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Abstract— In this paper, a robust stability criterion is pro-  problem of stability analysis for continuous-time netweak
golsed fo;rl]\'CSS Iliab_le to model U?]CGftaintti;l?_Shand timi-vafyig ~ control systems, concerning the investigation of the delay
elays. e analysis concerns the establishment of a maxi- il H H
mum allowable delay bound for continous time NCSs under d]?Eendent St?bmtty proble(;ﬁdb)t/ cho((j)smlg .an apprct)prflaLt'G\:/I:yp
parameter uncertainties. The new proposed criterion is basd Of Lyapunov tunction canaidate and solving a set o S.
on the solution of a set of Linear Matrix Inequalities (LMIs). Several works have been devoted to the development of
Numerical examples are given to validate the theoretical mult.  methods for delay-dependent robust stability. In pragctice
is very difficult to obtain an exact mathematical model due to
environmental noise or slowly varying parameters. Thaefo
the NCSs almost inevitably present some uncertainties [20]
I. INTRODUCTION In [21], a discrete-time state-space model is considereld an

| losed-| the condition for robust asymptotic stability is presented
N ETWORKED control systems (NCSs) are close “'O0R, terms of LMIs. The work in [22] takes into account

coknt;0I sgst%r]ns that ofperate o¥err]_a d;ata cofmmumcan_ngust stability and stabilization problems that are solve
network [1]-{8]. The main feature of this class of SyStems i, 3 rantying generalized quadratic stability and geredli

lt.h?(t ';S elemhentsh(plan;, controller, aituatgr‘; aqdfsesbusnfe _quadratic stabilization. In [23], a robust observer-basmat
Inked together throughout a network and the information I, e js designed for the problem of congestion contral an

exchanged in thg form of data packets. Several apllcatloqﬁe feedback control law is obtained using a linear matrix
can be connect with networked control systems. For 'nstanqﬂequality (LMI)

the work in [9] is concerned in distributed irrigation syste

to achieve efficient water management in semiarid and arl%elf from the others in the sense that its network-induced

areas. In [10], NCS-controllers are used for ambient |r-1teIIdelay maximum upper bound is less conservative. Neverthe-

gence networks, i.e., systems that are based on Iow—enerI ¥S’ the work presented in [19] does not handle system’s

nd low-performance n nn wirel networ -
and low-performance nodes connected by a wireless netwo S rameters uncertainties.

For other applications, see, for instance, the referenidéj.o In this paper, we present a robust delay-dependent sgabilit

Networked control systems raise new challenges when. . L :
compared with traditional control systems. Due to the co criterion for gncertam tlme-va.rylr)g networked controlssy
) Mems. Following [19], the derivative character of the delay

munication network, the presence of transmission delagts an . :
. considered and the results obtained here are shown to be
packet dropout are unavoidable features that can degrade : :
ss conservative than the ones in [20].

system’s performance and even destabilize the system [11]." | . . .
y b y [ This paper is organized as follows. Section Il presents

[12]. On the other hand, the presence of a communicatiopI - o L
the system description and preliminaries, taking into aoto

network brings greater flexibility and higher reliabilityur- _ .
thermore, the introduction of serial communication netsgor network-induced delay and packet loss features. In Section
' lll, a new robust criterion for stability analysis is progos

raises high system testability and resource utilizatisnyall L . . ) ;

as low cost, space, power and wiring requirements [13],.[14 hich is obta_lned_by sonmg a set of LMI's. Numerical &x
One of the most basic issues in the field of NCS is th m_ples are given in S_ectlon I_V, followed by the conclusions,

analysis of stability. The pioneer contribution is by Ha'\levWhICh are presented in Section V.

et al. [15], where a discrete-time model is presented and the

stability is analyzed for systems with constant and peciodi Il. SYSTEM DESCRIPTION

delays. In [16] and [17], a con'Finuous-time rgpresentation A closed-loop NCS with the possibility of dropping data
with a zero-order-hold controller is proposed. Kerel. [18]  ackets and disordering can be described as shown in Fig. 1.
propose a method to obtain a time-delay upper bounq for&,ch NCS is composed of a pla@t, a controller module
given network schedule method. The paper [19] studies the 4nq a common network. The plag, includes one

tThese authors contributed equally to this work and shouldbal sensor module and one actuator module. All modules (Sensor’
considered first authors. actuator and controller) have a network element (sender

