributions over its state. Let us denote th&r{own) state of the vehicle
at timet ass;. If the vehicle takes an action according to some contgpthen at
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timet + 1 the vehicle has moved to some new statg that is drawn stochastically
according to some transition probability distributipfs;1]s:, u:). After each mo-
tion, the vehicle receives an observatigrthat is drawn stochastically according to
some observation probability distributigfiz;|s;). With knowledge of the transition
and observation distributions, the vehicle can estimatgtiobability of its current
stateb; = p(s¢|ui., 21.¢) after a sequence of controls and observations.

A common assumption is that the posterior stateafter some control in-
put u; depends only on the prior statg_; such thatp(s¢|si—1,u1.t,21:4—1) =
p(st|se—1,us). Similarly, the likelihood of an observation depends ontytbe cur-
rent statep(z¢|ss, ui.t, 21..—1) = p(2¢|s¢). These assumptions allow the posterior
belief to be expressed as

1
be = plsilures21a) = p(also) [ plorlun,sep(sin)dsia, @)
S

whereZ is a normalization factor. Equation (1) is the standard Bafjiéer equation,
and provides an efficient, recursive form of updating theestéstribution.

Implementing the Bayes'’ filter requires committing to a sfiecepresentation
of the state distributiop(s;), with consequences on how the transitigg, |s;_1, u:)
and observatiop(z;|s;) functions are represented. One of the most common repre-
sentations is the Kalman filter [6], in which the state dimition is assumed to be
Gaussian and the transition and observation functionsregarlwith Gaussian noise.
If the true system transition and observation functionsrame-linear, the extended
Kalman filter (EKF) [7] linearizes the transition and obssion functions at each
step. A full derivation of the EKF is outside the scope of théper, but briefly, the
assumption is that

5t = g(se-1,us, wy), wy ~ N (0, W), (2
and ze = h(st,qt), q ~ N(0,Q), (3
wherew, andq; are random, unobservable noise variables. In the presdnbéeo
unobserved noise, the EKF estimates the state attifrem the estimate at time
t — 1 in two separate steps: a process step based only on theldoptrou, leading

to an estimate(s;) = N (z,, X+), and a measurement step to complete the estimate
of p(s;). The process step follows as

Ay = g(pe—1,ue) (4)
X = GtEtfleﬂ + VZWtVtT, )
whereG; is the Jacobian af with respect ta andV; is the Jacobian af with respect

to w. For convenience, we denofg = V;W,V,Z. Similarly, the measurement step
updates the belief as follows:

e = fig + Ko (Hyft, — 2) (6)
Y= — KHy) X, (7

whereH; is the Jacobian of with respect tos and K; is known as the Kalman gain,
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—= - —1
Ky =S HF (H,ZH + Q) . (8)

If the measurement function is conditionally independédra mrge number of state
variables, the information form of the EKF may be more corapiahally efficient.
The distributionp(s¢|uy.¢, 21.¢) can be represented by the information vector and the
information matrix(2, = X, ' [8]. The information matrix updates can be written as

2,=3, = (G2 GT + Ry )

2, =0, +HI'Q; ' H,. (10)
For convenience, we denodd; 2 H' Q; ' H, such that?, = 2, + M,.

4 Belief Space Planning

The goal in extending motion planning to belief spaces isnabée the planner to
make decisions not just based on the mean of the distrihia®im the conventional
PRM planner, but also by incorporating additional statgstif the distribution. If the

planner has access to both the mean and the covariance oK#ealiferent plans

can be computed depending on whether the position estirnatery certain (the
norm of the covariance is small), or if the position estimatancertain (the norm
of the covariance is large). The robot can then detour froamteh paths for those
with greater potential to reduce belief uncertainty thfosgnsor information gain,
leading to more conservative motion plans. In order to ipooate the covariance

into the decision making, the planner must find a sequencetiwie {uo, . .., u: }
such that the resulting beliefd,, . .., b} maximize the objective functiod of the
robot.

Conventional motion planners generally search for a ¢otiifree path that min-
imizes the distance to the goal location, such th@) = ||s; — sgoa||. However,
planning in a Gaussian belief space requires a differergatibg function since ev-
ery belief has some non-zero probability that the robot thatgoal state (although
this probability may be extremely small for beliefs where thean is far from the
goal). A more appropriate objective function is therefareiaximize therobability
of the goal state, such thdtb;) = > s b:(s)||s—5g0a||- Atrivial extension of the
PRM for solving this optimization problem would first geniera graph by sampling
belief nodes randomly and creating edges between node®wsheaction exists to
move the robot from one belief to another. Graph search witkld find a trajectory
to the belief with highest probability of being at the goal.

