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Abstract— This work addresses the problem of stochastic =~ The GPB filter is a suboptimal approach to the optimal
state estimation for hybrid Markovian switching systems. The  Multiple Hypothesis Tracker (MHT) [11]. After a fixed
proposed Multiple Hypotheses Mixing Filter (MHMF) combines ;i mper of steps, estimates coming from different hypothese

the Generalized Pseudo Bayes' (GPB) multiple hypotheses . . .
tracking with the Interacting Multiple Model's (IMM) estim ates &€ merged based on their probabilities, rendering the filte

mixing in order to improve performance, the later being a par  POssible to be implemented in practice. The IMM algorithm
ticular case of the MHMF. A hypotheses pruning step prevents introduced in [12] has a similar structure, but greatly im-

the filter's output to be degraded by estimates coming from proves performance without increasing the computational
very unlikely hypotheses and the mode transition probabiliies load by introducing an estimates mixing step based on the

are estimated online based on the measurements’ likelihosd t des’ babilit dicti kina this aldarit
A target tracking application shows the MHMF's utility as a system modes’ probability prediction, making this aldum

stochastic filter for hybrid systems. one of the best choices in terms of cost and efficiency [5].
However, the IMM’s hypotheses merging assumptions some-
I. INTRODUCTION times become unsuitable when the number of hypotheses

being tracked is large or for nonlinear systems where the
YBRID systems, in a broad sense, denote a class @aussian noise approximation is not very adequate. Further
dynamical systems whose behavior combines continthe transition probabilities for the IMM’'s Markovian mode
uous and discrete state variables [1], [2]. Because of itwitching are considered as given parameters.
versatility, the hybrid modeling framework has been agplie Besides merging similar hypotheses, each one of them
to a wide range of applications and extensive work has beeorresponding to a possible path followed by the system’s
done in the field of state estimation for this kind of systemdiscrete operating mode, works such as [13]-[15] also intro
For instance, [3] applies particle filtering for hybrid syists  duce a pruning step that eliminates estimates coming from
in the context of signal processing. Target tracking, one dfypotheses with considerably low probability. In order to
the most common applications for hybrid systems, is treateénder their algorithms computationally feasible and,hat t
in [4], [5]. In [6], robust Kalman filtering techniques are same time, avoid performance degradation caused by un-
used for state estimation of hybrid systems with unknowlikely estimates [9], these works define probability thi@sls
nonlinearities, while [7] performs both robust state estion  below which hypotheses are simply discarded. On the other
and fault diagnosis for uncertain hybrid systems. hand, the algorithm presented in [13] differs from many othe
Many practical systems have their dynamics describe@sults in the context of hybrid estimation, for it does not
by a set of mathematical models rather than just by onBave an estimates merging step for providing more accurate
A switched electronic circuit is one simple example ofinitial conditions for the next iteration of its bank of KFs,
these such systems, since voltages and currents can undejging solely on its hypotheses pruning step for reducing
sudden changes and have their dynamics altered dependihg filter's computational burden. Refer to [16] for a survey
on the switches’ logic states. In order to describe thesen hybrid filtering methods based on multiple hypothesis
multiple model (MM) systems, a hybrid approach is ofteriracking.
appropriate. In this context, the discrete variables Uygual This work’s contribution lies in the proposition of a
denote the system’s operating mode and define how tim@vel multiple hypotheses mixing filter for hybrid Markowia
continuous state evolves. State estimation for this kind «witching systems. Differently from the IMM, which can
system generally requires filtering for both the discretd anbe considered a particular case of the proposed filter, no
the continuous state variables and many techniques can figstrictions are cast upon the hypotheses merging depth and
found in [5], [8]-[10] and references therein. Among theno previous knowledge on the mode transition probabilities
most important of them are the Generalized Pseudo Baytssassumed. Additionally, a hypotheses pruning step ptsven
(GPB) [11] and the Interacting Multiple Model (IMM) [10], the filter's output to be degraded by estimates from very
[12] algorithms, which are based on multiple model Kalmannlikely hypotheses, as discussed in [9]. The filters preesen
Filters (KFs). in [14], [15] also perform state estimation for hybrid sys-
tems through the tracking of multiple hypotheses. However,
Al the authors are with the Automation and Roboticsthese filters assuma priori knowledge on the transition
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University of Brasilia, Brazii phrgas@ eee. org,

