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Abstract— This works brings two new contributions. First, it
introduces the Scaled Minimum Unscented Multiple Hypotheses
Mixing Filter, a novel filter for hybrid dynamical systems th at
1) uses a new minimum set of sigma points along with the scaled
unscented transform in a hybrid framework; 2) can estimate
the Markovian Transition Probability Matrix in real-time; 3)
features a pruning step that reduces the filter’s computational
effort and prevents its estimates from being degraded by very
unlikely hypotheses; and 4) has a mixing step with merging
depth greater than one. Second, we present a result revealing
the conservativeness of one of the scaled unscented transform
forms.

I. I NTRODUCTION

H YBRID systems are, in a wide sense, a class of dynam-
ical systems whose behavior combines both continuous

and discrete state variables [1]. This is clearly a very general
definition, giving researchers leeway to model several differ-
ent problems of interest using the hybrid systems framework.
In the context of this paper, we choose our discrete variables
to denote the system’s operating mode, where by “mode”
we mean a set of differential or difference equations that
govern the evolution of the continuous portion of the state
vector. Such an approach bears a “divide and conquer”
intuition, where we implicitly assume that complex nonlinear
dynamics can often be better described in terms of a set
of interacting simpler models, as opposed to a single, very
complex nonlinear model that might not even be tractable.
To give a grounded example, imagine a switched electronic
circuit as our candidate hybrid system, where the state of
all logical switches defines a set of discrete mode values
that can abruptly modify the way currents and voltages vary
throughout the circuit’s connections. On the other hand,
framing your problem as a hybrid system introduces the
challenge of determining the correct system mode at all
times, since this is generally a hidden quantity from our state
estimator.

State estimation for hybrid systems has been a topic of
great scientific interest in recent years, as shown by the
large number and variety of papers. For instance, [2] applies
particle filtering for hybrid systems in the context of signal
processing. Target tracking, one of the most common appli-
cations for hybrid systems, is treated in [3]. In [4], robust
Kalman filtering techniques are used for state estimation
of hybrid systems with unknown nonlinearities, while [5]
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performs both robust state estimation and fault diagnosis for
uncertain hybrid systems. Hybrid state estimation generally
requires filtering for both the discrete and the continuous
state variables and many techniques can be found in [6],
[7] and references therein. Among them, it is important
to mention the Generalized Pseudo Bayes (GPB) [8] and
the Interacting Multiple Model (IMM) [9], [10] algorithms,
which are based on running a bank of Kalman Filters (KFs)
simultaneously to keep track of several different discrete
modes with Markovian transitions between them.

The GPB filter is a suboptimal approach to the optimal
Multiple Hypothesis Tracker (MHT) [8]. After a fixed num-
ber of steps, estimates coming from different hypotheses
are merged based on their probabilities, rendering the filter
possible to be implemented in practice. The IMM algorithm
introduced in [9] has a similar structure, but greatly improves
performance without increasing the computational load by
introducing an estimates mixing step based on the prediction
of system modes’ probabilities, making this algorithm one
of the best choices in terms of computational cost and
efficiency [7]. However, the IMM’s hypotheses merging
assumptions sometimes become unsuitable when the number
of hypotheses being tracked is large or for nonlinear systems
where Gaussian noise approximations are not very adequate.

The Multiple Hypotheses Mixing Filter (MHMF) - of
which the IMM is a particular case - recently introduced
by [11] showed itself to be a good alternative for hy-
brid estimation, since it generalizes the IMM’s hypotheses
merging step and requires no previous knowledge about
the Markovian mode transition probabilities. In addition,a
hypotheses pruning step prevents the MHMF’s output to
be degraded by estimates from very unlikely hypotheses,
a phenomenon discussed in more detail in [12]. In order
to deal with nonlinear models, the authors in [11] used the
Extended Kalman Filter (EKF) in their original formulation.
Nevertheless, this work shows that combining the MHMF
with the Unscented Kalman Filter (UKF) [13] yields a better
performing hybrid filter, which is coherent with prior work
that demonstrates that the UKF outperforms the EKF in many
applications [14]–[16].

