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Summary. In this paper we address the problem of trajectory planning with imperfectstate
information. In many real-world domains, the position of a mobile agent cannot be known
perfectly; instead, the agent maintains a probabilistic belief about its position. Planning in
these domains requires computing the best trajectory through the space of possible beliefs.
We show that planning in belief space can be done efficiently for linear Gaussian systems by
using a factored form of the covariance matrix. This factored form allows several prediction
and measurement steps to be combined into a single linear transfer function, leading to very
efficient posterior belief prediction during planning. We give a belief-space variant of the
Probabilistic Roadmap algorithm called the Belief Roadmap (BRM) and show that the BRM
can compute plans substantially faster than conventional belief space planning. We also show
performance results for planning a path across MIT campus without perfect localization.

1 Introduction
Sequential decision making with incomplete state information is an essential ability
for most real world autonomous systems. For example, robotswithout perfect state
information can use probabilistic inference to compute a distribution over possible
states from sensor measurements, leading to robust state estimation. Incorporating
knowledge of the uncertainty of this state distribution, orbelief, into the planning
process can similarly lead to increased robustness and improved performance of the
autonomous system. Unfortunately, despite the recent growth of approximation al-
gorithms and considerable progress in the applicability ofalgorithms such as the
partially observable Markov decision process (POMDP) [1, 2], planning in belief
space has met limited success in addressing large real-world problems. These mod-
els almost always rely on a discrete representation of the agent state, dynamics and
perception and finding a plan usually requires optimizing a policy across the entire
belief space, inevitably leading to problems with scalability.

In contrast, the motion planning community has realized considerable success in
using direct search to find paths through configuration spacewith algorithms such
as the Probabilistic Roadmap [3] or Rapidly-Exploring Randomized Trees [4]. How-
ever, adapting these search algorithms to belief space has generally not been feasible.
Computing the reachable part of belief space can be expensive; predicting the evo-
lution of the agent’s belief over time involves costly non-linear operations such as
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matrix inversions. Secondly, the reachable belief space depends on the initial condi-
tions of the robot and must be re-computed when the robot’s state estimate changes.
Therefore, any work done in predicting the effect of a sequence of actions through
belief space must be completely reproduced for a query from anew start position.

In this paper, we present a formulation for planning in belief space which allows
us to compute the reachable belief space and find minimum expected cost paths ef-
ficiently. Our formulation is inspired by the ProbabilisticRoadmap, and we show
how a graph representation of the reachable belief space canbe constructed for an
initial query and then re-used for future queries. We develop this formulation us-
ing the Kalman filter, a common form of linear Gaussian state estimation. We first
provide results from linear filtering theory and optimal control [5] showing that the
covariance of the Kalman filter can be factored, leading to a linear update step in
the belief representation. As a result, the mean and covariance resulting from ase-
quenceof actions and observations can be combined into a single prediction step for
planning. The factored form allows an initial graph of the reachable belief space to
be computed while avoiding expensive non-linear computations, and the graph can
be efficiently updated for additional queries based on new initial conditions. Opti-
mal paths can therefore be found in time linear with the size of the graph, leading to
greatly accelerated planning times compared to existing techniques. We give experi-
mental results demonstrating this algorithm for motion planning of a mobile robot.

2 Trajectory Planning and Search

Given a map, model of robot kinematics, and the start and goalpositions, the goal
of trajectory planning is to find the minimum-cost collision-free path from start to
goal. We will restrict the discussion in this paper to kinematic motion planning; we
plan to extend this work to kinodynamic planning in future work. C denotes the
configuration space [9], the space of all robot poses,Cfree is the set of all collision-
free poses (based on the map of obstacle positions) andCobst is the set of poses
resulting in collision with obstacles, so thatC ≡ Cfree ∪ Cobst. When the state is
fully observable, the Probabilistic Roadmap (PRM) algorithm [3] can be used to find
a path throughCfree by generating a discrete graph approximation ofCfree. The
PRM computes vertices in the graph by sampling poses fromC and rejecting those
samples that lie inCobst (i.e., that collide with obstacles). Edges in the graph are
placed between mutually-visible vertices, i.e., where a straight-line path between the
vertices also lies entirely inCfree. The PRM then finds a feasible path by searching
through the graph from the start vertex to the goal vertex. The power of the PRM
resides in the fact that even ifCfree cannot be tractably computed, it is relatively
efficient to determine if an arbitrary vertex or edge lies inCfree.

