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~ Abstract— This works brings two new contributions. First, it performs both robust state estimation and fault diagnasis f
introduces the Scaled Minimum Unscented Multiple Hypothess  uncertain hybrid systems. Hybrid state estimation geheral
Mixing Filter, a novel filter for hybrid dynamical systems th at requires filtering for both the discrete and the continuous

1) uses a new minimum set of sigma points along with the scaled tat iabl d techni be f din 16
unscented transform in a hybrid framework; 2) can estimate state variables and many techniques can be found in [6],

the Markovian Transition Probability Matrix in real-time; 3) [7] and references therein. Among them, it is important
features a pruning step that reduces the filter's computatioal  to mention the Generalized Pseudo Bayes (GPB) [8] and
effort and prevents its estimates from being degraded by ver  the Interacting Multiple Model (IMM) [9], [10] algorithms,
unlikely hypotheses; and 4) has a mixing step with merging \ynich are based on running a bank of Kalman Filters (KFs)
depth greater than one. Second, we present a result reveatin . . .
the conservativeness of one of the scaled unscented transfo S|multane_0usly to k_eep trac_K of several different discrete
forms. modes with Markovian transitions between them.
The GPB filter is a suboptimal approach to the optimal

|. INTRODUCTION Multiple Hypothesis Tracker (MHT) [8]. After a fixed num-

rJ;'J_er of steps, estimates coming from different hypotheses

Qe merged based on their probabilities, rendering the filte
and discrete state variables [1]. This is clearly a very gane possible to be implemented in practice. The IMM algorithm

definition, giving researchers leeway to model severaediff |ntr?duced n [91 Eas a.S|m|Iar_strucr:]ture, but gregtly Ilnlumfj b
ent problems of interest using the hybrid systemsframeworf?er ormance without increasing the computational load by

In the context of this paper, we choose our discrete vars'nablg}tmdlic'ng an dest!mat%s g?l'_)t(_'ng stepkp as?r:j_ on lthe _|t3r:ed|ct|o
to denote the system’s operating mode, where by “mod system modes: probabililies, making this aigorithm one

we mean a set of differential or difference equations th f_the best choices in terms of 'computational cost -and
gfflmency [7]. However, the IMM'’s hypotheses merging

vector. Such an approach bears a “divide and Conque@:;sumptions sometimes become unsuitable when the number

intuition, where we implicitly assume that complex nonéne of hypotheses being tracked is large or for nonlinear system

dynamics can often be better described in terms of a S\é/pere Gaus_sian hoise appro’“”_‘a?“ons are not very adequate.
y The Multiple Hypotheses Mixing Filter (MHMF) - of

of interacting simpler models, as opposed to a single, very " . . .

complex nonlinear model that might not even be tractabl .h'Ch the IMM IS a particular case - recently_lntroduced

To give a grounded example, imagine a switched electronic’ [11]. shqwed _|tself_ to be a good altern?mve for hy-

circuit as our candidate hybrid system, where the state f'd gstlmatlon, since it _generahzes t_he IMM's hypotheses
erging step and requires no previous knowledge about

all logical switches defines a set of discrete mode valuéﬁ Markovi de t i babilities. In addit
that can abruptly modify the way currents and voltages va € arkovian mode transition probabiiities. n,a tian,
ypotheses pruning step prevents the MHMF’s output to

throughout the circuit’s connections. On the other hand, . .
framing your problem as a hybrid system introduces th e degraded by estimates from very unlikely hypotheses,
phenomenon discussed in more detail in [12]. In order

challenge of determining the correct system mode at il

times, since this is generally a hidden quantity from outtesta © deal with nonlme_ar models,_the a_uthqrg in [11] use_d the
estimator. Extended Kalman Filter (EKF) in their original formulation

evertheless, this work shows that combining the MHMF

State estimation for hybrid systems has been a topic !)\}

great scientific interest in recent years, as shown by tﬁ'&'th the Unscented Kalman Filter (UKF) [13] yields a better

