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ABSTRACT

This paper presents our solution for enabling a quadroticdpeer to autonomously navigate unstructured and unknow
indoor environments. We compare two sensor suites, spabifeclaser rangefinder and a stereo camera. Laser and camera
sensors are both well-suited for recovering the helicéptetative motion and velocity. Because they use differs

from the environment, each sensor has its own set of advesitag limitations that are complimentary to the other senso
Our eventual goal is to integrate both sensors on-boardgeshelicopter platform, leading to the development of an
autonomous helicopter system that is robust to generimindovironmental conditions. In this paper, we presentltesu

in this direction, describing the key components for autnaos navigation using either of the two sensors separately.
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1. INTRODUCTION

Micro Aerial Vehicles (MAVs) are small, light-weight andlagively quiet flying machines that can accomplish many mil-
itary and civilian tasks, including surveillance operagpweather observation, and disaster relief coordinationecent
years, there has been increased interest within the réseamumunity in developing MAVs that can operate autonompousl
in indoor environments;® thereby enabling an even wider range of robotic tasks to beraglished. Indoor environ-
ments and many parts of the urban canyon do not have accegtetoad positioning systems such as GPS. Therefore,
robotic agents operating within such environments mugtoel exteroceptive sensors such as laser rangefindersssonar
or cameras to estimate their position. Such sensors haeessfally been employed on-board unmanned ground and un-
derwater vehicles using simultaneous localization andpimgp(SLAM) algorithms. These algorithms enable the vedscl

to build maps of the environment while simultaneously ushymaps to estimate their position. Unfortunately, attsmp
to achieve the same results with MAVs have not been as sdateadse to their fast, unstable dynamics, as well as their
limited payloads for sensing and computation.

In addition, although exteroceptive sensors such as |lasgyefinders and camera sensors are popular options for
enabling MAVs to operate indoors, each sensor has uniquadieaistics that lead to effectiveness only in certain-env
ronments. Laser rangefinders are effective when the emvigah has unique physical structure or shape. Unfortunately
laser rangefinders with limited range can fail around homegas building structures such as long corridors. In amfuiti
since most existing sensors only generate 2D slices of ittt environments, laser-equipped MAVs are unable pegcei
the extent of obstacles outside the sensing plane, limitieg ability to reason about flying over obstacles instedd o
around them. In contrast, camera sensors are particulsefglfor providing rich 3D information; however, they recu
the environment to contain unique visual features basecdhdahie appearance. In addition, camera sensors havedimit
angular field-of-views and are computationally intensivevork with.

Different exteroceptive sensors are therefore betteedditr autonomous MAV operations under different environ-
mental conditions. However, since the laser scanner anéreemely on different environmental features, they wiltdha
complimentary failure modes. As aresult, integrating tsathsors onto a single MAV platform, we will enable autonomou
navigation in a wide range of generic, unstructured indeeirenments, such as those shown in Figure 1(b).
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(a) Laser-equipped Quadrotor helicopter (b) Autonomous flight (c) Camera-equipped Quadrotor

Figure 1. Our laser-equipped quadrotor helicopter is shown in Fig $@)sing and computation components include a Hokuyo Laser
Rangefinder (1), laser-deflecting mirrors for altitude (2), a monoaadeera (3), an IMU (4), a Gumstix processor (5), and the heli-

copter’s internal processor (6). Fig 1(b) demonstrates autonofiglisin unstructured indoor environments. Our quadrotor helicopter

equipped with a stereo camera rig is shown in Fig|1(c).

This paper presents our initial results towards developmgtegrated helicopter system capable of indoor flightgusi
both laser-rangefinder and camera sensors on-board. Wenptte® separate sensing solutions, a laser-rangefinder and
a stereo camera system. We show that each is independepdpleaof autonomous navigation in unstructured indoor
environments. Figure 1(a) shows our laser-equipped qt@dnelicopter, and our stereo-camera quadrotor is shown in
Figure 1(c). The baseline helicopter platforms were byilflscending Technologi€sThe system is enabled by a multi-
level sensor processing system architecture that is degigot only to meet the requirements for autonomous contiel a
navigation of an indoor helicopter, but also to be indepehadé the sensing modality used. Indeed, our experimental
results on both helicopter platforms demonstrate ourtghiti reuse the system architecture with either, or boths@en
on-board.