3 Belief Estimation in Linear Gaussian Systems

If, however, the agent does not have access to perfect state information, it cannot plan
robustly in the configuration space and must instead plan in the space of beliefs, or
possible distributions over its state. Let us denote the (unknown) state of the vehicle
at timet asst. If the vehicle takes an action according to some controlut, then at
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time t + 1 the vehicle has moved to some new statest+1 that is drawn stochastically
according to some transition probability distributionp(st+1|st, ut). After each mo-
tion, the vehicle receives an observationzt that is drawn stochastically according to
some observation probability distributionp(zt|st). With knowledge of the transition
and observation distributions, the vehicle can estimate the probability of its current
statebt = p(st|u1:t, z1:t) after a sequence of controls and observations.

A common assumption is that the posterior statest after some control in-
put ut depends only on the prior statest−1 such thatp(st|st−1, u1:t, z1:t−1) =
p(st|st−1, ut). Similarly, the likelihood of an observation depends only on the cur-
rent state,p(zt|st, u1:t, z1:t−1) = p(zt|st). These assumptions allow the posterior
belief to be expressed as

bt = p(st|u1:t, z1:t) =
1

Z
p(zt|st)

∫

S

p(st|ut, st−1)p(st−1)dst−1, (1)

whereZ is a normalization factor. Equation (1) is the standard Bayes’ filter equation,
and provides an efficient, recursive form of updating the state distribution.

Implementing the Bayes’ filter requires committing to a specific representation
of the state distributionp(st), with consequences on how the transitionp(st|st−1, ut)
and observationp(zt|st) functions are represented. One of the most common repre-
sentations is the Kalman filter [6], in which the state distribution is assumed to be
Gaussian and the transition and observation functions are linear with Gaussian noise.
If the true system transition and observation functions arenon-linear, the extended
Kalman filter (EKF) [7] linearizes the transition and observation functions at each
step. A full derivation of the EKF is outside the scope of thispaper, but briefly, the
assumption is that

st = g(st−1, ut, wt), wt ∼ N (0,Wt), (2)

and zt = h(st, qt), qt ∼ N (0, Qt), (3)

wherewt andqt are random, unobservable noise variables. In the presence of this
unobserved noise, the EKF estimates the state at timet from the estimate at time
t− 1 in two separate steps: a process step based only on the control input ut leading
to an estimatep(st) = N (µt, Σt), and a measurement step to complete the estimate
of p(st). The process step follows as

µt = g(µt−1, ut) (4)

Σt = GtΣt−1G
T
t + VtWtV

T
t , (5)

whereGt is the Jacobian ofg with respect tos andVt is the Jacobian ofg with respect
to w. For convenience, we denoteRt , VtWtV

T
t . Similarly, the measurement step

updates the belief as follows:

µt = µt + Kt(Htµt − zt) (6)

Σt = (I −KtHt)Σt, (7)

whereHt is the Jacobian ofh with respect tos andKt is known as the Kalman gain,
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Kt = ΣtH
T
t

(

HtΣtH
T
t + Qt

)−1
. (8)

If the measurement function is conditionally independent of a large number of state
variables, the information form of the EKF may be more computationally efficient.
The distributionp(st|u1:t, z1:t) can be represented by the information vector and the
information matrixΩt = Σ−1

t [8]. The information matrix updates can be written as

Ωt = Σ
−1

t = (GtΣt−1G
T
t + Rt)

−1
(9)

Ωt = Ωt + HT
t Q−1

t Ht. (10)

For convenience, we denoteMt , HT
t Q−1

t Ht such thatΩt = Ωt + Mt.