: ; . performing hybrid filter, which is coherent with prior work
large number and variety of papers. For instance, [2] aqs,phé)er .
particle filtering for hybrid systems in the context of signathalt demonsrates that the UKF outperforms the EKF in many

rocessing. Target tracking, one of the most common a ﬁlpplications [_14]_[16]'_ !
P ng g 9 bp The UKF is a nonlinear filter that uses the Unscented

cations for hybrid systems, is treated in [3]. In [4], robus;raInsform (UT) [13] to approximate the probability density

Kalman filtering techniques are used for state estimatio . ; .
of hybrid systems with unknown nonlinearities, while [5] unct_lqn _(PDF.) of random vanableg (RV) using a set of de-
terministic weighted samples callstgma pointsThere are
* Henrique M. Menegaz, Jo&o Y. Ishihara and Geovany A. Borges aseveral different variations of the UT, such as the symmetri
with the Laboratory of Robotics and Automation (LARA) at thepartment  [13], the reduced [17], the reduced spherical [18], the min-
of Electrical Eng|nee_3r|ng, University of BraS|_I|a, BranIDF,_ Brasn. imum [19]' and the scaled [20]. In this work, we introduce
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(email:psantana@mit.edu). Filter (ScMinUMHMF), an improvement over the original

YBRID systems are, in a wide sense, a class of dynal
ical systems whose behavior combines both continuo



MHMF that combines the minimum and scaled Unscented IIl. SCALED UNSCENTEDTRANSFORM

Transforms in order to better propagate uncertainty inferm  consider the random vectoK eR™ and the function
tion while keeping the filter's computational complexityao F:R" %™ which defines the random variable=F (X).
minimum’. S _ The Unscented Transform (UT) approximates the probabil-

Our last contribution in this work is to demonstrate thatty density function of X, the prior random variable, by
the two ver_sions of th_e scaled UT first pre_sented in [20heans of a set of deterministic samples cafiigina points
are not equivalent, which does not agree with the authorgnich correspond to a discrete probability mass function
original claim. In fact, we show that the second form, whichyproximation. One important advantage of this nonlinear
happens to be the most used more conservative than the uncertainty propagation technique is that it does not requi
first one. _ _ _ _ the calculation of Jacobian or Hessian matrices of nontinea

This work is organized as follows. Section Il definesnctions, which are necessary whenever linearizaticsetha
the multiple model state estimation problem, while Secyethods are used [13]. Moreover, if thigma pointstcentral
tion 1l proves that the two versions of the scaled UTyoments are equal to the central moment&afp to the2k-
originally introduced in [20] are actually distinct. Then,iy order inclusively, the Taylor Series for the sample mean
Section IV shows how the scaled and minimum Unscentegh covariance of the transformsigma pointswill be equal,
Transforms are combined with the MHMF filter to creat§egpectively, to the Taylor Series of the mean and covagianc
the ScMinUMHMF. Finally, simulation results in Section yatrix of v/ up to the2k-th order, inclusively [13].
V' show how our proposed filter outperforms the original The Scaled Unscented Transform [20], a variation of the
formglaﬂon of the MHMF, followed by our conclusions in original UT, has the property that theth term in the Taylor
Section VI. Series expansion of the transformsiyma points’ mean

Il. PROBLEM STATEMENT and (modified) covariance matrix is scaled by an arbitrary

, ) term o'~2, wherei > 2, without incurring any increase
A multiple model (MM) system, the particular case of: o ’ g any

. N ~ —in_computational cost. The author in [20] presents this
hybrid systems addressed in this paper, can be descr'bedtl%%sform in two supposedly equivalent ways: i) as a fumctio

T = fonp (Tho1, Uh—1, We_1), transforming directly the prior distribution oX’; and ii) as

