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Abstract— This work addresses the problem of stochastic which set is the most likely to be true at each time instant.
data fusion_ for systems liable to heavy disturbances, wh_ich In the field of Simultaneous Localization and Mapping
denote environmental perturbations strong enough to modi (SLAM), for example, [6] and derived works define the

the system’s internal structure, including signal interference, t of ¢ fi based th d
sensor faults, physical structure modification, and many dier Set ol measurement equations based on the corresponaence

sources of disturbance. In these such cases, traditionaltiéfing ~ P€tween local and global maps, which is determined by
methods usually fail to provide reliable estimates becausef the means of statistical tests that are independent from the

highly corrupted sensor measurements. This work proposesot |ocalization filter. On the other hand, the hybrid systems
model the data fusion problem for heavily disturbed systems approach proposed in this work elegantly incorporates mea-

through a hybrid systems modeling framework and presents an S . .
online hybrid stochastic filter capable of tracking the sysem’s surement compatibility tests, which naturally determihe t

state in unfavorable operating conditions. Simulated and eper- ~ Most adequate set of measurement equations at each time
imental results compare the proposed filter's performance vith  instant without the need of additional verifications.

_the traditionally used Extended Kalrr_lan Eilter (EKF) and show Hyb”d systems denote a class of dynamica| Systems
g\se r?;e\fllélﬁi‘zls; (?J?A\?) [j%bslijgsﬁula%cglzsgﬁgl gg(xefrolrinig igg&%grr‘:é whose behavior combines continuous and discrete state vari
" ables [7] and extensive work has been done in the field of
state estimation for this kind of system. For instance, [],
l. INTRODUCTION apply particle filters as state estimators for hybrid system
AVIGATION and 3D localization for robotic systems while [10] uses robust Kalman filtering technigques. One of
are problems of utmost importance [1], specially foithe most famous multiple model estimation algorithms, the
robots operating in outdoor, uncontrolled environments- P Interacting Multiple Model (IMM), is introduced in [11],
viding reliable estimates of the system’s pose involves-confl2] and target tracking applications using hybrid systems
bining data, by means of filtering algorithms, from propri-are presented in [13], [14].
oceptive and exteroceptive sensors, which may provide in- Motivated by the problem of 3D localization for an
formation about position, orientation, velocities or arijey  Unmanned Aerial Vehicle (UAV) designed for aerial power
spatial variable of interest. Depending on the applicaéind lines inspection, this contribution lies in the descriptaf the
the types of sensors available, different strategies may llata fusion problem for heavily disturbed systems through
used for robots localization. For example, [2] applies Katm the hybrid systems modeling framework [15]. Due to the
filtering to the problem of positioning and heading controktrong electromagnetic interference generated by the powe
of ships and offshore rigs using inertial, GPS, and compa$ises and occasional sensor faults, the traditional ststaha
measurements, whilst [3] extracts information from a sierefilters first evaluated for state estimation using the aftsra
visual system in order to simultaneously localize a robatensors were not able to provide reliable information dadt
and build a map of its surroundings. These examples amd redesigning the instrumentation system, leading to drigh
most works concerning data fusion implicitly assume thatosts and delays in the project, the solution to cope with
“two sensors are better than one”, an idea made famoesvironmental disturbances was developing a robust kezali
in the robotics field by [4]. However, this statement istion filter able to deal with highly corrupted measurements,
true only for sensors working correctly, i.e., with unbidse making it capable to track the UAV’'s state in conditions
measurements. In the case of robots operating in real lifahere other filters fail.
faulty measurements from just one sensor may degrade theThis paper is organized as follows. Section I models
whole localization system’s performance. the localization system designed to track the UAV’s state.
Detecting failures and anomalous behavior in dynamithe hybrid data fusion algorithm is presented in Section
systems have long been a matter of great interest, as canlbeand simulated as well as experimental results comparing
seen in the survey presented in [5]. One way of dealing wittts performance with the Extended Kalman Filter (EKF) are
disturbed measurements consists of considering differesthown in Section IV. Finally, conclusions are presented in
sets of measurement equations in order to describe a givBaction V.
system’s output. Nevertheless, having different kinds eém
surement equations introduces the problem of determining Il. LOCALIZATION SYSTEM
This section describes the mathematical model used in
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oratory _(LARA),_ Department of Electrical Engineering, WMeisity (INS) composed of a 6 dearees of freedom (DOF) Inertial
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i shi har a@ne. unb. br Measurement Unit (IMU) measures angular and linear rates



