
Pattern Recognition 36 (2003) 2007–2017
www.elsevier.com/locate/patcog

Hierarchical classi�cation and feature reduction for fast face
detection with support vector machines

Bernd Heiselea;b;∗, Thomas Serreb , Sam Prenticeb , Tomaso Poggiob
aHonda Research Institute US, 145 Tremont St., Boston, MA 02111, USA

bCenter for Biological and Computational Learning, MIT, E25-201, 45 Carleton St., Cambridge, MA 02142, USA

Accepted 15 January 2003

Abstract

We present a two-step method to speed-up object detection systems in computer vision that use support vector machines as
classi�ers. In the �rst step we build a hierarchy of classi�ers. On the bottom level, a simple and fast linear classi�er analyzes
the whole image and rejects large parts of the background. On the top level, a slower but more accurate classi�er performs the
�nal detection. We propose a new method for automatically building and training a hierarchy of classi�ers. In the second step
we apply feature reduction to the top level classi�er by choosing relevant image features according to a measure derived from
statistical learning theory. Experiments with a face detection system show that combining feature reduction with hierarchical
classi�cation leads to a speed-up by a factor of 335 with similar classi�cation performance.
? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.

Keywords: Face detection; Object detection; Feature reduction; Hierarchical classi�cation; Support vector machines

1. Introduction

A major task in visual scene analysis is to detect ob-
jects in images. This is commonly done by shifting a
search window over an input image and by categoriz-
ing the object in the window with a classi�er. The main
problem in categorization is the large range of possible
variations within a class of objects. The system must gen-
eralize not only across di8erent viewing and illumination
conditions but also across di8erent exemplars of a class,
such as faces of di8erent people for face detection. This
requires complex, computationally expensive classi�ers.
Further contributing to the computational load of the task
is the large amount of input data that has to be processed.

∗ Corresponding author. Honda Research Institute US, 145
Tremont St., Boston, MA 02111, USA. Tel.: +1-617-338-4909;
fax: +1-617-338-4085.

E-mail addresses: heisele@ai.mit.edu (B. Heisele),
serre@ai.mit.edu (T. Serre), prentice@mit.edu (S. Prentice),
tp@ai.mit.edu (T. Poggio).

A real-time vision system has to deal with data streams in
the range of several MBytes/s. Speeding-up classi�cation
is therefore of major concern when developing systems for
real-world applications. In the following we investigate two
methods for speed-ups: hierarchical classi�cation and fea-
ture reduction.

In Ref. [1] we presented a system for detecting frontal
and near-frontal views of faces in still gray images. The sys-
tem achieved high detection accuracy by classifying 19×19
gray patterns using a non-linear SVM. Searching an image
for faces at di8erent scales took several minutes on a PC,
far too long for most real-world applications. Experiments
with faster classi�ers (linear SVMs) gave signi�cantly lower
recognition rates. To speed-up the system without losing
in classi�cation performance one can exploit the following
two characteristics common to most vision-based detection
tasks: First, the vast majority of the analyzed patterns in an
image belongs to the background class. For example, the ra-
tio of non-face to face patterns in the tests in Ref. [1] was
about 50,000 to 1. Second, many of the background patterns
can be easily distinguished from the objects. Based on these

0031-3203/03/$30.00 ? 2003 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0031-3203(03)00062-1

mailto:heisele@ai.mit.edu
mailto:serre@ai.mit.edu
mailto:prentice@mit.edu
mailto:tp@ai.mit.edu

2008 B. Heisele et al. / Pattern Recognition 36 (2003) 2007–2017

two task-speci�c characteristics it is sensible to apply a hi-
erarchy of classi�ers. Fast classi�ers remove large parts of
the background on the bottom and middle levels of the hi-
erarchy and a more accurate but slower classi�er performs
the �nal detection on the top level. This idea is related to
the well known coarse-to-�ne template matching [2–4]. In
Ref. [5] hierarchical classi�cation is used to speed-up a face
detection system. A candidate selection neural network with
increased robustness against translation is added as a �rst
layer to an existing face detection neural network.