_ a function transforming a previous sigma set. Although ii)
Yoo = hony (21 00), b €N, @ has become the most used method, we now show that it is,
wheref is the time stepyz, € R™= is the continuous state in fact, more conservative than i).
vector;m; € M £ {1,2,...,M} is the system’s discrete  Method ii) for calculating the Scaled UT consists of
modal state (mode), which can assume M different valuesbtaining the scaled sigma poinig,, and weights;, from
Sy R xR™ xR™ — R™ is a possibly nonlinear mode- a previous set of sigma pointg;, and weightsq;, according
dependent process evolution functiol,,, :R""xR"» —  to the equations
R™ andy, € R™ are the mode-dependent measurement

function and measurement vector, respectively;; € R« Xi=x1+a(x; —xi1),
is the input vector; andy_; € R™ andw,_; € R™ are w11 i
noise processes. The parameter is assumed to follow w; :{ 83_2 o 72‘ _ 2’ N
a Markov Chain with initial probability vectop(im,) and _ o _ ’ T
time-invariant transition probability matrix (TPM) where o is a positive scaling parameter [20]. The author
in [20] claims that the sample mean and covariance matrix
II = (mi ), mi; = P{mw = jlmu—1 = i},1,j € M. of the scaled set ofigma pointsare equal to the mean and

covariance matrix ofX, respectively, for any previous sigma

Given models of the form (1) for every possible ) )
set. However, consider the following counterexample.

value of m; and a sequence of measuremepts,

{y1,v2,--.,yr}, the MM filtering problem consists of de- Example 1 Let be the random vectak € ®? with mean
termining the following quantities: X = [0 O]T and covariance matrix’y x = I> and let be
« the minimum variance estimate of the continuous stafif'® Sigma points and weights
vector i, along with its covariance matri®y; [ v2 [ o [ =2
« the estimated discrete mode probability vegitmy,); X = { 0 ] X2 T { V2 ] » X3 = { 0 } ’
o the estimated TPMI(k). 0 1
The ScMinUMHMF proposed in Section IV is an algo- X2 = { ) ] v W1 = W2 = W3 = Wa = o

rithm that solves the MM filtering problem by combining , . )

the MHMF in [11] with the scaled and minimum Unscented oli:r?trsofjm:d \?v.e5i "’mg géczm% = [0 2]7, the scaled sigma

Transforms introduced in [20] and [19], respectively, and 9

further explained in the next section. r V2 ;[ 0,5v2 /|0

le 0 7X27 075\/5 7X37 O )

1The UKF’'s computational cost is proportional to the numbesigma

points [13]. o 075\/5 W1 = —2:  wo = wa = wa = 1
2We could not find an application using the first scaled form. Xa = -0,5v2 |’ 1= 2 Ws = m S



Therefore, the sample me
matrix, ¥,, of the scaled sigma set are

oo [ ¢[8).

4
Sy = wi(x (m—uMT={530}¢b
=1

The example shows that the sample mean and the sample

,, and the sample covariance which proves the last assertive.

]

On the other hand, form i) of the scaled unscented trans-
form has no restrictions. In the next section, we combine
form i) of the Scaled UT and the Minimum UT [19] with
the MHMF in [11] and introduce the Scaled Minimum
Unscented Multiple Hypothesis Mixing Filter.

IV. SCALED MINIMUM UNSCENTEDMULTIPLE
HYPOTHESISMIXING FILTER

covariance matrix ofy’ are not equal to the mean and This section presents the Scaled Minimum Unscented
covariance matrix of{" respectively. In fact, as one can seewultiple Hypothesis Mixing Filter (ScMinUMHMF), a novel

in the following theorem, this property is only guaranteed f
scaling method ii) in case one of tlsggma pointsis equal
to the mean ofX.