The UKF is a nonlinear filter that uses the Unscented
Transform (UT) [13] to approximate the probability density
function (PDF) of random variables (RV) using a set of de-
terministic weighted samples calledsigma points. There are
several different variations of the UT, such as the symmetric
[13], the reduced [17], the reduced spherical [18], the min-
imum [19], and the scaled [20]. In this work, we introduce
the Scaled Minimum Unscented Multiple Hypothesis Mixing
Filter (ScMinUMHMF), an improvement over the original



MHMF that combines the minimum and scaled Unscented
Transforms in order to better propagate uncertainty informa-
tion while keeping the filter’s computational complexity toa
minimum1.

Our last contribution in this work is to demonstrate that
the two versions of the scaled UT first presented in [20]
are not equivalent, which does not agree with the authors’
original claim. In fact, we show that the second form, which
happens to be the most used2, is more conservative than the
first one.

This work is organized as follows. Section II defines
the multiple model state estimation problem, while Sec-
tion III proves that the two versions of the scaled UT
originally introduced in [20] are actually distinct. Then,
Section IV shows how the scaled and minimum Unscented
Transforms are combined with the MHMF filter to create
the ScMinUMHMF. Finally, simulation results in Section
V show how our proposed filter outperforms the original
formulation of the MHMF, followed by our conclusions in
Section VI.

II. PROBLEM STATEMENT

A multiple model (MM) system, the particular case of
hybrid systems addressed in this paper, can be described as

xk = fmk
(xk−1, uk−1, wk−1),

yk = hmk
(xk, vk), k ∈ N, (1)

wherek is the time step;xk ∈ R
nx is the continuous state

vector; mk ∈ M , {1, 2, . . . ,M} is the system’s discrete
modal state (mode), which can assume M different values;
fmk

:Rnx×R
nu×R

nv → R
nx is a possibly nonlinear mode-

dependent process evolution function;hmk
:Rnr×R

nw →
R

ny and yk ∈ R
ny are the mode-dependent measurement

function and measurement vector, respectively;uk−1 ∈ R
nu

is the input vector; andvk−1 ∈ R
nv andwk−1 ∈ R

nw are
noise processes. The parametermk is assumed to follow
a Markov Chain with initial probability vectorp(m0) and
time-invariant transition probability matrix (TPM)

Π = (πi,j), πi,j = P{mk = j|mk−1 = i}, i, j ∈ M.

Given models of the form (1) for every possible
value of mk and a sequence of measurementsy1:k =
{y1, y2, . . . , yk}, the MM filtering problem consists of de-
termining the following quantities:

• the minimum variance estimate of the continuous state
vector x̂k, along with its covariance matrix̂Pk;

• the estimated discrete mode probability vectorp̂(mk);
• the estimated TPM̂Π(k).

The ScMinUMHMF proposed in Section IV is an algo-
rithm that solves the MM filtering problem by combining
the MHMF in [11] with the scaled and minimum Unscented
Transforms introduced in [20] and [19], respectively, and
further explained in the next section.

1The UKF’s computational cost is proportional to the number of sigma
points [13].

2We could not find an application using the first scaled form.

III. SCALED UNSCENTEDTRANSFORM

Consider the random vectorX∈ℜn and the function
f :ℜn→ℜm, which defines the random variableY :=f (X).
The Unscented Transform (UT) approximates the probabil-
ity density function ofX , the prior random variable, by
means of a set of deterministic samples calledsigma points,
which correspond to a discrete probability mass function
approximation. One important advantage of this nonlinear
uncertainty propagation technique is that it does not require
the calculation of Jacobian or Hessian matrices of nonlinear
functions, which are necessary whenever linearization-based
methods are used [13]. Moreover, if thesigma points’central
moments are equal to the central moments ofX up to the2k-
th order inclusively, the Taylor Series for the sample mean
and covariance of the transformedsigma pointswill be equal,
respectively, to the Taylor Series of the mean and covariance
matrix of Y up to the2k-th order, inclusively [13].

The Scaled Unscented Transform [20], a variation of the
original UT, has the property that thei-th term in the Taylor
Series expansion of the transformedsigma points’ mean
and (modified) covariance matrix is scaled by an arbitrary
term αi−2, where i > 2, without incurring any increase
in computational cost. The author in [20] presents this
transform in two supposedly equivalent ways: i) as a function
transforming directly the prior distribution ofX ; and ii) as
a function transforming a previous sigma set. Although ii)
has become the most used method, we now show that it is,
in fact, more conservative than i).