The difficulty with this approach is that the control problésnunderactuated
and, thus, only a specific subset of beliBfsis actually realizable. Even if the robot
has full control of the mean of its belief, the covarianceles® as a complicated,
non-linear function of both the robot controls and enviremtal observations. If the
robot has full control over its-dimensional mean, then the reachable part of the
belief space is am-dimensional manifold embedded in thé-dimensional belief
space, and therefore a subset of measure 0. It is vanishingjkely that any belief
b’ € B* would ever be sampled such that there exists a conttolreach it.
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A different approach must therefore be used for buildingtekgef graph. Since
the robot does have control authority over its mean, it isiibs to sample mean
components of the belief, thgmedictthe corresponding covariance components. Let
us sample a set of mean podes} from Cy,... as the nodes in the PRM graph. We
add an edge;; between pair$y;, 1) if a sequence of controls;; = {us,, ..., us, }
exists to move along the straight line betwggrand:; without collision. We then
perform search in the graph to find a sequence of controlsrgigrom the initial
belief by such that the posterior covariance at the end of the seqienteimized,
computing this posterior covariance using equations (8)(@nh For each step along
the edge;;, theG,, R, andM, matrices are computed using the appropriate models.

5 Linearizing Belief Space Planning

A major computational bottleneck with the planning aldamit described above is
that standard search optimization techniques cannot lit seeh as re-using por-
tions of previous solutions. While the EKF is an efficient mlole tracking the
probability distribution of both linear and well-behavedmlinear systems, the up-
date steps in the filtering process itself are non-lineapdrticular, any trajectory
optimization that depends on the covariance requiresrgplihie following Riccati
equation (from equations 5 and 7):

Xy = (Gtthleﬂ-f—Rt)
— (GtEt—thT-FRt)HtT(Ht(GtEt—1G$+Rt)H,5T+Qt)_1Ht(GtEt—1GtT+Rt)~

As a result, if the intial conditions or the trajectory itsete modified in any way,
the covariance must be recomputed from scratch. If the placomputes a predicted
posterior stat€u., >;) from an initial distribution(yo, X) and a predicted sequence
of actions and observations using a set &KF updates, the non-linearity prevents
us from computing a new posterior stdte, ;) from a different set of initial con-
ditions (g, X)), except by repeating the entire sequence BKF updates. This is
notthe case for the meamn, for most real-world systems; for a sequence of controls
{ug, . ..,u}, under some reasonably mild assumptions, gncs calculated from
o, @ newy; can be calculated in a single step from a differehtThe EKF update
of the mean becomes linear during predictive planning whemteasuremeny is
assumed to be the maximum likelihood observatipn= H.f,, which simplifies
equation 6 tqu; = [,.

For a trajectory formed from a sequence:afraph edges each of lengthO (k1)
EKF process and measurement updates are required. Thetatigmpmplexity of
the overall problem i (Ib%) for a search depth of edges in the graph with a
branching factor ob; the computational cost of the specific EKF updates along eac
edge may seem negligible as a constant multiplier of therexpi@al growth, but this
term has a significant effect on the overall time to plan. Heweif the covariance
is factored appropriately, we can show that the EKF updatetémns for each fac-
tor separately are in fact linear. Along with other benefitg linearity will allow
us to combine multiple EKF updates into a single transfection, ¢;;, associated
with each edge;;, to efficiently predict the posterior filter state from a seqce
of controls and measurements in a single step. Althouglai@onstruction of the
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graph and transfer functions requires a cosb¢f) per edge, this construction cost
can be amortized, leading to a planning complexitygb), equivalent to the fully-
observable case.

5.1 Linear Covariance Updates

To show the linearization of the EKF covariance update, iear previous results
from linear filtering theory and optimal control [5] to makseuof the following
matrix inversion lemma:

Lemma 1.
(A+ BC™H ' =(AcC™t+BCTY) ' =C(AC+ B)! (11)

Theorem 1.The covariance can be factored as = BC~!, where the combined
EKF process and measurement update gi®eand C; as linear functions oB;_;
andC;_;.

Proof. We proceed by proof by induction.