Theorem 1 Let be X ~ (X, PXX) and the functionf :
R™ — R™ that definesY, Y := f(X) the set of sigma
points{x;, w;|w; € R, x; € R";i=1,2,...,N}. Let also be
the set of scaled sigma pom{s@, Z} Then, the following
statements are true:

) Sliwi=1=0 wi=1

2) e =iy +xa (1= 5)

3) Xq =hy = [y = fy

4) If a# 1, theny, = p, & py = pi,.

5) X1 :'LLX = ZX'X' = ZXX'

Proof: Supposez _,w; =1, then

>X1+Z (X1 +alx

%(—1+a2+1):1,

-x1))

which proves assertive. For the second assertive, we have

N
L I
Poyr 1= E w'iX;
i=1

—< +1 >X1+Z (X1 +a(x; —x1)
1 1

:_ZwiXi+X1 ==
ai:l «
1 1

:aMX+X1 (1—5)7 2

which proves assertive. Now supposex; =p,, then, from
(@), s = p, which proves assertivé and one part of
assertive4. On the contrary, suppose # 1 and u,, =
tys then, from (2),x; =u, which completes the proof for
assertivel. Finally, suppose(; =p,, then,

XX, = E U}
i=1
N

>

i=

EXX’

o) (=)

2 (o (=) (o (6= my)"

Q|S

filter for multiple model systems described as (1) that
combines positives features from the previously introduce
MHMF with the uncertainty propagation advantages of the
Scaled and Minimum variants of the Unscented Transform.
The latter improve the ScMinUMHMF's accuracy when
propagating uncertainty through nonlinear transfornmetjo
while the features inherited from the MHMF give the
ScMinUMHMF the following properties:

« Variable hypothesis merging depth, where by hypothesis
we mean a particular branch of the discrete made
evolution tree. For further details, please refer to [11];

« A hypothesis pruning step that reduces the filter's com-
putational effort and also prevents its estimates from
being degraded by very unlikely state state estimates
(see [12)]);

« Online estimation ofI, the Markovian Transition Prob-
ability Matrix (TPM) for my that is assumed to be
time-invariant. In fact, many MM estimators for Marko-
vian switching systems, including the GPB, the IMM,
and the modern BH filter in [21], assume previous
knowledge about the TPM, which is rarely the case
[22]. This TPM estimation step is performed by the
Quasi-Bayesiaralgorithm described in [22] using just
the system’s measurements as inputs.

There are also several reasons behind our choice to use

the Unscented Transform to propagate uncertainties in our

filter. First, the scientific literature has many examples of
applications where Unscented Kalman Filters performed
better when compared to Extended Kalman Filters,e.g..-{13]

[16]. Second, for the MM estimation problem defined in (1),

Minimum Unscented Kalman Filters, which are the lightest

UKFs to compute, are a very suitable choice due to the

fact that such MM estimation problems can easily require

great computational effort. Finally, the Scaled Unscented

Kalman Filter, for the reasons already stated on section

lll, can be viewed as an improvement over an UKF using

the original form of the UT. However, since the Minimum

Unscented Filter used in the ScMinUMHMF formulation

has no point equal to the prior random variable’s mean, the

ScMinUMHMF can feature the first form of the Scaled UT,

as formally proved in the previous section.
It is useful to define the following:

Notation 1 The followings are notations used in this work:
« VA stands for a square root matrix of the matrix

such thatd = VAVA .



« [A];; stands for thei-th row andj-th column element
of the matrixA. [A].; stands for thej-th column ofA
and [A];. stands for the-th row of A,

Following the same notation as [11], we denoteihyk)
and P(k), i € {1,2,...,M%}, q € {1,2,...,d}, the state
vector and associated covariance matrix correspondirfggto t
filter tracking the system hypothe%is,j) at thek-th sample
instant, wherel is the hypotheses merging depth. Let ajgo
be the system’s current output vector ang ¢ < 1 be the
hypotheses pruning threshold. Furthermore, den¢fg) as
the total number of hypotheses at thh sample instant and

(l) € M as the current mode for hypothesﬁ%) Defining
pl(Ik) P(I ()|y1,k),pl(mk) P(mg=i|y1.x), and assuming
initial conditions

p(lo)
i(0)

[p1(Lo) p2(lo) .-
z(0),z(0) € R™,

P;(0) = P(0), P(0) €

11(0) =11(0), ¢(0) = 1,

the algorithm for the ScMinUMHMF’s can be stated as
follows.