The key contributions of this paper are:

1. To summarize previously reported results on fully autnoos quadrotors that only rely on on-board sensors for

stable control, without requiring prior maps of the envirant.

2. A stereo camera visual odometry algorithm that allowsesteamera images to be processed in real-time, providing

accurate velocity and relative position information.

3. A multi-level sensor processing hierarchy and systemitgcture that is independent of the on-board exterooceptiv

sensor used for obtaining position estimates.

After discussing some of the key challenges for performimg@omous navigation and SLAM on MAVsS, we provide
an overview of the systems that we have developed, as weleswerarching system architecture that enables easy
interchanging of the exteroceptive sensors. We then desthie high-speed laser scan-matching and visual odometry
algorithms for laser and stereo camera sensors respgcbeébre highlighting the remaining algorithms that arplegable
to both sensors. Finally, we present results of both platfonavigating autonomously in different unstructured ordo
environments.

2. KEY CHALLENGESFOR AUTONOMOUSMAVS

Combining wheel odometry with exteroceptive sensors irodabilistic SLAM framework has proven very successful for
ground roboticS; many algorithms for accurate localization of ground robiotgrge-scale environments exist. Unfortu-
nately, performing the same tasks on a MAV requires more thannting equivalent sensors onto helicopters and using
the existing SLAM algorithms. Flying robots behave veryfefiént from ground robots, and therefore, the requirements
and assumptions that can be made for flying robots must be#lypleasoned about and managed. We have reported this
analysis previously but we summarize it here.

Limited sensing payloadMAVs must generate sufficient vertical thrust to remain airte, limiting the available
payload. This weight limitation forces indoor air robotsrédy on lightweight Hokuyo laser scanners, micro cameras
and lower-quality MEMS-based IMUs, all of which have lindteanges, fields-of-view and are noisier compared to their
ground equivalents.



Indirect odometry:Unlike ground vehicles, air vehicles are unable to measdoenetry directly, which most SLAM
algorithms require to initialize their estimate of the \@ais motion between time steps. Although odometry can be
obtained by double-integrating accelerations, lightlielEMs IMUs are often subject to time-varying biases thatie
in high drift rates.

Limited computation on-boardDespite advances within the community, SLAM algorithmstoare to be computa-
tionally demanding even for powerful desktop computerd,anme therefore not implementable on today’s small embedded
computer systems that can be mounted on-board indoor MAVsileVitie computation can be offloaded to a powerful
ground-station by transmitting sensor data wirelesslynmaonication bandwidth then becomes a potential bottleneck
especially for camera data.

Fast dynamicsThe helicopter’s fast dynamics also result in a host of sepgstimation, control and planning impli-
cations for the vehicle. Filtering techniques, such asahsilfyy of Kalman Filters, are often used to obtain bettemeates
of the true vehicle state from noisy measurements. Smapthmdata generates a cleaner signal but adds delay to the sta
estimates. While delays generally have insignificant edfeatvehicles with slow dynamics, these effects are amplified
the MAV’s fast dynamics, and cannot be ignored.

Need to estimate velocityn addition, the helicopter’s under-damped dynamics intpht proportional control tech-
nigues are insufficient to stabilize the vehicle; we mustdf@e estimate the vehicle’s velocities, whereas mostgLA
algorithms completely ignore the velocity. While the hefiter can accurately hover using PD-control, it oscillatesta-
bly with only a P-control. This emphasizes the importancelséining accurate and timely state estimates of bothipasit
and velocity states.

Constant motionUnlike ground vehicles, a MAV cannot simply stop and re-sast when its state estimates have large
uncertainties. Instead, the vehicle is likely to oscillategrading the sensor measurements further. Theref@eniply
algorithms for air vehicles must not only be biased towarathg with smooth motions, but must also explicitly reason
about uncertainty in path planning, as demonstrated by ldE%et

3. SYSTEM OVERVIEW

We addressed the problem of autonomous indoor flight as pijnassoftware challenge. To that end, we used off-thefshel
hardware throughout the system. Our quadrotor helicopééfopms were designed by Ascending Technologies GmBH,
and are able to carry rough®p0g of payload.