We present a method for building and training a hierarchy
of SVM classi�ers given a set of classi�ers which operate
at di8erent image resolutions. The iterative algorithm starts
with the topmost classi�er at the highest image resolution
and adds a new lower layer. At each iteration, the hierarchies
are retrained bottom up and a speed test is performed on a
validation set of non-face images to choose the hierarchy
with the least number of computations.

Another possibility of speeding-up classi�cation is to re-
duce the number of features by selecting a subset of relevant
features. Feature reduction is a more generic tool than the
above described hierarchical classi�cation and can be ap-
plied to any classi�cation problem. There are basically two
types of feature selection methods in the literature: �lter and
wrapper methods [6]. Filter methods are preprocessing steps
performed independently of the classi�cation algorithm or
its error criteria. Wrapper methods attempt to search through
the space of feature subsets using the criterion of the clas-
si�cation algorithm to select the optimal feature subset [7].
We present a new wrapper method to reduce the dimen-
sions of both input and feature space of a non-linear SVM.
For our �nal detection system we combine feature selec-
tion with hierarchical classi�cation by putting a non-linear
SVM with feature selection on top of the hierarchy of linear
SVMs. A similar idea of combining feature selection with
hierarchical classi�cation has been recently proposed in Ref.
[8] for frontal face detection. They use AdaBoost to train a
cascade of linear classi�ers and to select features from an
over complete set of Haar wavelet features. In contrast to
our approach, however, the complexity of the classi�ers in
the �nal hierarchy is only controlled by the number of fea-
tures and not by the class of decision functions (i.e. class of
kernel functions).

The outline of the paper is as follows: In Section 2 we give
a brief overview of SVM classi�cation. In Section 3 we de-
scribe how to build and train the hierarchical system. Sections
4 and 5 describe the feature selection methods for the input
and the feature space of the SVM, respectively. In Section
6 we present experimental results of the hierarchical system
with feature reduction. The paper is concluded in Section 7.

2. Background on support vector machines

2.1. Theory

An SVM [9] performs pattern recognition for a two-class
problem by determining the separating hyperplane that has

maximum distance to the closest points of the training set.
These closest points are called support vectors. To perform a
non-linear separation in the input space a non-linear transfor-
mation�(·) maps the data points x of the input spaceRn into
a high-dimensional space, called feature space Rp (p¿n).
The mapping �(·) is represented in the SVM classi�er by a
kernel function K(·; ·) which de�nes an inner product in Rp.
Given ‘ examples {(xi ; yi)}‘i=1, the decision function of the
SVM is linear in the feature space and can be written as

f(x) = w · �(x) + b=
‘∑

i=1

�0i yiK(xi ; x) + b: (1)

The optimal hyperplane is the one with the maximal dis-
tance in space Rp to the closest points �(xi) of the training
data. Determining that hyperplane leads to maximizing the
following functional with respect to �:

W 2(�) = 2
‘∑

i=1

�i −
‘∑

i; j=1

�i�jyiyjK(xi ; xj) (2)

under constraints
∑‘

i=1 �iyi=0 and C¿ �i¿ 0; i=1; : : : ; ‘.
An upper bound on the expected error probability EPerr of
an SVM classi�er is given by [9]

EPerr6
1
‘
E
(

R2

M 2

)
=

1
‘
E(R2W 2(�0)); (3)

where M = 1=W (�0) is the distance between the support
vectors and the separating hyperplane and R is the radius of
the smallest sphere including all points �(x1); : : : ; �(x‘) of
the training data in the feature space. In the following, we
will use this bound on the expected error probability to rank
and select features.