henri que. menegaz@ eee. org, gabor ges@inb. br, hypotheses mixing filter (MHMF) proposed in this work
i shi har a@ne. unb. br seeks to be an improvement over the existing methods by



simultaneously tracking multiple hypotheses and estimgati  Ackersonet al. [11] derive the optimal estimator for (1)-
the mode transition probabilities based on a set of noisé2) in a minimum mean-square error (MMSE) sense in the
corrupted measurements. case where the functions,,, andh,,, are linear, the TPM

This paper is organized as follows. Section Il describeis known and the noise processes are Gaussian. In this case,
the problem of optimal and suboptimal MM filtering andthe optimal estimaté,, of the system’s state,, is given by
presents the proposed filter's improvements over existing Mk
methods. The multiple hypotheses filter's algorithm is pre- S ~(5) ()
sented in Section Il and a target tracking application is = Zx’“ P yen), ©
shown in Section IV. Finally, conclusions are presented in . .
Section V. wherecz,(j) = E{xk|I,£'7),y1:k} is the optimal state estimate
given by a Kalman Filter (KF) tracking the hypothesis

ll. PROBLEM FORMULATION I,ij). However, the exponential growth in the number of

For the multiple model filtering problem, consider thehypotheses in (6) renders its implementation impossible in
discrete time hybrid system practice, since memory and computation requirements are
unbounded. Hence, suboptimal approaches using hypotheses
@ = fn (@r—1, k-1, wi-1), () management methods, such as merging similar hypotheses
Yk = hiny (T, vk), k €N, (2)  and pruning unlikely ones, become necessary in order to
implement feasible multiple model (MM) estimators in real-
time.

In [8]-[10] and references therein, some filtering al-
gorithms with different strategies for multiple hypothese
handling are presented. Among the most important of them

e the Generalized Pseudo Bayes (GPB) [11] and the
Interacting Multiple Model (IMM) [10] filters, which handle
the hypotheses merging problem differently. The former
performs a weighted combination of hypotheses based on
their probabilities after some fixed number of steps, whilst
the later performs an estimates combination in order to
generate new initial conditions for its bank of KFs at each

IT = (m; ), mi,; = P{my = jlmu_1 = i},i,5 € M. time step. Because of this mixing step, the IMM algorithm
exhibits computational requirements comparable with the

Assuming that neither;, norm; may be directly measur- GPB1, which are linear in the size of the problem (number
able, one wishes to obtain the joiatposteriori probability ~of modes), whilst its performance is almost the same as
density function (pdf) that of GPB2, which has quadratic complexity, making this

algorithm one of the best choices in terms of cost and
P, milyrr) = perlme, yie) Pmelyie) ) efficiency [5]. However, the IMM's fixed depth merging
based on a sequenc@.; = {y1,yo,...,ys} Of noise- approach can, sometime_s, be very restrictive. In ordereo se
corrupted measurements generated according to (2). Accofat: consider the equations

ing to (3), it is possible to address the joint estimation
of x; andm; as two separate problems: estimating the

j=1

where z;, € R"= is the sampled continuous state vector
mry € M 2 {1,2,...,M} is the system’s discrete modal
state (mode), which can assume M different valugs, :
R"™ x R™ x R™ — R"= js a possibly nonlinear mode-
dependent process evolution functidn,,, : R"* x R™ —
R™ andy, € R™ are the mode-dependent measureme
function and measurement vector, respectively;; € R«

is the input vector; andy_; € R™ andw,_; € R™ are
noise processes. The parameter is assumed to follow
a Markov Chain with initial probability vectop(m,) and
transition probability matrix (TPM)