For the laser-equipped quadrotor (Figure 1(a)), we outfittevith a Gumstix microcomputer that provides a wifi link
between the vehicle and a ground control station, and awigight Hokuyo laser rangefinder for localization. The laser
rangefinder provides 270° field-of-view at40H z, up to an effective range &0m. We deflect some of the laser beams
downwards to estimate height above the ground plane.

Similarly, we outfitted another quadrotor helicopter (Figd(c)) with a stereo camera rig, using cameras from uEye.
These cameras have a resolution762 x 480px (WVGA), and are placed facing forward, with a baseline of 35 cm
separation, and lenses wiith°® FOV. By placing them as far apart from each other as possi@dncrease the resolution
available for stereo triangulation. Because of the addlitidbandwidth and computational power required to prodess t
stereo camera images, a Lippert CoreExpress 1.6Ghz Inbeh Abard was used to transmit the stereo camera images to
the ground control station at 10Hz, as well as to act as thea@dmk with the quadrotor helicopter. Computation was
done off-board on a 2.4Ghz Core2Duo laptop.

On its own, the AscTec Hummingbird helicopter is equippethwittitude stabilization, using an on-board IMU and
processor to stabilize the helicopter’s pitch and tdfhis dynamic model has been reported previously but is suimath
here. The on-board controller takes 4 inputss [u,, u,, ut, ug], which denote the desired pitch and roll angles, overall
thrust and yaw velocities. The on-board controller alloRestielicopter’s dynamics to be approximated with simplezdi
equations:

i = kpup, + b, 5 = kyug + by
i’ = kpup + by 0 = koug + bo 1)

wherei® andjj® are the resultant accelerations in body coordinates, whigadb,, are model parameters that are functions
of the underlying physical system. We learn these paraméteflying inside a Vicon Motion capture system and fitting
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Figure 2. Schematic of our hierarchical sensing, control and plarsyisigm. At the base level, the onboard IMU and controller (green)
creates a tight feedback loop to stabilize the helicopter’s pitch and roll. &k@wmodules make up the real-time sensing and control
loop that stabilizes the helicopter’s pose at the local level and avoidsctésst&inally, the red modules provide the high-level mapping
and planning functionalities.

parameters to the data using a least-squares optimizatging MatlatiR)’s linear quadratic regulator (LQR) toolbox, we
then find feedback controller gains for the dynamics mod&dnation 1.

Our system employs a three level sensing hierarchy, as showigure/ 2. At the base level, the onboard IMU and
processor create a very tight feedback loop to stabilizéndtieopter’s pitch and roll, operating &000H z. At the next
level, the realtime odometry algorithm (laser or visualjreates the vehicle’s position relative to the local enmiment,
while an Extended Kalman Filter (EKF) combines these eg@swaith the IMU outputs to provide accurate, high frequency
state estimates. These estimates enable the LQR contmhewer the helicopter stably in small, local environmeits
addition, a simple obstacle avoidance routine ensureshbdtelicopter maintains a minimum distance from obstacles

Small errors made by the odometry algorithms will get preped forward, resulting in inaccurate state estimates in
large environments. To mitigate this, we introduce a thedsing level, where a SLAM algorithm uses both the EKF
state estimates and incoming sensor measurements to arglaigal map, ensuring globally consistent state estintates
performing loop closures. Since SLAM algorithms today ai@pable of processing the incoming data fast enough, this
module is not part of the real-time feedback control loofhatdecond level. Instead, it provides delayed correctigmeds
to the EKF, ensuring that our real-time state estimatesiregiabally consistent.

4. SENSOR-DEPENDENT STATE-ESTIMATION ALGORITHMS

As discussed in Section 2, we cannot directly measure the 'Maédometry; instead, we need to estimate the helicopter’s
relative motion from sensor measurements. This sectiotrithes the algorithms that are specific to each of the twaexte
ceptive sensors used on our helicopter platforms. Bottridthgos output estimates of the helicopter’s relative posifrom

the latest sensor measurement, as well as the relativéqmssitf the obstacle features in the helicopter’s localremment.

