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Abstract— This work addresses the problem of stochastic
state estimation for hybrid Markovian switching systems. The
proposed Multiple Hypotheses Mixing Filter (MHMF) combines
the Generalized Pseudo Bayes’ (GPB) multiple hypotheses
tracking with the Interacting Multiple Model’s (IMM) estim ates
mixing in order to improve performance, the later being a par-
ticular case of the MHMF. A hypotheses pruning step prevents
the filter’s output to be degraded by estimates coming from
very unlikely hypotheses and the mode transition probabilities
are estimated online based on the measurements’ likelihoods.
A target tracking application shows the MHMF’s utility as a
stochastic filter for hybrid systems.

I. INTRODUCTION

H YBRID systems, in a broad sense, denote a class of
dynamical systems whose behavior combines contin-

uous and discrete state variables [1], [2]. Because of its
versatility, the hybrid modeling framework has been applied
to a wide range of applications and extensive work has been
done in the field of state estimation for this kind of system.
For instance, [3] applies particle filtering for hybrid systems
in the context of signal processing. Target tracking, one of
the most common applications for hybrid systems, is treated
in [4], [5]. In [6], robust Kalman filtering techniques are
used for state estimation of hybrid systems with unknown
nonlinearities, while [7] performs both robust state estimation
and fault diagnosis for uncertain hybrid systems.

Many practical systems have their dynamics described
by a set of mathematical models rather than just by one.
A switched electronic circuit is one simple example of
these such systems, since voltages and currents can undergo
sudden changes and have their dynamics altered depending
on the switches’ logic states. In order to describe these
multiple model (MM) systems, a hybrid approach is often
appropriate. In this context, the discrete variables usually
denote the system’s operating mode and define how the
continuous state evolves. State estimation for this kind of
system generally requires filtering for both the discrete and
the continuous state variables and many techniques can be
found in [5], [8]–[10] and references therein. Among the
most important of them are the Generalized Pseudo Bayes
(GPB) [11] and the Interacting Multiple Model (IMM) [10],
[12] algorithms, which are based on multiple model Kalman
Filters (KFs).
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The GPB filter is a suboptimal approach to the optimal
Multiple Hypothesis Tracker (MHT) [11]. After a fixed
number of steps, estimates coming from different hypotheses
are merged based on their probabilities, rendering the filter
possible to be implemented in practice. The IMM algorithm
introduced in [12] has a similar structure, but greatly im-
proves performance without increasing the computational
load by introducing an estimates mixing step based on the
system modes’ probability prediction, making this algorithm
one of the best choices in terms of cost and efficiency [5].
However, the IMM’s hypotheses merging assumptions some-
times become unsuitable when the number of hypotheses
being tracked is large or for nonlinear systems where the
Gaussian noise approximation is not very adequate. Further,
the transition probabilities for the IMM’s Markovian mode
switching are considered as given parameters.

Besides merging similar hypotheses, each one of them
corresponding to a possible path followed by the system’s
discrete operating mode, works such as [13]–[15] also intro-
duce a pruning step that eliminates estimates coming from
hypotheses with considerably low probability. In order to
render their algorithms computationally feasible and, at the
same time, avoid performance degradation caused by un-
likely estimates [9], these works define probability thresholds
below which hypotheses are simply discarded. On the other
hand, the algorithm presented in [13] differs from many other
results in the context of hybrid estimation, for it does not
have an estimates merging step for providing more accurate
initial conditions for the next iteration of its bank of KFs,
relying solely on its hypotheses pruning step for reducing
the filter’s computational burden. Refer to [16] for a survey
on hybrid filtering methods based on multiple hypothesis
tracking.

This work’s contribution lies in the proposition of a
novel multiple hypotheses mixing filter for hybrid Markovian
switching systems. Differently from the IMM, which can
be considered a particular case of the proposed filter, no
restrictions are cast upon the hypotheses merging depth and
no previous knowledge on the mode transition probabilities
is assumed. Additionally, a hypotheses pruning step prevents
the filter’s output to be degraded by estimates from very
unlikely hypotheses, as discussed in [9]. The filters presented
in [14], [15] also perform state estimation for hybrid sys-
tems through the tracking of multiple hypotheses. However,
these filters assumea priori knowledge on the transition
probabilities, which can be unrealistic [17]. The multiple
hypotheses mixing filter (MHMF) proposed in this work
seeks to be an improvement over the existing methods by



simultaneously tracking multiple hypotheses and estimating
the mode transition probabilities based on a set of noise-
corrupted measurements.