through accelerometers and gyros. A three-axis magnetoniz- Rotation
ter and a barometric altimeter are used, respectively, to
corr_ect_the awcrgfts attiude and altltude_. Finally, @izl to n, is represented by means of hypercomplex quaternions
navigation satellite system (GNSS) provides measuremeq%ctors [16]. Although this representation is not as intait

of position and velocity through a GPS receiver. For the lo-

lization svstem’ tion nsider th rdinatmds as Euler angles, which directly denote the body’s rotation
callzation system's equations, consider the coo angles around each axisfgfusing quaternions exhibits many
shown in Figure 1.

advantages concerning computational costs and singearit
in the representation of rotations [1].

Let ¢ = [q0 &1 q2 q3]%, Hq(”%\:. 1, be the quaternion
representing the orientation a@f with respect ton. The
equation relating;®, to its corresponding rotation matrix is

The body’s attitude, i.e., the orientation bfwith respect

@B+ —a3—¢  2(n1g2—q093)  2(q193+q0q2)
Ch(dh)= [2(q1q2+qoq3) @B - +a3—¢3 2(q2q3—qotn)} :
2(q1g3—qoq2)  2(q2q3+q0q1) ;—di—da3+a3
As the body rotates, the IMU’s gyros provide angular rate
measurementss,,, w,, and w, around axisX®, Y*, and
7%, respectively (Figure 1). Thus, the body’s rotation can
be described as

Fig. 1. Body ¢) and referencer() coordinate frames.
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Let p® be the representation of the IMU’s position vector in v — W 0.
the body-fixed framé andp™ be the same vector described 1 ? v v
in the earth-fixed frame. Considering thab translates and = _qug + €. (7)

rotates with respect ta, it follows that

pn _ Cbpb + tb (1) o . )
" " Similarly to (6), a disturbance term, is added to cope
where C® denotes the rotation matrix from to n and With modeling errors and sensor noise.
tb = O — O™ is the displacement between the originshpf _
0", and ofn, O™. Since the IMU’s accelerometers provideC. Corrective measurements
measurements ib, a transformation is necessary to describe Denoting
these accelerations in. Differentiating (1) twice yields
. b T n\T n\T T
o =" = Clph + Chpt + £, @ re = [(ah)” D) D)) (®)
n . n b b b . b b ..b b
@’ =07 = Chp + 200" + Cul” + 1. @) as theb system's state vector at theh sample instz%nt,
J— Y3 p— n n n
In most casesp’ is a fixed point in the structure, yielding w:ere It = [qo;f Lk 92,k gskl’y Pk = [vk ui 2]
p¥ = = 0. In order to further simplify (1)-(3)p’ can be Vi = [Vix vy, vZ,]", the model provided by (6) and
chosen to coincide wittD® and the body’s center of mass, (7) allows the localization system to predict the body's
makingp? = 0. In these such cases, (3) can be rewritten a§UTent state based on the IMU's measurements. However,
' ecause of modeling errors and sensor noise, estimating the
ot =it — gt ) system’s state using only inertial measurements quicldgde
" e to unreliable results, making it necessary to use additiona
h b_ (gt b ot1T is th lerati diin  Sensors in order to correct the estimates [17]. As described
wherea” = [a; ay a2]" is the acceleration measuredtin  jy'the beginning of Section 11, besides the IMU, the UAV’s
Since accelerometers measure the specific fétacting on  embedded instruments are a magnetometer, a GPS receiver,
the body instead of real accelerations, (4) is changed to and a barometric altimeter. These instruments’ readings ar
related to (8) according to