2.2. Computational issues

The only non-linear kernel investigated in this paper is
a second-degree polynomial kernel K(x; y) = (1 + x · y)2
which has been successfully applied to various object detec-
tion tasks [1,10]. Eq. (1) shows two ways of computing the
decision function. When using the kernel representation on
the right side of Eq. (1) the number of multiplications re-
quired to calculate the decision function for a second-degree
polynomial kernel is

Mk;poly2 = (n+ 2) · s; (4)

where n is the dimension of the input space and s is the
number of support vectors. This number is independent
of the dimensionality of the feature space. It depends
on the number of support vectors which is linear with
the size ‘ of the training data [9]. On the other hand,
the computation of the decision function in the feature
space is independent of the size of training samples,
it only depends on the dimensionality p of the feature
space. For the second-degree polynomial kernel the feature
space Rp has dimension p = (n + 3)n=2 and is given by
x∗ = (

√
2x1; : : : ;

√
2xn; x21 ; : : : ; x

2
n;
√
2x1x2; : : : ;

√
2xn−1xn).

B. Heisele et al. / Pattern Recognition 36 (2003) 2007–2017 2009

Thus the number of multiplications required for projecting
the input vector into the feature space and for computing the
decision function is

Mf;poly2 =
(n+ 1)n

2
+

(n+ 3)n
2

= (n+ 2) · n: (5)

From Eqs. (4) and (5) we see that the computation for
an SVM with second-degree polynomial is more eJciently
done in the feature space if the number of support vectors is
bigger than n. This was always the case in our experiments;
the number of support vectors was between 2 and 6 times
larger than n. That is why we investigated not only methods
for reducing the number of input features but also methods
for feature reduction in the feature space.

3. Hierarchy of classi ers

3.1. System overview

In most object detection problems the majority of ana-
lyzed image patches belong to the background class. Only
a small percentage of them look similar to objects and re-
quire a highly accurate classi�er to avoid false classi�ca-
tions. It is sensible to apply a hierarchy of classi�ers where
the complexity of the classi�er increases with each level. By
propagating only those patterns that were not classi�ed as

Fig. 1. Example of a hierarchical system with �ve levels: Starting with the classi�er at the lowest resolution patterns which have been
classi�ed as background are successively removed from the image going up the hierarchy. The �nal non-linear classi�er processes the image
at maximum resolution.

background, we quickly decrease the amount of data to pro-
cess. The main issues in designing such a classi�cation hier-
archy are how to choose the input features to the classi�ers,
how to select the number of levels, and �nally how to train
the classi�ers. We used pixel values as inputs to the classi-
�ers and reduced the number of features from top to bottom
by decreasing the image resolution, similar to coarse-to-�ne
matching approaches. An example of a hierarchical system
with �ve layers is shown in Fig. 1.

3.2. Building the hierarchy

In the following we describe an algorithm for automat-
ically determining the architecture of the hierarchy. We
begin with a set of classi�ers which operate at di8erent
resolutions and are each trained over the entire training set.
In our experiments the resolution of the linear SVM classi-
�ers ranged from 3×3 to 19×19. Given this set, the goal is
to �nd the best hierarchy with respect to speed and recogni-
tion performance. The algorithm builds the hierarchy in an
iterative top-down fashion starting with the topmost classi-
�er and adding a new layer at each iteration. It consists of
three steps:

(a) Adding a new layer. We add a classi�er to the hier-
archy which operates at a lower resolution than the current
bottom classi�er. For example, if the current hierarchy con-
sists of a 19×19 and an 11×11 classi�er we add classi�ers

2010 B. Heisele et al. / Pattern Recognition 36 (2003) 2007–2017

Table 1
Number of negative training examples used for training in bottom-up training procedures

3× 3 4× 4 11× 11 19× 19

Bottom-up: 33,045 → 23,598 → 18,149 → 10,568

Fig. 2. ROC curves of the hierarchical system and the original system with a single second-degree polynomial SVM for the CMU set 1.

with resolutions ranging from 9×9 down to 3×3, resulting
in 7 new hierarchies.

(b) Retraining. We perform bottom-up training of the
new hierarchies. We train the bottom classi�er on the whole
training set and then shift its hyperplane such that a �xed
percentage of positive examples 1 is on one side. Then we
remove all negative examples which lie on the other side of
the hyperplane to generate a new training set for the classi�er
on the next higher level. This is continued for each layer till
we reach the top of the hierarchy.

