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Abstract

This works presents a novel approach for determining
chance-constrained strong controllability of Temporal
Plan Networks with Uncertainty (TPNU) by framing it
as an Optimal Satisfiability Problem (OpSAT).

Introduction
Providing autonomous systems with a keen sensitivity to
risk and the ability to deal with uncertainty is required to
allow them to be trusted in real-world situations. Inspired by
airplane manufacturing, we envision a setting where humans
and robots work together in a dynamic environment while
completing a series of temporally-constrained tasks. In this
context, robots not only have to rely on sensing informa-
tion, but they must also reason about how their actions and
random events might jeopardize plan success. This research
focuses on the problem of chance-constrained planning over
temporal actions, where uncertainty arises from the depen-
dence of plan constraints on hidden quantities that we only
have probabilistic information about.

Chance-constrained planning under uncertainty is a well-
studied topic in the conditional and stochastic CSP liter-
ature, where state-of-the-art algorithms usually rely on a
combination of chronological (depth-first) search and in-
ference in order to quickly find satisficing solutions (Gelle
and Sabin 2006; Fargier, Lang, and Schiex 1996; Tarim,
Manandhar, and Walsh 2006). To the best of our knowl-
edge, however, none of them has leveraged conflict-directed
search (De Kleer and Williams 1987; De Kleer, Mackworth,
and Reiter 1992; Williams and Ragno 2007) in order to
improve their search performance. The contribution of this
work is determining chance-constrained strong controllabil-
ity of Temporal Plan Networks with Uncertainty (TPNU)
(Effinger et al. 2009) by framing it as an instance of an
Optimal Satisfiability Problem (OpSAT), which can be ef-
ficiently solved by Conflict-Directed A* (CDA∗) (Williams
and Ragno 2007). Prior literature on conditional and dis-
junctive temporal planning (Stergiou and Koubarakis 2000;
Kim, Williams, and Abramson 2001; Tsamardinos, Vidal,
and Pollack 2003; Effinger et al. 2009) has not focused on
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the problem of chance-constrained temporal planning. Com-
pared to chronological search (CS) techniques used in state-
of-the-art methods for solving similar problems, our most
important contribution is in terms of the solution’s scalabil-
ity to larger problems sizes.

Problem statement and approach
Consider a TPNU (see Figure 1) conditioned on both con-
trollable and uncontrollable (random) events, henceforth re-
ferred to as choices. Our goal is to find a set of assign-
ments to the controllable choices (CC), plus a simple tem-
poral network (STN) (Dechter, Meiri, and Pearl 1991) for
the scheduling of activities, that is guaranteed to be tempo-
rally feasible with probability of at least 1 −∆, where ∆ is
a user-specified risk bound. The probabilistic component of
temporal feasibility for TPNUs comes from the fact that un-
controllable choices (UC) are random variables, so the tem-
poral constraints that they activate cannot be controlled or
known beforehand.

A TPNU is said to be strongly controllable if there exists
a set of off-line assignment to the CCs that ensures tempo-
ral feasibility no matter the outcome of UCs. Strong con-
trollability criteria tend to be too conservative and hard to
meet, which affects their usefulness. Also, it is very hard to
find a realistic planning problem where one can be robust to
any uncontrollable outcome. Hence, here we use the more
useful notion of chance-constrained strong controllability,
which stands for a set of off-line assignments to CCs that
guarantees temporal feasibility with risk no greater than ∆.

Figure 1 shows an example TPNU representing a sim-
ple temporally-constrained manufacturing task. Circles rep-
resent the start and end events of an episode, the latter being
denoted by ovals. An episode consists of a task that should
be executed (written inside the oval), plus a simple tempo-
ral constraint in the form of an arc connecting the temporal
events. Double solid circles denote CCs, while UCs have
dashed lines. In this example, a robot has to choose between
routes A (RA) and B (RB) in order to get to a manufacturing
location, where it should ask a human (H) or a robotic ma-
nipulator (W ) for assistance. There are four uncontrollable
events that influence the plan: BA and BB are true when
routes A and B are congested, respectively; GU is true if the
human gives up on the task of assisting the robot; and DO is
true if the robotic manipulator breaks down. We also assume



that we have access to the probability distributions of these
uncontrollable events.

