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Abstract— Fault diagnosis and recovery are essential tools for
the development of autonomous agents that can operate in haz-
ardous environments. This can be effectively approached from
a model-based perspective, where sensor faults are explicitly
taken into account in a hybrid model with switching dynamics.
However, practical hybrid filters are required to manage an
exponential growth in the number of discrete mode sequences,
also known as hypotheses. Inspired by an attitude estimation
application for a quadrotor UAV with faulty sensors, this paper
introduces the IP-MHMF, a novel filter for hybrid systems
that generalizes the well-known IMM and introduces a more
informed hypothesis-pruning step than previous algorithms.
By performing hypothesis pruning on corrected rather than
predicted hypothesis probabilities, the IP-MHMF is capable
of much more aggressive pruning strategies that significantly
reduce its computational load, while improving its estimation
performance. Our numerical results on data from a real robotic
platform show that the IP-MHMF outperforms state-of-the-art
hybrid filters and the traditional EKF on an attitude estimation
application with faulty magnetometer measurements.

I. INTRODUCTION

Navigation and 3D localization are essential tasks for

robotic systems [1], particularly for operation in outdoor

and uncontrolled environments. Reliable pose estimates are

usually obtained by combining data from a range of different

sensors by means of filtering algorithms. In the case where

sensors operate normally, it is reasonable to assume that “two

sensors are better than one” [2], i.e., one should always

expect a more refined belief about the hidden state of the

system the more sensor information is provided. However,

the reliability of this approach is much more susceptible to

sensor failure and might be too strong of an assumption for

robots built with cheap, commercially available components.

This might also be true even for highly reliable robot

hardware operating under severe disturbances, such as in

the vicinity of electric power transmission lines. Given that

faulty measurements from a single sensor may be sufficient

to degrade the performance of the entire localization system,

being able to quickly detect sensor faults and recover from

them becomes a problem of paramount importance [3].

Detecting failures and anomalous behavior for dynamical

systems has been a topic of great interest for many years, as
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demonstrated by the survey in [4]. In its simplest instantia-

tion, anomaly detection can be achieved by means of a gating

strategy, where a fault flag is raised whenever a sensor output

falls outside its “allowed” range. However, not only it is

difficult to determine what these “allowed” ranges should be,

but it might also be the case that a sensor is failing while still

operating within its normality bounds. In this case, a fault

can only be detected by combining the information from the

current belief state with the data coming from all the other

sensors. Therefore, in this work we adopt the approach of [3],

[5] and model the data fusion problem with faulty sensors

as an instance of hybrid filtering. In our formulation, the

discrete portion of the hybrid state (a.k.a. mode) corresponds

to the mode of operation of each sensor, while the continuous

portion of the state represents the pose quantities (position

and orientation) that we are trying to estimate.

Robust attitude estimation is one important instance of the

general problem of hybrid estimation. When estimating the

state of a hybrid system, one must deal with the combinato-

rial explosion in the number of possible sequences of discrete

hidden states, also known as hypotheses [3]. Given that

the number of hypotheses tends to grow exponentially with

time, a complete enumeration is often impractical. Therefore,

it is necessary to settle for suboptimal approaches that

manage the growth in the number of hypotheses considered,

while not significantly degrading the filter’s performance.

The hypothesis-mixing step introduced by the Interacting

Multiple Model (IMM) filter [6], [7] represents a milestone in

hypothesis-management methods for hybrid filters. By merg-

ing (“mixing”) the estimates coming from a bank of Kalman

filters, the IMM exhibits linear computational complexity (in

terms of the number of modes), while attaining performance

levels of filters with quadratic complexity, rendering it still

one of the best choices in terms of cost and efficiency [8].

However, the IMM’s fixed-depth merging approach can be

very restrictive, hence recent work has extended this algo-

rithm in order to improve its performance. For instance, the

M3H [9] and the MHMF [10] are shown to outperform IMM

by leveraging the idea of variable hypothesis-merging depth,

originally proposed for the Generalized Pseudo Bayes (GPB)

filter [11]. While the M3H adopts a maximum likelihood

approach for the selection of hypotheses, the MHMF extends

the mixing step of the IMM in order to allow merging depths

greater than one. Moreover, both algorithms incorporate a

pruning step that discards hypotheses with probabilities less

than some user-defined threshold. While this helps reduce

the computational cost of the filter, by eliminating highly

unlikely hypotheses, it can lead the hybrid filter to instability,



as discussed in Section III.

