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Abstract— Network-induced delays and packet dropouts are
relevant issues that can degrade networked control systems’
performance and may even lead to instability. This paper
concerns the establishment of a stability criterion for networked
control systems (NCSs) consisting of an LTI process and
a dynamic feedback controller. Conditions for stability are
provided in terms of Linear Matrix Inequalities (LMIs), who se
solution yields network-induced delay upper bounds. Numerical
examples and a simulation ratify the theoretical results.

Index Terms— Networked control systems, stability criterion,
dynamic controller, LMI, Lyapunov function

I. INTRODUCTION

NETWORKED Control Systems refer to a class of con-
trol systems whose elements (plant, controller, actuators

and sensors) are linked together through a multipurpose
shared communication network and the information is ex-
changed in the form of data packets [1]–[5].

Networked control systems have many advantages com-
pared to the traditional local control architecture, including
lower instalation costs, reduced system wiring, greater flex-
ibility and higher reliability [5], [6]. However, the insertion
of a shared communication network in the control loop
introduces different forms of time-delay uncertainty between
sensors, actuators and controllers [5]. The overall delay
between sending and eventual decoding at the receiver can
be highly variable because both the network access delays
and the transmission delays depend on network conditions
such as congestion and channel quality [4]. It is well
known in control systems that time delays can degrade a
system’s performance and even cause system instability [2]–
[4]. Moreover, there is also a possibility that sensor/control
signals may be lost in communication. These problems have
stimulated a strong research interest in NCS within the
control community [5].

The pioneer contribution is by Haleviet al. [7], whose
work presents a discrete-time model and analyzes the stabil-
ity for systems with constant and periodic delays. Theone-
channel feedback NCS, where a continuous-time controller is
collocated with the actuator module and only the sensor and
the controller modules are linked together through a shared
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network, is considered in [8]. In Nilsson [1] and references
therein, the authors systematically investigate the modelling
and analysis problems for NCSs under the assumption that
the time-delay from sensor to actuator is less than one
sampling period.

The works [9], [10] model the overall NCS by continuous-
time delayed differential equations (DDEs). An important
advantage of this characterization is that the equations are
valid even when the delay exceeds the sampling interval
[4]. The problem of stability analysis for continuous-time
networked control systems is studied in [11]–[20]. All these
works concern the investigation of the delay-dependent sta-
bility problem by choosing an appropriate type of Lyapunov
function candidate and solving a set of LMIs.

The criteria presented in [19], [20] distinguish themselves
from the others in the sense that the obtained network-
induced delay bound is less conservative. Nevertheless, [19],
[20] only consider proportional state feedback controllers
in the stability analysis. This is a significant constraint,
since it seriously restricts the controller universe that can
be considered. For instance, even ordinary Proportional-
Integral (PI) controllers cannot be treated by this criteria.
The distinguishing feature in this paper is that it presentsa
delay-dependent stability criterion for NCSs with dynamic
controllers in the feedback loop, being able to deal with a
much larger set of control systems. Moreover, when it comes
to NCSs with only proportional controllers, our criterion
yields network-induced delay bounds equal to the ones
presented in [19], [20], which are less conservative than the
ones from previous works.

This paper is organized as follows. Section II presents
the system description and preliminaries, taking into account
network-induced delay and packet loss features. In Section
III, a new criterion for stability analysis is proposed, which
is obtained by solving a set of LMIs. Numerical examples
and a simulation are given in Section IV, followed by the
conclusions, which are presented in Section V.

II. SYSTEM DESCRIPTION

Consider the closed-loop NCS shown in Figure 1. It
consists of an LTI plantGp and a controller moduleGc,
which are connected through a shared network. All the
network communication is performed by theSender and the
Receiver elements, which are responsible for transmiting and
acquiring data packets through the network, respectively.

The sensor, the controller, and the actuator modules can
either be time-driven or event-driven. Time-driven devices



Fig. 1. A NCS with data packet dropout and transmission delays.

acquire and transmit data periodically, i.e., according to
some clock rate, while the event-driven acquisition and
transmission are subject to the occurrence of some specific
event. Whether a system component should be time-driven
or event-driven depends on the control strategy used and on
the devices’ characteristics. For example, in [19], [21], only
the sensors are time-driven, whereas in [22] all devices are
time-driven. Moreover, the modelling in [23] considers only
event-driven devices.

