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Abstract— In this paper, a robust stability criterion is pro-
posed for NCSs liable to model uncertainties and time-varying
delays. The analysis concerns the establishment of a maxi-
mum allowable delay bound for continous time NCSs under
parameter uncertainties. The new proposed criterion is based
on the solution of a set of Linear Matrix Inequalities (LMIs) .
Numerical examples are given to validate the theoretical result.

Index Terms— Networked control systems, stability criterion,
robust stability, LMI, Lyapunov function

I. INTRODUCTION

NETWORKED control systems (NCSs) are closed-loop
control systems that operate over a data communication

network [1]–[8]. The main feature of this class of systems is
that its elements (plant, controller, actuators and sensors) are
linked together throughout a network and the information is
exchanged in the form of data packets. Several aplications
can be connect with networked control systems. For instance,
the work in [9] is concerned in distributed irrigation systems
to achieve efficient water management in semiarid and arid
areas. In [10], NCS-controllers are used for ambient intelli-
gence networks, i.e., systems that are based on low-energy
and low-performance nodes connected by a wireless network.
For other applications, see, for instance, the references of [6].

Networked control systems raise new challenges when
compared with traditional control systems. Due to the com-
munication network, the presence of transmission delays and
packet dropout are unavoidable features that can degrade the
system’s performance and even destabilize the system [11],
[12]. On the other hand, the presence of a communication
network brings greater flexibility and higher reliability.Fur-
thermore, the introduction of serial communication networks
raises high system testability and resource utilization, as well
as low cost, space, power and wiring requirements [13], [14].

One of the most basic issues in the field of NCS is the
analysis of stability. The pioneer contribution is by Halevi
et al. [15], where a discrete-time model is presented and the
stability is analyzed for systems with constant and periodic
delays. In [16] and [17], a continuous-time representation
with a zero-order-hold controller is proposed. Kimet al. [18]
propose a method to obtain a time-delay upper bound for a
given network schedule method. The paper [19] studies the

†These authors contributed equally to this work and should all be
considered first authors.

All the authors are with the Robotics, Automation and Computer
Vision Group (GRAV), a research group of the Department of
Electrical Engineering, University of Brasília, Brazil. e-mails:
lfc.figueredo@yahoo.com.br, phrqas@ieee.org,
pavelcover@gmail.com, ishihara@ene.unb.br,
gaborges@ene.unb.br, adolfobs@unb.br

problem of stability analysis for continuous-time networked
control systems, concerning the investigation of the delay-
dependent stability problem by choosing an appropriate type
of Lyapunov function candidate and solving a set of LMIs.

Several works have been devoted to the development of
methods for delay-dependent robust stability. In practice, it
is very difficult to obtain an exact mathematical model due to
environmental noise or slowly varying parameters. Therefore,
the NCSs almost inevitably present some uncertainties [20].
In [21], a discrete-time state-space model is considered and
the condition for robust asymptotic stability is presented
in terms of LMIs. The work in [22] takes into account
robust stability and stabilization problems that are solved
guarantying generalized quadratic stability and generalized
quadratic stabilization. In [23], a robust observer-basedcon-
troller is designed for the problem of congestion control and
the feedback control law is obtained using a linear matrix
inequality (LMI).

The criterion presented by Zhuet al. [19] distinguishes
itself from the others in the sense that its network-induced
delay maximum upper bound is less conservative. Neverthe-
less, the work presented in [19] does not handle system’s
parameters uncertainties.

In this paper, we present a robust delay-dependent stability
criterion for uncertain time-varying networked control sys-
tems. Following [19], the derivative character of the delay
is considered and the results obtained here are shown to be
less conservative than the ones in [20].

This paper is organized as follows. Section II presents
the system description and preliminaries, taking into account
network-induced delay and packet loss features. In Section
III, a new robust criterion for stability analysis is proposed,
which is obtained by solving a set of LMI’s. Numerical ex-
amples are given in Section IV, followed by the conclusions,
which are presented in Section V.