Our work is motivated by the accuracy and perfor-

mance required by attitude estimation for a quadrotor un-

manned aerial vehicle (UAV) designed to inspect electrical

power transmission lines. We propose the Informed Pruning,

Multiple-Hypotheses Mixing Filter (IP-MHMF), a new filter-

ing algorithm for hybrid systems. It improves upon the prior

art by introducing a more informed hypothesis-pruning step,

which allows it to retain the computational speed gains of

[9], [10] while preventing filter divergence. Its performance

was evaluated on a nonlinear attitude estimation application

featuring real sensor data with intermittent faults. It was

compared against the MHMF, the M3H, and a traditional

strategy employing an Extended Kalman filter (EKF) in

terms of computational cost and robustness to sensor faults.

This paper is organized as follows. Section II describes

hybrid filtering and multiple-hypotheses tracking, followed

by the formulation of the IP-MHMF in Section III. Section

IV presents the model of the attitude estimation system

used to generate the numerical results in Section V. Finally,

concluding remarks are presented in Section VI.

II. PROBLEM FORMULATION

This work was motivated by the problem of stabilization

of a quadrotor UAV designed to operate in environments

with strong magnetic disturbances. Equipped with a sonar,

a three-axis magnetometer, and a 6 DOF IMU (three-axial

accelerometer and gyro), the quadrotor’s localization system

relies heavily on its magnetometer to correct its orientation

estimates. However, local magnetic field distortions tend to

cause the magnetometer to occasionally indicate erroneous

orientation changes even if the quadrotor remains static.

Moreover, its low-cost magnetic sensor occasionally yields

spurious readings for unknown reasons.

In this context, a hybrid approach is appropriate. Hybrid

systems denote a class of dynamical systems whose behavior

combines continuous and discrete state variables [12]. The

discrete variables usually denote the system’s operating mode

and define how the continuous state evolves. In this paper, we

focus on an important subclass of hybrid systems [13], [14]

known as multiple model (MM) systems, where the discrete

mode is used to index a family of different dynamical

models. Hence, the state evolution and output models of an

MM system are allowed to change over time. An MM system

can be described as

xk = fmk
(xk−1,uk−1,wk−1), (1)

yk = hmk
(xk,vk),k ∈ N, (2)

where xk ∈ R
nx is the continuous state vector; mk ∈ M ,

{1,2, . . . ,M} is the discrete mode of the system; fmk
: Rnx ×

R
nu ×R

nw → R
nx is a possibly nonlinear mode-dependent

process evolution function; hmk
: Rnx ×R

nv → R
ny and yk ∈

R
ny are the mode-dependent measurement function and

measurement vector, respectively; uk−1 ∈ R
nu is the input

vector; and vk−1 ∈R
nv and wk−1 ∈R

nw are independent white

noise processes. As observed in (1)-(2), the discrete mode

mk defines a set of M different state-space evolution and

measurement functions fmk
and hmk

describing the system’s

dynamics. The parameter mk is assumed to follow a Markov

chain with an unknown initial probability vector p(m0) and

an unknown transition probability matrix (TPM)

Πk=
{

πi, j

}

,πi, j=Pr{mk= j|mk−1 = i}, i, j ∈M,∀k ∈ N. (3)

Assuming that neither xk nor mk are directly measurable,

the hybrid stochastic filtering problem aims to estimate the

joint a posteriori probability density function

p(xk,mk|y1:k) = p(xk|mk,y1:k)Pr(mk|y1:k) (4)

of xk and mk, based on a sequence y1:k = {y1,y2, . . . ,yk}
of noise-corrupted measurements generated according to (2).

Considering the MM system described in (1)-(3) and given a

sequence of output measurements y1:k, plus initial conditions

x̂0, P̂0, p̂(m0), and Π̂0, one wishes to obtain:

1) x̂k, the estimated minimum variance state vector;

2) P̂k, the estimation error covariance matrix;

3) p̂(mk), the estimated mode probability vector;

4) Π̂k, the estimated TPM.

Because mode transitions are potentially unobservable,

there will be Mk possible mode sequences (hypotheses) at

the k-th time instant if all elements in the TPM are nonzero,

even if m0 is known. Let Ik be the set of all possible

mode sequences for mk. Each particular sequence I
(i)
k ∈ Ik

is the i-th hypothesis at the k-th time instant. Because of

the exponential growth in the number of hypotheses, it is

impossible to implement an optimal estimator for (1)-(3) in

practice because the limited memory and computation [11].

Therefore, suboptimal approaches, which merge similar hy-

potheses or exclude unlikely ones, must be adopted in prac-

tical MM estimators. The IP-MHMF algorithm presented in

the next section leverages additional information about state

predictions in order to perform a more informed hypotheses

pruning step, therefore retaining the low computational cost

of previous approaches while making the filter empirically

more robust to divergence.