Throughout this paper, we assume that the sensor module
is clock-driven and sends its measurements over the network
with transmission periodh. The Controller and Actuator
modules are event-driven and start to process a new packet
immediately after its arrival. Single packet transmissionis
assumed, i.e., all data sent or received over the network is
assembled together into one network packet and transmitted
at the same time.

Furthermore, the following delays are considered:
• τsc

k : delay from sensor to controller module for thek-th
network packet;

• τc
k : computation delay for thek-th network packet;

• τca
k : delay from controller to actuator module for the

k-th network packet;
• τk: total delay from sensor to actuator module for the

k-th network packet.
The switchesS1 andS2 in Figure 1 model the possibility

of packet loss. In the closed position, packets are able to
reach their destinies. Otherwise, they are lost.

A. System’s model

At instants nh, where h is the transmission period and
n ∈N

∗, the Sensor Module samples data from the plant and
sends it over the network toGc. The controller receives
network packets at instantslc

kh+ τsc
k , where the termlc

kh,
k ∈N

∗, denotes the sample instant of thek-th network packet
received by the controller. After computation, theController
Module sends the control signal to the actuator at instant
lc
kh+ τsc

k + τc
k . We denotela

k h+ τk, k ∈ N
∗, the time instant

when the actuator receives thek-th control signal. The data
flow’s time diagram is shown in Figure 2.

Fig. 2. Time diagram for network-induced delays.

Remark 1 If {lc
1, l

c
2, . . . , l

c
n, . . .} = {1,2, . . . ,n, . . .}, then no

packet dropout or disordering occured in the transmission
from the sensor to the controller. If thep-th sample was
lost, then 6 ∃q, q ∈ N

∗, such thatlc
q = p. Packet disordering

occurs when one packet reaches its destination later than its
successors, i.e.,∃p,q ∈ N

∗, p > q, such thatlc
q > lc

p. In this
case, the old packet,lc

p, is dropped and its data discarded.
Similarly, if {la

1, l
a
2, . . . , l

a
n , . . .} = {lc

1, l
c
2, . . . , l

c
n, . . .}, then no

packet dropout or disordering occured in the transmission
from the controller to the actuator. The packet dropout and
disordering for this case have analogous definitions to the
previous one.

Similarly to [18], [21], we assume the existence of con-
stantsη j andτ j, 0≤ τ j ≤ η j, j ∈ {1,2,3}, such that

(lc
k − lc

k−1)h+ τsc
k ≤ η1, (1)

(la
k − la

k−1)h+(τc
k + τca

k )≤ η2, (2)

(la
k − la

k−1)h+ τk ≤ η3, (3)

and

τ1 ≤ τsc
k , τ2 ≤ τc

k + τca
k , τ3 ≤ τk,∀k ∈N

∗
.

The elementsη j, j ∈ {1,2,3}, denote upper bounds to
different parts of the total network-induced delay, involving
both transmission delays and packet dropouts. The termη1

limits the total delay from the sensor to the controler module.
Similarly, η2 is the upper bound delay from the controller
to the actuator module. Finally,η3 limits the total network-
induced delay. The termsτ j denote lower bounds and have
analogous definitions.

The plant’s LTI process has a state space model of the
form

ẋp(t) = Apxp(t)+Bpup(t), (4)

yp(t) = Cpxp(t), (5)

where xp(t) ∈ R
np is the plant’s state vector,up(t) ∈ R

m

and yp(t) ∈ R
r are the plant’s input and output vectors,

respectively, andAp ∈ R
np×np , Bp ∈ R

np×m, andCp ∈R
r×np

are constant matrices.
The linear dynamicController Module Gc can be de-

scribed as

ẋc(t) = Acxc(t)+Bcuc(t), (6)

yc(t) = Ccxc(t − τc
k )+Dcuc(t − τc

k ), (7)



wherexc(t) ∈ R
nc is the controller’s state vector,uc(t) ∈ R

r

andyc(t) ∈R
m are the controller’s input and output vectors,

respectively, andAc ∈ R
nc×nc, Bc ∈ R

nc×r, Cc ∈ R
m×nc and

Dc ∈ R
m×r are known, real, constant matrices.