(c) Speed test. We set the thresholds of all classi�ers in
the hierarchies such that a �xed percentage of the faces in the
training set 2 is correctly classi�ed. Then we perform a speed
test of the hierarchies on the validation set of non-faces and
choose the hierarchy with the least number of computations.

The iterative process is continued until the lowest resolu-
tion is reached or adding a new layer does not increase the
speed of the system.

In our experiments we used a set of linear SVM classi-
�ers with resolutions ranging from 3 × 3 to 19 × 19 and
a non-linear SVM at resolution 19× 19 which was chosen
to be our top level classi�er. The non-linear SVM was not
included into the bottom-up learning procedure described
above. For a realtime system this computationally expen-
sive classi�er can only be applied to a very small percentage
of the input patterns. Since our bottom-up training method

1 Was set to 99% in the experiments.
2 Was set to 99% in the experiments.

reMects the runtime data Mow, the few training examples that
remain would not have been suJcient to train an accurate
classi�er. The training set for the linear classi�ers consisted
of 9662 face images and 33,045 non-face images at reso-
lution 19 × 19. The validation set consisted of 73,089 ran-
domly collected non-face images at resolution 19× 19. We
applied histogram equalization as proposed in Ref. [11] to
decrease the variations caused by changes in illumination.
To train the classi�ers at lower resolutions we downscaled
the training images to the proper size. Applying the above
described training procedure resulted in a �ve level hierar-
chy with the 19× 19 non-linear SVM on top, followed by a
19× 19; 11× 11; 4× 4, and �nally 3× 3 linear SVM clas-
si�er. The number of examples removed in the bottom-up
training procedure for the �nal hierarchy is given in Table 1.

As mentioned before, the topmost classi�er was trained
independently. We used the same training set (2429 faces
and 4548 non-face patterns) as in Ref. [1] to allow for com-
parisons with the results reported there. In Fig. 2 we show
the ROC curves of the single second-degree polynomial
classi�er [1] and our hierarchical system on the CMU set
1 3 . We selected the thresholds of the hierarchical classi-
�ers in layers one to four according to the individual ROC

3 This set [12] consists of 118 images including 479 faces. In our
experiments searching over multiple scales and locations resulted
in processing of about 57,000,000 19× 19 patterns.

B. Heisele et al. / Pattern Recognition 36 (2003) 2007–2017 2011

Fig. 3. Data Mow and computing time for the hierarchical classi�er tested on the CMU set 1.

curves on the training set 4 . The hierarchy performs better
than the single classi�er for recognition rates below 75%.
Above that, the single SVM classi�er is superior, indicating
that some of the diJcult face patterns in the test set do not
reach the last layer of the hierarchy. Fig. 3 shows the data
Mow through the hierarchy and the time spent in each layer.
The hierarchical system is about 260 times faster than the
system with the single second-degree polynomial SVM.

In layers one to four most of the computation time
(∼ 90%) is used for feature extraction. Further optimizing
the classi�ers would not lead to a signi�cantly faster sys-
tem. In the last layer about 95% of the computing time is
spent on the classi�cation leaving much room for speed-ups
using feature reduction methods. In the following sections
we explore methods for feature reduction and apply them
to the non-linear SVM at the top level of the hierarchy.

4. Dimension reduction in the input space

4.1. Ranking features in the input space

In Ref. [13] a gradient descent method is proposed to
rank the input features by minimizing the bound of the ex-
pectation of the leave-one-out error of the classi�er. The
algorithm showed superior performance compared to other
feature selection methods (�lter methods based on Fisher
score, Pearson correlation coeJcients and Kolmogorov–
Smirnov test) for various classi�cation tasks (face detection,
person detection, cancer morphology classi�cation). The ba-
sic idea is to re-scale the n-dimensional input space by a
n× n diagonal matrix � such that R2=M 2 is minimized. The
new mapping function is then ��(x)=�(� ·x) and the ker-
nel function is K�(x; y) = K(� · x; � · y) = (��(x) ·��(y)).
The decision function given in Eq. (1) becomes

f(x; �) = w · ��(x) + b=
‘∑

i=1

�0i yiK�(xi ; x) + b: (6)

