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Abstract— Network-induced delays and packet dropouts are network, is considered in [8]. In Nilsson [1] and references
relevant issues that can degrade netwlorked. .controll systems therein, the authors systematically investigate the niiogel
performance and may even lead to instability. This paper anq analysis problems for NCSs under the assumption that

concerns the establishment of a stability criterion for netvorked the ti delay f ¢ tuator is | th
control systems (NCSs) consisting of an LTI process and "€ lUMe-delay from sensor (o actuator 1s less than one

a dynamic feedback controller. Conditions for stability are ~Sampling period.
provided in terms of Linear Matrix Inequalities (LMIs), who se The works [9], [10] model the overall NCS by continuous-

solution yields network-induced delay upper bounds. Numecal  time delayed differential equations (DDES). An important
examples and a simulation ratify the theoretical results. advantage of this characterization is that the equatioas ar
Index Terms— Networked control systems, stability criterion, lid h the del ds th i int |
dynamic controller, LMI, Lyapunov function valid even when the efi_y excee S e samp ing m_erva
[4]. The problem of stability analysis for continuous-time
. INTRODUCTION networked control systems is studied in [11]-[20]. All tees

works concern the investigation of the delay-dependent sta

N ETWORKED Control Systems refer to a class of Conbility problem by choosing an appropriate type of Lyapunov
trol systems whose elements (plant, controller, actuatofg,ction candidate and solving a set of LMIs

and sensors) are linked together through a multipurpose

shared communication network and the information is exzo i cihers in the sense that the obtained network-

changed Ln ;he forml of data pahckets [1]_[5].d induced delay bound is less conservative. Neverthele8, [1
Networked control systems have many advantages COTE'O] only consider proportional state feedback contrgller

lpared to thle traditional Iogal cgntrol architecture, mhhgﬂ in the stability analysis. This is a significant constraint,
ower instalation costs, reduced system wiring, greater flé ;o j; seriously restricts the controller universe than c

ibility and higher reliab-ility. [5], [6]. Howgver, the insBon  pe onsidered. For instance, even ordinary Proportional-
.Of a dshare(;i_ﬁcommfumcauin_ net\slolrk in the (_:ontrol IOOF?ntegral (P1) controllers cannot be treated by this créteri
introduces different 0"23 N t'mﬁ' N aé un_ltfre]rtamty beea” “d“ | The distinguishing feature in this paper is that it presents
sensors, actuators and controllers [.]' € overall d€la¥elay-dependent stability criterion for NCSs with dynamic
betwgen sendmg and eventual decoding at the receiver “@htrollers in the feedback loop, being able to deal with a
be highly varlat_)le.because both the network access d,e_l"’WﬁJch larger set of control systems. Moreover, when it comes
and the transmission delays depend on_network C‘?nd't'o NCSs with only proportional controllers, our criterion
such as congestion and channel quality [4]. It is well;o 45 nepwork-induced delay bounds equal to the ones

known in control systems that time delays can degr_ade esented in [19], [20], which are less conservative than th
system’s performance and even cause system instability [ nes from previous works

[4]. Moreover, there is also a possibility that sensor/ozint This paper is organized as follows. Section Il presents

3|gnals may be lost in communlg:atmn. T_hese problt_am_s haYﬁe system description and preliminaries, taking into aato

stimulated a str_ong research interest in NCS within thﬁetwork-induced delay and packet loss features. In Section

control c-ommumty [5_]‘ L , [ll, a new criterion for stability analysis is proposed, wii
The pioneer contribution is by Halewt al. [7], whose is obtained by solving a set of LMIs. Numerical examples

yvork presents a (_jiscrete-time model qnd_ analyzes thestatghd a simulation are given in Section 1V, followed by the
ity for systems with constant and periodic delays. Dhe- conclusions, which are presented in Section V.
channel feedback NCS, where a continuous-time controller is

collocated with the actuator module and only the sensor and [I. SYSTEM DESCRIPTION
the controller modules are linked together through a shared ~qnsider the closed-loop NCS shown in Figure 1. It