III. INFORMED PRUNING MHMF

This section contains the main contribution of this work,

namely the IP-MHMF. This hybrid stochastic filter gener-

alizes the well-known IMM algorithm and has improved

stability when compared to the M3H and the MHMF while

exhibiting relatively low computational cost.

Similar to the MHMF, the IP-MHMF improves its per-

formance with respect to the IMM by allowing hypothesis-

merging depths d ≥ 1. Choosing d > 1 tends to improve

the quality of the estimates, but has the undesirable effect of

increasing the number of considered hypotheses at any given

point in time. Therefore, as in the M3H and the MHMF, the

IP-MHMF includes a hypothesis-pruning step that eliminates

hypotheses with probabilities below a user-defined threshold

α . Pruning hypotheses is beneficial because it reduces the

number of necessary calculations and prevents the filter es-

timates from being degraded during the hypothesis-merging

step [15]. However, the elimination of hypotheses may cause



stability and estimate degradation issues, as was empirically

observed during filtering tests using the MHMF and the M3H

with faulty sensor data.

In both the M3H and the MHMF, the pruning step is

executed immediately before the filter-dependent prediction

step, in order to minimize the number of EKFs that are used

to track different hypotheses. However, problems may occur

when the system changes to a mode with a low transition

probability, such as the fault mode for sensors that work

properly during most of the time. In this case, all hypotheses

that consider sensor faults might be pruned, because the

probability prediction step that uses the TPM may reduce

their probability below the pruning threshold. Ignoring the

possibility of sensor faults leads to the incorporation of

strongly corrupted sensor data, causing degradation of filter

estimates and potentially leading to filter instability. One sim-

ple method to circumvent the erroneous hypothesis-pruning

problem is to increase the pruning threshold. However, this

method eventually leads to the consideration of many hy-

potheses, which increases the computational load. Hence, the

solution proposed in the IP-MHMF is to not rely on a finely-

tuned pruning threshold α to ensure stability, while keeping

the computational load to a minimum. Instead, the IP-MHMF

performs an informed pruning step that leverages additional

information from state predictions, in order to correct the

probability estimates for each one of its tracked hypotheses.

Unlike the M3H and the MHMF, which prune hypotheses

based on their predicted probabilities, the IP-MHMF uses α
as a pruning threshold on corrected hypothesis probability

estimates, therefore greatly reducing the possibility of the

true system hypothesis being eliminated by the pruning step,

and hence preventing divergence. For Kalman filters and

its variants, changes in the number of hypotheses during

the prediction step do not significantly affect the overall

computational load, given that the most expensive operation

is the correction step involving matrix inversions [16].

Furthermore, estimators for Markovian switching systems

typically assume previous knowledge of the TPM Π, which is

rarely the case [17]. Hence, the IP-MHMF explicitly includes

an on-line TPM estimation step based on system outputs.

A. Algorithm

The IP-MHMF estimates the hybrid state of (1)-(2) by

tracking multiple hypotheses between consecutive merging

steps. Based on its current estimate of the TPM computed

by the Quasi-Bayesian TPM estimation algorithm in [17], it

is able to predict the probability of each hypothesis (Step

i). These are then used to merge the estimates in an IMM-

like fashion whenever the merging depth is attained (Step

ii). The state estimates for each hypothesis are propagated

forward in time by single-model filters in Step iii, which

are subsequently used in Step iv to correct the hypotheses’

probabilities. Step v then prunes unlikely hypotheses, i.e., the

ones whose corrected probabilities fall below a user-defined

threshold. Since the IP-MHMF uses corrected probabilities

in order to perform its pruning in Step v, it is much more

effective than the MHMF and the M3H at determining

the subset of its tracked hypotheses that are likely given

the sensor output data, therefore avoiding divergence. The

estimates of the remaining hypotheses are corrected with

sensor data in Step vi, followed by the generation of the IP-

MHMF outputs in Step vii. Finally, TPM estimate is updated

using the Quasi-Bayesian algorithm in Step viii.

IP-MHMF Let x̂
(i)
k

and P̂
(i)
k

, i∈{1,2, . . . ,Mqk}, qk ∈ {1,2, . . . ,d},
be the state vector and associated covariance matrix, respectively,
that correspond to the filter that tracks the system hypothesis