4.1 Laser: High-Speed Laser Scan-Matching Algorithm

For the quadrotor helicopter equipped with the Hokuyo lasagefinder, we estimate the vehicle’s motion by aligning
consecutive scans from the laser rangefinder. We developer,dast laser scan-matching algorithm that builds a high-
resolution local map based on the past several scans,r@igrioming scans to this map at th@/ ~ scan rate. This scan-
matching algorithm is a version of the algorithm by Olsonlgt ahich we have modified to allow for high resolution, yet
realtime operation. The algorithm generates a local casgi;finom which the optimal rigid body transform that maxiesgz

a given reward function can be found.

To find the best rigid body transform to align a new laser seanscore candidate poses based on how well they align
to past scans. Unfortunately, the laser scanners provitigdinal point measurements, and because successivesitins
in general not measure the same points in the environmdampting to correspond points directly can produce poor
results. However, if we know thehapeof the environment, we can easily determine whether a poedsurement is
consistent with that shape. We model our environment as afgatlyline contours, and these contours are extracted
using an algorithm that iteratively connects the endpahtsandidate contours until no more endpoints satisfy tiverg
constraints. With the set of contours, we maintain a cogt-that represents the approximate log-likelihood of a laser
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Figure 3. Basic scheme of the stereo visual odometry algorithm: 1. féedétection; 2. Tracking froreft to right frame and depth
reconstruction; 3. Tracking from previous to current frame; 4. Smhil&.; 5. Frame to frame motion estimation.

reading at any given location. We create our cost-map froat afg: previous scans, where new scans are added when an
incoming scan has insufficient overlap with the existingsdetcans used to create the cost-map.

For each incoming scan, we compute the best rigid body wamsfz, y, 0) relative to our current map. Many scan-
matching algorithms use gradient descent techniques imiapt these values, but these methods are subject to local
optima. Instead, we perform an exhaustive search over ti@fypossible poses, which can be done fast enough by setting
up the problem such that optimized image addition primitigan be used to process blocks of the grid simultaneously. In
addition to improved robustness, generating the complesesurface allows us to easily quantify the uncertaintpwf
match, by looking at the shape of the cost surface around #xénmam. As with the dynamics model, more details can be
found in previous publications.

4.2 Stereo: Visual Odometry Algorithm

For our quadrotor helicopter equipped with a stereo-camgrave developed a visual odometry algorithm that funaidn
as the stereo-camera equivalent of the laser scan-mat&lgiogthm. In general, a single camera is sufficient fomaating
relative motion of the vehicle, by using the feature coroegfences of consecutive image frames, but only up to anmamnpit
scale factort? If enough feature correspondences (at least 7-8) are himithe fundamental matrix describing the motion
of the camera can be computed. Decomposing this matrixg/taklrelative rotation and translation motion of the camera
and while the rotation can be uniquely computed with resfrettis scalar factor, we can only compute the translational
direction of the motion, and not its magnitude.

To resolve this scale ambiguity, either scene knowledgedsssary, or two successive views must have distinct vantag
points and a sufficiently large baseline between them, méietause motion in the direction of the camera’s opticad axi
cannot be computed accurately. Given that scene knowlemtgenknown environments is typically unavailable, and
MAVs often move slowly and forward with the camera facingnft;cautonomous navigation for MAVs has proven to be
very challenging (refer to Section 7). This motivates owich for using a stereo camera to reconstruct the 3D-pagitio
environmental features accurately. The stereo-rig not enforces a baseline distance between the two cameradsbut a
allows us to reconstruct the feature positions in a singhesitep, rather than using consecutive frames from a moarocul
camera. In this sectioteft andright denote the images taken from the left and right stereo camespectively, as seen
from the helicopter’s frame of reference.

Our approach for stereo visual odometry is outlined in figRird-eatures are first detected in {ké& frame from the
previous time-step (1). These features are then found irpteeiousright frame (2), enabling us to reconstruct their
positions in 3D-space using triangulation. This “sparnsee®” method not only avoids unnecessary computation atihde
and depth error-handling in areas that lack features, Botaloids image rectification as long as the camera’s ogtical
are approximately parallel. Successfully reconstruceadures are then tracked from the previ@fsto the currenteft
frame (3), and a similar reconstruction step is performedHfe current frames (4). This process results in two “cléuds
features that relate the previous and current views. Wehkeltorrespondences, the quadrotor’s relative motior éhdlf
can be computed in a least-squares sense with a closed fartiosdb).