" =Cuf’+g", (5)
T
b b b n

. . ma - Cn n my 9

where f? corresponds to the IMU readings apd is the " i 9k (n (@ ”“)) mEp + € ©)

local gravitational field measured in Pgps,k = Pk +ép, (10)

Choosing [p" v*]T as the state vector to represent the Vgpsk = Uk T €, (11)

motion of O° with respect ton, the body’s translation can R, = zi + en, (12)

be described as

b - I -
1 o 1] [p 0 O] 5 Wheremmmk dinptes thek-th magnetometer read:lng de

o= 1o ol [on ct 1| g T (6)  scribed inb andmy is the local magnetic field vectopy, ., ,

andovg, ., are, respectively, the position and velocity samples
wherel denotes the identity matrix of appropriate dimen+ead from the GPS receivek;,, , is the altitude measure-
sions. The terme; models disturbances due to modelingment provided by the altimeter; and, i € {m,p,v,h},
errors and sensor noise. model sensor disturbances.



I1l. HYBRID DATA FUSION from the sequencg,.. = {y1,y2,...,yr}. This subject has

A filtering algorithm capable of joining (6), (7), (9)-(12) been widely addressed in the literature both for the case of
to provide reliable estimates of (8) completes the localizdin€ar and nonlinear functions andh in (16)-(17) [9], [10],

tion system described in Section Il. In standard operatinﬂ-?o]\vsélzj?r]]-mg the possibility of not having any previous

conditions where the model equations are valid, the EKE o . ,
k ’ nowledge orl and considering the hybrid model described
and the Unscented Kalman Filter (UKF) are among thg, (13)_(%4)’ one wishes to obtgain y

most widely adopted filtering solutions for this kind of | ; the estimated minimum variance state vector:
nonlinear problem [18]. Particle filtering is another very . j(m), the estimated mode probability vector;
common alternative to handle nonlinearity [8], [9], gertigra  « 1I(k), the estimated TPM,;

allowing for non-Gaussian noise. However, robots opegatinffom a sequence of disturbed measuremepts, =

in outdoor environments sometimes undergo very strong/t, Y2, - - -, Yk }- From the Total Probability Theorem [21],
disturbances, making traditional filters unable to track (8(+8) can be rewritten as

over time. The term heavy disturbance here is used to denote M

environmental perturbations so strong that they are able to p(relyre) = D p(relyin, my = ) P(mx =i).  (19)

=1

modify the system’s internal structure. This perturbadion

clude signal interference from outside the system, tempora The termP (i, = i) denotes the unconditional probability

and permanent sensor faults, physical structure modticati of havingm,, = i at thek-th sample instant.

and any other source of disturbance that cannot be modeled o

just by adding are noise term. An approach to deal withA- TPM estimation

this problem is presented next. Many works, such as [8], [11]-[13], concerning state
Similarly to a well known procedure in the modelingestimation in the context of Markovian jump systems (MJS)

of hybrid systems [8], [19], state estimation in dynamicalcq,me prior knowledge on the mode transition probalsilitie
systems under heavy disturbances may be modeled as a

hybrid data fusion problem with equations l.e., I1 is a given parameter. However, this assumption is
usually unrealistic, specially in the case of hybrid sysem

T = f (Th—1, k-1, We-1)), 13 ke (13)-(14) where mode transitions have unknown causes
Yy, = hany (e, 1), k €N, (14 and occur at random. Choosing an incor@egtiori value for

where r, € R™ is the sampled state vectorp, € II may degrade the filter's performance and lead to inaccurate
M £ {1,2,...,M} is the system’s operating mode, whichvalues for#, andg(m;), making the online estimation &f

ca}ln assrlljme Mn different discrete value;, : R"" x  pased ory;., a desirable and important feature.
Rte > R — R is a possibly nonlinear mode-dependent 1o gig0rithm presented in [22] to perform the online