M
P(mg=ilyr.x—1) = Y mjiP(mr_1=jly1:6 1),

posterioripdf p(xy|my, y1.1) of 2 conditional on the mode; =1
and estimating the discrete conditional modal probability ' M 7y Pmi—1=41y1.6—1)gk-1(5)
P(my|y1.1) independently frome. P(@k—1|me=t,y1:k—1) = B omn=ilvrr) )
The random mode transitions that occur between samples @)
define the true mode sequence Ik—1(J) = p@k—1|m—1 =, y1:6—1), ®)
I, = {m1,my,...,my} (4) for the IMM’s estimates mixing step. According to [10],

_ o even ifp(xo) is Gaussian, (8) is, in general, a sumiaf—!
for the Markovian switching system (1)-(2). However, beyeighted Gaussians. Nevertheless, the IMM's fixed depth

causemy, can only be estimated from the output measurgmerging approach depicted in Fig. 1(a) assumes that
ments, (4) cannot be retrieved. Actually, the unknown mode

transitions yield the set pae—1|mr—1 = i,y1e—1) ~ N(&(k—1), P(k—1)), (9)

O = {I]gi)h- =1,2,...,MF} (5) Wh_ere Z;(k—1) and_ Pi(k—1) are, r_espectively_, the state
estimate and associated error covariance matrix yieldea by
of all possible mode sequences until #h sample instant, KF following the modem;_; = i. Although (9) if often a
wherel,?) denote the-th hypothesis. A4 grows with time, good approximation for linear hybrid systems with a small
the number of hypotheses in (5) increases exponentially. number of modes, this may not be the case when the number
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(b) MHMF’s estimates mixing.

Fig. 1. Estimates mixing with different merging depths.

of hypotheses being tracked is large or for nonlinear system Furthermore, many MM estimators for Markovian switch-
where the Gaussian noise approximation is not very suitablieg systems, including the GPB, the IMM, the MMMH in
Thus, in order to improve the hybrid filter's performancg14], and the MH filter in [15], assume previous knowledge
keeping the computational requirements bounded, we inenlIl, which is rarely the case [17]. Hence, a TPM estimation
prove the IMM’s estimates mixing by combining it with the step based on the system’s measurements was incorporated to
GPB'’s multiple hypotheses tracking, as shown in Fig. 1(b}the filter's algorithm in order to perform the transition pro
Denotingd as the hypotheses merging depth, (8) becomesbilities’ online estimation. Considering the hybrid mbde

M described in (1)-(2), one wishes to obtain
N _ 7@ e I, the estimated minimum variance state vector;
gk—1(3) = ) _p(@r—1lme—1 = j, I~ 1, y1:k—1) Thes ) e :
; Pt « p(my), the estimated mode probability vector;
-P(I,ii,)1|mk_1 — o yie1), (10) o II(k), the estimated TPM;

from a sequence of disturbed measurements
Since the MHMF presented in Section 1lI-B is a generic
‘ . nonlinear filter, performing a convergence analysis is not
P(mp =11y 1)P(I” Jyr1—1)  possible. In the context of nonlinear systems, this kind of
P(my—_1=j|y1.6—1) » verification is feasible solely by means of Lyapunov funatio
(11) candidates, which are suitable only for specific cases and do

@ ) ) _ ~not necessarily seek to reduce variances, therefore niog bei
where [,-, is one particular hypothesis Dbeingappiicable for the MHMF's case itself.
tracked between two estimates mixing. In

P(my_1=j|I" | ,yr._1) is either 0 or 1, depending A. TPM estimation
on which mode corresponds t”,. It is clear that the =~ Many works, such as [4], [12], [14], [15], [18], [19],

IMM’s mixing step is a particular case of (10)-(11) with concerning state estimation in the context of Markovian
d=1. jump systems (MJS) assume prior knowledge on the mode