Method ii) for calculating the Scaled UT consists of
obtaining the scaled sigma points,χ′

i, and weights,w′

i, from
a previous set of sigma points,χi, and weights,wi, according
to the equations

χ′

i = χ1 + α (χi − χ1) ,

w′

i =

{

w1

α2 + 1− 1
α2 , i = 1,

wi

α2 , i = 2, ..., N,

whereα is a positive scaling parameter [20]. The author
in [20] claims that the sample mean and covariance matrix
of the scaled set ofsigma pointsare equal to the mean and
covariance matrix ofX , respectively, for any previous sigma
set. However, consider the following counterexample.

Example 1 Let be the random vectorX ∈ ℜ2 with mean
X̄ = [0 0]T and covariance matrixPXX = I2 and let be
the sigma points and weights

χ1 =

[ √
2
0

]

, χ2 =

[

0√
2

]

, χ3 =

[

−
√
2

0

]

,

χ2 =

[

0
−
√
2

]

, w1 = w2 = w3 = w4 =
1

4
.

For α = 0.5 and χ′

1 = χ1 = [0 2]T , the scaled sigma
points and weights become

χ
′
1 =

[ √
2
0

]

, χ
′
2 =

[

0, 5
√
2

0, 5
√
2

]

, χ
′
3 =

[

0
0

]

,

χ
′
4 =

[

0, 5
√
2

−0, 5
√
2

]

, w1 = −2; w2 = w3 = w4 = 1.



Therefore, the sample mean,µχ′ , and the sample covariance
matrix, Σχ′ , of the scaled sigma set are

µχ′ =
4

∑

i=1

wiχi =

[

−
√
2

0

]

6=
[

0
0

]

,

Σχ′ =

4
∑

i=1

wi

(

χ
′
i − µχ′

) (

χ
′
i − µχ′

)T
=

[

−3 0
0 1

]

6= I2.

The example shows that the sample mean and the sample
covariance matrix ofχ′ are not equal to the mean and
covariance matrix ofX respectively. In fact, as one can see
in the following theorem, this property is only guaranteed for
scaling method ii) in case one of thesigma pointsis equal
to the mean ofX .

Theorem 1 Let beX ∼ (X̄, PXX) and the functionf :
ℜn 7→ ℜm that definesY , Y := f (X) the set of sigma
points{χi, wi|wi ∈ ℜ, χi ∈ ℜn; i = 1, 2, ..., N}. Let also be

the set of scaled sigma points
{

χ
′

i, w
′

i

}

. Then, the following
statements are true:

1)
∑N

i=1 wi = 1 ⇒∑N

i=1 w
′

i = 1.
2) µχ′ = 1

α
µχ + χ1

(

1− 1
α

)

.
3) χ1 =µχ ⇒ µχ′ = µχ.
4) If α 6= 1, thenχ1 = µχ ⇔ µχ′ = µχ.
5) χ1 =µχ ⇒ Σχ′χ′ = Σχχ.

Proof: Suppose
∑N

i=1 wi = 1, then

N
∑

i=1

w′

i =

(

w1

α2
+ 1− 1

α2

)

χ1 +

N
∑

i=2

wi

α2
(χ1 + α (χi − χ1))

=
1

α2

(

−1 + α2 + 1
)

= 1,

which proves assertive1. For the second assertive, we have

µχ′ :=

N
∑

i=1

w′

iχ
′

i

=

(

w1

α2
+ 1− 1

α2

)

χ1 +

N
∑

i=2

wi

α2
(χ1 + α (χi − χ1))

=
1

α

N
∑

i=1

wiχi + χ1

(

1− 1

α

)

=
1

α
µχ + χ1

(

1− 1

α

)

, (2)

which proves assertive2. Now supposeχ1 =µχ, then, from
(2), µχ′ = µχ which proves assertive3 and one part of
assertive4. On the contrary, supposeα 6= 1 and µχ′ =
µχ, then, from (2),χ1 =µ, which completes the proof for
assertive4. Finally, supposeχ1 =µχ, then,

Σχ′χ′ :=

N
∑

i=1

w′

i

(

χ′

i−µχ′

) (

χ′

i−µχ′

)T

=

N
∑

i=1

wi

α2

(

α
(

χi − µχ

)) (

α
(

χi − µχ

))T

= Σχχ,

which proves the last assertive.
On the other hand, form i) of the scaled unscented trans-

form has no restrictions. In the next section, we combine
form i) of the Scaled UT and the Minimum UT [19] with
the MHMF in [11] and introduce the Scaled Minimum
Unscented Multiple Hypothesis Mixing Filter.