The criteria presented in [19], [20] distinguish themsslve

tThese authors contributed equally to this work and shouldbal COI‘.ISIStS of an LTI pIanGp and a controller modulés,
considered first authors. which are connected through a shared network. All the
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Group (GRAV), a research group of the Department of Eleairiengi-  Recejver elements, which are responsible for transmiting and
neering, University of Brasilia, Brazil. e-mailghr qas @ eee. or g, .. dat kets th h th i K tivel
I fc.figueredo@ahoo.com br, eal ves@ eee. org, acquinng data packeis through the network, respectively.
i shi hara@ne. unb. br, gabor ges@ne. unb. br, The sensor, the controller, and the actuator modules can

adol f obs@inb. br either be time-driven or event-driven. Time-driven desice
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I""_"_"_c:_o_ﬁtFél_lér_MBElﬁéé; —————————— Remark 1 If {If,lg,.:.,lﬁ,..:} = {1,2,...,.n,...}, then no
packet dropout or disordering occured in the transmission
from the sensor to the controller. If thp-th sample was
lost, then Aqg, g € N*, such thatlig = p. Packet disordering
occurs when one packet reaches its destination later than it
acquire and transmit data periodically, i.e., according teuccessors, i.e3p,q< N*, p > q, such thaﬂg > Ig. In this
some clock rate, while the event-driven acquisition andase, the old packely, is dropped and its data discarded.
transmission are subject to the occurrence of some specifiimilarly, if {12,13,...,12,...} = {I{,15,...,15,...}, then no
event. Whether a system component should be time-driv@yacket dropout or disordering occured in the transmission
or event-driven depends on the control strategy used and from the controller to the actuator. The packet dropout and
the devices’ characteristics. For example, in [19], [21lyo disordering for this case have analogous definitions to the
the sensors are time-driven, whereas in [22] all devices apeevious one.
time-driven. Moreover, the modelling in [23] considersyonl
event-driven devices. Similarly to [18], [21], we assume the existence of con-
Throughout this paper, we assume that the sensor mod@@ntsn; andtj, 0<1; < nj, j € {1,2,3}, such that
is clock-driven and sends its measurements over the network c_|c sc
. . . (lk k,l)hﬁL e < N, 1)
with transmission perioch. The Controller and Actuator a ia c. .ca
modules are event-driven and start to process a new packet (= l)h+ (T + 17 < 2, @
immediately after its arrival. Single packet transmissisn (IR —lE)h+ 1w < ns, 3)
assumed, i.e., all data sent or received over the network |
assembled together into one network packet and transmitteﬁ
at the same time. <, TL<T+18, 13< 1K Vke N
Furthermore, the following delays are considered:
« 1. delay from sensor to controller module for theh
network packet;
o T¢: computation delay for thé&-th network packet;

Fig. 1. A NCS with data packet dropout and transmission delay

The elementsy;, j € {1,2,3}, denote upper bounds to
different parts of the total network-induced delay, ininty
both transmission delays and packet dropouts. The tgrm
<A limits the total delay from the sensor to the controler medul
o 1, delay from controller to actuator module for the . :

keth network packet: Similarly, n, is the upper bound delay from the controller
. b ’ to the actuator module. Finallyz limits the total network-
« Ty total delay from sensor to actuator module for the
induced delay. The terms denote lower bounds and have
k-th network packet. analogous definitions

The switchesS; and$; in Figure 1 model the possibility The plant’'s LTI process has a state space model of the

of packet loss. In the closed position, packets are able ];8

reach their destinies. Otherwise, they are lost. m
A. System’'s model Xp(t) = ApXp(t)+Bpup(t), (4)

