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Abstract— This work addresses the problem of stochastic
data fusion for systems liable to heavy disturbances, which
denote environmental perturbations strong enough to modify
the system’s internal structure, including signal interference,
sensor faults, physical structure modification, and many other
sources of disturbance. In these such cases, traditional filtering
methods usually fail to provide reliable estimates becauseof the
highly corrupted sensor measurements. This work proposes to
model the data fusion problem for heavily disturbed systems
through a hybrid systems modeling framework and presents an
online hybrid stochastic filter capable of tracking the system’s
state in unfavorable operating conditions. Simulated and exper-
imental results compare the proposed filter’s performance with
the traditionally used Extended Kalman Filter (EKF) and show
its usefulness as a robust localization filter for an Unmanned
Aerial Vehicle (UAV) designed for aerial power lines inspection.

I. INTRODUCTION

NAVIGATION and 3D localization for robotic systems
are problems of utmost importance [1], specially for

robots operating in outdoor, uncontrolled environments. Pro-
viding reliable estimates of the system’s pose involves com-
bining data, by means of filtering algorithms, from propri-
oceptive and exteroceptive sensors, which may provide in-
formation about position, orientation, velocities or any other
spatial variable of interest. Depending on the applicationand
the types of sensors available, different strategies may be
used for robots localization. For example, [2] applies Kalman
filtering to the problem of positioning and heading control
of ships and offshore rigs using inertial, GPS, and compass
measurements, whilst [3] extracts information from a stereo
visual system in order to simultaneously localize a robot
and build a map of its surroundings. These examples and
most works concerning data fusion implicitly assume that
“two sensors are better than one”, an idea made famous
in the robotics field by [4]. However, this statement is
true only for sensors working correctly, i.e., with unbiased
measurements. In the case of robots operating in real life,
faulty measurements from just one sensor may degrade the
whole localization system’s performance.

Detecting failures and anomalous behavior in dynamic
systems have long been a matter of great interest, as can be
seen in the survey presented in [5]. One way of dealing with
disturbed measurements consists of considering different
sets of measurement equations in order to describe a given
system’s output. Nevertheless, having different kinds of mea-
surement equations introduces the problem of determining
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which set is the most likely to be true at each time instant.
In the field of Simultaneous Localization and Mapping
(SLAM), for example, [6] and derived works define the
set of measurement equations based on the correspondence
between local and global maps, which is determined by
means of statistical tests that are independent from the
localization filter. On the other hand, the hybrid systems
approach proposed in this work elegantly incorporates mea-
surement compatibility tests, which naturally determine the
most adequate set of measurement equations at each time
instant without the need of additional verifications.

Hybrid systems denote a class of dynamical systems
whose behavior combines continuous and discrete state vari-
ables [7] and extensive work has been done in the field of
state estimation for this kind of system. For instance, [8],[9]
apply particle filters as state estimators for hybrid systems,
while [10] uses robust Kalman filtering techniques. One of
the most famous multiple model estimation algorithms, the
Interacting Multiple Model (IMM), is introduced in [11],
[12] and target tracking applications using hybrid systems
are presented in [13], [14].

Motivated by the problem of 3D localization for an
Unmanned Aerial Vehicle (UAV) designed for aerial power
lines inspection, this contribution lies in the description of the
data fusion problem for heavily disturbed systems through
the hybrid systems modeling framework [15]. Due to the
strong electromagnetic interference generated by the power
lines and occasional sensor faults, the traditional stochastic
filters first evaluated for state estimation using the aircraft’s
sensors were not able to provide reliable information. Instead
of redesigning the instrumentation system, leading to higher
costs and delays in the project, the solution to cope with
environmental disturbances was developing a robust localiza-
tion filter able to deal with highly corrupted measurements,
making it capable to track the UAV’s state in conditions
where other filters fail.

This paper is organized as follows. Section II models
the localization system designed to track the UAV’s state.
The hybrid data fusion algorithm is presented in Section
III and simulated as well as experimental results comparing
its performance with the Extended Kalman Filter (EKF) are
shown in Section IV. Finally, conclusions are presented in
Section V.