All the authors are with the Robotics, Automation and Coreput and/or receiver). The sender element transmits data acket
Vision Group (GRAV), a research group of the Department ofyyrogh the network and the receiver element acquires them.
Electrical Engineering, University of Brasilia, Brazil. -neails: Sinal ket t . . id d i Il data
Ifc.figuer edo@ahoo. com br, phrgas@ eee. or g, ingle packet transmission is considered, i.e., a se
pavel cover @mai | . com i shi hara@ne. unb. br, or received are assembled together into one network packet

gabor ges@ne. unb. br, adol f obs@inb. br and transmitted at the same time.

Index Terms— Networked control systems, stability criterion,
robust stability, LMI, Lyapunov function

The criterion presented by Zhet al. [19] distinguishes
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Fig. 2. Time diagram for network-induced delays.
TR
‘ SENDER ] RECEIVER
L Considering the communication delay from sensor to
Controller Module G, controller, the controller’s inputic(t) can be described as

Ue(t) = Yp(ikh) = Coxp(iih).V k € N", ©)

whereyy is the plant's outputt € [ixh+ 1%, ik 1h + 75 4),
_ and 0< 1 < 1.°™
Throughout this paper, we assume that the sensor moduleere we use a proportional control law with constant

is clock-driven with sampling perioch. The controller and feedback gain matrix. So, The plant's inpug(t) from (1)
actuator modules arevent-driven. In the event of packet can be described as

disordering, the actuator module uses the latest available

Fig. 1. A NCS with data packet dropout and transmission delay

control input. Up(t) = Ye(ixh+ T&+ 1 + 1)
In the system’s modelling, the following delays are con- = KCpxpl(ikh), (4)
sidered:

wherey, is the controller’s output, € [ixh+ Ty, ik 1h+ Tki1),
« T delay from sensor to controller module for thr  and 0< 7 < 1™, vk € N*. Hence, 1y = 1 + 1¢ + 12 and
network packet; T = 70T o 12T Simiilarly to [24], we assume
« T, computation delay for th&th network packet; the existence of constantsandt, 0< 1 < ], such that
« 12 delay from controller to actuator module for tkid . .
network packet; (1 —lh+ T < 0,
« Ty total delay from sensor to actuator module for the T < T, vk e N*.

kth network packet. The element; denote upper bound of the total network-

The switchesS; and$; in Fig. 1 model the possibility of induced delay, involving both transmission delays and pack
packet loss. In the closed position, packets are able tdireagropouts. Actuallyy limits the total network-induced delay.

their destinies. Otherwise, they are lost. The term 1 denotes lower bounds and has a analogous
A Plant's model definition.
' Using (1)-(4) the system’s model can be described as:
The plant’s model presented here is .
_ X(t) = AX(t) + Agx(t —d(t)), (5)
X(t) = Apxp() +Bpup(t), @) X(t) = @(t),t € [tr—n. ta, (6)
yp(t) = Cpxp(t), (@) T <dt)<n, @)
where xp(t) € R™ is the plant's state vectoyp(t) € R™ d(t) =t—ixh, te]ikh+ 1k, ikr1h+ Tki1), (8)

and yp(t) € R" are the plant’s input and output vectors
respectively. The matrice&,, By andCp are considered not
e);?fﬁlg/ known, but Ekar)nnglng to bounde(rjj;a%%:e p C The functiond(t) is the time-varying delay from sensor to
R, Bp € #p C R andCp € 6p C R™P. actuator module. Similarly to [19], we make usedif) = 1

B. System's model and consider this property for the stability analysis of NCS

Following Fig. 2, the sensor module samples data from The equation (5) in closed-loop NCS represented by
the plant at instanteh, whereh is the sampling period and equations (5)-(8) with uncertainties and time-varying ban

ne N*. The integerg, k € N*, denote theith sample number rewritten like:
which is carried by thekth received network packet at the X(t) = (A+DA)X(L) + (Ag+ DAG)X(t —d(t)) 9)

actuator's input. The uncertaintieAA e AAq are time-varying matrices with
appropriate dimensions, which are defined as follows:

'wheret; denotes the instant that the actuator receives the
first control signal andyq = BpKC.