Base caseWe can show the theorem to be trivially true, as

Yo = BoCyt = Sl ™. (12)
Induction step:
Given: X, | = B, 1C4 (13)
From equation (5),~; =GB, 1C;GT + R,

ft == (GtBtfl)(G;Tthl)_l + Rt (14)

- -1

Fromlemmal, ¥, = ((G;Tct,l) (G¢Bi—1 + R(Gy T Cyv)) 1)
. S —1

Y, — (D,fElt 1) (15)
= ¥, =E,D, . (16)

whereD; = G;7C,_ andE; = Gy B, 1 + R:(G; 7 C;_1). As aresult, we can see
that the process update preserves the factored forl &imilarly, if we start with
the information form for the covariance update,

From equation (10)F; = (T, ' + HF Q; *HT)~! 17)

Substituting inM; and equation (16)%; = (D, E, = + M,) ™" (18)
Again from lemma 1.5, = E,(D, + M,E,) " (19)

= Et = Bthl, (20)

whereB; = E, andC, = D, + M., E,. If we collect terms, we see that
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Algorithm 1 The Belief Roadmap Build Process.

Require: MapC over mean robot poses

1: Sample mean pos€$:; } from Cy,.. using a standard PRM sampling strategy to build
belief graph node setn; } such that;, = {u=p,}

2: Create edge sefe;;} between nodegn;,n;) if the straight-line path between
(ni[p], nj[p]) is collision-free

3: Build one-step transfer functiofs;; } V e;; € {ei; }

4: return Belief graphG = {{n.}, {ei;}, {C¢i;}}

By =FE;=GB;_1 + Rt(Gt_TCt—l) (21)
a.nd Ct = Et + MtEt = G;Tctfl + Mt(GtBtfl + Rt(G;Tthl)). (22)

In both casesB; andC; are linear functions oB;_; andC;_;.
Collecting terms again, we can re-write equations (21) @29, cuch that

“=lel =2l 1el, @
= (7, o e ), 2

where¥, is the stacked block matrigg] . consisting of the covariance factors and
¢ = [V %], is the one-step transfer function for the covariance factor

5.2 The Belief Roadmap Algorithm

The belief space planning algorithm is therefore a two sf@geess. First, mean
positions of the robot are sampled, as in the ProbabilistiadRap algorithm, and
edges between visible graph nodes are added. The corrésggrdcess and mea-
surement Jacobians are calculated along each edge andoes$era matrix multi-
plication into a one-step transfer function for the covaci,;;, according to equa-
tion (24). Each(;; now allows us to compute the posterior covariadgehat results
at nodej by starting at node with covarianceX;, moving along edge;; and per-
forming an EKF update for each observation received aloaggath.

In the second stage, a standard search algorithm is usechoute the sequence
of edges through the graph, starting@tthat maximizes the probability of being at
the goal (or, equivalently, results in minimal belief caaace at the goal). We call
this algorithm theBelief RoadmagBRM) planner. The build and search phases of
the BRM planner are shown in Algorithms 1 and 2, respectively

There are several issues that for reasons of space we wjllaatdress briefly.
Firstly, note that this must be a forward search processgtinginal node of this path
cannot be determineal priori, as the covariance (and herigés..;)) depends on
the specific path.

Secondly, the BRM search process in Algorithm 2 assumes@eduaction that
orders the expansion ¢f:, X') nodes. Breadth-first search sorts the nodes in a first-
in, first-out order. More intelligent search processes oglyan A* heuristic to find
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Algorithm 2 The Belief Roadmap Search Process.

Require: Start belief(1.0, Xo), goal locationuy..; and belief grapt§
1: Appendg with nodes{nog, ngoa: }, €dges{{eo,; }, {€i,goas } }, @and one-step transfer func-
tions {{¢o,;}, {Ci.goar } }

2: Augment node structure with best path) and covarianc&l=(), such than;={u, X, p}
3: Create search queue with initial position and covariapee no = {0, Xo, 0}
4: while Q is not emptydo
5. Popn—Q
6: if n =ngoa then
7: Continue
8: endif
9: forall n’ suchthafe,, ,» and notn’ 3 n[p] do
10: Compute one-step updaké = ¢, .., - ¥, wherew = [ "[*1]
11: S vy vt
12: if tr(X’) < tr(n’[X]) then
13: 0’ {n'[u], 2 nlp] U {n'}}
14: Pushw’ — Q@
15: end if
16: end for
17: end while