IV. SCALED M INIMUM UNSCENTEDMULTIPLE

HYPOTHESISM IXING FILTER

This section presents the Scaled Minimum Unscented
Multiple Hypothesis Mixing Filter (ScMinUMHMF), a novel
filter for multiple model systems described as (1) that
combines positives features from the previously introduced
MHMF with the uncertainty propagation advantages of the
Scaled and Minimum variants of the Unscented Transform.
The latter improve the ScMinUMHMF’s accuracy when
propagating uncertainty through nonlinear transformations,
while the features inherited from the MHMF give the
ScMinUMHMF the following properties:

• Variable hypothesis merging depth, where by hypothesis
we mean a particular branch of the discrete modemk

evolution tree. For further details, please refer to [11];
• A hypothesis pruning step that reduces the filter’s com-

putational effort and also prevents its estimates from
being degraded by very unlikely state state estimates
(see [12]);

• Online estimation ofΠ, the Markovian Transition Prob-
ability Matrix (TPM) for mk that is assumed to be
time-invariant. In fact, many MM estimators for Marko-
vian switching systems, including the GPB, the IMM,
and the modern M3H filter in [21], assume previous
knowledge about the TPM, which is rarely the case
[22]. This TPM estimation step is performed by the
Quasi-Bayesianalgorithm described in [22] using just
the system’s measurements as inputs.

There are also several reasons behind our choice to use
the Unscented Transform to propagate uncertainties in our
filter. First, the scientific literature has many examples of
applications where Unscented Kalman Filters performed
better when compared to Extended Kalman Filters,e.g., [13]–
[16]. Second, for the MM estimation problem defined in (1),
Minimum Unscented Kalman Filters, which are the lightest
UKFs to compute, are a very suitable choice due to the
fact that such MM estimation problems can easily require
great computational effort. Finally, the Scaled Unscented
Kalman Filter, for the reasons already stated on section
III, can be viewed as an improvement over an UKF using
the original form of the UT. However, since the Minimum
Unscented Filter used in the ScMinUMHMF formulation
has no point equal to the prior random variable’s mean, the
ScMinUMHMF can feature the first form of the Scaled UT,
as formally proved in the previous section.

It is useful to define the following:

Notation 1 The followings are notations used in this work:

•

√
A stands for a square-root matrix of the matrixA

such thatA =
√
A
√
A

T
.



• [A]ij stands for thei-th row andj-th column element
of the matrixA. [A]∗j stands for thej-th column ofA
and [A]i∗ stands for thei-th row ofA,

Following the same notation as [11], we denote byx̂i(k)
and P̂i(k), i ∈ {1, 2, . . . ,M q}, q ∈ {1, 2, . . . , d}, the state
vector and associated covariance matrix corresponding to the
filter tracking the system hypothesis3 I

(i)
k at thek-th sample

instant, whered is the hypotheses merging depth. Let alsoyk
be the system’s current output vector and0 ≤ ε < 1 be the
hypotheses pruning threshold. Furthermore, denoten(Ik) as
the total number of hypotheses at thek-th sample instant and
m

(i)
k ∈ M as the current mode for hypothesisI(i)k . Defining

p̂i(Ik)=P (I
(i)
k |y1:k), p̂i(mk)=P (mk=i|y1:k), and assuming

initial conditions

p̂(I0) = [p̂1(I0) p̂2(I0) . . . p̂M (I0)],

x̂i(0) = x(0), x(0) ∈ R
nx ,

P̂i(0) = P (0), P (0) ∈ R
nx×nx ,

Π̂(0) = Π(0), q(0) = 1,

the algorithm for the ScMinUMHMF’s can be stated as
follows.