4 We selected the point on the ROC curve with 97% recognition
rate.

The maximization problem of Eq. (2) is now given by

W 2(�; �) = max
�

‘∑
i=1

�i − 1
2

‘∑
i; j=1

�i�jyiyjK�(xi ; xj) (7)

subject to constraints
∑‘

i=1 �iyi = 0 and C¿ �i¿ 0; i =
1; : : : ; ‘. The radius around the data is computed by solving
the following maximization problem:

R2(�; �) = max
�

∑
i

�iK�(xi ; xi)−
∑
i; j

�i�jK�(xi ; xj) (8)

subject to
∑

i �i = 1; �i¿ 0; i = 1; : : : ; ‘.
We solve for �; �, and � using an iterative procedure:

We initialize � as a vector of ones and then solve Eqs. (7)
and (8) for the margin and radius, respectively. Using the
values for � and � and the bound in Eq. (3) we compute
� by minimizing W 2(�; �)R2(�; �) using a gradient descent
procedure. We then start a new iteration of the algorithm
using the � of the current iteration as initialization.

We applied the ranking method to 283 gray features gen-
erated by preprocessing 19×19 image patterns as described
in Ref. [11]. Additionally we performed tests with features
obtained by projecting the data points into the 283 dimen-
sional eigenvector space. The Principal Component Analy-
sis (PCA) was computed on the combination of the positive
and negative training sets. We computed one iteration of the
gradient descent algorithm and performed tests for 60, 80
and 100 ranked features. The ROC curves for second-degree
polynomial SVMs are shown in Fig. 4.

In experiments with 100 features there was no di8erence
between gray and PCA features. For 80 and 60 features,
however, the PCA gray features were superior. For this rea-
son we work exclusively with PCA gray features in the fol-
lowing section.

4.2. Selecting features in the input space

In Section 4.1 we ranked the features according to their
scaling factors �i. Now the problem is to determine a sub-
set of the ranked features (x1; x2; : : : ; xn). This problem can
be formulated as �nding the optimal subset of ranked fea-
tures (x1; x2; : : : ; xn∗) among the n possible subsets, where

2012 B. Heisele et al. / Pattern Recognition 36 (2003) 2007–2017

(a) (b)

Fig. 4. ROC curves for (a) gray features and (b) PCA gray features with the 60, 80 and 100 ranked features.

Fig. 5. Approximation of estimated bound on the expected error versus number of principal components. The values on the y-axis are not
normalized by the number of training samples.

n∗ is the number of selected features. As a measure of the
classi�cation performance of an SVM for a given subset of
ranked features we again use the bound on the expected er-
ror probability:

EPerr6
1
‘
E
(

R2

M 2

)
: (9)

To simplify the computation of our algorithm and to avoid
solving a quadratic optimization problem in order to com-
pute the radius R, we approximated 5 R2 by 2p where p is
the dimension of the feature space Rp. For a second-degree
polynomial kernel of type (1 + x · y)2 we get
EPerr6

1
‘
2pE(W 2(�0))6

1
‘
n∗(n∗ + 3)E(W 2(�0)); (10)

5 We previously normalized all the data in Rn to be in a range
between 0 and 1. As a result the points lay within a p-dimensional
cube of length

√
2 in Rp and the smallest sphere including all the

data points is upper bound by
√
2p.

where n∗ is the number of selected features 6 . The estimated
bound on the expected error is shown in Fig. 5. We had no
training error for more than 22 selected features. The bound
drops over the �rst 30 features, stays about the same be-
tween 30 and 60 features, and then increases steadily. This
bound is considered to be a loose bound on the expected
error. To check if it is of practical use for selecting the
number of features we performed tests on the CMU set 1.
In Fig. 6 we compare the ROC curves obtained for di8erent
numbers of selected features. The results show that using
more than 60 features does not improve the performance
of the system. This observation coincides with the run of
the curve in Fig. 5. However, the error on the test set does
not change signi�cantly for more than 70 features although

6 For a second-degree polynomial SVM the dimension of the
feature space is p = n∗(n∗ + 3)=2.

B. Heisele et al. / Pattern Recognition 36 (2003) 2007–2017 2013

Fig. 6. ROC curves for di8erent numbers of PCA gray features.

the estimated bound on the expected error shown in Fig. 5
increases. An explanation for this could be that the bound
gets looser with increasing number of features because of
our approximation of R by the dimensionality of the feature
space.