II. SYSTEM DESCRIPTION

A closed-loop NCS with the possibility of dropping data
packets and disordering can be described as shown in Fig. 1.
Such NCS is composed of a plantGp, a controller module
Gc and a common network. The plantGp includes one
sensor module and one actuator module. All modules (sensor,
actuator and controller) have a network element (sender
and/or receiver). The sender element transmits data packets
through the network and the receiver element acquires them.
Single packet transmission is considered, i.e., all data sent
or received are assembled together into one network packet
and transmitted at the same time.



Fig. 1. A NCS with data packet dropout and transmission delays.

Throughout this paper, we assume that the sensor module
is clock-driven with sampling periodh. The controller and
actuator modules areevent-driven. In the event of packet
disordering, the actuator module uses the latest available
control input.

In the system’s modelling, the following delays are con-
sidered:

• τsc
k : delay from sensor to controller module for thekth

network packet;
• τc

k : computation delay for thekth network packet;
• τca

k : delay from controller to actuator module for thekth
network packet;

• τk: total delay from sensor to actuator module for the
kth network packet.

The switchesS1 andS2 in Fig. 1 model the possibility of
packet loss. In the closed position, packets are able to reach
their destinies. Otherwise, they are lost.

A. Plant’s model

The plant’s model presented here is

ẋp(t) = Apxp(t)+ Bpup(t), (1)

yp(t) = Cpxp(t), (2)

where xp(t) ∈ R
np is the plant’s state vector,up(t) ∈ R

m

and yp(t) ∈ R
r are the plant’s input and output vectors,

respectively. The matricesAp, Bp andCp are considered not
exactly known, but belonging to bounded sets:Ap ∈ Ap ⊂
R

np×np , Bp ∈Bp ⊂ R
np×m andCp ∈ Cp ⊂ R

r×np .

B. System’s model

Following Fig. 2, the sensor module samples data from
the plant at instantsnh, whereh is the sampling period and
n∈N

∗. The integersik, k∈N
∗, denote thenth sample number

which is carried by thekth received network packet at the
actuator’s input.

Remark 1 If {i1, i2, ..., in, ...} = {1,2, ...,n, ...}, then no
packet dropout or disordering occured in the transmission.
However, ifik+1 6= ik +1, then a transmission failure occured.

Fig. 2. Time diagram for network-induced delays.

Considering the communication delay from sensor to
controller, the controller’s inputuc(t) can be described as

uc(t) = yp(ikh) = Cpxp(ikh),∀ k ∈ N
∗
, (3)

whereyp is the plant’s output,t ∈ [ikh + τsc
k , ik+1h + τsc

k+1),
and 0≤ τsc

k ≤ τsc,max
k .

Here we use a proportional control law with constant
feedback gain matrix. So, The plant’s inputup(t) from (1)
can be described as

up(t) = yc(ikh + τsc
k + τc

k + τca
k )

= KCpxp(ikh), (4)

whereyc is the controller’s output,t ∈ [ikh+τk, ik+1h+τk+1),
and 0≤ τk ≤ τmax

k , ∀k ∈ N
∗. Hence,τk = τsc

k + τc
k + τca

k and
τmax

k = τsc,max
k +τc,max

k +τca,max
k . Similarly to [24], we assume

the existence of constantsη andτ, 0≤ τ ≤ η , such that

(ik+1− ik)h + τk+1≤ η ,

τ ≤ τk, ∀k ∈ N
∗
.

The elementη denote upper bound of the total network-
induced delay, involving both transmission delays and packet
dropouts. Actually,η limits the total network-induced delay.
The term τ denotes lower bounds and has a analogous
definition.

Using (1)-(4) the system’s model can be described as:

ẋ(t) = Ax(t)+ Adx(t−d(t)), (5)

x(t) = φ(t),t ∈ [t1−η , t1], (6)

τ ≤ d(t)≤ η , (7)

d(t) = t− ikh, t ∈ [ikh + τk, ik+1h + τk+1), (8)

where t1 denotes the instant that the actuator receives the
first control signal andAd = BpKCp.