4 Belief Space Planning

The goal in extending motion planning to belief spaces is to enable the planner to
make decisions not just based on the mean of the distribution, as in the conventional
PRM planner, but also by incorporating additional statistics of the distribution. If the
planner has access to both the mean and the covariance of the EKF, different plans
can be computed depending on whether the position estimate is very certain (the
norm of the covariance is small), or if the position estimateis uncertain (the norm
of the covariance is large). The robot can then detour from shorter paths for those
with greater potential to reduce belief uncertainty through sensor information gain,
leading to more conservative motion plans. In order to incorporate the covariance
into the decision making, the planner must find a sequence of actions{u0, . . . , ut}
such that the resulting beliefs{b0, . . . , bt} maximize the objective functionJ of the
robot.

Conventional motion planners generally search for a collision-free path that min-
imizes the distance to the goal location, such thatJ(st) = ||st − sgoal||. However,
planning in a Gaussian belief space requires a different objective function since ev-
ery belief has some non-zero probability that the robot is atthe goal state (although
this probability may be extremely small for beliefs where the mean is far from the
goal). A more appropriate objective function is therefore to maximize theprobability
of the goal state, such thatJ(bt) =

∑

s∈S
bt(s)||s−sgoal||. A trivial extension of the

PRM for solving this optimization problem would first generate a graph by sampling
belief nodes randomly and creating edges between nodes where an action exists to
move the robot from one belief to another. Graph search wouldthen find a trajectory
to the belief with highest probability of being at the goal.

The difficulty with this approach is that the control problemis underactuated
and, thus, only a specific subset of beliefsB∗ is actually realizable. Even if the robot
has full control of the mean of its belief, the covariance evolves as a complicated,
non-linear function of both the robot controls and environmental observations. If the
robot has full control over itsn-dimensional mean, then the reachable part of the
belief space is ann-dimensional manifold embedded in then3-dimensional belief
space, and therefore a subset of measure 0. It is vanishinglyunlikely that any belief
b′ ∈ B∗ would ever be sampled such that there exists a controlu to reach it.
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A different approach must therefore be used for building thebelief graph. Since
the robot does have control authority over its mean, it is possible to sample mean
components of the belief, thenpredictthe corresponding covariance components. Let
us sample a set of mean poses{µi} from Cfree as the nodes in the PRM graph. We
add an edgeeij between pairs(µi, µj) if a sequence of controlsuij = {uti

, . . . , utj
}

exists to move along the straight line betweenµi andµj without collision. We then
perform search in the graph to find a sequence of controls starting from the initial
belief b0 such that the posterior covariance at the end of the sequenceis minimized,
computing this posterior covariance using equations (5) and (7). For each step along
the edgeeij , theGt, Rt andMt matrices are computed using the appropriate models.

5 Linearizing Belief Space Planning

A major computational bottleneck with the planning algorithm described above is
that standard search optimization techniques cannot be used, such as re-using por-
tions of previous solutions. While the EKF is an efficient model for tracking the
probability distribution of both linear and well-behaved non-linear systems, the up-
date steps in the filtering process itself are non-linear. Inparticular, any trajectory
optimization that depends on the covariance requires solving the following Riccati
equation (from equations 5 and 7):

Σt = (GtΣt−1G
T
t +Rt)

− (GtΣt−1G
T
t +Rt)H

T
t (Ht(GtΣt−1G

T
t +Rt)H

T
t +Qt)

−1
Ht(GtΣt−1G

T
t +Rt).

As a result, if the intial conditions or the trajectory itself are modified in any way,
the covariance must be recomputed from scratch. If the planner computes a predicted
posterior state(µt, Σt) from an initial distribution(µ0, Σ0) and a predicted sequence
of actions and observations using a set oft EKF updates, the non-linearity prevents
us from computing a new posterior state(µ′

t, Σ
′
t) from a different set of initial con-

ditions (µ′
0, Σ

′
0), except by repeating the entire sequence oft EKF updates. This is

not the case for the meanµt for most real-world systems; for a sequence of controls
{u0, . . . , ut}, under some reasonably mild assumptions, onceµt is calculated from
µ0, a newµ′

t can be calculated in a single step from a differentµ′
0. The EKF update

of the mean becomes linear during predictive planning when the measurementzt is
assumed to be the maximum likelihood observationzt = Htµt, which simplifies
equation 6 toµt = µt.