This paper is organized as follows. Section II describes
the problem of optimal and suboptimal MM filtering and
presents the proposed filter’s improvements over existing
methods. The multiple hypotheses filter’s algorithm is pre-
sented in Section III and a target tracking application is
shown in Section IV. Finally, conclusions are presented in
Section V.

II. PROBLEM FORMULATION

For the multiple model filtering problem, consider the
discrete time hybrid system

xk = fmk
(xk−1, uk−1, wk−1), (1)

yk = hmk
(xk, vk), k ∈ N, (2)

where xk ∈ R
nx is the sampled continuous state vector;

mk ∈ M , {1, 2, . . . , M} is the system’s discrete modal
state (mode), which can assume M different values;fmk

:
R

nx × R
nu × R

nw → R
nx is a possibly nonlinear mode-

dependent process evolution function;hmk
: R

nx × R
nv →

R
ny and yk ∈ R

ny are the mode-dependent measurement
function and measurement vector, respectively;uk−1 ∈ R

nu

is the input vector; andvk−1 ∈ R
nv and wk−1 ∈ R

nw are
noise processes. The parametermk is assumed to follow
a Markov Chain with initial probability vectorp(m0) and
transition probability matrix (TPM)

Π = (πi,j), πi,j = P{mk = j|mk−1 = i}, i, j ∈ M.

Assuming that neitherxk nor mk may be directly measur-
able, one wishes to obtain the jointa posteriori probability
density function (pdf)

p(xk, mk|y1:k) = p(xk|mk, y1:k)P (mk|y1:k) (3)

based on a sequencey1:k = {y1, y2, . . . , yk} of noise-
corrupted measurements generated according to (2). Accord-
ing to (3), it is possible to address the joint estimation
of xk and mk as two separate problems: estimating thea
posterioripdf p(xk|mk, y1:k) of xk conditional on the mode;
and estimating the discrete conditional modal probability
P (mk|y1:k) independently fromxk.

The random mode transitions that occur between samples
define the true mode sequence

Ik = {m1, m2, . . . , mk} (4)

for the Markovian switching system (1)-(2). However, be-
causemk can only be estimated from the output measure-
ments, (4) cannot be retrieved. Actually, the unknown mode
transitions yield the set

Ωk = {I
(i)
k |i = 1, 2, . . . , Mk} (5)

of all possible mode sequences until thek-th sample instant,
whereI

(i)
k denote thei-th hypothesis. Ask grows with time,

the number of hypotheses in (5) increases exponentially.

Ackersonet al. [11] derive the optimal estimator for (1)-
(2) in a minimum mean-square error (MMSE) sense in the
case where the functionsfmk

andhmk
are linear, the TPM

is known and the noise processes are Gaussian. In this case,
the optimal estimatẽxk of the system’s statexk is given by

x̃k =

Mk

∑

j=1

x̃
(j)
k P (I

(j)
k |y1:k), (6)

wherex̃
(j)
k = E{xk|I

(j)
k , y1:k} is the optimal state estimate

given by a Kalman Filter (KF) tracking the hypothesis
I
(j)
k . However, the exponential growth in the number of

hypotheses in (6) renders its implementation impossible in
practice, since memory and computation requirements are
unbounded. Hence, suboptimal approaches using hypotheses
management methods, such as merging similar hypotheses
and pruning unlikely ones, become necessary in order to
implement feasible multiple model (MM) estimators in real-
time.

In [8]–[10] and references therein, some filtering al-
gorithms with different strategies for multiple hypotheses
handling are presented. Among the most important of them
are the Generalized Pseudo Bayes (GPB) [11] and the
Interacting Multiple Model (IMM) [10] filters, which handle
the hypotheses merging problem differently. The former
performs a weighted combination of hypotheses based on
their probabilities after some fixed number of steps, whilst
the later performs an estimates combination in order to
generate new initial conditions for its bank of KFs at each
time step. Because of this mixing step, the IMM algorithm
exhibits computational requirements comparable with the
GPB1, which are linear in the size of the problem (number
of modes), whilst its performance is almost the same as
that of GPB2, which has quadratic complexity, making this
algorithm one of the best choices in terms of cost and
efficiency [5]. However, the IMM’s fixed depth merging
approach can, sometimes, be very restrictive. In order to see
that, consider the equations