Remark 1 If {iy,iz,...,in,...} = {1,2,...,n,...}, then no
packet dropout or disordering occured in the transmission. AA = MaFANa, (10)
However, ifix, 1 # ik + 1, then a transmission failure occured. AAy = MagFagNag (12)



whereMa, Na, Mag andNpg are known real constant matrices
with appropriate dimensions atil, Fag represent unknown

time-varying matrices that are bounded BYFa < | and Lemma 3 ([20], [27]) For any vectors x,y € R" and appro-
FagFad < | priate dimensions real matrices A, D, F, E, P > 0 and any
T
lIl. STABILITY ANALYSIS scalar £ >0, if F'F <1, then

; TETPT < ¢-1ppT T
This subsection presents a new robust stability criterion E:l)) :?ITDE:;SDﬁ EO _thfen DD" +€EE",
for NCSs with model uncertainties. The resulting theorem, '

Tp-1 T T\-1
written in the form of a set of LMIs, is based on the (A:D';E) P~(A+DFE) <A (P—£DDT)™"A
. . +&-E'E.
Lyapunov function candidate
3 i T
Lemma 4 ([28]) For matrices A, B, and X = X' of
V(D) Z\Vi (®), (12) appropriate( [dirr]lénsjona the Riccati ineq%ality
i=
where ATX +XA+XBB™X +Q< 0
Va(t) = X" (H)Px(t), can be rewritten as the LMI
t t
Va(t) = / [X(9)T Qux(s)] ds-+ / [X(9)TQox(9)] ds [ATX+XA+Q XB} o
t-1 t-n BTX —1 '
t
e 9T QXS s (13)
/ / )T Z1%(s) ]deB Lemma 5 For matrices of appropriate dimensions, the fol-
t+B lowing statements are equivalent:
-1
/ / )T Zx(s)) dsdB, M a R
tHR i)laT Z B|>0
and matrices? =PT >0, Q =Q' >0, Zj:ZjT>O,i€ Rl BT Q
{1,2,3}, je{1,2}.
Remark 2 Similarly to [19], the derivative character of the (i) '\4* RQillRTT a-— RQiBI} >0,Q0>0
time-varying delay functiord(t) can be taken into account a' -BQR Z-pQ B
through the elementr considered in (13).
Throughout this subsection, the following results will be Proof:
useful to derive sufficient conditions for the NCS’s stapili Taking the Schur’'s complement 6f in (i) yields
Lemma 1 For any constants T and n and matrix M of M a R
. . . . . . - —1 RT BT} 0
appropriate dimensions, the following equality holds: al 7 B Q [ >
oM —RQIR" a—-RQ 18T 50
aTiﬁQflRT 7 BQ 1BT
/ / s)] dsdp
d'[ ]
—Nt+B

Using (12) as the Lyapunov function candidate for the
stability analysis of the NCS described by (9)-(11), a delay
dependent asymptotical stability criterion for NCSs with
model uncertainties is derived as follows.

=(n-nx

:\\

Remark 3 Lemma 1 is a simple extension of Liebniz inte- _
gral rule. Theorem 1 For givenscalars0<1<n,0< a <1, Ba>0,

Bag > 0 and € > 0 such that

Lemma 2 ([19], [25], [26]) For given scalars ry, rp and T T
matrix M € R™™ sych that (r;—r1) >0and M =MT >0, {MTA[LJJI:\AAA ,\'\/fTAlLJJI:\AAAd] —e Y <o,
if choosing a vectorial function x: [r1,rz] — R™ yields: Ad=A - ad = A
r the NCS described by (9)-(11) is asymptotically stable if
/ X' (B)Mx(B)dpB there exist matricesP=P" >0, Q =Ql >0,Z; =7 >0,
r . ; N . i€{1,2,3}, j € {1,2} such that
“ 21D (/rl X(B)dﬁ) M (/rl X(B)dﬁ) [GTX;T>§<G+K Xﬂ <o. (14)