r volution functi : R x R™ R™ an L .
Smocees%% %;gc;he umgtjce)tzgf)endentxmeasu?émery]t ?ugctiﬁtlmatlon of unknown, nonstationary TPMs models each
k

and measurement Vector, respectivel%;_l c R is the row Of Il as fO”OWing a pl’iOI’ D|r|Ch|et diStI’ibution and
input vector; andv,_1 € R™ andwy_; € R™ are noise derives a Bayesian mean-variance estimator based on the fac

processes. The parametey, is assumed to follow a Markov that the Dirichlet distribution is conjugate to the multmial
Chain with possibly unknown transition probability matrix gisribution. However, the estimator [22] assumes perfect

(TPM) mode observation, which is not the case for (13)-(14). For
II = (mi;), mi; = P{mr = jlme—1 =i},4,j €M,  (15)  TPM estimation, it has been used tQeasi-Bayesiamlgo-

and initial probability vectop(my). Each discrete mode,, ~ fithm described in [19] using just the system’s measurement
defines a measurement equatigy), , each one of them mod- as inputs to the TPM estimator. This estimator, which gives

eling a different way measurements can be used to correct thg approximation to the maximura posteriori estimate

predicted estimates. In the case of heavily disturbed syste pf the transition probabilities, is incorporated to the tigtb
a single measurement equation is generally not sufficient to__ . .
panlinear filter used to track (13)-(14).

cope with the different ways that output measurements can
generated and affected, possibly being completely dedrad
by the environment. In theoretical situations when all sesns

work properly and signal disturbance is not strong, the rhode As can be seen in (19), estimating (18) for the hybrid

B. Hybrid fusion of filters’ estimates

(13)-(14) can be simplified to system described by (13)-(14) consists of keeping track of
e = f(Phet, Un—1, We—1), (16) Mfilters, each one of them following a model for a different
ik = h(re, on), k € N. (17y modem,.. Moreover, itis also necessary to estimate the mode

robability vectorp =[P =1)...P = M)|T
For the system (16)-(17), all sensor measurements corr($ Y plme) = [Pl ) (s )

t H - 1 M 1
the estimates. Furthermore, since the measurements a&-¢ in order FO weight the filters’ estimates according to .hOW
ely their outputs are correct. In the context of multiple

pendent, a sequential correction process is commonly us
Considering that, is not directly measurable, the problemmodels estimation, the IMM algorithm exhibits computa-
of stochastic state estimation can be formulated in a Bagesitional requirements which are nearly linear in the size ef th
framework as obtaining the posterioriprobability density proplem (number of modes) whilst its performance is almost
function (p.d.) the same as that of an algorithm with quadratic complexity,
PWelrr, y1:e—1)p(Tky1:e—1) (1sy Mmaking this algorithm one of the best choices in terms of
P(Yklyr:e—1) cost and efficiency [14]. Unfortunately, many applications

p(rlyix) =



of the IMM algorithm assume previous knowledge of the No details are given in (20) and (21) because these steps
TPM, which is rarely the case. However, joining the TPMvary depending on the filter chosen to track each system
estimation algorithm of Section IlI-A with the IMM algo- mode. For example, if (13)-(14) are linear, the Kalman Filte
rithm’s equations introduced by [11], [12] yields a hybrid(KF) is a sensible choice. On the other hand, the numerical
data fusion system which recursively estimatges p(my),
andII(k).

HDFF (Hybrid Data Fusion Filter) A set of M filters is 4 o et .
needed to track (13)-(14), each one of them following a ditepiii takes the mixed initial conditiofr (k—1), P'(k—1))

ferent system mode. Let(k) and P;(k), i € {1,2,.