The functiond(t) is the time-varying delay from sensor to
actuator module. Similarly to [19], we make use ofḋ(t) = 1
and consider this property for the stability analysis of NCSs.

The equation (5) in closed-loop NCS represented by
equations (5)-(8) with uncertainties and time-varying canbe
rewritten like:

ẋ(t) = (A + ∆A)x(t)+ (Ad + ∆Ad)x(t−d(t)) (9)

The uncertainties∆A e ∆Ad are time-varying matrices with
appropriate dimensions, which are defined as follows:

∆A = MAFANA, (10)

∆Ad = MAdFAdNAd (11)



whereMA, NA, MAd andNAd are known real constant matrices
with appropriate dimensions andFA, FAd represent unknown
time-varying matrices that are bounded byFT

A FA ≤ I and
FT

AdFAd ≤ I

III. STABILITY ANALYSIS

This subsection presents a new robust stability criterion
for NCSs with model uncertainties. The resulting theorem,
written in the form of a set of LMIs, is based on the
Lyapunov function candidate

V (t) =
3

∑
i=1

Vi(t), (12)

where

V1(t) = xT (t)Px(t),

V2(t) =
∫ t

t−τ

[

x(s)T Q1x(s)
]

ds+
∫ t

t−η

[

x(s)T Q2x(s)
]

ds

+
∫ t

t−αd(t)

[

x(s)T Q3x(s)
]

ds, (13)

V3(t) =

∫ 0

−η

∫ t

t+β

[

ẋ(s)T Z1ẋ(s)
]

dsdβ

+

∫ −τ

−η

∫ t

t+β

[

ẋ(s)T Z2ẋ(s)
]

dsdβ ,

and matricesP = PT > 0, Qi = QT
i ≥ 0, Z j = ZT

j > 0, i ∈
{1,2,3}, j ∈ {1,2}.

Remark 2 Similarly to [19], the derivative character of the
time-varying delay functiond(t) can be taken into account
through the elementα considered in (13).

Throughout this subsection, the following results will be
useful to derive sufficient conditions for the NCS’s stability.

Lemma 1 For any constants τ and η and matrix M of
appropriate dimensions, the following equality holds:

d
dt





−τ
∫

−η

t
∫

t+β

[

ẋT (s)Mẋ(s)
]

dsdβ





= (η− τ) ẋT (t)Mẋ(t)−
t−τ
∫

t−η

ẋT (s)Mẋ(s)ds

Remark 3 Lemma 1 is a simple extension of Liebniz inte-
gral rule.

Lemma 2 ([19], [25], [26]) For given scalars r1, r2 and
matrix M ∈R

m×m such that (r2− r1) > 0 and M = MT > 0,
if choosing a vectorial function x : [r1,r2]−→ R

m yields:
∫ r2

r1

xT (β )Mx(β )dβ

≥ 1
(r2− r1)

(

∫ r2

r1

x(β )dβ
)T

M

(

∫ r2

r1

x(β )dβ
)

Lemma 3 ([20], [27]) For any vectors x,y ∈R
n and appro-

priate dimensions real matrices A, D, F, E, P > 0 and any
scalar ε > 0, if FT F ≤ I, then

(i) DFE + ET FT DT ≤ ε−1DDT + εEET ,
(ii) If P− εDDT > 0, then

(A + DFE)T P−1(A + DFE) ≤ AT
(

P− εDDT
)−1

A
+ε−1ET E.

Lemma 4 ([28]) For matrices A, B, Q and X = XT of
appropriate dimensions, the Riccati inequality

AT X + XA + XBBTX + Q < 0

can be rewritten as the LMI
[

AT X + XA + Q XB
BT X −I

]

< 0.