P (mk=i|y1:k−1) =
M

X

j=1

πj,iP (mk−1=j|y1:k−1),

p(xk−1|mk=i, y1:k−1) =

PM
j=1 πj,iP (mk−1=j|y1:k−1)gk−1(j)

P (mk=i|y1:k−1)
,

(7)

gk−1(j) = p(xk−1|mk−1 = j, y1:k−1), (8)

for the IMM’s estimates mixing step. According to [10],
even ifp(x0) is Gaussian, (8) is, in general, a sum ofMk−1

weighted Gaussians. Nevertheless, the IMM’s fixed depth
merging approach depicted in Fig. 1(a) assumes that

p(xk−1|mk−1 = i, y1:k−1) ∼ N(x̂i(k−1), P̂i(k−1)), (9)

where x̂i(k−1) and P̂i(k−1) are, respectively, the state
estimate and associated error covariance matrix yielded bya
KF following the modemk−1 = i. Although (9) if often a
good approximation for linear hybrid systems with a small
number of modes, this may not be the case when the number
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Fig. 1. Estimates mixing with different merging depths.

of hypotheses being tracked is large or for nonlinear systems
where the Gaussian noise approximation is not very suitable.
Thus, in order to improve the hybrid filter’s performance
keeping the computational requirements bounded, we im-
prove the IMM’s estimates mixing by combining it with the
GPB’s multiple hypotheses tracking, as shown in Fig. 1(b).
Denotingd as the hypotheses merging depth, (8) becomes

gk−1(j) =

Md

∑

i=1

p(xk−1|mk−1 = j, I
(i)
k−1, y1:k−1)

.P (I
(i)
k−1|mk−1 = j, y1:k−1), (10)

P (I
(i)
k−1|mk−1=j, y1:k−1) =

P (mk−1=j|I
(i)
k−1, y1:k−1)P (I

(i)
k−1|y1:k−1)

P (mk−1=j|y1:k−1)
,

(11)

where I
(i)
k−1 is one particular hypothesis being

tracked between two estimates mixing. In (11),
P (mk−1=j|I

(i)
k−1, y1:k−1) is either 0 or 1, depending

on which mode corresponds toI(i)
k−1. It is clear that the

IMM’s mixing step is a particular case of (10)-(11) with
d = 1.

III. MULTIPLE HYPOTHESES MIXING FILTER

In the MM filtering problem presented in the previous
section, choosingd > 1 in (10)-(11) tends to improve the
estimates given by (7), but increases the number of hypothe-
ses being calculated. According to [9], having the estimator
consider too many models can be as harmful to its perfor-
mance as considering fewer than necessary. This happens
because estimates coming from very unlikely hypotheses
end up degrading the filter’s overall performance, besides
the increase in the computational load. Hence, similarly to
[14], [15], a hypotheses pruning step was introduced, which
eliminates hypotheses whose probabilities are below a given
threshold, avoiding unnecessary calculations and preventing
the filter’s output degradation.

Furthermore, many MM estimators for Markovian switch-
ing systems, including the GPB, the IMM, the MMMH in
[14], and the M3H filter in [15], assume previous knowledge
onΠ, which is rarely the case [17]. Hence, a TPM estimation
step based on the system’s measurements was incorporated to
the filter’s algorithm in order to perform the transition prob-
abilities’ online estimation. Considering the hybrid model
described in (1)-(2), one wishes to obtain

• x̂k, the estimated minimum variance state vector;
• p̂(mk), the estimated mode probability vector;
• Π̂(k), the estimated TPM;

from a sequence of disturbed measurementsy1:k.
Since the MHMF presented in Section III-B is a generic

nonlinear filter, performing a convergence analysis is not
possible. In the context of nonlinear systems, this kind of
verification is feasible solely by means of Lyapunov function
candidates, which are suitable only for specific cases and do
not necessarily seek to reduce variances, therefore not being
applicable for the MHMF’s case itself.

A. TPM estimation

Many works, such as [4], [12], [14], [15], [18], [19],
concerning state estimation in the context of Markovian
jump systems (MJS) assume prior knowledge on the mode
transition probabilities, i.e.,Π is a given parameter. However,
this assumption is usually unrealistic. Choosing an incorrect
a priori value forΠ may degrade the filter’s performance and
lead to inaccurate values forx̂k andp̂(Ik), making the online
estimation ofΠ based ony1:k a desirable and important
feature.