5. Feature reduction in the feature space

In the previous Section we described how to reduce the
number of features in the input space. Now we consider the
problem of reducing the number of features in the feature
space. We use a new method based on the contribution of
the features from the feature space to the decision function
f(x) of the SVM.

f(x) = w · �(x) + b=
‘∑

i=1

�0i yiK(xi ; x) + b (11)

with w = (w1; : : : ; wp). For a second-degree polyno-
mial kernel with K(x; y) = (1 + x · y)2, the feature
space Rp with dimension p = (n + 3)n=2 is given by
x∗ = (

√
2x1; : : : ;

√
2xn; x21 ; : : : ; x

2
n;
√
2x1x2; : : : ;

√
2xn−1xn).

The contribution of a feature x∗k to the decision function in
Eq. (11) depends on wk . A straightforward way to order
the features is by ranking |wk |. Alternatively, we weighted
w by the support vectors to account for di8erent distribu-
tions of the features in the training data. The features were
ordered by ranking |wk

∑
i yix∗i; k |, where x∗i; k denotes the

kth component of support vector i in feature space Rp. For
both methods we �rst trained an SVM with a second-degree
polynomial kernel on 60 PCA gray features of the input
space which corresponds to 1891 features in Rp. We then

calculated

E(S) =
1
s

∑
i

|f(xi)− fS(xi)| (12)

for all s Support Vectors, where fS(x) is the decision func-
tion using the S �rst features according to their ranking.
Note that in contrast to the previously described selection of
features in the input space this method does not require the
retraining of SVMs for di8erent feature sets. The results in
Fig. 7 show that ranking by the weighted components of w
lead to a faster convergence of E(S) from Eq. (12) towards
0. Fig. 8 shows the ROC curves for 500 and 1000 features.
As a reference we added the ROC curve for a second-degree
SVM trained on the original 283 gray features. This corre-
sponds to (283 + 3)283=2 = 40; 469 components in the fea-
ture space. By combining both methods of feature reduction
we could reduce the dimensionality by a factor of about 40
without loss in performance.

6. Experiments

In the �nal experiments we combined feature reduction
with hierarchical classi�cation. In Fig. 9 we compare the
ROC curves of the hierarchical system and the single SVM
classi�er with second-degree polynomial kernel. The hierar-
chy performs better than the single classi�er up to a recog-
nition rate of 80%. For higher recognition rates, the single
SVM classi�er performs slightly better because some of the
more diJcult face patterns in the test set do not reach the
last layer of the hierarchy. The average computing time on
a Pentium IV with 1:8 GHz for an image of size 320× 240
is given in Table 2. We speed-up the detection by a factor

2014 B. Heisele et al. / Pattern Recognition 36 (2003) 2007–2017

Fig. 7. Classifying support vectors with a reduced number of features. The x-axis shows the number of features, the y-axis is the mean
absolute di8erence between the output of the SVM using all features and the same SVM using the S �rst features only. The features were
ranked according to the components and the weighted components of the normal vector of the separating hyperplane.

Training: 2,429 faces / 4,548 non-faces.
Test: CMU set 1 / 118 images / 479 faces / 56,774,966 windows.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006 0.000080.00007 0.00009 0.0001

False positives / number of windows

C
o

rr
ec

t

1000 features

500 features

40,469 features (all)

Fig. 8. ROC curves for di8erent dimension of the feature space.

of 335 compared to the original system achieving a process-
ing speed of 4 frames=s. The face detector proposed in Ref.
[8] is about 4 times faster at runtime. However, it requires
several weeks for training while our system can be trained
in a day.