ScMinUMHMF Scaled Minimum Unscented Multiple Hy-
potheses Mixing Filter’s algorithm consists of the following
steps:

i Hypotheses probability prediction

p̄i(Ik) = π̂a,b(k−1)p̂j(Ik−1), a = m
(j)
k−1, b = m

(i)
k ,

wherei ∈ {1, . . . , n(Ik)}, j ∈ {1, . . . , n(Ik−1)}.
ii Hypotheses pruning

Eliminate hypothesesI(i)k with

p̄i(Ik)
∑n(Ik)

j=1 p̄j(Ik)
< ε,

renormalize the probabilities̄pi(Ik), and update
n(Ik) accordingly.

iii Initial conditions
• If q(k) < d

xi(k) = x̂j(k−1), P i(k)=P̂j(k−1),

q(k) = q(k−1) + 1,

meaning that the hypothesisI(i)k was obtained
from I

(j)
k−1.

• Else

p̂i(mk−1)=

n(Ik−1)
∑

j=1

p̂j(Ik−1|mk−1=i),

p̄i(mk)=

n(Ik)
∑

j=1

p̄j(Ik|mk=i),

x
i(k−1)=

M
∑

j=1

π̂j,i(k−1)p̂j(mk−1)rk−1(j)

p̄i(mk)
,

3Please refer to [11] for a very detailed explanation of system hypotheses.

rk−1(j)=

n(Ik−1)
∑

l=1

x̂l(k−1)P̂ (I
(l)
k−1|mk−1=j, y1:k−1),

P
i(k−1)=

M
∑

j=1

π̂j,i(k−1)p̂j(mk−1) [∆k−1(j)+δ(i, j)]

p̄i(mk)
,

∆k−1(j)=

n(Ik−1)
∑

l=1

P̂l(k−1)P̂ (I
(l)
k−1|mk−1=j, y1:k−1),

δ(i, j)=
(

rk−1(j)−x
i(k−1)

)

(·)T , q(k)=1,

where P̂ (I
(l)
k−1|mk−1=j, y1:k−1) is calculated ac-

cording to

P (I
(i)
k−1|mk−1=j, y1:k−1) =

P (mk−1=j|I(i)k−1, y1:k−1)P (I
(i)
k−1|y1:k−1)

P (mk−1=j|y1:k−1)
,

(3)

iv Filter-dependent prediction step
1) choosev := [v1 . . . vn]

T ∈ ℜn, vi 6= 0, for
i = 1, . . . , n

2) Sigma points and its weights:

w0 =
1

1 +
∑n

i=1 v
2
i

, w =







w1

...
wn






:= w0







v21
...
v2n






,

E =

√

P i(k−1)
(

I + vvT
)− 1

2

1
√
w0









1
v1

0 0

0
. . . 0

0 0 1
vn









,

e := − 1

w0
Ew,

[

χ0
k

· · · χn

k

]

:=
[

e E
]

+ [xi(k)]1×(n+1) .

3) Choose a scaling factor0 ≤ α ≤ 1.
4) Predicted sigma points:

χ̄
j

k
=

fmk

(

xi(k) + α[χj

k
− xi(k)]

)

− fmk
(xi(k))

α2

+ fmk
(xi(k)).

5) Predicted mean and covariance matrix:

x̄i(k) =

n+1
∑

i=1

wiχ̄
j

k,

P̄i(k)

=

n+1
∑

i=1

wi

(

χ̄
j

k − x̄i(k)
)(

χ̄
j

k − x̄i(k)
)T

+Qk.

v Filter-dependent correction step
1) Measurement’s predicted sigma points:

γ
j

k
=

hmk

(

x̄i(k) + α[χ̄j

k
− x̄i(k)]

)

− hmk
(x̄i(k))

α2



+ hmk
(x̄i(k)).

2) Measurement’s predicted mean and covari-
ance matrix:

ȳk =

n+1
∑

i=1

wiγ
j

k
,

P̄
y
i (k) =

n+1
∑

i=1

wi

(

γ
j

k
− ȳk

)(

γ
j

k
− ȳk

)T

+ Rk.

3) Cross-covariance matrix:

Ci(k) =

n+1
∑

i=1

wi

(

χ̄
j

k − x̄(k)
)(

γ
j

k − ȳk

)T

.