For a trajectory formed from a sequence ofk graph edges each of lengthl,O(kl)
EKF process and measurement updates are required. The asymptotic complexity of
the overall problem isO(lbd) for a search depth ofd edges in the graph with a
branching factor ofb; the computational cost of the specific EKF updates along each
edge may seem negligible as a constant multiplier of the exponential growth, but this
term has a significant effect on the overall time to plan. However, if the covariance
is factored appropriately, we can show that the EKF update equations for each fac-
tor separately are in fact linear. Along with other benefits,the linearity will allow
us to combine multiple EKF updates into a single transfer function, ζij , associated
with each edgeeij , to efficiently predict the posterior filter state from a sequence
of controls and measurements in a single step. Although initial construction of the
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graph and transfer functions requires a cost ofO(l) per edge, this construction cost
can be amortized, leading to a planning complexity ofO(bd), equivalent to the fully-
observable case.

5.1 Linear Covariance Updates

To show the linearization of the EKF covariance update, we rely on previous results
from linear filtering theory and optimal control [5] to make use of the following
matrix inversion lemma:

Lemma 1.

(A + BC−1)−1 = (ACC−1 + BC−1)−1 = C(AC + B)−1 (11)

Theorem 1.The covariance can be factored asΣ = BC−1, where the combined
EKF process and measurement update givesBt andCt as linear functions ofBt−1

andCt−1.

Proof. We proceed by proof by induction.

Base case:We can show the theorem to be trivially true, as

Σ0 = B0C
−1

0 = Σ0I
−1. (12)

Induction step:

Given:Σt−1 = Bt−1C
−1

t−1 (13)

From equation (5) ,Σt = GtBt−1C
−1

t−1G
T
t + Rt

Σt = (GtBt−1)(G
−T
t Ct−1)

−1 + Rt (14)

From lemma 1, Σt =
(

(G−T
t Ct−1)

(

GtBt−1 + Rt(G
−T
t Ct−1)

)−1
)−1

Σt =
(

DtE
−1

t

)−1

(15)

⇒ Σt = EtD
−1

t , (16)

whereDt = G−T
t Ct−1 andEt = GtBt−1 +Rt(G

−T
t Ct−1). As a result, we can see

that the process update preserves the factored form ofΣ. Similarly, if we start with
the information form for the covariance update,

From equation (10),Σt = (Σ
−1

t + HT
t Q−1

t HT
t )−1 (17)

Substituting inMt and equation (16),Σt = (DtE
−1

t + Mt)
−1 (18)

Again from lemma 1,Σt = Et(Dt + MtEt)
−1 (19)

⇒ Σt = BtC
−1
t , (20)

whereBt = Et andCt = Dt + MtEt. If we collect terms, we see that
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Algorithm 1 The Belief Roadmap Build Process.
Require: MapC over mean robot poses
1: Sample mean poses{µi} from Cfree using a standard PRM sampling strategy to build

belief graph node set{ni} such thatni = {µ=µi}
2: Create edge set{eij} between nodes(ni, nj) if the straight-line path between

(ni[µ], nj [µ]) is collision-free
3: Build one-step transfer functions{ζij} ∀ eij ∈ {eij}
4: return Belief graphG = {{ni}, {eij}, {ζij}}

Bt = Et = GtBt−1 + Rt(G
−T
t Ct−1) (21)

and Ct = Dt + MtEt = G−T
t Ct−1 + Mt(GtBt−1 + Rt(G

−T
t Ct−1)). (22)

In both cases,Bt andCt are linear functions ofBt−1 andCt−1.
Collecting terms again, we can re-write equations (21) and (22), such that

Ψt =

[

B
C

]

t

=

[

W X
Y Z

]

t

[

B
C

]

t−1

(23)

=

[

0 I
I M

]

t

[

0 G−T

G RG−T

]

t

[

B
C

]

t−1

, (24)

whereΨt is the stacked block matrix
[

B
C

]

t
consisting of the covariance factors and

ζt =
[

W X
Y Z

]

t
is the one-step transfer function for the covariance factors.