Considering the delay from sensor to controller and packet
dropouts, the controller’s inputuc(t) from (6) can be de-
scribed as

uc(t) =yp(l
c
kh) =Cpxp(l

c
kh), ∀k ∈ N

∗ (8)

wheret ∈ [lc
kh+τsc

k , lc
k+1h+τsc

k+1).
The plant’s inputup(t) from (4) can be described as

up(t) =yc(l
a
k h+ τsc

k + τc
k )

=Ccxc(l
a
k h+ τsc

k )+DcCpxp(l
a
k h), ∀k ∈ N

∗ (9)

wheret ∈ [la
k h+ τk, la

k+1h+ τk+1), andτk = τsc
k + τc

k + τca
k .

Definingx(t) = [xT
p (t),x

T
c (t)]

T ∈R
np+nc and using (4)-(7),

(8), (9), the NCS can be described as:

ẋ(t) = Ax(t)+Bx(t− d1(t))+Cx(t − d2(t))

+Dx(t − d3(t)), (10)

x(t) = φ(t), t ∈ [t1−η3, t1], (11)

τ j ≤ d j(t)≤ η j, j ∈ {1,2,3}, (12)

ḋ1(t) = 1, t ∈ [lc
kh+ τsc

k , lc
k+1h+ τsc

k+1), (13)

ḋ2(t) = ḋ3(t) = 1, t ∈ [la
k h+ τk, l

a
k+1h+ τk+1), (14)

where t1 denotes the instant that the actuator receives the
first control signal,

A =

[

Ap 0
0 Ac

]

, B =

[

0 0
BcCp 0

]

,

C =

[

0 BpCc

0 0

]

, D =

[

BpDcCp 0
0 0

]

(15)

and

d1(t) =t − lc
kh, t ∈ [lc

kh+ τsc
k , lc

k+1h+ τsc
k+1), (16)

d2(t) =t − la
k h− τsc

k , t ∈ [la
k h+ τk, l

a
k+1h+ τk+1), (17)

d3(t) =t − la
k h, t ∈ [la

k h+ τk, l
a
k+1h+ τk+1). (18)

The functiond1(t) denotes the time-varying delay from
sensor to controller module;d2(t) is the time-varying delay
from controller to actuator module; andd3(t) is the time-
varying delay from sensor to actuator module (d3(t) =
d1(t) + d2(t)). The functionsd1(t), d2(t), and d3(t) are
discontinuous at the pointslc

kh+ τsc
k , la

k h+ τk, and la
k h+ τk,

∀k ∈ N
∗, respectively.

Moreover, no knowledge about the network behavior is
assumed. Thefore, differently from [12], [14], no restrictions
on the characteristics of the time-varying delays’ derivative
are made.

III. STABILITY ANALYSIS

For the system described by (4)-(7), the stability analysis
technique based in Lyapunov functions candidates was cho-
sen. These functions are a generalization of energy functions
and must fulfill two conditions to guarantee stability: they

must be positive definite and have continuous, negative
definite partial first derivatives [24].

This section presents a new stability criterion for NCSs
with dynamic controllers in the feedback loop. The resulting
theorem, written in the form of a set of LMIs, is based on
the Lyapunov function candidate

V (t) =
6

∑
i=1

Vi(t), (19)

where

V1(t)=xT (t)Px(t), V2(t) =
3

∑
i=1

t
∫

t−τi

[

xT (s)Mix(s)
]

ds,

V3(t)=
3

∑
i=1

t
∫

t−ηi

[

xT (s)Nix(s)
]

ds, V4(t) =
3

∑
i=1

t
∫

t−αidi(t)

[

xT (s)Qix(s)
]

ds,

V5(t)=
3

∑
i=1

0
∫

−ηi

t
∫

t+β

[

ẋT (s)Siẋ(s)
]

dsdβ ,V6(t)=
3

∑
i=1

−τi
∫

−ηi

t
∫

t+β

[

ẋT (s)Ziẋ(s)
]

dsdβ ,

(20)

and matricesP = PT
> 0, Q j = QT

j ≥ 0, M j = MT
j ≥ 0,

N j = NT
j ≥ 0, Z j = ZT

j > 0, S j = ST
j > 0, j ∈ {1,2,3}.

Remark 2 Similarly to [19], [20], the derivative character of
the time-varying delay functions (16)-(18) can be taken into
account through the elementsαi, i ∈ {1,2,3}, considered in
(20). If these constants are not used, some elements in the
derivative of (19) cancel out, making the stability criterion
more conservative. One should notice that introducing theαi

constants does not affect the monotonic decrease ofV4(t) in
(20) over time.