18: return ngoa[p]

the goal state faster; however, godd heuristics for planning in belief space are a
topic for future work. For the results given in this paper,wged exclusively breadth-
first search for both shortest-path (PRM) and belief-spa&a) planning problems.
Additionally, considerable work has been devoted to findjngd sampling strate-
gies in fully-observable motion planing problems. For thsults in this paper, we
used the same medial-axis sampling strategy for both theaestgpath (PRM) and
belief-space (BRM) planning problems. However, it is likdlat better belief-space
planning would result from sampling strategies that areravefithe sensor model.
Similarly, a sampling stategy that incorporates the costtion would also lead to
improved planning, especially for cost functions that aoé solely a function of
the distribution over the goal state. By iteratively conmpgtexpected costs and re-
sampling the roadmap, an upper-bound on the expected ctiw ehtire computed
plan can be achieved. The exact algorithm for iterativedyplng-resampling is out-
side the scope of this paper.

Thirdly, note in Algorithm 2 that we only expand nodes whére$earch process
has not already found a posterior covarianfe’| such that some measure of uncer-
tainty such as the trace or determinant is less than the meeasthe new posterior
covariance’. It is also assumed that a nodereplaces any current queue member
n' when pushed onto the queue.

Finally, the BRM search process can be adapted to optimfiereiit objective
functions. One alternative minimizes the maximum covaaancountered along
the entire path, rather than at the goal location. This idemgnted by augmenting
the node structure (in line 2) with the maximum covariadgg, , along patha[p],
such that; ={u, X, p, X2, =oc}. The decision-making step in lines 12-13 is then

max
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Start

Figure 1. Experimental Setup. Range sensor locations (shown as blue circlessampled
along randomized trajectories between a start and goal location. Theasalidashed line
show the plans generated by the BRM and shortest path algorithmsctieslye with green
ellipses indicating the covarianc&salong each trajectory. This experimental design tests the
ability of the BRM to find paths with greater potential information gain to stay weidliaed
during execution.

replaced as follows:

if max(tr(X),tr(n[X2,..]1) < tr(n/[XP ..]) then
n' — {n'[u], X' nlp| U {n'}, mazx(X n[XE ..}

max

6 Experimental Results

In order to evaluate the BRM algorithm, we performed a sesfesvaluations on a
small planning domain in simulation. The testing consisiEtivo objectives: (1) to
evaluate the quality of plans produced by the BRM algorithrerms of uncertainty
reduction; and (2), to assess the computational advanfagemoying the linearized
EKF covariance update during the search process.

The experimental setup consisted of small-sized maps watidomly placed
ranging beacons using a generalized range sensor modeh(whipractice, could
be implemented as GPS or RF range sensors). The range nraastigas mod-
elled as the Euclidean distaneg,between the mobile robot and each visible sen-
sor, with additive, distance-varying Gaussian bias andlaemerror components,
N(/f"bias (d)a Obias (d)Q)

The environment was assumed to be free of obstacles to axpétimental bias
resulting from artifacts in sensor measurements and raridgjectory graph gener-
ation in environments with varying contours.

Localization Performance:

In the first set of analyses, we compared the quality of pathdyzed using the BRM
algorithm to those resulting from a shortest path searckath test iteration, sensor
locations were sampled along randomized trajectoriesdmtva start and goal lo-
cation in an environment withOOm sides, as shown in Figure 1. This experimental
setup tests the ability of the BRM to detour from shorter pdth those with lower
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Sensor Model Uncertainty vs. Positional Error at Goal Location Maximum Sensor Range vs. Positional Error at Goal Location
9

ion (m)

| Error at Goal Location (m)
[

al Error at Goal Locati

Position:
Positional Error at Goal Locatior

o ﬂ%
o E

S

03 04 05 06 07 08 09 10 15 20
Sensor Noise Standard Deviation (m) Maximum Sensor Range (m)

(a) Varying Sensor Noise (b) Varying Sensor Range

Figure 2. In these figures we characterized the positional accuracy of the fimbedach plan-
ner as a function of the sensor noise and sensor range. (a) AgatgaSensor Noise. The
positional accuracy of the shortest path algorithm suffered with ineceasise. The posi-
tional accuracy of the BRM increased slightly but not substantially with n@geAccuracy
vs. Range. The positional accuracy of the shortest path algorithmaseuevith sensor range
as the agent had more ranges for localization. Even with very shageréme BRM algorithm
was able to find paths that maintained relatively good localization.

expected uncertainty. We tested the quality of paths coedjoy the BRM and short-
est path planning algorithms by evaluating the averagdipngrror obtained at the
goal location after executing the prescribed path.