5.2 The Belief Roadmap Algorithm

The belief space planning algorithm is therefore a two stageprocess. First, mean
positions of the robot are sampled, as in the Probabilistic Roadmap algorithm, and
edges between visible graph nodes are added. The corresponding process and mea-
surement Jacobians are calculated along each edge and assembled via matrix multi-
plication into a one-step transfer function for the covariance,ζij , according to equa-
tion (24). Eachζij now allows us to compute the posterior covarianceΣj that results
at nodej by starting at nodei with covarianceΣi, moving along edgeeij and per-
forming an EKF update for each observation received along that path.

In the second stage, a standard search algorithm is used to compute the sequence
of edges through the graph, starting atb0, that maximizes the probability of being at
the goal (or, equivalently, results in minimal belief covariance at the goal). We call
this algorithm theBelief Roadmap(BRM) planner. The build and search phases of
the BRM planner are shown in Algorithms 1 and 2, respectively.

There are several issues that for reasons of space we will only address briefly.
Firstly, note that this must be a forward search process; theterminal node of this path
cannot be determineda priori, as the covariance (and hencebt(sgoal)) depends on
the specific path.

Secondly, the BRM search process in Algorithm 2 assumes a queue function that
orders the expansion of(µ,Σ) nodes. Breadth-first search sorts the nodes in a first-
in, first-out order. More intelligent search processes relyon anA⋆ heuristic to find
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Algorithm 2 The Belief Roadmap Search Process.
Require: Start belief(µ0, Σ0), goal locationµgoal and belief graphG
1: AppendG with nodes{n0, ngoal}, edges{{e0,j}, {ei,goal}}, and one-step transfer func-

tions{{ζ0,j}, {ζi,goal}}
2: Augment node structure with best pathp=∅ and covarianceΣ=∅, such thatni={µ, Σ, p}
3: Create search queue with initial position and covarianceQ← n0 ={µ0, Σ0, ∅}
4: while Q is not emptydo
5: Popn← Q

6: if n = ngoal then
7: Continue
8: end if
9: for all n′ such that∃en,n′ and not n′ ∋ n[p] do

10: Compute one-step updateΨ ′ = ζn,n′ · Ψ , whereΨ =
ˆ

n[Σ]
I

˜

11: Σ′ ← Ψ ′

11 · Ψ
′

21
−1

12: if tr(Σ′) < tr(n′[Σ]) then
13: n′ ← {n′[µ], Σ′, n[p] ∪ {n′}}
14: Pushn′ → Q

15: end if
16: end for
17: end while
18: return ngoal[p]

the goal state faster; however, goodA⋆ heuristics for planning in belief space are a
topic for future work. For the results given in this paper, weused exclusively breadth-
first search for both shortest-path (PRM) and belief-space (BRM) planning problems.
Additionally, considerable work has been devoted to findinggood sampling strate-
gies in fully-observable motion planing problems. For the results in this paper, we
used the same medial-axis sampling strategy for both the shortest-path (PRM) and
belief-space (BRM) planning problems. However, it is likely that better belief-space
planning would result from sampling strategies that are aware of the sensor model.
Similarly, a sampling stategy that incorporates the cost function would also lead to
improved planning, especially for cost functions that are not solely a function of
the distribution over the goal state. By iteratively computing expected costs and re-
sampling the roadmap, an upper-bound on the expected cost ofthe entire computed
plan can be achieved. The exact algorithm for iteratively planning-resampling is out-
side the scope of this paper.