4.2.1 Feature detection

Although SIFT! and SURRE? features are popular choices for visual feature detectorsputing them fast for our pur-
poses on modern hardware remains computationally infieagjiven the control requirements of our quadrotors diseds
in Section 2. Instead, we adopted the FASfeature detector. In order to avoid detecting many disfieatures that are
in close geometric proximity to each other, we down-sanmipéeitnage before running the feature-detector, and tramsfor
these feature locations to the full size image after deiactUnfortunately, many edge features are still detecteBAST,
leading to inaccurate feature-tracking results. We theeafefine these corner estimates using the Harris corsponsé*

for each feature. A Harris parameter64 eliminates most of the edge features in the feature set. $d@ithe FAST
detector beforehand allows us to compute the more compogdly intensive image-gradients and corner-responsas us
by the Harris detector only for the areas detected by the Féedd@ctor — a small subset of the entire image.

Unfortunately, our current feature set might still contfatures that are located in close proximity with otherdesd;
this incurs unnecessary computational cost and makegéetticking error-prone, since a large number of featgsslts
in a greater prevalence of local maxima. We therefore prumdeature set by computing the distance between all feature
pairs, eliminating the feature with the smaller score if ditance is less than a specified threshold. While this psoces
theoretically has a complexity ab(n?), the computation in practice is much faster because thertesiare already
presorted by the FAST feature detector. These steps neeth84r about 500 feature candidates and leave around
150 valid features. After pruning out all the undesired dead, the remaining feature locations are refined to subpixe
accuracy based on image gradients; this process requiggtditional 6 ms.

To track the features between tlaét andright frames, as well as from the previous to the current framesjseehe
pyramidal implementation of the KLT optical flow tracker dshle in OpenC\A® This implementation allows us to track
features robustly over large baselines and is robust torfeepce of motion blur. Compared to template matching nastho
such as SAD, SSD and NCC, this algorithm finds feature cooreggnces with subpixel accuracy. For correspondences
between thédeft andright frames, error-checking is done at this stage by evaluatagpipolar constraimTTighthleft =
0 + ¢, wherez denotes the feature location in the respective frames the fundamental matrix pre-computed from the
extrinsic calibration of the stereo rig, ands a pre-defined amount of acceptable noise.

4.2.2 Frameto frame motion estimation

Once we have the sets of corresponding image features, dheg@ojected to a 3D-space by triangulation between the
left and right cameras. Then, with these two sets of cormdipg 3D-feature locations, we can estimate the relative
motion between the previous and current time-steps usiagltsed form method proposed by Umeyaihahis method
computes rotation and translation separately, finding d@mai solution in a least squares sense. Unfortunatelgtlea
square methods are sensitive to outliers, and we thereferé&Jmeyama’s method to generate a hypothesis for the robust
MSAC’ estimator, a refinement of the popular RANSAC method. Aftatifig a hypothesis with the maximum inlier set,
the solution is recomputed using all inliers.

This method gives the transformation of two sets of pointk waspect to a fixed coordinate system. In our application,
the set of points is fixed while the camera or MAV coordinatstesn is moving. The rotatioA R and translatiom\t of
the helicopter to it's previous body frame are then givem\dy = R” andAt = —R”t, whereR andt denote the rotation
and translation which were derived from the method abovéndJsomogeneous transforms, the pose of the helicopter to
an initial pose Ty, is given by:

Tewrrent = To - ATt—n-i—l teeet ATt—l ' ATt = Tp'revious : ATt with T = |:R t:l

4.2.3 Nonlinear motion optimization

Similar to the laser scan-matching process, small measunesrrors will accumulate over time and result in highly
inaccurate position estimates over time, according to figu&l. Additionally, since the motion between frames tends
to be small, the velocity signal is highly susceptible toseoi However, because many of the visual features remain
visible across more than two consecutive frames, we camatgithe vehicle motion across several frames to obtain more
accurate estimates. This can be done using bundle adjustngsmown in Figuré 4), where the basic idea is to minimize
the following cost function:



Figure 4. Bundle adjustment incorporates feature correspondeneea window of consecutive frames.

