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Abstract within the Bucket Elimination framework (Dechter 1999).
By extending the latter with several lemmas developed in
this work, we are able to eliminate the dependency of la-
beled temporal constraints on uncontrollable choicesevhil

This work presents a new algorithm based on the
Bucket Elimination framework that efficiently deter-
mines strong controllability of temporal plans formu-

lated as Labeled Simple Temporal Networks with Un- maintaining their logical consistency without performing
certainty (LSTNU) with controllable and uncontrollable any search on the space of plan branches. Therefore, we
plan branches (choices). can readily refute strong controllability or rewrite theopr

lem as a function of only decision variables that are con-

. trolled by the plan executive. For additional motivation, a
Introduction step-by-step numerical example involving our LSTNU rep-

This work’s motivation stems from the study of robust task resentation, and proofs for the lemmas presented in the next

execution in uncertain environments, grounded in the ap- sections, please referka t p: / / peopl e. csail . nit.

plication of robotic manufacturing. Among its many chal- edu/ psant ana/ publ i ¢/ Sant anaAAAl 12. pdf .

lenges, it is important to highlight the key role played by

uncontrollable choices. Besides modeling runtime “excep- Problem Formulation

tions”, uncontrollable choices are also very useful for-rep  Thjs section briefly defines strong controllability and the e
resenting conditional branches in a temporal plan which de- ements of an LSTNU, which are useful for understanding
pend on future sensor readings, as introduced by the Condi- the main contributions in the next section.
tional Temporal Plan (CTP) formalism (Tsamardinos, Vidal, - . . .

; . Definition 1. (Label variable) A label variable (LV)X is
and Pollack 2003). One way of guaranteeing that a plan with an injectionX:(D—>N betweeZI the variable's dor(n i) and

uncertainty will be able to satisfy all required constraifst the sefN and is used to represent all possible outcomes of a

by verifying its strong controllability, i.e., checking wther : :
. : plan branch (choice), either controllable or not. The syinbo
there is a precomputable assignment to the controllabie var X; represents the assignmekit=i.

ables that is robust to all possible outcomes of uncontrtala o . ,
events. However, the algorithm for determining strong con- Definition 2. (Label) A label £ is a logical expres-
trollability of CTPs requires a search through the full spac ~ Sion written in Disjunctive Normal Form (DNF), i.e.,
of uncontrollable plan branches, which grows exponeptiall E=a1V...Vay, wherea; is thei-th conjunction of assign-
with the number of uncontrollable choices and might be- Mentsto LVs.

come impractical in situations where sensing actions, and Definition 3. (Constraint) A constraint is a pailC=(S, R),
consequently uncontrollable choices, are ubiquitoud) asc where S represents the constraint’s scope (the set of vari-
in our manufacturing scenario. In addition, CTPs do not han- ables involved in the constraint) arilis a relation between
dle uncertainty regarding activity durations. In this warle the variables inS. If R holds, then we say that the constraint
leverage the temporal plan representations in (Conrad and is satisfied. Otherwise, we say that it is violated.

Williams 2011; Effinger et al. 2009) in order to define La-  Considering the STN model presented in (Dechter, Meiri,
beled Simple Temporal Network with Uncertainty (LSTNU)  and Pearl 1991), we can writ§ = {T;,T;} and R :

in the next section, where labels are formed by both control- |<7;—T;<u, whereT; and T} are the time instants when
lable and uncontrollable choices and constraints can be of two events occur and and ! correspond, respectively, to
any type, including uncontrollable temporal constraints. upper and lower bounds on their temporal distance.

In this work, we propose a novel approach to the prob- pefinition 4. (Labeled constraint) A labeled constraint

Ie_m of checking strong controllability of temp(_)ral plans (LC) Le=(E, C) consists of a label and a constrainC'
with uncontrollable choices based on a modified version ¢ h that

of the Directional Resolution (DR) algorithm introduced E=C. 1)
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It should be noticed that (1) is general enough to repre-

sent DTPs. In order to write a disjunctive constraint as (1),
it suffices to represent each constraint disjunct as a differ

ent assignment to an LV. Depending on whether the plan
executive or the environment picks which constraint should
be satisfied, the LV can represent either a controllable or

uncontrollable choice. In addition to the strong controlla
bility definitions of (Morris, Muscettola, and Vidal 2001;
Tsamardinos, Vidal, and Pollack 2003), we use the follow-
ing in our results.

Definition 5. (Strong controllability) Let FE;=C;,
i€{1,...,n}, be the set of all LCs that involve the LY.

In addition, definel x:= A?:l(EissCi). Then, we say that
the planning problem is strongly controllable with respect
to X if Lx always holds.

Determining strong controllability

The original DR algorithm is meant to perform variable res-
olution in logical expressions written in Conjunctive Nor-
mal Form (CNF). However, due to the disjunctive nature
of choices, the labels in (1) are written in DNF. In addi-
tion, eliminating uncontrollable LVs has a direct impact on
the constraints that the resulting LCs imply, which is also

not handled by DR. In order to overcome these issues, we

present the following lemmas, enunciated without proof.

Lemma 1. (Label separation) Let £, and E» be two possi-
bly distinct labels and’ a constraint such thatl; v Ey =
C. Then the following holds

(E1VE2:>C)<:>(E1:>C)/\(E2:>C)

Lemma 2. (Resolution in DNF) Letay, ..., a,, be a set of
possibly distinct conjunctions of literals andd;, ..., X,,, a
set of predicates representing all possiblealues of an LV
X. Then the following holds

(a1 ANX) V.. V(e AXy) = a1 V... Vay,.

Lemma 3. (Strong controllability) Let F4, ..., E, be a set

of possibly distinct labels, each one of them consisting of

exactly one conjunction of literals. In addition, assumatth
E; contains the literalX;, the i-th assignment to a choice
variable withn possible values. Assuming tht labels the
constraintC;, the following holds

(EAV...VE, = CiA...ACy) = N\(Ei = C).

=1

Lemma 3 provides a sufficient condition for strong con-
trollability explored in Algorithm 2. A method for checking
strong controllability of an LSTNU is given in Algorithm 1.

Conclusions and Future Work

Algorithm 1 Strong Controllability of LSTNU

- Run Algorithm 2 in order to eliminate the dependency of LCs
on uncontrollable LVs.

- IF (the output of Algorithm 2 is non-null)

- FORALL (full assignments to controllable LVs)
- IF (The set of activated LCs is consistelmtEN

- RETURN The problem is strongly controllable and the
corresponding LCs

- RETURN The problem is NOT strongly controllable
- RETURN The problem is NOT strongly controllable

Algorithm 2 Modified DR
- Rewrite the LCs’ labels as single conjunctions of assignments
to LVs (Lemma 1).

- Generate an ordered partitidducketq, . . ., Bucket,,, where
Bucket; contains all the LCs whose highest LViireate also
a special bucketBucketo, which will hold all LCs that do not
depend on any LVs being eliminated.

-FOR (i = 1tom)

- Ceonj 4 Conjunction of all constraints within the bucket
(Lemma 3)
-IF (Ceonj = FALSE) THEN RETURN NULL
- ELSE
- FORALL (LC within the bucket)
- Eliminate the assignment tofrom its label (Lemma 2)
and replace the constraint ..y ;
- Move it to the next appropriate bucket

- RETURN Content of Bucketo
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