The algorithm presented in [20] to perform the online
estimation of unknown, non stationary TPMs models each
row of Π as following a prior Dirichlet distribution and
derives a Bayesian mean-variance estimator based on the fact
that the Dirichlet distribution is conjugate to the multinomial
distribution. However, the estimator [20] assumes perfect
mode observation, which is not the case for (1)-(2). For TPM
estimation, it has been used theQuasi-Bayesianalgorithm
described in [17] using just the system’s measurements as



inputs to the TPM estimator. This estimator is incorporated
to the hybrid nonlinear filter used to track (1)-(2).

B. Algorithm

As can be seen in (10)-(11) and in Fig. 1(b), perform
the state estimation of (1)-(2) consists of tracking multiple
hypotheses between two estimates mixing. Moreover, it is
also necessary to estimate the hypotheses’ probabilities in
order to weight the filters’ estimates according to how likely
their outputs are correct. Combining this multiple hypotheses
tracking filter with the TPM estimation algorithm of Section
III-A yields a hybrid filter which recursively estimateŝxk,
p̂(mk), andΠ̂(k).

Multiple Hypotheses Mixing Filter (MHMF) Let x̂i(k)
and P̂i(k), i ∈ {1, 2, . . . , M q}, q ∈ {1, 2, . . . , d}, be the
state vector and associated covariance matrix corresponding
to the filter tracking the system hypothesisI

(i)
k at the k-th

sample instant, whered is the hypotheses merging depth. Let
alsoyk be the system’s current output vector and0 ≤ ε < 1
be the hypotheses pruning threshold. Furthermore, denote
n(Ik) as the total number of hypotheses at thek-th sample
instant andm

(i)
k ∈ M as the current mode for hypothesis

I
(i)
k . Definingp̂i(Ik)=P (I

(i)
k |y1:k), p̂i(mk)=P (mk=i|y1:k),

and assuming initial conditions

p̂(I0) = [p̂1(I0) p̂2(I0) . . . p̂M (I0)],

x̂i(0) = x(0), x(0) ∈ R
nx ,

P̂i(0) = P (0), P (0) ∈ R
nx×nx ,

Π̂(0) = Π(0),

q(0) = 1,

the hybrid data fusion algorithm can be given by the follow-
ing steps:

i Hypotheses probability prediction

p̄i(Ik) = π̂a,b(k−1)p̂j(Ik−1), a = m
(j)
k−1, b = m

(i)
k ,

wherei ∈ {1, . . . , n(Ik)}, j ∈ {1, . . . , n(Ik−1)}.
ii Hypotheses pruning

Eliminate hypothesesI(i)
k with

p̄i(Ik)
∑n(Ik)

j=1 p̄j(Ik)
≤ ε,

normalize the probabilitiesp̄i(Ik), and update
n(Ik) accordingly.

iii Initial conditions

• If n(Ik) ≤ M or q(k) < d

xi(k) = x̂j(k−1), P i(k)=P̂j(k−1),

q(k) = q(k−1) + 1,

meaning that the hypothesisI(i)
k was obtained

from I
(j)
k−1.

• Else

p̄i(mk)=

n(Ik)
X

j=1

P (mk=i|I
(j)
k

, y1:k−1)p̄j(I
(j)
k

),

xi(k−1)=
M

X

j=1

π̂j,i(k−1)p̂j(mk−1)rk−1(j)

p̄i(mk)
,

rk−1(j)=

n(Ik−1)
X

l=1

x̂l(k−1)P̂ (I
(l)
k−1|mk−1=j, y1:k−1),

P i(k−1)=
M

X

j=1

π̂j,i(k−1)p̂j(mk−1) [∆k−1(j)+δ(i, j)]

p̄i(mk)
,

∆k−1(j)=

n(Ik−1)
X

l=1

P̂l(k−1)P̂ (I
(l)
k−1|mk−1=j, y1:k−1),

δ(i, j)=
`

rk−1(j)−xi(k−1)
´

(·)T ,

q(k)=1,

where P̂ (I
(l)
k−1|mk−1=j, y1:k−1) is calculated ac-

cording to (11).
iv Filter-dependent prediction step

(xi(k−1), P i(k−1))
Prediction
−−−−−→ (x̄i(k), P̄i(k)).