transition probabilities, i.el]l is a given parameter. However,

1. MULTIPLE HYPOTHESES MIXING FILTER this assumption is usually unrealistic. Choosing an irexdrr

In the MM filtering problem presented in the previousa priori value forIl may degrade the filter's performance and
section, choosingl > 1 in (10)-(11) tends to improve the lead to inaccurate values féf, andp(1; ), making the online
estimates given by (7), but increases the number of hypothestimation ofII based ony;., a desirable and important
ses being calculated. According to [9], having the estimatdeature.
consider too many models can be as harmful to its perfor- The algorithm presented in [20] to perform the online
mance as considering fewer than necessary. This happe&ssimation of unknown, non stationary TPMs models each
because estimates coming from very unlikely hypothesesw of II as following a prior Dirichlet distribution and
end up degrading the filter's overall performance, besideterives a Bayesian mean-variance estimator based on the fac
the increase in the computational load. Hence, similarly tthat the Dirichlet distribution is conjugate to the multinial
[14], [15], a hypotheses pruning step was introduced, whictlistribution. However, the estimator [20] assumes perfect
eliminates hypotheses whose probabilities are below angivenode observation, which is not the case for (1)-(2). For TPM
threshold, avoiding unnecessary calculations and pragent estimation, it has been used tiguasi-Bayesiaralgorithm
the filter's output degradation. described in [17] using just the system’s measurements as

P(Ilgi21|mk—1:ja yl:k—l) =




inputs to the TPM estimator. This estimator is incorporated
to the hybrid nonlinear filter used to track (1)-(2).

B. Algorithm

As can be seen in (10)-(11) and in Fig. 1(b), perform
the state estimation of (1)-(2) consists of tracking migtip
hypotheses between two estimates mixing. Moreover, it is
also necessary to estimate the hypotheses’ probabilities i
order to weight the filters’ estimates according to how lkel
their outputs are correct. Combining this multiple hypcts
tracking filter with the TPM estimation algorithm of Section
[1I-A yields a hybrid filter which recursively estimates,,

p(my), andII(k). iv
Multiple Hypotheses Mixing Filter (MHMF) Let &;(k)
and P;(k), i € {1,2,...,M9}, ¢ € {1,2,...,d}, be the

state vector and assomated covariance matnx correspandi VvV
to the filter tracking the system hypothesz§£é> at the k-th
sample instant, whereé is the hypotheses merging depth. Let
alsoy; be the system’s current output vector ahet ¢ < 1

be the hypotheses pruning threshold. Furthermore, denote
n(I}) as the total number of hypotheses at théh sample
instant andm,(j) € M as the current mode for hypothesis
1. Definingp, (I)=P(I{" [y1.5), i (mr) =P (mi=ilys.4),

and assuming initial conditions

p(lo) = [p1(Lo) p2(Lo) --. Pm(Lo)], vi
2:(0) = =(0),2(0) € R™,
P5(0) = P(0), P(0) € R,
11(0) = 11(0),
q(0) =1,
the hybrid data fusion algorithm can be given by the follow-
ing steps:
i Hypotheses probability prediction
Pi(Ik) = Rap(k=1)p;(Te-1), a =mi” b =m(?,
wherei € {1,...,n(Ix)}, j € {1,...,n(Ix—1)}. viii

n(lg—1)

re1@)= Y k=D PUIL  [m =4, y1-1),
=1
M . ~ . ..
i N~ Aai (=P (me—1) [Ak—1(5)+6(, 5)]
Pi(k—1) ]2 X :
n(Ip_1)

Mpoa@)= >0 P=)PUIL  mio1=j,yrk-1),

=1

—z'(k=1)) ()7,

where P(I,gl_)1|mk,1:j,y1;k,1) is calculated ac-
cording to (11).
Filter-dependent prediction step

(' (k—1), P (k—1)) 2200 (7 (k), Pi(K)).

(12)
Filter-dependent correctjon step
(Fa(k), Pa(k)) <20 (i (k), Pi(k)). (13)

Hypothesis probability correction

pi(ly) = P(yk|fzii)7ﬁ(k—1)7yl:kfl)ﬁi(fk)7

Ci
n(ly)

T = Z pi(Ix),
AU = [1(I) - Py (Te)]” <L) ‘

) T
Output generation
n(Iy)

Br= )
i=1
n(Iy)

= > wulle) [Pk +
n(Iy)