Lemma 5 For matrices of appropriate dimensions, the fol-
lowing statements are equivalent:

(i)





M α R
αT Z β
RT β T Q



 > 0,

(ii)

[

M−RQ−1RT α−RQ−1β T

αT −β Q−1RT Z−β Q−1β T

]

> 0,Q > 0

Proof:
Taking the Schur’s complement ofQ in (i) yields

[

M α
αT Z

]

−
[

R
β

]

Q−1[

RT β T
]

> 0

⇔
[

M−RQ−1RT α−RQ−1β T

αT −β Q−1RT Z−β Q−1β T

]

> 0.

Using (12) as the Lyapunov function candidate for the
stability analysis of the NCS described by (9)-(11), a delay-
dependent asymptotical stability criterion for NCSs with
model uncertainties is derived as follows.

Theorem 1 For given scalars 0≤ τ < η , 0< α < 1, βA > 0,
βAd > 0 and ε > 0 such that

[

MT
A UMA MT

A UMAd

MT
AdUMA MT

AdUMAd

]

− ε−1I < 0,

the NCS described by (9)-(11) is asymptotically stable if
there exist matrices P = PT > 0, Qi = QT

i ≥ 0, Z j = ZT
j > 0,

i ∈ {1,2,3}, j ∈ {1,2} such that
[

GT X + XG+ K XB
BT X −I

]

< 0. (14)



holds, where

U = ηZ1 +(η− τ)Z2,

Rq =

[

ATUMA ATUMAd

AT
d UMA AT

d UMAd

]

,

Qq =

[

−ε−1I +

[

MT
A

MT
Ad

]

U
[

MA MAd
]

]

,

Aq =

[

0 0 1
αη Z1

1
η−τ Z2

1
η−τ (Z1 + Z2)

1
(1−α)η Z1

]

,

Zq =





Zq11 0 0
0 Zq22 0
0 0 Zq33



 ,

Zq11 = −Q1−
1

η− τ
Z2

Zq22 = −Q2−
1

η− τ
(Z1 + Z2)

Zq33 = − (1−α)Q3−
1

αη
Z1−

1
(1−α)η

Z1

X =





P 0 0
0 0 0
0 0 0



 ,

G =





A Ad 0
0 0 0
0 0 0



 ,

B =







MA

√

βA MAd

√

β−1
Ad 0

0 0 0
0 0 0






,

K =





K11 K12 0
KT

12 K22 0
0 0 0



+





0 Aq Rq

AT
q Zq 0

RT
q 0 Qq





K11 = ATUA + ε−1NT
A NA−

1
αη

Z1

+ Q1 + Q2+ Q3+ β−1
A NT

A NA

K12 = ATUAd

K22 = AT
d UAd + ε−1NT

AdNAd−
1

(1−α)η
Z1

− 1
η− τ

Z2−
1

η− τ
(Z1 + Z2)+ βAdNT

AdNAd

Proof: Taking the time derivative of the Lyapunov
function candidate (12) yields

V̇1(t) = ẋT (t)Px(t)+ xT (t)Pẋ(t), (15)

V̇2(t) = xT (t)Q1x(t)− xT (t− τ)Q1x(t− τ)+ xT (t)Q2x(t)

− xT (t−η)Q2x(t−η)+ xT (t)Q3x(t)

− (1−α)xT (t−αd(t))Q3x(t−αd(t)) (16)

V̇3(t) =
d
dt

[

∫ 0

−η

∫ t

t+β

[

ẋ(s)T Z1ẋ(s)
]

dsdβ
]

+
d
dt

[

∫ −τ

−η

∫ t

t+β

[

ẋ(s)T Z2ẋ(s)
]

dsdβ
]

. (17)

From Lemma 1, (17) can be written as

V̇3(t) = ẋ(t)T (ηZ1 +(η− τ)Z2) ẋ(t)

−
∫ t

t−αd(t)

[

ẋ(s)T Z1ẋ(s)
]

ds−
∫ t−αd(t)

t−d(t)

[

ẋ(s)T Z1ẋ(s)
]

ds

−
∫ t−d(t)

t−η

[

ẋ(s)T (Z1 + Z2)ẋ(s)
]

ds−
∫ t−τ

t−d(t)

[

ẋ(s)T Z2ẋ(s)
]

ds.