LMY,

results presented in Section IV for the nonlinear locailirat
system modeled in Section Il were obtained by using the
EKF as the filtering solution. No matter what filter is chosen,

for the filter tracking the moden; = i and yields the

be the state vector and associated covariance matrix corr@redicted state and covariance mat(ix(k), P;(k)). Next,
sponding to the filter tracking the system modg = 7 at

the k-th sample instant. Let alsg, be the system’s output

vector. Denoting;(my) = P(my = i) and assuming initial

conditions
p(mo) = [p1(mo) p2(mo) ... Par(mo)l,
#(0) = r(0),r(0) € R™,
Ai (0) = ]D(O)7 P(O) c R/”/’V‘X”l/,«’
11(0) 11(0),

step iv, based on the system’s current output sample
provides the corrected estimat@s(k), Pi(k)).

IV. RESULTS

A. Simulations

This section presents the simulated tracking performance
under heavy disturbances of two nonlinear filters for the
localization system described in Section Il. Among the
UAV's embedded sensors, the magnetometer is the most

the hybrid data fusion algorithm can be given by theected by the electromagnetic interference generated by
following steps:

\Y

Vii

Mode probability prediction

M
pi(mi) = > #ji(k=1)p; (ma—1),
j=1
Estimates mixing

ri(ho1)= i’: 7t (k=1)p; (mie—1)#; (k—1)

Pi(mg)

)
j=1

i Mgk 1) (i) [P (k=1)+3(, 5)]
i (’“*”‘; Brme)
8(i, )= (75 (k=1) =" (k=1)) ()7,

Filter-dependent prediction step

)

(r* (k=1), P (k—1)) =2 (73(k), Pi(k)),  (20)
Filter-dependent correction step
(7i(K), Pi(k)) 2 (7, (k), Bi(k)),  (21)

Mode probability correction

pima) = p(yr|mr=i, ﬁ(k‘;l% ylzk’—l)ﬁi(mk)7

M
Tp = Zﬁ](mk)7
j=1
ﬁ(mk) = [ﬁl(mk) - ﬁA{(mk)]T (i) ,
Tp
Output generation

i = Zﬁz(mk)fz(kL
Pi= > pilma) [Pk + (ulh) = 7) ()]

Algorithm [19] ~
T

TPM update:II(k — 1) (k).

the aerial power lines. Furthermore, mechanical vibration
sometimes momentarily disconnect the magnetometer from
the embedded computer, yielding invalid readings. At fast,
single EKF was intended to perform the UAV's localization.
However, poor performance was obtained during tests in
a flight simulator, leading to the need of an alternative
filtering method. The solution found was developing the
hybrid data fusion algorithm presented in Section I, nmaki

the localization system robust to environmental distudesan

Implementing (6) in a digital computer requires its con-
version to the discrete time domain [23]. Denotings the
sampling period, (6) has discrete representation

pg _ I Ir pg—l + CZ; Hé flg—l
v 0 I vy Cctr It | |9k-1]"’
where the subscript € N denotes the sample taken at

instantkr. Following a similar procedure for converting (7)
to the discrete time domain yields

) sin (¢
qZ,k = [H4x4 Ccos (‘) - WTM] qi,k_l,

2 0

wheres = (/w2 +w? +w?)7 and W is the same as in
(7). In order to apply the EKF’s equations, (13)-(14) were
modified to

re = f(re—1, uk—1)+twr—1, wr—1 ~ N(0,Qr-1),
Ymy, = hmk (Tk)+vk7 Vg ~ N(07 Rmk)

(22)
(23)

For the system (22)-(23), steps& andiv of Algorithm
1 are, respectively, the EKF's well-known prediction and
correction steps.

In this simulation, an UAV performs a helical trajectory.
The localization system was initially tested without thespr
ence of heavy disturbances. Measurements were corrupted
only by standard sensor noise and state estimation was
performed by an EKF. It has been obtained a maximum of
5 degrees error in any of the attitude angles, indicating tha
the EKF implementation seems correct.
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(a) Magnetometer measurements. (b) Attitude angle errors for the EKF. (c) Attitude angle errors for the HDFF.

Fig. 2. Simulation results under heavy disturbances on etagmeter measurements.