At instantsnh, whereh is the transmission period and yp(t) = Cpxp(t), )
ne N, the Sensor Module samples data from the plant andwhere x,(t) € R™ is the plant's state vectoyp(t) € R™
sends it over the network t@Gc. The controller receives and y,(t) € R" are the plant's input and output vectors,
network packets at instant§h + 7, where the termigh,  respectively, and\, € R™*™, B, € R™*M, andCp € R"™"

k € N*, denotes the sample instant of théh network packet are constant matrices.

received by the controller. After computation, tGentroller The linear dynamicController Module G; can be de-
Module sends the control signal to the actuator at instaricriped as

Ifh+ 1+ 1¢. We denotd?h+ 1, k € N*, the time instant .

when the actuator receives theth control signal. The data X(t) = Ac(t)+Belc(t), (6)
flow’s time diagram is shown in Figure 2. Ye(t) = Cexe(t—1¢) 4+ Dele(t — 1), (7)



wherex(t) € R™ is the controller’s state vectoug(t) € R

must be positive definite and have continuous, negative

andyc(t) € R™ are the controller's input and output vectors,definite partial first derivatives [24].

respectively, andd; € R"e*"c, B, € R"*", C; € R™" and
D. € R™" are known, real, constant matrices.

This section presents a new stability criterion for NCSs
with dynamic controllers in the feedback loop. The resagltin

Considering the delay from sensor to controller and pack#teorem, written in the form of a set of LMIs, is based on
dropouts, the controller’s inputc(t) from (6) can be de- the Lyapunov function candidate

scribed as 6
Ue(t) =yp(Igh) = (t) = i;Vi (t)

wheret € [Ich+1F, I, h+18 ).
The plant’s inputup(t) from (4) can be described as

Up(t)

Coxp(Igh), vkeN*  (8) (19)

=Ye(Igh+ 1 + 1)

wheret € [I2h+ 1, Ig 1h+ rkﬂ), and T = 1° + 10 + 12 =

v =3 [ < oMx(9]ds

vk € N*

t

t 3
/[xT(s)Nix(s)]ds, V4(t):2\ / X (9)Qix(s)] ds
)

Definingx(t) = [x} (t),x{ (t)]T € R"*" and using (4)-(7), L0 ot
(8), (9), the NCS can be described as: Vs(t)= 21/ / [XT (5)S(s)] dsdB, Ve(t) Zl/ / s)] dsdp,
. ! i B T i B
X(t) = AX(t) + Bx(t — dy (t)) + Cx(t — da(t)) e L 20)
+ Dx(t — da(t)), 10
x(t) = o(t) t(e [t 3—()) t1] 511; and matrices® = PT >0, Qj = Q] >0, M; = M[ >0,
= o te =0, fl, Nj=NT>0,Z=2] >0,5/ = ST>OJ€{123}
di(t) =Lt € [Igh+ & 18 1 h+ 184), (13) Remark 2 Similarly to [19], [20], the derivative character of
da(t) = da(t) = Lt € 18h+ 1,18, h+ Tien),  (14) the time-varying delay functions (16)-(18) can be takewo int

account through the elements, i € {1,2,3}, considered in
wheret; denotes the instant that the actuator receives theo). If these constants are not used, some elements in the
first control signal, derivative of (19) cancel out, making the stability criceri
more conservative. One should notice that introducingthe
A [Ap o} B { 0 o] constants does not affect the monotonic decread4 (®f in
10 A’ T |BLp 0 (20) over time.