Throughout this subsection, the following results will be
useful to derive sufficient conditions for the NCS’s stability.

Lemma 1 For any constants τ and η and matrix M of
appropriate dimensions, the following equality holds:

d
dt





−τ
∫

−η

t
∫

t+β

[

ẋT (s)Mẋ(s)
]

dsdβ



 = (η − τ) ẋT (t)Mẋ(t)−

t−τ
∫

t−η

ẋT (s)Mẋ(s)ds

Remark 3 Lemma 1 is a simple extension of Liebniz inte-
gral rule.

Lemma 2 ([15], [19], [25]) For given scalars r1, r2 and
matrix M ∈R

m×m such that (r2− r1)> 0 and M = MT > 0,
if choosing a vectorial function x : [r1,r2]−→ R

m yields:
∫ r2

r1

xT (β)Mx(β)dβ ≥
1

(r2− r1)

(

∫ r2

r1

x(β)dβ
)T

M

(

∫ r2

r1

x(β)dβ
)

(21)

Using (19) as the Lyapunov function candidate for the
stability analysis of the NCS described by (4)-(7), a delay-
dependent asymptotical stability criterion for NCSs with
dynamic controllers is derived as follows.

Theorem 1 For given scalars 0 ≤ τi < ηi and 0 < αi < 1,
i ∈ {1,2,3}, the NCS described by (4)-(7) is asymptotically
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Ω1,1 Ω1,2 Ω1,3 Ω1,4 0 0 0 0 0 0 1
α1η1

S1
1

α2η2
S2

1
α3η3

S3

∗ Ω2,2 Ω2,3 Ω2,4
1

η1−τ1
Z1 0 0 Ω2,8 0 0 1

(1−α1)η1
S1 0 0

∗ ∗ Ω3,3 Ω3,4 0 1
η2−τ2

Z2 0 0 Ω3,9 0 0 1
(1−α2)η2

S2 0

∗ ∗ ∗ Ω4,4 0 0 1
η3−τ3

Z3 0 0 Ω4,10 0 0 1
(1−α3)η3

S3

∗ ∗ ∗ ∗ Ω5,5 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ω6,6 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ω7,7 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω8,8 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω9,9 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω10,10 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω11,11 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω12,12 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω13,13













































< 0 (22)

stable if there exist matrices P= PT > 0, Q j =QT
j ≥ 0, M j =

MT
j ≥ 0, N j =NT

j ≥0, Z j = ZT
j > 0, S j = ST

j > 0, j ∈{1,2,3},
such that (22) holds, where

U1 =

[

3

∑
i=1

ηiSi

]

, U2 =

[

3

∑
i=1

(ηi − τi)Zi

]

,

U3 =
3

∑
i=1

(

Mi +Ni +Qi −
1

αiηi
Si

)

,

Vi =

(

1
(1−αi)ηi

+
1

ηi − τi

)

Si, i ∈ {1,2,3},

Wi =(1−αi)Qi +

(

1
αiηi

+
1

(1−αi)ηi

)

Si, i ∈ {1,2,3},

Ω1,1 = AT P+PA+U3+AT (U1+U2)A,

Ω1,2 = PB+AT (U1+U2)B,

Ω1,3 = PC+AT (U1+U2)C,

Ω1,4 = PD+AT (U1+U2)D,

Ω2,2 = BT (U1+U2)B−V1−
2

η1− τ1
Z1,

Ω2,3 = BT (U1+U2)C,

Ω2,4 = BT (U1+U2)D,

Ω2,8 =
1

η1− τ1
(S1+Z1),

Ω3,3 =CT (U1+U2)C−V2−
2

η2− τ2
Z2,

Ω3,4 =CT (U1+U2)D,

Ω3,9 =
1

η2− τ2
(S2+Z2),

Ω4,4 = DT (U1+U2)D−V3−
2

η3− τ3
Z3,

Ω4,10 =
1

η3− τ3
(S3+Z3),

Ω5,5 = −M1−
1

η1− τ1
Z1,

Ω6,6 = −M2−
1

η2− τ2
Z2,

Ω7,7 = −M3−
1

η3− τ3
Z3,

Ω8,8 = −N1−
1

η1− τ1
(S1+Z1),

Ω9,9 = −N2−
1

η2− τ2
(S2+Z2),

Ω10,10 = −N3−
1

η3− τ3
(S3+Z3),

Ω11,11 = −W1, Ω12,12 = −W2, Ω13,13 = −W3.