(12)
v Filter-dependent correction step

(x̄i(k), P̄i(k))
Correction
−−−−−→ (x̂i(k), P̂i(k)). (13)

vi Hypothesis probability correction

p̂i(Ik) =
p(yk|I

(i)
k , Π̂(k−1), y1:k−1)p̄i(Ik)

ci

,

γp =

n(Ik)
X

j=1

p̂j(Ik),

p̂(Ik) = [p̂1(Ik) . . . p̂n(Ik)(Ik)]T
„

1

γp

«

.

vii Output generation

x̂k =

n(Ik)
X

i=1

p̂i(Ik)x̂i(k),

P̂k =

n(Ik)
X

i=1

p̂i(Ik)
h

P̂i(k) + (x̂i(k) − x̂k) (·)T
i

,

p̂i(mk) =

n(Ik)
X

j=1

P (mk=i|I
(j)
k , y1:k)p̂j(I

(j)
k |y1:k),

p̂(mk) = [p̂1(mk) . . . p̂M (mk)]T .

viii TPM update: Π̂(k − 1)
Algorithm [17]
−−−−−−−−→ Π̂(k).

No details are given in (12) and (13) because these steps
vary depending on the filter chosen to track each system’s hy-
pothesis. For example, if (1)-(2) are linear, the KF is a sensi-
ble choice. On the other hand, the numerical results presented
in Section IV were obtained by using the Extended Kalman
Filter (EKF) as the filtering solution. No matter which filteris
chosen, stepiv takes the initial condition(xi(k), P i(k)) for
the filter tracking the hypothesisI(i)

k and yields the predicted
state and covariance matrix(x̄i(k), P̄i(k)). Next, stepv,
based on the system’s current output sampleyk, provides
the corrected estimates(x̂i(k), P̂i(k)).

IV. NUMERICAL RESULTS

The target tracking problem is among the most common
applications of MM estimation [5]. In fact, the IMM algo-
rithm was motivated by the well-known problem of aircraft
tracking by a surveillance radar in Air Traffic Control (ATC)
systems [12]. In order to verify the MHMF’s performance
and compare it with the widely used IMM, a target tracking



application for ATC based on an example given in [21] was
implemented. The EKF was the filter chosen to track each
one of the system’s modes, having a computational complex-
ity of O(L3) according to [22], whereL is the state vector’s
dimension. BecauseL is constant for all system’s modes, the
computational complexity for the MM filters presented in this
section becomes a linear function of the number of modes
being tracked. Therefore, the computational complexity for
both the IMM and the MHMF isO(n(Ik)), wheren(Ik) is
defined in Section III-B.

Let x = [px vx py vy Ω]T be the state vector associated
with the target tracking application, wherepx andpy are the
Cartesian coordinates along thex and y axes andvx = ṗx
and vy = ṗy are the associated velocities. The termΩ
denotes the angular velocity during course changes. For this
target tracking example, two distinct dynamic modes are
considered. The first one concerns Uniform Motion (UM)
and is described by

xk=

2

6

6

6

4

1 T 0 0 0
0 1 0 0 0
0 0 1 T 0
0 0 0 1 0
0 0 0 0 0

3

7

7

7

5

xk−1+

2

6

6

6

4

1
2
T 2 0
T 0
0 1

2
T 2

0 T
0 0

3

7

7

7

5

wk−1, (14)

where T denotes the discrete sample period andwk−1 ∼
N(0, Qk) is a Gaussian noise process modeling disturbing
accelerations. The second dynamic mode addresses course
changes through Coordinated Turns (CT) with constant an-
gular velocityΩ, whose model is given by

xk=













1 sin(ΩT )
Ω 0 − 1−cos(ΩT )

Ω 0
0 cos(ΩT ) 0 − sin(ΩT ) 0

0 1−cos(ΩT )
Ω 1 sin(ΩT )

Ω 0
0 sin(ΩT ) 0 cos(ΩT ) 0
0 0 0 0 1













xk−1

+













1
2T 2 0 0
T 0 0
0 1

2T 2 0
0 T 0
0 0 T













wk−1. (15)

For both the UM and the CT modes, the output model is

yk=

[

1 0 0 0 0
0 0 1 0 0

]

xk + vk, (16)

vk ∼ N(0, Rk) is uncorrelated towk−1. Starting from the
initial position

x0 = [25000 − 120 10000 0 0]T ,

the simulations carried out in this section consider the
following trajectory for the aircraft:

1) UM for 30 s;
2) CT with Ω = 5π/180 rad/s for 7 s;
3) UM for 30 s;
4) CT with Ω = −3π/180 rad/s for 15 s;
5) UM for 30 s.