C= 0 BpCe D= BpDcCp O 1 Throughout this subsection, the following results will be
0 0 | 0 0 (15) . . - -
useful to derive sufficient conditions for the NCS's stapili
and
c c < e « Lemma 1 For any constants 7 and n and matrix M of
di(t) =t —Igh, tellih+18kh+ i), (16)  appropriate dimensions, the following equality holds:
d(t)=t—Ith—1F, te[lgh+n.lgh+Te1), (17)
da(t) =t - Igh, te IR+t l@h+ Ter). (18) [// s dsdp | = (n — )X (YMK(t) — 7TXT(S)MX(s)ds
The functiond; (t) denotes the time-varying delay from “Nt+p t=n

sensor to controller modulel(t) is the time-varying delay
from controller to actuator module; ardi(t) is the time-
varying delay from sensor to actuator modulds(f) =
di(t) + da(t)). The functionsdi(t), da(t), and ds(t) are
discontinuous at the pointgh+ 1%, Ifh+ 1, andIfh+ T,  atrix M € R™™ such that (ra—r1)>0andM=MT >0,
vk € N*, respectively. if choosing a vectorial function x: [r1,rp] — R™ yields:
Moreover, no knowledge about the network behavior is N T N
(/7xerog) w( [ xipra)ce

assumed. Thefore, differently from [12], [14], no residas
Using (19) as the Lyapunov function candidate for the

on the characteristics of the time-varying delays’ denat
are made.
stability analysis of the NCS described by (4)-(7), a delay-
1. STABILITY ANALYSIS dependent asymptotical stability criterion for NCSs with
For the system described by (4)-(7), the stability analysidynamic controllers is derived as follows.

technique based in Lyapunov functions candidates was cho-
sen. These functions are a generalization of energy fumetioTheorem 1 For given scalars 0 <1, < nj and 0 < aj < 1,
and must fulfill two conditions to guarantee stability: they € {1,2,3}, the NCS described by (4)-(7) is asymptotically

Remark 3 Lemma 1 is a simple extension of Liebniz inte-
gral rule.

Lemma 2 ([15], [19], [25]) For given scalars ry, r2 and

[ (B mxpdp =

(ra— fl)



[ Qi1 Q12 Q13 Q4 O 0 0 0 0 0 Tlmlsl ﬁsz 031,73% ]
* Q2 Q3 Q4 iz O ) 0 Q28 O 0 a3t . 0
* * Q33 Q34 O o= Z 0 0 Q39 O 0 s S 0
* * * Qua O 0 ,731 54 0 0 Q410 O 0 (1*;3)'73 S
* * * * Qs5 0 0 0 0 0 0 0 0
R * * * * Q66 0 0 0 0 0 0 0
0= % * * * * * Q77 0 0 0 0 0 0 <0 (22)
* * * * * * * Qgg O 0 0 0 0
* * * * * * * * Qoo O 0 0 0
* * * * * * * * * Q1010 O 0 0
* * * * * * * * * * Q1111 0 0
* * * * * * * * * * * Q1212 0
* * * * * * * * * * * * Q1313
. . . 1
stableif there exist matrices P = PT > 0, Qj= Q >0, M; = Qi010= - (SS+23),
M >0,Nj=N] >0,Z=2 >0,5=5 >0,]€{1,2.3 53
i = J == ] 1 el 5 Qu111= —Wy, Qo120 = Wb, Q313 = —Wa.
such that (22) holds, where
3 Proof: Taking the time derivative of the Lyapunov

|

U= Lims , U= in(m —T)Z

3 1
U3=iZ(Mi+Ni+Qi—TmS)7
wz( ! 1)3,

+
(I—a)ni  ni—T
1

w:a—mq+(£; T

+

Q11 =ATP+PA+Uz+AT(Us +Up)A,
Q12 =PB+AT (U1 +Uy)B,
Q13 =PC+AT(U;+Uy)C,
Q14 =PD+AT(U; +Uy)D,

2
Qzp =BT (U +Up)B—Vy— Zs,
’ n-o
Q23 =BT (U +Uy)C,
Qp4 =BT (U1 +Uy)D,
1
Qg = +71),
28 ’71*1'1(81 1)
2
Q33 :CT(U1+U2)C—V2— 0 Zo,
-T2
Q34 =CT(U1+Uy)D,
1
Q9 = 7o),
39 nzfrz(sz 2)
Q44 =D (U1 +Up)D—V3— Z3,
' Nn3—T13