P (Do),

Ng XN
R:n :n’

ScMinUMHMF  Scaled Minimum Unscented Multiple Hy-
potheses Mixing Filter's algorithm consists of the follagi
steps:

i Hypotheses probability prediction

Pi(le) = #tap(k=1)p; (Li—1), a =m) | b=m{,

wherei € {1,...,n(Ix)}, j € {1,...,n(lx—1)}.
ii Hypotheses pruning
Eliminate hypotheseg(j) with

ﬁz(Ik)
n(Iy) <&
Z =1 piIk)
renormalize the probabilitie; (1), and update
n(I}) accordingly.
iii Initial conditions
' (k) = &;(k=1), P'(k)=F;(k-1),
q(k) = q(k=1) + 1,

meaning that the hypothes[%i) was obtained
from 1(7)
« Else
n(Ip_1)
> biTe-a|my—1=i),
j=1
n(Iy)

Z P (Ie|mi=1)

pi(my—1)=

i

i (k=1)p; (mi—1)ri—1(4) v
- pi(my) ’

' (k—1)=

SPlease refer to [11] for a very detailed explanation of systigpotheses.

n(lg—1)

Z il(k—l)p(I;iQﬂmkﬂ:L Yiik—1),
1=1

Pi(k_1)= EM: 75,i(k—1)pj(mi—1) [Ar—1(3)+0(%, 5)]

Ti—1(j)=

= pi(my)

n(lx—1)

Ai-1( Z P(k—1)P
(i, )= (m 1)z (k= 1))()

where P(I,gl_)1|mk,1:j,y1¢k,1) is calculated ac-
cording to

(l) |mk 1=7, Y1:k— 1)

P(Ilgi21|mk—1:jayl:k—l) =
P(mk*1:j|jlgl—)17yl:kfl)P(I;gZ,)ﬂyl:k—l)
P(mg_1=j|y1:k-1)

)

(3)
Filter-dependent prediction step
1) choosev = [v1...v,|T € R", v; # 0, for

1=1,...,n
2) Sigma points and its weights:

. w1 v%

wo = w = : = wo : s
1+, 02 " 2
n n

ﬁ 0 0
1 .
w | 0 o0
0 0 o
1
e:= ——Fuw,
wo

(O X =l B+l -

Bg Choose a scaling factdd < o < 1.
Predicted sigma points:

Fons (k) + ol = 2, (B)]) = Fon, (23 (K)

a2

X3 =

+ f””k (L (k).

5) Predicted mean and covariance matrix:

n+1 )
7i(k) = Zw&L
=1
Pi(k)
n+1

= Zw (5«?; - :m(k)) (;zg; - @-(k))T + Q.

Filter-dependent correction step

1) Measurement’s predicted sigma points:

B (#40) + ], = #(R)]) = hon (@)

o?

v =



+ by, (Zi (K))-

€
. S “f
2) Measurement's predicted mean and covariz
ance matrix: g
ntl 27
Yk = Z iy, E
=1

n+1 ) ) T
PY(k) = Z w; (“/?c - ?Jk) (“/i - ?Jk) + Rg.

i=1 ” i
3) Cross-covariance matrix: WW Mﬂ ‘

n+1 ) ) T iteration
Ci(k) = > wi (xf —a(0) (v — ) - | o
i=1 Fig. 1. Absolute error on the coordinate in each iteration.