II. LOCALIZATION SYSTEM

This section describes the mathematical model used in
the UAV’s localization system. An inertial navigation system
(INS) composed of a 6 degrees of freedom (DOF) Inertial
Measurement Unit (IMU) measures angular and linear rates



through accelerometers and gyros. A three-axis magnetome-
ter and a barometric altimeter are used, respectively, to
correct the aircraft’s attitude and altitude. Finally, a global
navigation satellite system (GNSS) provides measurements
of position and velocity through a GPS receiver. For the lo-
calization system’s equations, consider the coordinate frames
shown in Figure 1.
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Fig. 1. Body (b) and reference (n) coordinate frames.

A. Translation

Let pb be the representation of the IMU’s position vector in
the body-fixed frameb andpn be the same vector described
in the earth-fixed framen. Considering thatb translates and
rotates with respect ton, it follows that

p
n = C

b
np

b + t
b
n, (1)

where Cb
n denotes the rotation matrix fromb to n and

tbn = Ob −On is the displacement between the origins ofb,
Ob, and ofn, On. Since the IMU’s accelerometers provide
measurements inb, a transformation is necessary to describe
these accelerations inn. Differentiating (1) twice yields
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In most cases,pb is a fixed point in the structure, yielding
ṗb = p̈b = 0. In order to further simplify (1)-(3),pb can be
chosen to coincide withOb and the body’s center of mass,
makingpb = 0. In these such cases, (3) can be rewritten as

a
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b
na

b
, (4)

whereab = [ab
x ab

y ab
z]

T is the acceleration measured inb.
Since accelerometers measure the specific forcef b acting on
the body instead of real accelerations, (4) is changed to

a
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b
nf

b + g
n
, (5)

wheref b corresponds to the IMU readings andgn is the
local gravitational field measured inn.

Choosing [pn vn]T as the state vector to represent the
motion of Ob with respect ton, the body’s translation can
be described as
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whereI denotes the identity matrix of appropriate dimen-
sions. The termǫt models disturbances due to modeling
errors and sensor noise.

B. Rotation

The body’s attitude, i.e., the orientation ofb with respect
to n, is represented by means of hypercomplex quaternions
vectors [16]. Although this representation is not as intuitive
as Euler angles, which directly denote the body’s rotation
angles around each axis ofb, using quaternions exhibits many
advantages concerning computational costs and singularities
in the representation of rotations [1].

Let qb
n = [q0 q1 q2 q3]

T , ‖qb
n‖= 1, be the quaternion

representing the orientation ofb with respect ton. The
equation relatingqb

n to its corresponding rotation matrix is
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As the body rotates, the IMU’s gyros provide angular rate
measurementsωx, ωy, and ωz around axisXb, Y b, and
Zb, respectively (Figure 1). Thus, the body’s rotation can
be described as
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Similarly to (6), a disturbance termǫq is added to cope
with modeling errors and sensor noise.

C. Corrective measurements

Denoting

rk =
h
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n,k)T (pn

k )T (vn
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iT

(8)

as the system’s state vector at thek-th sample instant,
where qb

n,k = [q0,k q1,k q2,k q3,k]T , pn
k = [xn

k yn
k zn

k ]T ,
vn

k = [vn
x,k vn

y,k vn
z,k]T , the model provided by (6) and

(7) allows the localization system to predict the body’s
current state based on the IMU’s measurements. However,
because of modeling errors and sensor noise, estimating the
system’s state using only inertial measurements quickly leads
to unreliable results, making it necessary to use additional
sensors in order to correct the estimates [17]. As described
in the beginning of Section II, besides the IMU, the UAV’s
embedded instruments are a magnetometer, a GPS receiver,
and a barometric altimeter. These instruments’ readings are
related to (8) according to
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wheremb
mag,k denotes thek-th magnetometer reading de-

scribed inb andmn
E is the local magnetic field vector;pn

gps,k

andvn
gps,k are, respectively, the position and velocity samples

read from the GPS receiver;hn
alt,k is the altitude measure-

ment provided by the altimeter; andǫi, i ∈ {m, p, v, h},
model sensor disturbances.



III. HYBRID DATA FUSION

A filtering algorithm capable of joining (6), (7), (9)-(12)
to provide reliable estimates of (8) completes the localiza-
tion system described in Section II. In standard operating
conditions where the model equations are valid, the EKF
and the Unscented Kalman Filter (UKF) are among the
most widely adopted filtering solutions for this kind of
nonlinear problem [18]. Particle filtering is another very
common alternative to handle nonlinearity [8], [9], generally
allowing for non-Gaussian noise. However, robots operating
in outdoor environments sometimes undergo very strong
disturbances, making traditional filters unable to track (8)
over time. The term heavy disturbance here is used to denote
environmental perturbations so strong that they are able to
modify the system’s internal structure. This perturbations in-
clude signal interference from outside the system, temporary
and permanent sensor faults, physical structure modification
and any other source of disturbance that cannot be modeled
just by adding anǫ noise term. An approach to deal with
this problem is presented next.