In Fig. 10 we show the results for an example image
from CMU set 1. The original image is shown in Fig. 10(a),
Fig. 10(b)–(e) show the outputs of the SVM classi�ers at
levels two to �ve, respectively. Dark pixels represent high
output values of the SVM indicating the presence of a face,
white areas have been removed by previous classi�ers in the

hierarchy. In Fig. 10(f) we show the �nal detection results as
computed by the top level second-degree polynomial SVM
classi�er. Some more example images from CMU set 1 are
shown in Fig 11.

7. Conclusion and future work

In this paper we presented speed-up methods for a face
detection system based on hierarchical classi�cation and fea-
ture reduction. To quickly remove large background parts

B. Heisele et al. / Pattern Recognition 36 (2003) 2007–2017 2015

Fig. 9. ROC curves of the hierarchical system and the original system with a single second-degree polynomial SVM for the CMU set 1.

Table 2
Average computing time per 320× 240 image for various face detection systems. Each image was processed at �ve di8erent scales to detect
faces at resolutions between 30× 30 and 70× 70 pixels

System Time/image (ms) Speed-up factor

Single SVM 86,875 —
Single SVM with feature reduction 23,383 3.7
Hierarchy of SVMs 391 222.2
Hierarchy of SVMs with feature reduction 259 335.4

Fig. 10. Detections at each level of the hierarchy. (a) Original Image. (b–e) Outputs of layers two to �ve. Dark pixels represent high outputs
of the classi�er, white areas have been removed by previous layers. (f) Final detection result computed by layer six.

2016 B. Heisele et al. / Pattern Recognition 36 (2003) 2007–2017

Fig. 11. Face detection with the hierarchical system.

of an image we arranged �ve SVM classi�ers with in-
creasing computational complexity in a hierarchical struc-
ture. We proposed an iterative algorithm for automatically
building and training a hierarchical system of classi�ers.
To further speed-up the detection system we applied fea-
ture reduction to the non-linear SVM at the top level. This
was accomplished by ranking and then selecting PCA gray
features according to a classi�cation criterion that was de-
rived from learning theory. Applying these methods to face
detection, we removed 99% of the features without loss in
classi�cation performance. Experiments show that the com-
bination of feature selection and hierarchical classi�cation
results in a speed-up factor of 335 while maintaining clas-
si�cation accuracy. In the current system image preprocess-
ing and feature extraction account for 90% of the runtime.
In future work we will explore alternative feature extrac-
tion and preprocessing techniques to further speed-up the
detection.

8. Summary

We present speed-up methods for a face detection system
based on hierarchical classi�cation and feature reduction. To
quickly remove large background parts of an image we ar-
range �ve Support Vector Machine (SVM) classi�ers with
increasing computational complexity in a hierarchical struc-
ture. We propose an iterative algorithm for automatically
building and training a hierarchical system of classi�ers. To
further speed-up the detection system we apply feature re-
duction to the non-linear SVM at the top level. This is ac-
complished by ranking and then selecting PCA gray features
according to a classi�cation criterion that was derived from
learning theory. Applying these methods to face detection,
we remove 99% of the features without loss in classi�ca-
tion performance. Experiments show that the combination
of feature selection and hierarchical classi�cation results in
a speed-up factor of 335 while maintaining classi�cation
accuracy.

References

[1] B. Heisele, T. Poggio, M. Pontil, Face detection in still
gray images, A.I. Memo 1687, Center for Biological and
Computational Learning, MIT, Cambridge, MA, 2000.

[2] A. Rosenfeld, G.J. Vanderbrug, Coarse-�ne template
matching, IEEE Trans. Syst. Man Cybernet. 2 (1977)
104–107.

[3] P.J. Burt, Smart sensing within a pyramid vision machine,
Proc. IEEE 76 (8) (1988) 1006–1015.

[4] J. Edwards, H. Murase, Appearance matching of occluded
objects using coarse-to-�ne adaptive masks, Proc. IEEE
Comput. Vision Pattern Recognition, Rierto Rico, 1997, pp.
533–539.

[5] H.A. Rowley, Neural network-based face detection, Ph.D.
Thesis, CMU, School of Computer Science, Pittsburgh,
1999.