1
Qur0=——(S+23),
410 ’73*1'3( 3)

Q55 = —M;— ’71*1’1217
Qg = —My— I72*T222’
Q77 = —M3— I73*T323’
Qgg = —Ni— o (S1+21)
Qog = —No— (S+2)

ic{1,2,3),

)n_)s, i€{1,2,3},

function candidate (19) yields

Vi(t) = X" (t)Px(t) +xT (t)PX(t),

Va(t) = _ixT(t)Mix(t) —xT (t— 1) Mix(t — 1;),

V3(t) = iXT (ONX(t) — X" (t — ni)Nix(t — i),
3

Va(t) = _;XT (DQiX(t) — (1= o)X (t — arich (1)) Qix(t — aiich(t)).

From Lemma 1Vs(t) andVg(t) can be written as

t

w

Vs(t) = S KT ()miSx(t) — / KT (9)S(s)ds
= t—aidi(t)
t-aidh() t-d(t)
- [ TEsxeds- [ {(9sK(9ds (@3)
t-di(t) tn;
3
Ve(t) = 3 & (6)(m — 1) Z(0)

—Tj t—di(t)

- / KT (8)Zix(s)ds— / KT (9Zx(9)ds.  (24)

=7
t—di(t) t—ni

Applying (21) to (23) and (24) yields

1
Vs(t) < § xT(4)niSx(t) — —p"
5(t) < i;X (t)niSx(t) an® Sp
1 1
a (1*ai)f7|q sq_fli*Tir St
3
Ve(t) < ZXT (t)(ni —1)Zix(t)
1 m'Zm— n'zn,
ni—T i—T



TABLE |

where
MAXIMUM TOTAL DELAY BOUNDARY FOR DIFFERENT VALUES OF 13
p =X(t) —x(t — aidi(t)), - 0s a02s 004s 005s 006855
q = x(t — aidi(t)) — x(t — di(t)), ns 0050855 (061635 6434s 0065795 0068585
r

is asymptotically stable if there exist matrices P = PT > 0,
Q=QN>0(i=123),Z =2 >0 (j=1,2), such that
the following LMI holds:

X(
X(
:X( —di(t)) —x(t—ni),
X(t—1)—x{t—d(t)),
X(t —di(t)) —x(t—m).

Replacingx(t) by (10) and denoting

T P11 Do 0 0 ﬁzl
6 = « Op L7, A (Z1+2) i:7
T i) o T T n-t n-t (I-a)n
[X7 (1) X (t=dy(t)) X' (t—da(t)) X" (t —da(t)) =1 % & g 0 0 |<O0
X' (t—11) X" (t—T2) X" (t—13) X" (t—N1) % * Dyy 0
XT (t _ nz) T(t _ ’73) XT (t _ a]_d]_(t)) * * * * @55
X' (t — a2da(t)) X' (t — azda(t))] where
3
stability will be guaranteed if the condition ®1=PA+(PA)T + ziQi - %ZH—ATUA
6 o T
_ Zvi(t) <5TQ5<0 <D12_P(BK)+1A U(BK)l, ,
- ¢22:_{(lfa)n+nfr}zl_nfrZZJr(BK)TU(BK)’
is fulfilled. This completes the proof. ]
P33= —Q1— n—rzz’

Remark 4 The works in [15]-[19], similarly to Theorem 1, 1
propose delay-depedent stability criteria by using Lyapun Pa=—Q2— n—t (Z1+22),

function techniques. Nevertheless, only NCSs with propor- 1 1

tional state feedback controllers were considered. Thesef  ®Ps55= —(1-a)Qz3 — —27Z; — 1721,

Theorem 1 is more general and may be applied to a larger an = (1-on

set of controllers, including proportional controllers time U =nZz1+(n-1)2.