Similarly to a well known procedure in the modeling
of hybrid systems [8], [19], state estimation in dynamical
systems under heavy disturbances may be modeled as a
hybrid data fusion problem with equations

rk = fmk
(rk−1, uk−1, wk−1), (13)

ymk
= hmk

(rk, vk), k ∈ N, (14)

where rk ∈ R
nr is the sampled state vector;mk ∈

M , {1, 2, . . . , M} is the system’s operating mode, which
can assume M different discrete values;fmk

: R
nr ×

R
nu × R

nw → R
nr is a possibly nonlinear mode-dependent

process evolution function;hmk
: R

nr × R
nv → R

ny and
ymk

∈ R
ny are the mode-dependent measurement function

and measurement vector, respectively;uk−1 ∈ R
nu is the

input vector; andvk−1 ∈ R
nv and wk−1 ∈ R

nw are noise
processes. The parametermk is assumed to follow a Markov
Chain with possibly unknown transition probability matrix
(TPM)

Π = (πi,j), πi,j = P{mk = j|mk−1 = i}, i, j ∈ M, (15)

and initial probability vectorp(m0). Each discrete modemk

defines a measurement equationymk
, each one of them mod-

eling a different way measurements can be used to correct the
predicted estimates. In the case of heavily disturbed systems,
a single measurement equation is generally not sufficient to
cope with the different ways that output measurements can be
generated and affected, possibly being completely degraded
by the environment. In theoretical situations when all sensors
work properly and signal disturbance is not strong, the model
(13)-(14) can be simplified to

rk = f(rk−1, uk−1, wk−1), (16)

yk = h(rk, vk), k ∈ N. (17)

For the system (16)-(17), all sensor measurements correct
the estimates. Furthermore, since the measurements are inde-
pendent, a sequential correction process is commonly used.
Considering thatrk is not directly measurable, the problem
of stochastic state estimation can be formulated in a Bayesian
framework as obtaining thea posteriori probability density
function (p.d.f)

p(rk|y1:k) =
p(yk|rk, y1:k−1)p(rk|y1:k−1)

p(yk|y1:k−1)
(18)

from the sequencey1:k = {y1, y2, . . . , yk}. This subject has
been widely addressed in the literature both for the case of
linear and nonlinear functionsf andh in (16)-(17) [9], [10],
[17], [20].

Assuming the possibility of not having any previous
knowledge onΠ and considering the hybrid model described
in (13)-(14), one wishes to obtain

• r̂k, the estimated minimum variance state vector;
• p̂(mk), the estimated mode probability vector;
• Π̂(k), the estimated TPM;

from a sequence of disturbed measurementsy1:k =
{y1, y2, . . . , yk}. From the Total Probability Theorem [21],
(18) can be rewritten as

p(rk|y1:k) =
M

X

i=1

p(rk|y1:k, mk = i)P (mk = i). (19)

The termP (mk = i) denotes the unconditional probability
of havingmk = i at thek-th sample instant.

A. TPM estimation

Many works, such as [8], [11]–[13], concerning state
estimation in the context of Markovian jump systems (MJS)
assume prior knowledge on the mode transition probabilities,
i.e., Π is a given parameter. However, this assumption is
usually unrealistic, specially in the case of hybrid systems
like (13)-(14) where mode transitions have unknown causes
and occur at random. Choosing an incorrecta priori value for
Π may degrade the filter’s performance and lead to inaccurate
values forr̂k and p̂(mk), making the online estimation ofΠ
based ony1:k a desirable and important feature.

The algorithm presented in [22] to perform the online
estimation of unknown, nonstationary TPMs models each
row of Π as following a prior Dirichlet distribution and
derives a Bayesian mean-variance estimator based on the fact
that the Dirichlet distribution is conjugate to the multinomial
distribution. However, the estimator [22] assumes perfect
mode observation, which is not the case for (13)-(14). For
TPM estimation, it has been used theQuasi-Bayesianalgo-
rithm described in [19] using just the system’s measurements
as inputs to the TPM estimator. This estimator, which gives
an approximation to the maximuma posteriori estimate
of the transition probabilities, is incorporated to the hybrid
nonlinear filter used to track (13)-(14).