[6] A. Blum, P. Langley, Selection of relevant features and
examples in machine learning, Artif. Intell. 10 (1997)
245–271.

[7] R. Kohavi, Wrappers for feature subset selection, Arti�cial
Intelligence (special issue on relevance) 97 (1995)
273–324.

[8] P. Viola, M. Jones, Robust real-time face detection, in:
Proceedings of Eighth International Conference on Computer
Vision, Vancouver, Vol. 20(11), 2001, pp. 1254–1259.

[9] V. Vapnik, Statistical Learning Theory, Wiley, New York,
1998.

[10] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, T. Poggio,
Pedestrian detection using wavelet templates, in: IEEE
Conference on Computer Vision and Pattern Recognition, San
Juan, 1997, pp. 193–199.

[11] K.-K. Sung, Learning and example selection for object and
pattern recognition, Ph.D. Thesis, MIT, Arti�cial Intelligence
Laboratory and Center for Biological and Computational
Learning, Cambridge, MA, 1996.

[12] H.A. Rowley, S. Baluja, T. Kanade, Rotation invariant neural
network-based face detection, Computer Science Technical
Report CMU-CS-97-201, CMU, Pittsburgh, 1997.

[13] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio,
V. Vapnik, Feature selection for support vector machines,
in: T.K. Leen, T.G. Diettrich, V. Tresp (Eds.), Advances in
Neural Information Processing Systems, Vol. 13, MIT Press,
Cambridge, MA, 2001, pp. 668–674.

B. Heisele et al. / Pattern Recognition 36 (2003) 2007–2017 2017

About the Author—BERND HEISELE received the M.Sc. and Ph.D. degrees in electrical engineering from the University of Stuttgart,
Stuttgart, Germany, in 1993 and 1998, respectively. In 1999 he was awarded a postdoctoral fellowship by the DFG in Germany. From
1999 to 2001, he worked as a postdoctoral researcher at the Center for Biological and Computational Learning, Massachusetts Institute of
Technology, Cambridge. He subsequently joined Honda and is currently heading the Honda Research Laboratory in Cambridge where he is
conducting research in computer vision. His research interests are learning-based object detection/recognition and motion analysis in image
sequences.

About the Author—THOMAS SERRE received the M.Sc. degree in image processing from the Ecole Nationale SupQerieure des
TQelQecommunications de Bretagne, Brest, France in 2000 and the M.Sc. degree in signal processing from the University of Rennes, Rennes,
France the same year. From 2000 to 2001, he worked as a visiting scientist at the Center for Biological and Computational Learning (CBCL),
Massachusetts Institute of Technology (MIT), Cambridge. He subsequently started a Ph.D. program at CBCL in the department of Brain
and Cognitive Sciences at MIT. His research interests include biological and computational object recognition.

About the Author—SAM PRENTICE is pursuing the B.S. degree in electrical engineering and computer science from the Massachusetts
Institute of Technology (MIT), Cambridge. From 2000 to 2002 he worked as an undergraduate researcher at the Center for Biological
and Computational Learning, MIT, and the Honda Research Laboratory, Boston, studying speed-up methods for object categorization with
emphasis on face detection. He will complete his undergraduate studies in 2004.

About the Author—TOMASO POGGIO received the doctorate degree in theoretical physics from the University of Genoa in 1970. From
1971 to 1981, he held a tenured research position at the Max Planck Institute, after which he became a professor at Massachusetts Institute
of Technology (MIT). Currently, he is Professor in the Department of Brain and Cognitive Sciences at MIT and a member of the Arti�cial
Intelligence Laboratory. He is doing research in computational learning and vision at the MIT Center for Biological and Computational
Learning, of which he is a co-director.

	Hierarchical classification and feature reduction for fast face detection with support vector machines
	Introduction
	Background on support vector machines
	Theory
	Computational issues

	Hierarchy of classifiers
	System overview
	Building the hierarchy

	Dimension reduction in the input space
	Ranking features in the input space
	Selecting features in the input space

	Feature reduction in the feature space
	Experiments
	Conclusion and future work
	Summary
	References