Next, two more simulations were conducted introducindpcalization system was able to provide accurate attitude a

heavy magnetometer disturbances during part of the eXpegl;losition estimates based on real sensor readings. Onae agai

ment. The purpose of this perturbations was to simulate bo comparison was made between the EKF and the HDFF
signal interference induced by the aerial power lines an '

temporary disconnections between the magnetometer and thé'titude and 3D position estimates are shown in Figures
embedded system. During one third of the time, disturbancééa) and 3(b) for the EKF. Similarly to the previous simula-
occurred at random, as can be seen in Figure 2(a). Once agiam results, the EKF's performance is poor and sensitive to

the EKF was used to estimate the UAV's pose, yielding theensor disturbances. Moreover, magnetometer measurement

?tt'tUde estimation results shown in Figure 2(b). During thyith norm beyond a chosen threshold among the experimen-
irst part of the experiment, where the magnetometer behave:f - .
correctly, the EKF’s filtering performance is satisfactoryl@ data had to be eliminated in order to prevent the EKF
However, as magnetometer disturbances start to take plaf@m diverging.

the estimates provided by the EKF become completely Differently from the EKF, the results provided by the

degraded, yielding the unacceptable errors seen in FIgWHFF are indeed reliable estimates of the localization sys-
2(b). In order to solve this problem, the HDFF was used t

perform the UAV's state estimation. Based on (9)-(12), twgemS pose during the experiment. As can be seen in Figures

mode-dependent measurement equations 4(a_) and 4(b), the roll _and pi'Fch angle_s remained sm_all
., . during the whole operation, which goes in agreement with
Mg,k (Crn(@n))” mE + em the fact that cars do not roll and pitch while moving, except
yi(k) = igf&k = pﬁiep ., (24) for eventual suspension vibrations. At the same time, the
h%{;f: ZI’,} +EZ yaw estimates follow the car heading during the course,
_ 04 eventually returning to zero when the car arrives at itsahit
n;ﬁz““””“ o fi“" position. Concerning the 3D position, the HDFF was able
y2(k) = ”:fij: = tel (25 to correctly track the vehicle and there is little deviation
L Rl zp +en between GPS measurements and estimated 3D positions,
were used to model the system’s output. Equation (22{yh'0h is not the case for the EKF.
corresponds to the situation where all sensors are working V. CONCLUSIONS

properly, while (25) models magnetometer faults. A zero _ .
element was explicitly written in (25) because a pull-down This work proposed a new approach for the data fusion
resistor yields magnetometer measurements containing omrolem based on the hybrid modeling of heavily disturbed
zeros when temporary disconnections occur. The distugbargyStems. The localization system developed in Section sl wa
term egaur ~ N (0, Paur) Models signal interference gen_smulateq and experlmentally te.sted.for the_ operation of an
erated by the aerial power lines. Using (24)-(25) as theA designed for agnal power Il_nes inspection and thg per-
measurement model, the HDFF yielded the results shown {rmance under environmental disturbances of two stothast
Figure 2(c). Even under magnetometer disturbances ableftiers was evaluated. The classical solution using the EKF
completely degrade the EKF’s estimates, the HDFF showg(e!ded good results in the undisturbed case, but failed to
a filtering performance very similar to that of the EKF inProvide reliable estimates in the presence of measurement
the undisturbed case, indicating its usefulness as a robd@lts. On the other hand, the hybrid filter HDFF showed a

stochastic estimator. performance, for both the disturbed and undisturbed cases,
_ similar to the EKF in the lack of disturbances, showing the
B. Experiments HDFF’s utility as a robust state estimator for real robotic

After being validated in simulation, the hybrid filter wassystems.
tested in a real navigation experiment. The UAV’s localiza-
tion system was embedded in a car and collected sensor data VI. ACKNOWLEDGMENTS
while the vehicle moved around the University of Brasflia’ The authors are supported by research grants
campusin a closed circuit. The goal was to verify if the 132787/2009-1 and 304999/2008-3 from the National
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