Figure 1: Example TPNU for a simple manufacturing task.

Conversion to OpSAT
An optimal constraint satisfaction problem (OpSAT)
(Williams and Ragno 2007) extends the well-known con-
cept of a CSP by quantifying how good a given solution is
in terms of an objective function. The first step towards our
OpSAT formulation is converting the TPNU in Figure 1 to
the labeled constraint (LC) representation used in (Santana
and Williams 2012). For example, the top branch in Figure 1
involving activity Drive (A) would be converted into the LC

RA ∧BA ⇒ Drive(A) ∈ [100, 200]. (1)

An LC L⇒ C consists of a logical label L and a constraint
C over the variables of the CSP. For the particular case of a
TPNU, C represents simple temporal constraints (STC) be-
tween events. An LC is said to be active if L ≡ True, forcing
the CSP to satisfy C. If L ≡ False, then the LC is said to be
inactive and C can be excluded from the CSP. In the case
of a TPNU, a full assignment to the CCs separates the LCs
into three sets: Necessarily Active (NA), composed of all LCs
where L ≡ True; Necessarily Inactive (NI), composed of all
LCs where L ≡ False; and Potentially Active (PA), com-
posed of all LCs whose labels may become True or False
depending on assignments to UCs. It is easy to see that the
set of active temporal constraints in the plan will always be
a subset of NA ∪ PA. Therefore, the goal of our algorithm is
to find a subset S ⊆ NA ∪ PA that satisfies two conditions:
I) S forms a consistent STN; II) the probability of any LC
l ∈ R= (NA ∪ PA) \S being active is no greater than ∆. All
elements of R are said to be relaxed. The OpSAT problem is
framed as:

1. Decision variables: ri∈{0, 1}, i∈{1, . . . , N}, where
ri=1 if li ∈ NA ∪ PA is in R.

2. Objective function: min Pr(
⋃
Li), where Li is the label

of li ∈ R. Labels consist only of assignments to UCs (all
CCs have been previously assigned) that activate an LC.

3. Constraints: S is a consistent STN and Pr(
⋃
Li)<∆.

Results
Figure 2 compares the average performance of CS and our
OpSAT approach on a set of randomly generated temporal

Figure 2: CDA∗ versus CS.

Figure 3: CDA∗ growth.

constraint networks. A problem with N LCs creates a search
space of size 2N . Both algorithms were ran until the first
candidate satisfying the risk bound ∆ was found or no more
solutions were available. Whenever more than one solution
existed, CDA∗ returned the one incurring minimum risk. For
relatively small plans with no more than 10 LCs, we see that
CS and CDA∗ showed very similar performances. However,
if one increases the size of the problem by a few more con-
straints, we see a strong exponential growth in the time re-
quired by CS to either find a solution or return that no so-
lution exists. Our approach using CDA∗, on the other hand,
kept its performance virtually unchanged. Despite the expo-
nential trend in Figure 3 for CDA∗, we see that it happens at
a much smaller rate than for CS-based methods. Therefore,
we hope that our approach will be suitable for reactive on-
line planning even for moderately-sized plans composed of
a few hundreds of LCs, for which CS-based methods cannot
be adequately applied.

Conclusions and future work
This work presented an efficient approach for determining
chance-constrained strong controllability of a plan condi-
tioned on the outcome of uncontrollable events. A perfor-
mance comparison with chronological search is provided,
but future work will involve comparisons with other search
strategies. We intend to apply this algorithm to dynamic ex-
ecution of temporal constraints with active sensing actions
in partially observable environments.
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