(18)

Applying Lemma 2 to (18) yields

V̇3(t)≤

ẋ(t)T Uẋ(t)− 1
αη

[x(t)− x(t−αd(t))]T Z1 [x(t)− x(t −αd(t))]

− 1
(1−α)η

[x(t−αd(t))− x(t−d(t))]T Z1 [x(t−αd(t))− x(t−d(t))]

− 1
η− τ

[x(t− τ)− x(t−d(t))]T Z2 [x(t− τ)− x(t−d(t))]

− 1
η− τ

[x(t−d(t))− x(t −η)]T (Z1 +Z2) [x(t−d(t))− x(t−η)] . (19)

By (9)-(11), (15) can be written as

V̇1(t) =

[

x(t)
x(t−d(t))

]T

H

[

x(t)
x(t−d(t))

]

, (20)

where

H =

[

(A + ∆A)T P+ P(A + ∆A) P(Ad + ∆Ad)
(Ad + ∆Ad)

T P 0

]

.

Applying Lemma 3 (i) to (20), one can obtain

V̇1(t)≤
[

x(t)
x(t−d(t))

]T

L

[

x(t)
x(t−d(t))

]

, (21)

where

L =

[

L11 PAd

AT
d P βAdNT

AdNAd

]

,

L11 = AT P+ PA + β−1
A NT

A NA

+ P
(

βAMAMT
A + β−1

Ad MAdMT
Ad

)

P.

By (9), the term ˙xT (t)Uẋ(t) in (19) may be written as:

ẋT (t)Uẋ(t) =

[

x(t)
x(t−d(t))

]T

T

[

x(t)
x(t−d(t))

]

,

where,

T=

[

(A+MAFA(t)NA)T

(Ad +MAdFAd(t)NAd)T

]

U

[

(A+MAFA(t)NA)T

(Ad +MAdFAd(t)NAd)T

]T

=

([

AT

AT
d

]

+

[

NT
A 0
0 NT

Ad

][

FT
A 0
0 FT

Ad

][

MT
A

MT
Ad

])

U
(

[

A Ad
]

+
[

MA MAd
]

[

FA 0
0 FAd

][

NA 0
0 NAd

])

(22)

Applying Lemma 3 (ii) to (22) yields

T≤
[

AT

AT
d

](

U−1− ε
[

MA MAd
]

[

MT
A

MT
Ad

])−1
[

A Ad
]

+

ε−1
[

NT
A 0
0 NT

Ad

][

NA 0
0 NAd

]

.



Then, using the well known Woodbury matrix identity yields

T≤Tf =

[

AT UA+ ε−1NT
A NA AT UAd

AT
d UA AT

d UAd + ε−1NT
AdNAd

]

−
[

AT

AT
d

]

U

[

MT
A

MT
Ad

]T (

ε−1I−
[

MT
A

MT
Ad

]

U
[

MA MAd
]

)−1 [

MT
A

MT
Ad

]

U

[

AT

AT
d

]T

.

Therefore,

V̇3≤
[

x(t)
x(t−d(t))

]T

Tf

[

x(t)
x(t−d(t))

]

. (23)

Denoting

δ T =
[

xT (t)xT (t−d(t))xT (t− τ)xT (t−η)xT (t−αd(t))
]

,

the combination of (16), (21) and (23) yields the stability
condition

V̇ (t) = V̇1(t)+ V̇2(t)+ V̇3(t)≤
[

Mq−RqQ−1
q RT

q Aq

AT
q Zq

]

< 0,

(24)

Mq =

[

M11 ATUAd + PAd

AT
d UA + AT

d P M22

]

,

M11 = ATUA + ε−1NT
A NA−

1
αη

Z1 + Q1 + Q2+ Q3

+ AT P + PA + β−1
A NT

A NA

+ P
[

βAMAMT
A + β−1

Ad MAdMT
Ad

]

P,

M22 = AT
d UAd + ε−1NT

AdNAd−
1

(1−α)η
Z1−

1
η− τ

Z2

− 1
η− τ

(Z1 + Z2)+ βAdNT
AdNAd .