4) Correction of the predicted estimates:

Gr = Ci(k) (PY(k)) ", E
Li(k) = 2i(k) + Gk (Yo — Ur) » g
Pi(k) = Pi(k) — Gy P? (k)GT. g T
Vi Hypothesis probability correction
19 T1(k—=1), yre—1)pi (1. |
ﬁL(—Ik) — p(yk| k ( C.)vyl.k 1)]0 ( k:)7
n(Ix) E
Tp = Z pi(Ik), : M t L
j=1 iteration
p(Ix) = [p1(Ig) --- ﬁn(Ik)(Ik)]T <$> . Fig. 2. Absolute error on thg coordinate in each iteration.
p
vii Output generation
M .
i = Zﬁi(lk)i’i(k)y » Coordinated Turns (CT):
i=1 1 sin(éZT) 0 — 1fco;(QT) 0
- Mo . . . T 0 cos(QT) 0 —sin(QT) O
P = Zpi(.[k) |:Pi(k’) + (2:(k) — 2x) () } , o= 0 17COS(QT) 1 sin(éZT) 0 | zrs
= 0 sin(QT) 0  cos(QT) 0
e (m) gf) (Tl 0 0 0 0 1
pbilmy) = pjllk|mr=1),
= iT* 0 0
R R . T T 0 0
p(mi) = [pr(mx) ... par(ma)]” +1 0 I o |q 4)
- Igorith - 0 T 0
vii  TPM update: TI(k — 1) Algortthm [22], II(k). 0 0o T

V. SIMULATION where T' denotes the discrete sample period afi® ~
In this section, we perform a relative performance eval®v (0, Q“™) and¢y™ ~ N(0,Q"™) are the Gaussian noise
uation between the ScMinUMHMF’s and the MHMF usingprocesses.
the same simulated target tracking application presemted i The output model is, for both the UM and the CT modes,
[11].
The state vector is = [p, v, p, vy, QT, wherep, and Y= [ \/ Pz + P}
py are respectively the Cartesian coordinates alongathe arctanig—z)
andy axes,v, andv, are the associated velocities, afid
is the angular velocity during course changes. Two differen” -, . .
. . . Figures 1 and 2 and Table | bring the simulated re-
dynamical models are used, namely Uniform Motion (UM)S

. ults. Due to its improved uncertainty propagation, the
and Coordinated Turns (CT) (see [23]): ; .
« Uniform Motion (UM): ScMinUMHMF was able to better match the estimated

system mode, which in turn determines the model for tem-
poral evolution of the continuous state vectarwith the
2 | gum actual system mode in the simulation, explaining why its
" estimation errors are considerably smaller when compared
to the MHMF.

T+ Tk,

~ N(0, R) is uncorrelated tayy.

12
2

Tp= Tk-1t

cocooco~
cocor N
co~oO
o~rNoo
coococo
cooMNN

oﬂw)lgoo



TABLE |
RMS ERROR FOR THE ENTIRE TRAJECTORY

(8]

ScMinUMHMF
3.576

MHMF

13.07 [

[10]
VI. CONCLUSION

This work presented two new contributions. First, we
introduced the Scaled Minimum Unscented Multiple Hylll]
potheses Mixing Filter, a novel stochastic filter in the con-
text of multiple model systems (Algorithm 1). Second, we
demonstrated that the two forms of the Scaled Unscent&tf
Transform presented in [20] are not equivalent and selected
the most appropriate version to be incorporated into thié3]
ScMinUMHMPF'’s equations. This new filter combines the
benefits of the state-of-the-art Multiple Hypotheses Mixin [14]
Filter with the Scaled and Minimum Unscented Transforms.
Simulated results using a target tracking application gtbw
that our new filter outperforms the original MHMF using a[15]
bank of Extended Kalman Filters for state estimation.

Concerning the second result of this paper, we showed
that most used form of the Scaled Unscented Transform [iss]
actually more conservative than the alternative formafati
In particular, we showed that the common Scaled Unscent
Transform only works when the previous non-scaled sigma
set has a sigma point equal to the prior RV’'s mean (Theore[r{18
1).
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