First, a merging depthd = 1 and a pruning thresholdε = 0
were chosen in order to verify the equivalence between the
MHMF and the IMM for this particular case. As expected,
the results yielded by the two filters were identical.

TABLE I

AVERAGE RESULTS FOR100 MONTE CARLO REALIZATIONS.

d Avg. hypotheses# Rel. RMS error
IMM 1 2 1.22

MHMF 2 2.23 1.0
MHMF 3 3.35 0.98

Next, a set of 100 Monte Carlo realizations of the system
described by (14)-(16) was used to compare the results for
the MHMF and the IMM, which can be seen in Table I, with
different parameters. For both situations, a pruning threshold
ε = 0.02 was used to eliminate unlikely hypotheses. In
order to show the benefits of performing the TPM’s online
estimation, all filters started with a poor initial estimate

Π(0) =

[

0.2 0.8
0.1 0.9

]

.

As shown in Table I, the MHMF performed better than
the IMM in a RMS error sense in both cases. The initial
uncertainty about the system’s parameters was responsible
for a slight increase in the computational load, since a
greater number of hypotheses was necessary in order to
correctly track the system’s state. However, the relative RMS
errors confirm that the tracking performance gains were
substantial and Fig. 2 shows the estimation errors for one
of the Monte Carlo realizations withd = 2. Although the
MHMF performed better ford = 3, the considerable increase
in the average number of tracked hypotheses shows that
considering a greater number of hypotheses is not always
better, which goes in agreement with the results in [9].
Furthermore, it is important to stress the fact that the MHMF
outperformed the IMM in all the considered simulations.
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Fig. 2. RMS position estimation errors.

In a second analysis, the MHMF’s tolerance to modeling
errors was investigated. For this situation, the constant TPM

Π =

[

0.95 0.05
0.1 0.9

]



TABLE II

COMPARATIVE RESULTS FOR THEATC SYSTEM WITH MODELING

ERRORS.

d Avg. hypotheses# (MHMF / IMM) RMS error ratio
2 3.0 0.35
3 4.7 0.32
4 7.5 0.26

was used for both the IMM and the MHMF. Instead of (14),
the aircraft’s UM was modeled by

xk=

2

6

6

6

4

1 T 0 0 0
0 1 0 0 0
0 0 1 T 0
0 0 0 1 0
0 0 0 0 1

3

7

7

7

5

xk−1+

2

6

6

6

4

1
2
T 2 0
T 0
0 1

2
T 2

0 T
0 0

3

7

7

7

5

wk−1, (17)

where an additional1 was introduced in the last line of the
process evolution matrix in order to simulate an incorrect
angular velocity effect. The tracking results for this situation
considered no hypotheses pruning (ε = 0).

One can conclude from the results shown in Table II
that considering a larger number of hypotheses improves the
filter’s tracking performance. As exposed in Section II, the
little number of hypotheses considered by the IMM can,
sometimes, be a very restrictive assumption, making the
filter sensitive to modeling errors. The RMS error ratios in
Table II between the MHMF and the IMM clearly show
a filtering improvement as the merging depth grows. For
instance, the MHMF’s RMS error is approximately0.26
times the IMM’s error ford = 4. Hence, if increasing
the computational load is possible, it would be interesting
to consider a larger merging depth to mitigate problems
originated from modeling errors.

V. CONCLUSIONS

This work proposed a novel multiple hypothesis mixing
filter for hybrid Markovian switching systems. The MM
filtering problem was described in Section II and some of the
existing methods’ limitations were addressed. The MHMF
described in Section III is able to simultaneously track multi-
ple hypotheses, perform an estimates mixing similarly to the
IMM, and estimate the mode transition probabilities based
on the measurements’ likelihoods. The numerical results
presented in Section IV indicate the MHMF’s advantages
over the classical IMM, which is a particular case of the
proposed filter. The MHMF’s variable merging depth and
pruning threshold offer the possibility of adjusting the trade-
off between computational load and tracking performance,
rendering the filter suitable to a wide range of applications,
including systems liable to modeling errors.
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