C(X,L',Rj,tj) = ZZd(XU,P]Xl)Q with Pj = [KjRj Kjtj] (3)
i=0 j=0
whered(x;;, P;X;) is the re-projection error due to the projection of the 3Btfiee,X;, onto the camera’s image plane
using thej-th view, so as to obtain the 2D-point;;. Here,m andn are the number of 3D-features and views respectively,
while K is the intrinsic camera matrix, which is assumed to be consta

We are therefore seeking to find the optimal arrangement eficaiures and camera-motion parameters so as to min-
imize the sum of the squared re-projection errors. This lpralcan be solved using an iterative nonlinear least squares
methods, such as the technique proposed by Levenberg-gfaltqidere, normal equations with a Jacobidhftom the
re-projection function have to be solved. Although the daosttion appears simple, the problem has a huge parameter
space. We have a total 8in + 6n parameters to optimize — three parameters for each 3DrEeahd six parameters
for each view. In addition, in each Levenberg-Marquardp stg leastn re-projections have to be computed per view.
Computation in real-time therefore quickly becomes infdaswith such a large parameter space. Fortunatéljas a
sparse structure, since each 3D-feature can be considefegendent, and the projection.®f into =;; depends only on
the j-th view. This sparse-bundle-adjustment problem can bedalsing the generic package by Lourakis and Argyfos,
and we used this package for our application.

The standard bundle adjustment approach is susceptiblgliers in the data, and because it is an iterative technique
good initial estimates are needed for the algorithm to cayevguickly. We avoided both problems by using the robust
frame-to-frame MSAC motion estimates, as described ini@edt2.2, as well as their inlier sets of 3D features.

Running bundle adjustment over all frames would quicklydléa computational intractability. Instead, we pursued
a sliding-window approach, bundle-adjusting only a windofathe latestn frames. By using the adjustment obtained
from the old window as an initial estimate of the next bundigustment, we ensured that the problem is sufficiently-
constrained while reducing the uncertainties due to ndike. presence of good initial estimates also reduces the emumb
of optimization steps necessary. Performing bundle adlieist for 150 features using a window sizerof= 5 took
approximately 30-50ms.

Thus far, we have assumed that the feature correspondeecessary for bundle adjustment are known. These cor-
respondences could be found by chaining the matches framefta-frame; unfortunately, our optical-flow-tracking-ap
proach does not compute the descriptors in the current fraines tracking the relative motion between the previous and
current frames. Therefore, the Harris corner responseduh é&ature is re-computed and sorted as described in Bectio
[4.2.1. Given that the number of features diminishes overessive frames, new features are also added at every tjmeste
and when the new features are located close to old feathees]d ones are preferred.

4.3 EKF Data Fusion

Having obtained relative position estimates of both theiclehand environmental features from the individual sessor
these estimates can then be used in a sensor-independemmf@rstate estimation, control, map building and plagnin
We use an Extended Kalman Filter (EKF) to fuse the relativ@tjom estimatesz, y, z, §) of the vehicle with the accel-
eration readings from both the IMU and those predicted bycoutrol inputs. Using the open source KFilter library, we
estimate the position, velocity, and acceleration of thacle, as well as biases in both the IMU and control inputsy in
22-state vector. We perform the measurement updates asymalsly, since the wireless communication link adds vari-
able delays to the measurements, while the motion modeigti@ustep is performed on a fixed clock. As génye learn

the variance parameters by flying the helicopter in a VicoritMocapture system, which provides ground-truth values fo
comparing our state estimates against. We then run staclygatlient descent to find a set of variance parameters that
gives the best performance.



5. EXPERIMENTSAND RESULTS

We integrated the suite of technologies that were descabeste to perform autonomous navigation for both helicapter
in unstructured and unknown indoor environments. Videasunfsystem in action are available at:
http://groups.csail.mit.edu/rrg/videos.html
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Figure 5. (a) Comparison between the position estimated by the on-bgardsknsor with ground truth measurements from an external
camera array. (b) Comparison of the velocities during part of the toajec

We have reported analysis of the laser position estimatagqarsly, but we reproduce the analysis here for comparison
Figures 5(d) and 5(b) demonstrate the quality of our EKFestatimates using the laser range data. We compared the EKF
state estimates with ground-truth state estimates reddryléhe Vicon motion capture system, and found that the eséim
originating from the laser range scans match the grourtt-t:alues closely in both position and velocity. Throughtbietl
minute flight, the average distance between the two posititimates was less thabcm. The average velocity difference
was0.02m/s, with a standard deviation 68f025m/s. The vehicle was not given any prior information of itsiesnment
(i.e., no map).