Thirdly, note in Algorithm 2 that we only expand nodes where the search process
has not already found a posterior covariancen′[Σ] such that some measure of uncer-
tainty such as the trace or determinant is less than the measure of the new posterior
covarianceΣ′. It is also assumed that a noden′ replaces any current queue member
n′ when pushed onto the queue.

Finally, the BRM search process can be adapted to optimize different objective
functions. One alternative minimizes the maximum covariance encountered along
the entire path, rather than at the goal location. This is implemented by augmenting
the node structure (in line 2) with the maximum covarianceΣp

max along pathn[p],
such thatni ={µ,Σ, p,Σp

max=∞}. The decision-making step in lines 12-13 is then
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Figure 1. Experimental Setup. Range sensor locations (shown as blue circles) were sampled
along randomized trajectories between a start and goal location. The solidand dashed line
show the plans generated by the BRM and shortest path algorithms, respectively, with green
ellipses indicating the covariancesΣ along each trajectory. This experimental design tests the
ability of the BRM to find paths with greater potential information gain to stay well-localized
during execution.

replaced as follows:

if max(tr(Σ′), tr(n[Σp
max])) < tr(n′[Σp

max]) then

n′ ← {n′[µ], Σ′, n[p] ∪ {n′},max(Σ′, n[Σp
max])}.

6 Experimental Results
In order to evaluate the BRM algorithm, we performed a seriesof evaluations on a
small planning domain in simulation. The testing consistedof two objectives: (1) to
evaluate the quality of plans produced by the BRM algorithm in terms of uncertainty
reduction; and (2), to assess the computational advantage of employing the linearized
EKF covariance update during the search process.

The experimental setup consisted of small-sized maps with randomly placed
ranging beacons using a generalized range sensor model (which, in practice, could
be implemented as GPS or RF range sensors). The range measurement was mod-
elled as the Euclidean distance,d, between the mobile robot and each visible sen-
sor, with additive, distance-varying Gaussian bias and random error components,
N (µbias(d), σbias(d)2).

The environment was assumed to be free of obstacles to avoid experimental bias
resulting from artifacts in sensor measurements and randomtrajectory graph gener-
ation in environments with varying contours.

Localization Performance:

In the first set of analyses, we compared the quality of paths produced using the BRM
algorithm to those resulting from a shortest path search. Ineach test iteration, sensor
locations were sampled along randomized trajectories between a start and goal lo-
cation in an environment with100m sides, as shown in Figure 1. This experimental
setup tests the ability of the BRM to detour from shorter paths for those with lower
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Figure 2. In these figures we characterized the positional accuracy of the robotfor each plan-
ner as a function of the sensor noise and sensor range. (a) Accuracy vs. Sensor Noise. The
positional accuracy of the shortest path algorithm suffered with increased noise. The posi-
tional accuracy of the BRM increased slightly but not substantially with noise. (b) Accuracy
vs. Range. The positional accuracy of the shortest path algorithm increased with sensor range
as the agent had more ranges for localization. Even with very short range, the BRM algorithm
was able to find paths that maintained relatively good localization.

expected uncertainty. We tested the quality of paths computed by the BRM and short-
est path planning algorithms by evaluating the average position error obtained at the
goal location after executing the prescribed path.

We performed two analyses to demonstrate that the BRM provided more accu-
rate localization; we artificially varied the random noise of the range beacons, and
we artificially limited the range of the beacons by discarding measurements beyond
a maximum range. In Figure 2(a), we see the performance of thetwo planning algo-
rithms under conditions of varying noise. As the sensor noise increases, both algo-
rithms have worsened positional accuracy at the goal, but the shortest path algorithm
degrades more quickly. In Figure 2(b), we see that with a small maximum sensor
range, the BRM is able to find trajectories in close proximityto sensors, yielding
a reasonable level of positional accuracy. As maximum sensor range increases, tra-
jectories farther from sensors provide sufficient information for localization and the
positional errors in both planners converge to similar values.