> Pome=il L y)pi (1 lyrar),

j=1
plmw) = [pr(mx) ...
TPM update: TTI(k — 1

pi(Li)2i(k),
(#i(k) — ) ()],
pi(my) =

P (m)]”
) Algorithm [17] ﬂ(k)

ii Hypotheses pruning

Eliminate hypothesesii) with
_ pilly)
S pi(I)
normalize the probabilitiesp; (1),
n(Iy) accordingly.
Initial conditions
o If n(l;) <Morq(k) <d
' (k) = &;(k=1), P'(k)=P;(k-1),
q(k) = q(k—=1) + 1,
meaning that the hypothesléi) was obtained
from I,Ejjl.

and update

o Else
n(lg) ) .
pi(mp)= Z P(my=il1, y1e-1)p; (1),
i (b 1227? (k=1)pj (mp—1)75— 1(])7

=1 Pi(mg)

No details are given in (12) and (13) because these steps
vary depending on the filter chosen to track each system’s hy-
pothesis. For example, if (1)-(2) are linear, the KF is a sens
ble choice. On the other hand, the numerical results predent
in Section IV were obtained by using the Extended Kalman
Filter (EKF) as the filtering solution. No matter which filtier
chosen, stepv takes the initial cond|t|or@:c (k), P'(k)) for
the filter tracking the hypothesfé and yields the predicted
state and covariance matrife;(k), P;(k)). Next, stepuv,
based on the system’s current output sample provides
the corrected estimatés:; (k), P;(k)).

IV. NUMERICAL RESULTS

The target tracking problem is among the most common
applications of MM estimation [5]. In fact, the IMM algo-
rithm was motivated by the well-known problem of aircraft
tracking by a surveillance radar in Air Traffic Control (ATC)
systems [12]. In order to verify the MHMF’s performance
and compare it with the widely used IMM, a target tracking



TABLE |

appllcatlon for ATC based on an example given in [21] was AVERAGE RESULTS FORLOO MONTE CARLO REALIZATIONS.

implemented. The EKF was the filter chosen to track each

one of the system’s modes, having a computational complex- d Avg. hypotheses#  Rel. RMS error
ity of O(L?) according to [22], wherd. is the state vector's I\/Ill\l-/|”l:/IAF 12 2223 1-125
dimension. Becausg is constant for all system’s modes, the MHME 3 335 0.98

computational complexity for the MM filters presented irsthi
section becomes a linear function of the number of modes Next, a set of 100 Monte Carlo realizations of the system
being tracked. Therefore, the computational complexity fogescribed by (14)-(16) was used to compare the results for
both the IMM and the MHMF isO(n (1)), wheren(Iy) is  the MHMF and the IMM, which can be seen in Table I, with
defined in Section lI-B. T .. different parameters. For both situations, a pruning thoks
Letz = [pg v pﬁivy G2 be the state vector assouatede = 0.02 was used to eliminate unlikely hypotheses. In

with the target tracking application, whepe andp, are the , . .
Cartesian C%ordinate§a|§ﬂg theand y 2&%5 anp . =p, orderto show the benefits of performing the TPM’s online

and v, = p, are the associated velocities. The tefin estimation, all filters started with a poor initial estimate
denotes the angular velocity during course changes. For thi

target tracking example, two distinct dynamic modes are 0.2 0.8
considered. The first one concerns Uniform Motion (UM) I1(0) = 01 09"
and is described by : :

(1) { 8 8 8 %;2 8 As shown in Table I, the MHMF performed better than
=0 0 1 T 0 lat| 0 L72 |wy (9 the IMM in a RMS error sense in both cases. The initial

00 0 1 0 0 T uncertainty about the system’s parameters was responsible

00 0 00 0 0 for a slight increase in the computational load, since a

where T' denotes the discrete sample period and ; ~ greater number of hypotheses was necessary in order to
N(0,Qy) is a Gaussian noise process modeling disturbin@o”eCtly tra_ckthe system’s sta_te. However, the reIapMSR
accelerations. The second dynamic mode addresses colf§@rs confirm that the tracking performance gains were

changes through Coordinated Turns (CT) with constant afubstantial and Fig. 2 shows the estimation errors for one
gular velocity2, whose model is given by of the Monte Carlo realizations with = 2. Although the