Proof: Taking the time derivative of the Lyapunov
function candidate (19) yields

V̇1(t) = ẋT (t)Px(t)+xT (t)Pẋ(t),

V̇2(t) =
3

∑
i=1

xT (t)Mix(t)−xT (t − τi)Mix(t − τi),

V̇3(t) =
3

∑
i=1

xT (t)Nix(t)−xT (t −ηi)Nix(t −ηi),

V̇4(t) =
3

∑
i=1

xT (t)Qix(t)− (1−αi)x
T (t −αidi(t))Qix(t −αidi(t)).

From Lemma 1,V̇5(t) andV̇6(t) can be written as

V̇5(t) =
3

∑
i=1

ẋT (t)ηiSiẋ(t)−

t
∫

t−αidi(t)

ẋT (s)Siẋ(s)ds

−

t−αidi(t)
∫

t−di(t)

ẋT (s)Siẋ(s)ds−

t−di(t)
∫

t−ηi

ẋT (s)Siẋ(s)ds, (23)

V̇6(t) =
3

∑
i=1

ẋT (t)(ηi − τi)Ziẋ(t)

−

t−τi
∫

t−di(t)

ẋT (s)Ziẋ(s)ds−

t−di(t)
∫

t−ηi

ẋT (s)Ziẋ(s)ds. (24)

Applying (21) to (23) and (24) yields

V̇5(t)≤
3

∑
i=1

ẋT (t)ηiSiẋ(t)−
1

αiηi
pT Si p

−
1

(1−αi)ηi
qT Siq−

1
ηi − τi

rT Sir,

V̇6(t)≤
3

∑
i=1

ẋT (t)(ηi − τi)Ziẋ(t)

−
1

ηi − τi
mT Zim−

1
ηi − τi

nT Zin,



where

p = x(t)− x(t −αidi(t)),

q = x(t −αidi(t))− x(t − di(t)),

r = x(t − di(t))− x(t −ηi),

m = x(t − τi)− x(t − di(t)),

n = x(t − di(t))− x(t −ηi).

Replacing ˙x(t) by (10) and denoting

δ T =

[ xT (t) xT (t − d1(t)) xT (t − d2(t)) xT (t − d3(t))

xT (t − τ1) xT (t − τ2) xT (t − τ3) xT (t −η1)

xT (t −η2) xT (t −η3) xT (t −α1d1(t))

xT (t −α2d2(t)) xT (t −α3d3(t))
]

,

stability will be guaranteed if the condition

V̇ (t) =
6

∑
i=1

V̇i(t)≤ δ T Ωδ < 0

is fulfilled. This completes the proof.

Remark 4 The works in [15]–[19], similarly to Theorem 1,
propose delay-depedent stability criteria by using Lyapunov
function techniques. Nevertheless, only NCSs with propor-
tional state feedback controllers were considered. Therefore,
Theorem 1 is more general and may be applied to a larger
set of controllers, including proportional controllers inthe
feedback loop. Indeed, the combined use of the NCS model
proposed in [15], [18], [19] with Theorem 1 yields the same
stability criterion presented in [19], which is less conserva-
tive than the ones in [15]–[18]. In order to see that [19] is
a particular case of Theorem 1, supposeAc = 0 andBc = 0
in the closed loop system parameters (15). Substituting the
result in (10) yields

ẋ(t) =

[

Ap 0
0 0

]

x(t)+

[

0 0
0 0

]

x(t −d1(t))

+

[

0 BpCc
0 0

]

x(t −d2(t))+

[

BpDcCp 0
0 0

]

x(t −d3(t))

= Apxp(t)+BpCcxc(t −d2(t))+BpDcCpxp(t −d3(t)). (25)

Using Ac = 0 and Bc = 0 in (6) yields ˙xc(t) = 0. Hence,
if we suppose null initial conditions to the controller, (25)
reduces to

ẋ(t) = Apxp(t)+BpDcCpxp(t − d3(t)).

Making K =Dc, Cp = I, d(t) = d3(t), η = η3, τ = τ3, α =α3

and using appropriately Schur complements in (22), Theorem
1 reduces to the following corollary.