Algorithmic Performance:

Secondly, we assessed the speed improvement of utilizing the linearized EKF co-
variance update during planning. We compared the time required by the planning
search process when using the one-step linearized EKF covariance update to that of
the standard EKF covariance updates. Planning experimentswere performed using
randomized sensor locations in maps of varying size (30−100m per side). To reduce
variability in the speed comparison results, the number of sensors was held constant
throughout the experiments and the number of nodes was sampled randomly in pro-
portion to the area of the environment to maintain consistent trajectory lengths.

Figure 3(a) shows the relative search times with respect to the depth of the search
tree in the corresponding trajectory graph. The BRM maintains a consistent improve-



The Belief Roadmap 11

0 5 10 15 20 25 30
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Search Tree Depth

S
ea

rc
h 

T
im

e 
(s

)

Search Time vs. Search Tree Depth

 

 

Search with Standard EKF Updates

Search with One−Step EKF Updates

(a) Time vs. Tree Depth

0 20 40 60 80 100 120 140
10

−3

10
−2

10
−1

10
0

10
1

10
2

Path Length (m)

S
ea

rc
h 

T
im

e 
(s

)

Search Time vs. Path Length

 

 

Search with Standard EKF Updates

Search with One−Step EKF Updates

(b) Time vs. Path Length

Figure 3. Algorithmic Performance. (a) Time to Plan vs. Tree Depth (b) Time to Plan vs.
Path Length. Note that these graphs are semi-log graphs, indicating two orders of magnitude
increase in speed.

ment by over two orders of magnitude, with search costs scaling logarithmically with
increasing tree depth. Similar results are obtained when comparing the search times
with respect to the length of the resulting path, shown in Figure 3(b), reiterating the
significant scalable improvement of the one-step update. The one-step covariance
update presents a consistent speedup and scales with the size of the trajectory graph,
making planning in belief space with the BRM computationally tractable.

Note that to construct update matrices for each trajectory in the graph, the one-
step linearized search incurs a one-time build cost comparable to the cost ofone
path search using the standard covariance model. However, this cost is amortized;
the BRM reuses this graph to enable efficient search in replanning.

Example trajectories:

Finally, Figure 4 shows example trajectories for a very large planning problem. The
robot must navigate across the MIT campus from the bottom right corner to the top
left corner. Scattered throughout the environment are ranging beacons with known
position, shown as the small blue circles. The robot can localize itself according to
the ranges, but the ranging accuracy varies across campus according to the proximity
and density of the beacons. The robot is also constrained to the outside paths (and
cannot short-cut through buildings, the light-grey blocks). The shortest path planner
shown in Figure 4(a) finds a direct route (the solid blue line)but the positional un-
certainty grows quite large, shown by the green uncertaintyellipses. In contrast, the
BRM algorithm finds a path that stays well-localized by finding areas with a high
sensor density. The uncertainty ellipses are too small to beseen for this trajectory.

7 Conclusion
In this paper, we have addressed the problem of planning in belief space for linear-
Gaussian POMDPs, where the belief is tracked using Kalman-filter style estimators.
We have shown that the computational cost of EKF predictionsduring planning can
be reduced by factoring the covariance matrix and combiningmultiple EKF update
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(a) PRM: Shortest Path (b) BRM: Lowest Expected Uncertainty Path

Figure 4.Example paths for a mobile robot navigating across MIT campus. The solid blue line
in each case is the robot path, the blue dots are the range beacons being used for localization,
and the green ellipses are the covariancesΣ of the robot position estimate along its trajectory.
Notice that the shortest path trajectory grows very uncertain, whereas the lowest expected
uncertainty path always stays well-localized at the cost of being slightly longer.

steps into a single, one-step process. We have presented a variant of the Probabilistic
Roadmap algorithm, called the Belief Roadmap (BRM) planner, and shown that it
substantially improves planning performance and positional accuracy. We demon-
strated our planning algorithm on a large-scale environment and showed that we
could plan efficiently in this large space. This kind of trajectory has been reported
elsewhere [10] but in limited scales of environments. We believe that our demonstra-
tion of belief-space planning in the MIT campus environmentis considerably larger
than existing results.
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