holds, where
u = r;Zl + (l’] — T)Zz,

R, — [ATUM, ATUMAd}
IATUMa  AlUMpg|’
- T
0 = _el|+[M¢]u[MA MAd}],
L Ad
A 0 0 %zl
= 1 1 1 )
_ﬁzz F(Zl—i—zz) —(17a)nzl
[Zga O 0
Zg =10 Zp>» 0],
| 0 0 Zgs
= Q- Z
Zq11 Q1 12
1
= Q- ——(Z4+Z
Zyo2 Q2 r]fr( 1+22)
1 1
33— — l-a Q3*_Zl*721
% ( ) an (1—a)n
P 0 O
X =0 0 0,
0 00
(A Ay O
G =|0 0 O,
0 0 0
Mayv/Ba Magy/Bag O
B = 0 0 ol
0 0 0
[Kiz Kiz O 0 Aq Ry
K =|K, Kpo O/ +|A] Z5 ©
0 0 O Rl 0 Qq
- 1
Ki1=ATUA+ ¢ lN,INAfﬁzl
+ Q1+ Q2+ Qs+ Ba*NINa
K1z = ATUAY
Koo = AlU “INFNpgg— ———7Z
22=AqUAG+ & "NagNag A—an™
1 1
— Zo———(Zh+Z NIGN
P I‘[—T( 1+ Z2) + BadNagNad

function candidate (12) yields
Vi(t) = X" ()Px(t) + X (t)Px(t),
Va(t) = xT (H)Qux(t) —

= (t=m)Qax(t =)+ ()Q(1)
—(1—a)xT(t — ad(t))Qsx(t — ad(t))

V() = [ / /t y )T Z1x(s)] dsdB
21T, s

From Lemma 1, (17) can be written as

X' (t—1)Qux(t — ) + X" (1) Qax(t)

Va(t) = X()T (024 + (1 - 1)Z2) X(1)

t T (t)
— X(s)' Z1X(s dsf/
%fad(t) [ (8) 21X )] Jt—d(t)
t—1

Y e (2 o)) d (s)TZox(s)] d
[ @z as [ s zxs]os
(18)

[%(s)TZ1%(s)] ds

Applying Lemma 2 to (18) yields

Va(t) <
X(t)TUX(t) — % (X(t) = x(t — ad(t))]" Zy [x(t) — x(t — ad(t))]

*ﬁ X(t — ad(t) —x(t —d(t))]" Zu[x(t — ad(t)) - x(t —d(t))]

Lot ) Xt dO)] Zo bt - 1) x(t - d()]
1

X(t —d(t) =x(t = )] (Zo+2Z2) [x(t —d(t)) —x(t—n)]. (19)

By (9)-(11), (15) can be written as

0= |y ia@(t))T o) @

where

H [(A+AA)T P+P(A+0A) P(Aq +AAd)]
(Ad+D0A)TP 0 '
Applying Lemma 3 (i) to (20), one can obtain

: xt) 17, [ x®
Vl(t)g[x(td(t))] L[x(td(t))}’ (21)

where

L — {Ln PAq ]
AP BagNigNad]’
L12=ATP+PA+ By 'NANa
+ P (BaMaMZ + BagMagM4g) P.
By (9), the termxT (t)Ux(t) in (19) may be written as:

_ _ xt) 1" X(t)
2000 = [ G| e ]

where,
Proof: Taking the time derivative of the Lyapunov

T:[ (A+MaFa(t)Na)T }u{ (A+MaFa(t)Na)T T
(Ad +MagFad()Naa)T| ™ | (Ad +MagFad(t)Nag) "

S IR IGEA A

([A Ag]+[Ma  Mad] {F@ ng} P\(')A NidD (22)

Applying Lemma 3 (i) to (22) yields

(et R}

NI 0][Na O
<18 LT W]



TABLE |

Then, using the well known Woodbury matrix identity yields =~ MAXIMUM UPPER BOUND DELAY FOR DIFFERENTS VALUES OFF