feedback loop. Indeed, the combined use of the NCS model )

proposed in [15], [18], [19] with Theorem 1 yields the same  Proof: Immediate. [
stability criterion presented in [19], which is less cowser

tive than the ones in [15]-[18]. In order to see that [19] is IV. NUMERICAL EXAMPLES

a particular case of Theorem 1, suppdgse=0 andB; =

in the closed loop system parameters (15). Substltutmg theTh'S section presents wo examples that ratify the va-

result in (10) yields lidity of the proposed criterion. The first one investigates
the possibility of applying Theorem 1 to a NCS with a

X(t) = {A(‘)p 8} X(t) + {8 8} X(t — dy (1)) proport|0r_1al state feedback controller. Th_e Ia_st onetitaies _
the effectiveness of our method by applying it to a NCS with

N {8 BpOCc:| X(t — o (1)) + |:Bp%ccp g} X(t — ds(1)) a PI dynamic controller in the feedback loop.

= ApXp(t) +BpCoXe(t — d2(t)) +BpDcCpXp(t —ds(t)). (25)  Example 1 Consider the same NCS example presented in
Using Ac =0 andB; =0 in (6) yieldsx;(t) = 0. Hence, [3] described by:

if we suppose null initial conditions to the controller, §25 10 1 B_0. C—0. D— 0 0
reduces to |0 —-0ap” 7 T 7 77 |-0375 —1.15|°
X(t) = ApXp(t) + BpDcCpXp(t — da(t)). From Theorem 1, withoy = a2, =0, 03 =075, 11 = Tp =

3=0sand) =n2= ’723, we obtained that the NCS system
MakingK =D, Cp=1,d(t) =d3(t),n =n3, T=13, a =03 is stable for a total delay within the interval of 0 to008
and using appropriately Schur complements in (22), Theoresa The bound value for the total delay is less conservative
1 reduces to the following corollary. than the values obtained using the criteria presented in the
following works: Q00045 s [3], 00538 s [13], 08695 s [17],

Corollary 1 ([19]) For given scalars 7, n (0< T < ) and 0.87 s [16], 08871 s [18]. The result is the same as the
a (0< a < 1), the NCS with state feedback g_ain matrix K obtained in [19], which goes in agreement with Corollary 1.
and time-varying delay from sensor to actuator d(t) (1T < ) )
d(t) < n) described by Example 2 For this example, we consider a real NCS com-
B posed by a DC motor driven by a Pl controllés;(s) =
X(t) = Ax(t) +BKx(t —d(t)) Kp+ 1Ki. The matrices



(5]

o 1 0
Ap= {o 36.17]’59: [36.3]’ Co=[1 1,
[6]

Ac=0, B, =K, = —47.45 C.=1, Dc=K,=—1186,

are the same as described in (4)-(7). The plant's modéel’]
matrices Ap, By andC,) were obtained experimentally from

a Maxon F2140 DC motor. The results from Table | assumeds]
n=T=% m=n=2%, a; = a, =0.503 = 0.375, and
show the relationship between the upper and the lower nejg
work delay bounds, establishing sufficient conditions fa t
asymptotical stability of the NCS described in this example
The simulation results depicted in Figure 3 show that thgg
system starts to behave unstably fge= n3 = 0.078s, which

is close to the value in Table I. [11]

A
O TR T T L TR B

L [12]

[13]

[14]

[15]

[16]

Fig. 3. Simulation results for the NCS described (17]

13 = N3 = 0.07s (solid) andt3 = n3 = 0.078 (dashed).

in Examplesihg

(18]

V. CONCLUSIONS

This work's main result concerns the establishment of 4°)
new stability criterion for NCSs with dynamic controllers
in the feedback loop. Network-induced delay bounds aré®l
obtained by solving a set of LMIs. The validity of our results
is shown through a numerical simulation. Although this pape
deals mainly with dynamic controllers, our criterion, wher{21l
applied to proportional controllers, yields network-iced
delay bounds as good as the ones presented in [19], [20%]
which are shown to be less conservative than the ones from
previous works, as indicated in Section IV.
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