From Lemma 5, with identitiesα ← Aq andβ ← 0, (24)
can be written as





Mq Aq Rq

AT
q Zq 0

RT
q 0 Q



 < 0. (25)

Finally, applying Lemma 4 to (25) to eliminate quadratic
terms yields (14), completing the proof.

Remark 4 Many delay-dependent stability criteria for
NCSs, like the ones presented in [3], [18], [19], [24], [26],
consider only systems without model uncertainties. This
assumption, although satisfactory for some cases, restricts
the use of robust theory and excludes from analysis pos-
sible uncertainties that may arise. Therefore, Theorem 1 is
more general, since it deals with models with or without
uncertainties. Indeed, if one uses Theorem 1 with a NCS
model that has no uncertainties, it yields the same stability
criterion presented in [19]. This can be seen, after some
algebra, considering∆A = 0 and∆Ad = 0 in (14).

TABLE I

MAXIMUM UPPER BOUND DELAY FOR DIFFERENTS VALUES OFτ

τ = 0.1s τ = 0.2s τ = 0.3s τ = 0.4s
η 0.6977s 0.7133s 0.7336s 0.7590

IV. NUMERICAL EXAMPLES

In this section, two examples are presented in order to
confirm the validity of the proposed criterion. The first one
demonstrates the possibility of applying Theorem 1 to a NCS
with abscence of uncertainties. The second illustrates theef-
fectiveness of our criterion by establishing a less conservative
upper bound delay to the NCS example proposed in [20].

Example 1 Consider the NCS (9)-(11) with no uncertainties
[19]:

A=

[

−2 0
1 −3

]

, Ad=

[

−1.4 0
−0.8 −1.5

]

, ∆A=0, ∆Ad=0,

From Theorem 1, withα = 0.75 andτ = 0.4 s, the maximum
upper bound value for the total delay,η , which mantains
the system stability is 1.17 s. The result is the same as the
obtained in [19]. Furthermore, this result is less conservative
than the values obtained in [24] (1.13 s) and [26] (1.16 s),
which endorses the effectiveness of the proposed criterion.

Example 2 For this example, we consider the NCS with
uncertainties and time-varying delays presented in [20],
described by:

A=

[

−2 0
0 −1

]

, Ad=

[

−1 0
−1 −1

]

,

with the following uncertainties:

MA=NA=

[√
0.3 0
0

√
0.2

]

, MAd =NAd =

[√
0.2 0
0

√
0.3

]

,

FA(t)=FAd (t)=

[

cos(t) 0
0 sin(t)

]

.

The maximum upper bound values for the total delay
presented by previous authors were: 0.1575 s [29], 0.1575
s [30], 0.2558 s [31], 0.3916 s [32] and 0.6090 s [20].
According to Theorem 1, choosingα = 0.60, ε = 0.9, βA =
βAd = 0.8 andτ = 0.0, we found the NCS system is stable
for a delay within the interval of 0 to 0.6847 s. This example
illustrates that our stability criterion is less conservative than
the other works’ criteria. Furthermore, choosingτ > 0, we
obtain even better results, as shown on Table I.

V. CONCLUSIONS

This paper deals with the problem of stability analysis
of networked control systems with uncertainties and time-
varying delays. Based on the solution of a set of LMIs,
we propose a new asymptotical stability criterion. The new
stability criterion is less conservative and more general than
some of the existing results. Numerical results illustratethe
effectiveness of the proposed criterion.
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