ATUA+ e INTNa ATUAd T=01s 1=02s 71=03s 71=04s
T<Ts = { ATUA A ATUAq +& INJ, NAd:l n  06977s 07133s  07336s 07590
T -1 T
o] (B ) o [
A A A IV. NUMERICAL EXAMPLES
Therefore In this section, two examples are presented in order to

confirm the validity of the proposed criterion. The first one
< { X(t) ]TT { X(t) ] (23) demonstrates the possibility of applying Theorem 1 to a NCS
xt—dt)| Txt— ‘ with abscence of uncertainties. The second illustrategthe
fectiveness of our criterion by establishing a less corsem
upper bound delay to the NCS example proposed in [20].

Vs

Denoting

ST = T (T (t — dENXT (t— T (t — n)xXT (t — ad(t Example 1 Consider the NCS (9)-(11) with no uncertainties
X)X (t—d(t)x (t=1)x (t—m)x'( )], [9;
the c_o_mbination of (16), (21) and (23) yields the stability [-2 o0 [-14 o0 A0 0
Condltlon — 1 73 7Ad_ *08 715 9 — aAAd_ 9
T From Theorem 1, witlr = 0.75 andr = 0.4 s, the maximum
V(t) = Va(t) + Va(t) + Va(t) < {MqRqTQq R AQ] <0, upper bound value for the total delay, which mantains
B Aq the system stability is.17 s. The result is the same as the

(24) " obtained in [19]. Furthermore, this result is less conder@a
than the values obtained in [24].0B s) and [26] (116 s),
M. — M1 ATUA; + PA4 which endorses the effectiveness of the proposed criterion
a AgUAJrAgP Moo ’
T T 1 Example 2 For this example, we consider the NCS with
Mip=A'UA+¢e™ NANA*ﬁ21+Q1+Q2+Q3 uncertainties and time-varying delays presented in [20],
+ ATP - PAL B; ININa described by:
T 1 T -2 0 -1 O
+ P [BaMAMZ + Bag MagMag] P, A=l gl A=|1 _1|
1 1
Mzz = AQUAG + & NigNag — =21 = —— 2
L (1-a)n n-rt with the following uncertainties:
— ———(Z1+ Z2) + BadNAGNAg- 5 >
o MA:NA:[ 0 \/?ﬁ} ’ MAd:NAd:[ 0 \/?ﬁ} ’
From Lemma 5, with identitiest < Aq and 3 < 0, (24) : :
can be written as coqt 0
FA(t)FAd(t){ (S)() Sil’(’[)]'
M
T Z‘ %q <0 (25) The maximum upper bound values for the total delay
23 0 Q ' presented by previous authors werel8¥5 s [29], 01575

s [30], 02558 s [31], 03916 s [32] and ®090 s [20].
Finally, applying Lemma 4 to (25) to eliminate quadraticAccording to Theorem 1, choosirg= 0.60,& = 0.9, o =
terms yields (14), completing the proof. Bagd = 0.8 and1 = 0.0, we found the NCS system is stable
m for a delay within the interval of 0 t0.6847 s. This example
illustrates that our stability criterion is less consem@athan

Remark 4 Many delay-dependent stability criteria forthe other works’ criteria. Furthermore, choosing- 0, we
NCSs, like the ones presented in [3], [18], [19], [24], [26],0btain even better results, as shown on Table I.
consider only systems without model uncertainties. This

assumption, although satisfactory for some cases, restric V. CONCLUSIONS

the use of robust theory and excludes from analysis pos-This paper deals with the problem of stability analysis
sible uncertainties that may arise. Therefore, Theorem 1 dﬁ networked control Systems with uncertainties and time-
more general, since it deals with models with or WithOUtlarying de|ays_ Based on the solution of a set of LMls,
uncertainties. Indeed, if one uses Theorem 1 with a NGge propose a new asymptotical stability criterion. The new
model that has no uncertainties, it yields the same stabilittapility criterion is less conservative and more gendraht
criterion presented in [19]. This can be seen, after somgme of the existing results. Numerical results illustra
algebra, consideringA =0 andAAq =0 in (14). effectiveness of the proposed criterion.
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