MHMF performed better fod = 3, the considerable increase

1 S"’(Qﬂ 0 —%(”T) 0 in the average number of tracked hypotheses shows that
0 cos(QT) 0 —sin(QT) 0 considering a greater number of hypotheses is not always
=10 “%Z(QT) 1 % 0 | zx_1 better, which goes in agreement with the results in [9].
0 sin(QT) 0  cos(QT) 0 Furthermore, it is important to stress the fact that the MHMF
0 0 0 0 1 outperformed the IMM in all the considered simulations.
1Tt 0 0
T O 0 600~
+ 0 %TQ 0 Wg—1- (15) J/“ — 7:VIMI—’|WMF
0o T 0 | i
0 0 T il : ¥
| f j ¥
For both the UM and the CT modes, the output model i , | " ‘l ! I
n, ,"‘ . [ v N
1 0000 A IO A
ykZ: O O 1 O O xkl + vk? (16) [ I":“ I | h 1”, Jt N I : | 1\ i

RMS error|[m]

vk ~ N(0, Ry) is uncorrelated tav,_;. Starting from the :
initial position 1

2o = [25000 — 120 10000 0 O]T, | ‘* A A

1001 7 ! Y | 1] )

the simulations carried out in this section consider thi V ! 1 i

following trajectory for the aircraft: !

N

=]

=]
T

1) UM for 30 S; 0 50 160 1‘50 260 Tm%éé) [s] 3£)0 35‘:0 460 4‘50 5(‘)0

2) CT with Q = 57/180 rad/s for 7 s;

3) UM for 30 s; Fig. 2. RMS position estimation errors.

4) CT with Q = —37/180 rad/s for 15 s;

5) UM for 30 s. In a second analysis, the MHMF’s tolerance to modeling

First, a merging deptti = 1 and a pruning threshold= 0 errors was investigated. For this situation, the consté& T
were chosen in order to verify the equivalence between the

. ) 0.95 0.05

MHMF and the IMM for this particular case. As expected, IT= [0'1 0.9]

the results yielded by the two filters were identical.



TABLE I
COMPARATIVE RESULTS FOR THEATC SYSTEM WITH MODELING

(1]

ERRORS
d  Avg. hypotheses#  (MHMF / IMM) RMS error ratio
2 30 035 2]
3 4.7 0.32
4 7.5 0.26

(3]

was used for both the IMM and the MHMF. Instead of (14),

the aircraft's UM was modeled by 4]

Tp= Tp—1+

T2
T

1
0 3
0

0
0
72 |wey, a7y B
T

coocor
cocoorHN
co~oo
orrNoo
=k =R=N=)

0 0

where an additional was introduced in the last line of the [6]
process evolution matrix in order to simulate an incorrect
angular velocity effect. The tracking results for this ation
considered no hypotheses pruninrg= 0).

One can conclude from the results shown in Table II
that considering a larger number of hypotheses improves thg]
filter’s tracking performance. As exposed in Section Il, the
litle number of hypotheses considered by the IMM can,
sometimes, be a very restrictive assumption, making theg]
filter sensitive to modeling errors. The RMS error ratios in
Table II between the MHMF and the IMM clearly show
a filtering improvement as the merging depth grows. For
instance, the MHMF's RMS error is approximately26
times the IMM's error ford = 4. Hence, if increasing [y
the computational load is possible, it would be interesting
to consider a larger merging depth to mitigate problems
originated from modeling errors. (12]

V. CONCLUSIONS [13]

This work proposed a novel multiple hypothesis mixing
filter for hybrid Markovian switching systems. The MM [14]
filtering problem was described in Section Il and some of the
existing methods’ limitations were addressed. The MHMF
described in Section lll is able to simultaneously tracktiul ;5
ple hypotheses, perform an estimates mixing similarly & th
IMM, and estimate the mode transition probabilities base@®l
on the measurements’ likelihoods. The numerical results
presented in Section IV indicate the MHMF’'s advantageg7?]
over the classical IMM, which is a particular case of the
proposed filter. The MHMF's variable merging depth anqlg]
pruning threshold offer the possibility of adjusting thade-
off between computational load and tracking performanc
rendering the filter suitable to a wide range of application
including systems liable to modeling errors.
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