4) Correction of the predicted estimates:

Gk = Ci(k)
(

P̄
y
i (k)

)−1
,

x̂i(k) = x̄i(k) +Gk (yk − ȳk) ,

P̂i(k) = P̄i(k)−GkP̄
y
i (k)G

T
k .

vi Hypothesis probability correction

p̂i(Ik) =
p(yk|I(i)k , Π̂(k−1), y1:k−1)p̄i(Ik)

ci
,

γp =

n(Ik)
∑

j=1

p̂j(Ik),

p̂(Ik) = [p̂1(Ik) . . . p̂n(Ik)(Ik)]
T

(

1

γp

)

.

vii Output generation

x̂k =

M
∑

i=1

p̂i(Ik)x̂i(k),

P̂k =
M
∑

i=1

p̂i(Ik)
[

P̂i(k) + (x̂i(k)− x̂k) (·)T
]

,

p̂i(mk) =

n(Ik)
∑

j=1

p̂j(Ik|mk=i),

p̂(mk) = [p̂1(mk) . . . p̂M (mk)]
T
.

viii TPM update: Π̂(k − 1)
Algorithm [22]−−−−−−−−→ Π̂(k).

V. SIMULATION

In this section, we perform a relative performance eval-
uation between the ScMinUMHMF’s and the MHMF using
the same simulated target tracking application presented in
[11].

The state vector isx = [px vx py vy Ω]T , wherepx and
py are respectively the Cartesian coordinates along thex

and y axes,vx and vy are the associated velocities, andΩ
is the angular velocity during course changes. Two different
dynamical models are used, namely Uniform Motion (UM)
and Coordinated Turns (CT) (see [23]):

• Uniform Motion (UM):

xk=











1 T 0 0 0
0 1 0 0 0
0 0 1 T 0
0 0 0 1 0
0 0 0 0 0











xk−1+











1
2
T 2 0
T 0
0 1

2
T 2

0 T
0 0











q
um
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Fig. 1. Absolute error on thex coordinate in each iteration.
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Fig. 2. Absolute error on they coordinate in each iteration.

• Coordinated Turns (CT):

xk=













1 sin(ΩT )
Ω

0 − 1−cos(ΩT )
Ω

0
0 cos(ΩT ) 0 − sin(ΩT ) 0

0 1−cos(ΩT )
Ω

1 sin(ΩT )
Ω

0
0 sin(ΩT ) 0 cos(ΩT ) 0
0 0 0 0 1













xk−1

+











1
2
T 2 0 0
T 0 0
0 1

2
T 2 0

0 T 0
0 0 T











q
ct
k . (4)

where T denotes the discrete sample period andqumk ∼
N(0, Qum) and qumk ∼ N(0, Qum) are the Gaussian noise
processes.

The output model is, for both the UM and the CT modes,

yk=

[ √

p2x + p2y

arctan(py

px
)

]

xk + rk,

rk ∼ N(0, R) is uncorrelated toqk.
Figures 1 and 2 and Table I bring the simulated re-

sults. Due to its improved uncertainty propagation, the
ScMinUMHMF was able to better match the estimated
system mode, which in turn determines the model for tem-
poral evolution of the continuous state vectorx, with the
actual system mode in the simulation, explaining why its
estimation errors are considerably smaller when compared
to the MHMF.



TABLE I

RMS ERROR FOR THE ENTIRE TRAJECTORY

MHMF ScMinUMHMF
13.07 3.576

VI. CONCLUSION

This work presented two new contributions. First, we
introduced the Scaled Minimum Unscented Multiple Hy-
potheses Mixing Filter, a novel stochastic filter in the con-
text of multiple model systems (Algorithm 1). Second, we
demonstrated that the two forms of the Scaled Unscented
Transform presented in [20] are not equivalent and selected
the most appropriate version to be incorporated into the
ScMinUMHMF’s equations. This new filter combines the
benefits of the state-of-the-art Multiple Hypotheses Mixing
Filter with the Scaled and Minimum Unscented Transforms.
Simulated results using a target tracking application showed
that our new filter outperforms the original MHMF using a
bank of Extended Kalman Filters for state estimation.

Concerning the second result of this paper, we showed
that most used form of the Scaled Unscented Transform is
actually more conservative than the alternative formulation.
In particular, we showed that the common Scaled Unscented
Transform only works when the previous non-scaled sigma
set has a sigma point equal to the prior RV’s mean (Theorem
1).
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