B. Hybrid fusion of filters’ estimates

As can be seen in (19), estimating (18) for the hybrid
system described by (13)-(14) consists of keeping track of
M filters, each one of them following a model for a different
modemk. Moreover, it is also necessary to estimate the mode
probability vectorp̂(mk) = [P̂ (mk = 1) . . . P̂ (mk = M)]T

in order to weight the filters’ estimates according to how
likely their outputs are correct. In the context of multiple
models estimation, the IMM algorithm exhibits computa-
tional requirements which are nearly linear in the size of the
problem (number of modes) whilst its performance is almost
the same as that of an algorithm with quadratic complexity,
making this algorithm one of the best choices in terms of
cost and efficiency [14]. Unfortunately, many applications



of the IMM algorithm assume previous knowledge of the
TPM, which is rarely the case. However, joining the TPM
estimation algorithm of Section III-A with the IMM algo-
rithm’s equations introduced by [11], [12] yields a hybrid
data fusion system which recursively estimatesr̂k, p̂(mk),
and Π̂(k).

HDFF (Hybrid Data Fusion Filter) A set of M filters is
needed to track (13)-(14), each one of them following a dif-
ferent system mode. Letr̂i(k) and P̂i(k), i ∈ {1, 2, . . . , M},
be the state vector and associated covariance matrix corre-
sponding to the filter tracking the system modemk = i at
the k-th sample instant. Let alsoyk be the system’s output
vector. Denotinĝpi(mk) = P (mk = i) and assuming initial
conditions

p̂(m0) = [p̂1(m0) p̂2(m0) . . . p̂M (m0)],

r̂i(0) = r(0), r(0) ∈ R
nr ,

P̂i(0) = P (0), P (0) ∈ R
nr×nr ,

Π̂(0) = Π(0),

the hybrid data fusion algorithm can be given by the
following steps:

i Mode probability prediction
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iii Filter-dependent prediction step
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−−−−−→ (r̄i(k), P̄i(k)), (20)

iv Filter-dependent correction step

(r̄i(k), P̄i(k))
Correction
−−−−−→ (r̂i(k), P̂i(k)), (21)

v Mode probability correction

p̂i(mk) =
p(yk|mk=i, Π̂(k−1), y1:k−1)p̄i(mk)
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vi Output generation

r̂k =
M

X

i=1

p̂i(mk)r̂i(k),

P̂k =

M
X

i=1

p̂i(mk)
h

P̂i(k) + (r̂i(k) − r̂k) (·)T
i

.

vii TPM update:Π̂(k − 1)
Algorithm [19]
−−−−−−−−→ Π̂(k).

No details are given in (20) and (21) because these steps
vary depending on the filter chosen to track each system
mode. For example, if (13)-(14) are linear, the Kalman Filter
(KF) is a sensible choice. On the other hand, the numerical
results presented in Section IV for the nonlinear localization
system modeled in Section II were obtained by using the
EKF as the filtering solution. No matter what filter is chosen,
stepiii takes the mixed initial condition(ri(k−1), P i(k−1))
for the filter tracking the modemk = i and yields the
predicted state and covariance matrix(r̄i(k), P̄i(k)). Next,
step iv, based on the system’s current output sampleyk,
provides the corrected estimates(r̂i(k), P̂i(k)).

IV. RESULTS

A. Simulations

This section presents the simulated tracking performance
under heavy disturbances of two nonlinear filters for the
localization system described in Section II. Among the
UAV’s embedded sensors, the magnetometer is the most
affected by the electromagnetic interference generated by
the aerial power lines. Furthermore, mechanical vibrations
sometimes momentarily disconnect the magnetometer from
the embedded computer, yielding invalid readings. At first,a
single EKF was intended to perform the UAV’s localization.
However, poor performance was obtained during tests in
a flight simulator, leading to the need of an alternative
filtering method. The solution found was developing the
hybrid data fusion algorithm presented in Section III, making
the localization system robust to environmental disturbances.