In contrast, Figure 6 demonstrates the quality of our EKEestatimates using the camera range data. We compared
the EKF state estimates from the camera with ground-tratie gtstimates recorded by the Vicon motion capture system,
and found that the estimates originating from the camera alab match the ground-truth values closely in both pasitio
and velocity. Additionally, the bundle adjustment substdly reduces the total error. As before, the vehicle wasgien
any prior information of its environment (i.e., no map).
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Figure 6. Position and speed over 1200 frames estimated by simple sd@aketry from frame to frame (green) and by optimization
with bundle adjustment (blue) compared to ground truth (red) obtainadtg€ON system. The vehicle was flying with position control
based on the estimates from bundle adjustment
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Finally, we flew the laser-equipped helicopter around the fioor of MIT’s Stata Center. The vehicle was not given a
prior map of the environment, and flew autonomously using sahsors on-board the helicopter. The vehicle was guided
by a human operator clicking high-level goals in the map wWes being built in real-time. The vehicle was able to loaaliz
itself and fly stably throughout the environment, and Figlirchows the final map generated by the SLAM algorithm.
While unstructured, the relatively vertical walls in thet8t&enter environment allows the 2D map assumption of thez las
rangefinder to hold fairly well.

Figure 7. Map of the first floor of MIT’s Stata Center Figure 8. Quadrotor helicopter with Integrated Laser-
constructed by the vehicle during autonomous flight. Stereo Camera

6. EXTENSIONS AND FUTURE WORK

In this paper, we have demonstrated the ability of both alagaipped and stereo-camera-equipped quadrotor hedicop
to operate autonomously in a variety of unstructured indmsironments. Nevertheless, as discussed in Section i, bot
sensors have inherent limitations that constrain the rahgatonomous operations that can be accomplished withgéesin
sensor. Together with Ascending Technologies, we haventiyageveloped a quadrotor helicopter that has a signifigant
higher payload (Figure 8), thus enabling us to mount botls@enon the same platform. We believe that integrating
both laser and camera sensors on a single quadrotor helicefit allow us to leverage on their respective strengths,
enabling the helicopter to operate robustly indoors antdimnuch richer maps of the environment. Specifically, thetmul
level system hierarchy that we have developed allows usténdhange the exteroceptive sensor that is used to ob#in th
relative position estimates of the vehicle and environmleigatures, suggesting that we should be able to integate b
sensors relatively easily using the same system architectu

7. RELATED WORK

Some previous worfé 23 shows results of indoor flight by relying on simulated GPSrfrmotion capture systems. Oth-
ers*?5use a small number of ultrasound sensors to perform altitad&rol and obstacle avoidance, developing helicopters
are able to takeoff, land and hover autonomously; howekrey, are unable to achieve goal-directed flight. Tourniet.ét a
performed visual servoing over known Moire patterns toasttthe full 6dof state of the vehicle for control, Ahreffs
extracted corner features that are fed into an EKF basedn4SLAM framework, building a low-resolution 3D map suf-
ficient for localization and planning. Recently, Angelettial?>® and Grzonka et & designed helicopter configurations
that were similar to the one presented by He &t al.

8. CONCLUSION

In this work, we have developed two separate quadrotordeies systems that are capable of autonomous navigation in
unknown and unstructured indoor environments, rely onlgsemnsors on-board the vehicle, and avoid relying on a prior
map. We have also developed a hierarchical suite of algositthat accounts for the unique characteristics of air Vehic
for estimation, control and planning, and that can be uselldth quadrotor helicopters with distinct exteroceptigasors.

In the near future, we hope to integrate both sensors ontmedielicopter platform, enabling us to perform autonosou
MAV operations in fully 3-dimensional, generic indoor ermriments.
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