Corollary 1 ([19]) For given scalars τ , η (0≤ τ < η) and
α (0< α < 1), the NCS with state feedback gain matrix K
and time-varying delay from sensor to actuator d(t) (τ ≤
d(t)≤ η) described by

ẋ(t) = Ax(t)+BKx(t − d(t))

TABLE I

MAXIMUM TOTAL DELAY BOUNDARY FOR DIFFERENT VALUES OF τ3

τ3 0s 0.02s 0.04s 0.05s 0.0685s
η3 0.05985s 0.06163s 0.06434s 0.06579s 0.06858s

is asymptotically stable if there exist matrices P = PT > 0,
Qi = QT

i ≥ 0 (i = 1,2,3), Z j = ZT
j > 0 ( j = 1,2), such that

the following LMI holds:

Φ =













Φ11 Φ12 0 0 1
αη Z1

∗ Φ22
1

η−τ Z2
1

η−τ (Z1+Z2)
1

(1−α)η Z1

∗ ∗ Φ33 0 0
∗ ∗ ∗ Φ44 0
∗ ∗ ∗ ∗ Φ55













< 0

where

Φ11 = PA+(PA)T +
3

∑
i=1

Qi −
1

αη
Z1+ATUA,

Φ12 = P(BK)+ATU(BK),

Φ22 = −

[

1
(1−α)η

+
1

η − τ

]

Z1−
2

η − τ
Z2+(BK)TU(BK),

Φ33 = −Q1−
1

η − τ
Z2,

Φ44 = −Q2−
1

η − τ
(Z1+Z2) ,

Φ55 = − (1−α)Q3−
1

αη
Z1−

1
(1−α)η

Z1,

U = ηZ1+(η − τ)Z2.

Proof: Immediate.

IV. NUMERICAL EXAMPLES

This section presents two examples that ratify the va-
lidity of the proposed criterion. The first one investigates
the possibility of applying Theorem 1 to a NCS with a
proportional state feedback controller. The last one illustrates
the effectiveness of our method by applying it to a NCS with
a PI dynamic controller in the feedback loop.

Example 1 Consider the same NCS example presented in
[3] described by:

A=

[

0 1
0 −0.1

]

, B=0, C=0, D=

[

0 0
−0.375 −1.15

]

.

From Theorem 1, withα1 = α2 = 0, α3 = 0.75, τ1 = τ2 =
τ3 = 0 s andη1 = η2 =

η3
2 , we obtained that the NCS system

is stable for a total delay within the interval of 0 to 1.008
s. The bound value for the total delay is less conservative
than the values obtained using the criteria presented in the
following works: 0.00045 s [3], 0.0538 s [13], 0.8695 s [17],
0.87 s [16], 0.8871 s [18]. The result is the same as the
obtained in [19], which goes in agreement with Corollary 1.

Example 2 For this example, we consider a real NCS com-
posed by a DC motor driven by a PI controller:Gc(s) =
Kp +

1
s KI . The matrices



Ap=

[

0 1
0 −36.17

]

, Bp=

[

0
36.3

]

, Cp=
[

1 0
]

,

Ac=0, Bc = KI =−47.45, Cc = 1, Dc = Kp =−11.86,

are the same as described in (4)-(7). The plant’s model
matrices (Ap, Bp andCp) were obtained experimentally from
a Maxon F2140 DC motor. The results from Table I assumed
τ1 = τ2 =

τ3
2 , η1 = η2 =

η3
2 , α1 = α2 = 0.5α3 = 0.375, and

show the relationship between the upper and the lower net-
work delay bounds, establishing sufficient conditions for the
asymptotical stability of the NCS described in this example.
The simulation results depicted in Figure 3 show that the
system starts to behave unstably forτ3 = η3 = 0.078s, which
is close to the value in Table I.
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Fig. 3. Simulation results for the NCS described in Example 2using
τ3 = η3 = 0.07s (solid) andτ3 = η3 = 0.078s (dashed).

V. CONCLUSIONS

This work’s main result concerns the establishment of a
new stability criterion for NCSs with dynamic controllers
in the feedback loop. Network-induced delay bounds are
obtained by solving a set of LMIs. The validity of our results
is shown through a numerical simulation. Although this paper
deals mainly with dynamic controllers, our criterion, when
applied to proportional controllers, yields network-induced
delay bounds as good as the ones presented in [19], [20],
which are shown to be less conservative than the ones from
previous works, as indicated in Section IV.
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