We performed two analyses to demonstrate that the BRM pedvidore accu-
rate localization; we artificially varied the random noidelte range beacons, and
we artificially limited the range of the beacons by discagdimeasurements beyond
a maximum range. In Figure 2(a), we see the performance ¢ih@lanning algo-
rithms under conditions of varying noise. As the sensorengisreases, both algo-
rithms have worsened positional accuracy at the goal, lewslibrtest path algorithm
degrades more quickly. In Figure 2(b), we see that with a lsmakimum sensor
range, the BRM is able to find trajectories in close proxint@ysensors, yielding
a reasonable level of positional accuracy. As maximum samsge increases, tra-
jectories farther from sensors provide sufficient inforimafor localization and the
positional errors in both planners converge to similar @alu

Algorithmic Performance:

Secondly, we assessed the speed improvement of utilizedjrtbarized EKF co-
variance update during planning. We compared the time reduy the planning
search process when using the one-step linearized EKFianearupdate to that of
the standard EKF covariance updates. Planning experimesres performed using
randomized sensor locations in maps of varying s3ge-(00m per side). To reduce
variability in the speed comparison results, the numbeen$§ers was held constant
throughout the experiments and the number of nodes was sdmgidomly in pro-
portion to the area of the environment to maintain consigtajectory lengths.
Figure 3(a) shows the relative search times with respebetdépth of the search
tree in the corresponding trajectory graph. The BRM maiirstaiconsistent improve-
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Figure 3. Algorithmic Performance. (a) Time to Plan vs. Tree Depth (b) Time to Pfan v
Path Length. Note that these graphs are semi-log graphs, indicating dexs @f magnitude
increase in speed.

ment by over two orders of magnitude, with search costsreg&garithmically with
increasing tree depth. Similar results are obtained whempeoing the search times
with respect to the length of the resulting path, shown inuregB(b), reiterating the
significant scalable improvement of the one-step update. drte-step covariance
update presents a consistent speedup and scales withehad Hie trajectory graph,
making planning in belief space with the BRM computationpaiactable.

Note that to construct update matrices for each trajectotizé graph, the one-
step linearized search incurs a one-time build cost corbpata the cost obne
path search using the standard covariance model. HowéNemdst is amortized;
the BRM reuses this graph to enable efficient search in rapign

Example trajectories:

Finally, Figure 4 shows example trajectories for a verydgotanning problem. The
robot must navigate across the MIT campus from the bottohit dgrner to the top
left corner. Scattered throughout the environment areingnigeacons with known
position, shown as the small blue circles. The robot canlilbeiself according to
the ranges, but the ranging accuracy varies across campusiag to the proximity
and density of the beacons. The robot is also constrainduetoutside paths (and
cannot short-cut through buildings, the light-grey blgcR$e shortest path planner
shown in Figure 4(a) finds a direct route (the solid blue lipeaf the positional un-
certainty grows quite large, shown by the green uncertahifyses. In contrast, the
BRM algorithm finds a path that stays well-localized by firglareas with a high
sensor density. The uncertainty ellipses are too small seba for this trajectory.

7 Conclusion

In this paper, we have addressed the problem of planninglieflspace for linear-
Gaussian POMDPs, where the belief is tracked using Kalnim-$ityle estimators.
We have shown that the computational cost of EKF predictthég planning can
be reduced by factoring the covariance matrix and combimngiple EKF update



12 Sam Prentice and Nicholas Roy

(a) PRM: Shortest Path (b) BRM: Lowest Expected Uncertainty Path

Figure 4. Example paths for a mobile robot navigating across MIT campus. Thitdoe line

in each case is the robot path, the blue dots are the range beaconsdmzirfgrdocalization,
and the green ellipses are the covarianEesf the robot position estimate along its trajectory.
Notice that the shortest path trajectory grows very uncertain, whereaswkest expected
uncertainty path always stays well-localized at the cost of being slighthelong

steps into a single, one-step process. We have presenteidiat \¢d the Probabilistic

Roadmap algorithm, called the Belief Roadmap (BRM) planard shown that it

substantially improves planning performance and posti@tcuracy. We demon-
strated our planning algorithm on a large-scale envirorinaad showed that we
could plan efficiently in this large space. This kind of t&@y has been reported
elsewhere [10] but in limited scales of environments. Weelvelthat our demonstra-
tion of belief-space planning in the MIT campus environmisrdonsiderably larger
than existing results.
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