Implementing (6) in a digital computer requires its con-
version to the discrete time domain [23]. Denotingτ as the
sampling period, (6) has discrete representation
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where the subscriptk ∈ N denotes the sample taken at
instantkτ . Following a similar procedure for converting (7)
to the discrete time domain yields

q
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where δ =
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x + ω2
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´

τ and W is the same as in
(7). In order to apply the EKF’s equations, (13)-(14) were
modified to

rk = f(rk−1, uk−1)+wk−1, wk−1 ∼ N(0, Qk−1), (22)

ymk
= hmk

(rk)+vk, vk ∼ N(0, Rmk
). (23)

For the system (22)-(23), stepsiii and iv of Algorithm
1 are, respectively, the EKF’s well-known prediction and
correction steps.

In this simulation, an UAV performs a helical trajectory.
The localization system was initially tested without the pres-
ence of heavy disturbances. Measurements were corrupted
only by standard sensor noise and state estimation was
performed by an EKF. It has been obtained a maximum of
5 degrees error in any of the attitude angles, indicating that
the EKF implementation seems correct.
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(c) Attitude angle errors for the HDFF.

Fig. 2. Simulation results under heavy disturbances on magnetometer measurements.

Next, two more simulations were conducted introducing
heavy magnetometer disturbances during part of the experi-
ment. The purpose of this perturbations was to simulate both
signal interference induced by the aerial power lines and
temporary disconnections between the magnetometer and the
embedded system. During one third of the time, disturbances
occurred at random, as can be seen in Figure 2(a). Once again
the EKF was used to estimate the UAV’s pose, yielding the
attitude estimation results shown in Figure 2(b). During the
first part of the experiment, where the magnetometer behaves
correctly, the EKF’s filtering performance is satisfactory.
However, as magnetometer disturbances start to take place,
the estimates provided by the EKF become completely
degraded, yielding the unacceptable errors seen in Figure
2(b). In order to solve this problem, the HDFF was used to
perform the UAV’s state estimation. Based on (9)-(12), two
mode-dependent measurement equations
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were used to model the system’s output. Equation (24)
corresponds to the situation where all sensors are working
properly, while (25) models magnetometer faults. A zero
element was explicitly written in (25) because a pull-down
resistor yields magnetometer measurements containing only
zeros when temporary disconnections occur. The disturbance
term ǫfault ∼ N(0, Pfault) models signal interference gen-
erated by the aerial power lines. Using (24)-(25) as the
measurement model, the HDFF yielded the results shown in
Figure 2(c). Even under magnetometer disturbances able to
completely degrade the EKF’s estimates, the HDFF showed
a filtering performance very similar to that of the EKF in
the undisturbed case, indicating its usefulness as a robust
stochastic estimator.

B. Experiments

After being validated in simulation, the hybrid filter was
tested in a real navigation experiment. The UAV’s localiza-
tion system was embedded in a car and collected sensor data
while the vehicle moved around the University of Brası́lia’s
campusin a closed circuit. The goal was to verify if the

localization system was able to provide accurate attitude and
position estimates based on real sensor readings. Once again
a comparison was made between the EKF and the HDFF.

Attitude and 3D position estimates are shown in Figures
3(a) and 3(b) for the EKF. Similarly to the previous simula-
tion results, the EKF’s performance is poor and sensitive to
sensor disturbances. Moreover, magnetometer measurements
with norm beyond a chosen threshold among the experimen-
tal data had to be eliminated in order to prevent the EKF
from diverging.

Differently from the EKF, the results provided by the
HDFF are indeed reliable estimates of the localization sys-
tem’s pose during the experiment. As can be seen in Figures
4(a) and 4(b), the roll and pitch angles remained small
during the whole operation, which goes in agreement with
the fact that cars do not roll and pitch while moving, except
for eventual suspension vibrations. At the same time, the
yaw estimates follow the car heading during the course,
eventually returning to zero when the car arrives at its initial
position. Concerning the 3D position, the HDFF was able
to correctly track the vehicle and there is little deviation
between GPS measurements and estimated 3D positions,
which is not the case for the EKF.

V. CONCLUSIONS

This work proposed a new approach for the data fusion
problem based on the hybrid modeling of heavily disturbed
systems. The localization system developed in Section II was
simulated and experimentally tested for the operation of an
UAV designed for aerial power lines inspection and the per-
formance under environmental disturbances of two stochastic
filters was evaluated. The classical solution using the EKF
yielded good results in the undisturbed case, but failed to
provide reliable estimates in the presence of measurement
faults. On the other hand, the hybrid filter HDFF showed a
performance, for both the disturbed and undisturbed cases,
similar to the EKF in the lack of disturbances, showing the
HDFF’s utility as a robust state estimator for real robotic
systems.
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