I
(i)
k

∈ Ik , where Ik is the set of all possible hypotheses at the
k-th sample instant and d is the hypothesis-merging depth. Let
0≤α < 1 be the hypothesis-pruning threshold. Furthermore, denote

n(Ik) as the total number of elements in Ik and m
(i)
k

∈ M as

the current mode for hypothesis I
(i)
k

. Define p̂(i)(Ik)=Pr(I
(i)
k
|y1:k),

p̂(i)(mk)=Pr(mk=i|y1:k), and assume the following initial condi-
tions:

p̂(i)(I0), x̂
(i)
0 , P̂

(i)
0 , Π̂0, q0=1, i ∈ {1,2, . . . ,M},

the hybrid data fusion algorithm is expressed as follows:

i Hypotheses probability prediction

p̄(i)(Ik) = π̂a,b(k−1) p̂( j)(Ik−1), a = m
( j)
k−1,b = m

(i)
k
,

where i ∈ {1, . . . ,n(Ik)}, j ∈ {1, . . . ,n(Ik−1)}.

ii Initial conditions for the current step

• If n(Ik)≤ M or qk < d

x
(i)
k

= x̂
( j)
k−1, P

(i)
k
=P̂

( j)
k−1, qk=qk−1+1,

which implies that I
(i)
k

was obtained from I
( j)
k−1

.
• Else

p̄(i)(mk)=
n(Ik)

∑
j=1

Pr(mk=i|I
( j)
k ,y1:k−1) p̄( j)(Ik),

x
(i)
k−1=

M

∑
j=1

π̂ j,i(k−1) p̂( j)(mk−1)r
( j)
k−1

p̄(i)(mk)
,

r
( j)
k−1=

n(Ik−1)

∑
l=1

x̂
(l)
k−1P̂r(I

(l)
k−1|mk−1= j,y1:k−1),

P
(i)
k−1=

M

∑
j=1

π̂ j,i(k−1) p̂( j)(mk−1)
[

∆
( j)
k−1+δ (i, j)

]

p̄(i)(mk)
,

∆
( j)
k−1=

n(Ik−1)

∑
l=1

P̂
(l)
k−1P̂r(I

(l)
k−1|mk−1= j,y1:k−1),

δ (i, j)=
(

r
( j)
k−1−x

(i)
k−1

)

(·)T ,

qk=1,

where

P̂r(I
(l)
k−1|mk−1= j,y1:k−1) =

Pr(mk−1= j|I
(l)
k−1,y1:k−1)Pr(I

(l)
k−1|y1:k−1)

Pr(mk−1= j|y1:k−1)
. (5)

iii (Filter-dependent) prediction step

(x
(i)
k−1,P

(i)
k−1)

Prediction
−−−−−−→ (x̄

(i)
k
, P̄

(i)
k
). (6)

iv Hypotheses probability correction

p̂(i)(Ik) =
p(yk|I

(i)
k
,Π̂k−1,y1:k−1) p̄(i)(Ik)

ci
,

γp =
n(Ik)

∑
j=1

p̂( j)(Ik),



p̂(Ik) = [ p̂(1)(Ik) . . . p̂(n(Ik))(Ik)]
T (1/γp),

where ci is a normalizing constant.
v Hypotheses pruning

Eliminate hypotheses I
(i)
k

with
p̂(i)(Ik)

∑
n(Ik)

j=1 p̂( j)(Ik)
≤ α,

normalize all p̂(i)(Ik), and update n(Ik) accordingly.
vi (Filter-dependent) correction step

(x̄
(i)
k
, P̄

(i)
k
)

Correction
−−−−−−→ (x̂

(i)
k
, P̂

(i)
k
). (7)

vii Estimate generation

x̂k =
n(Ik)

∑
i=1

p̂(i)(Ik)x̂
(i)
k
,

P̂k =
n(Ik)

∑
i=1

p̂(i)(Ik)
[

P̂
(i)
k

+
(

x̂
(i)
k

− x̂k

)

(·)T
]

,

p̂(i)(mk) =
n(Ik)

∑
j=1

P(mk=i|I
( j)
k

,y1:k) p̂( j)(Ik),

p̂(mk) =
[

p̂(1)(mk) . . . p̂(M)(mk)
]T

.

viii TPM update: Π̂k−1
Algorithm [17]
−−−−−−−−→ Π̂k.

The term I
(l)
k−1 is one particular hypothesis that is tracked

between two merging steps. In (5), P̂r(mk−1= j|I
(l)
k−1

,y1:k−1)
is either 0 or 1 depending on which mode corresponds to

I
(i)
k−1. The IMM’s mixing step is a particular case of Step ii

with d = 1. No details are provided in (6) and (7) because

these steps vary depending on the filter chosen to track each

hypothesis. For example, if (1)-(2) are linear, the KF is a

reasonable choice. Since attitude estimation is nonlinear, the

results in Section V were obtained using the EKF.

IV. ATTITUDE ESTIMATION

Similar to [5], this section leverages hybrid modeling

to address the problem of embedded sensor faults. This

modeling enables the IP-MHMF to track the UAV’s attitude

in conditions where the EKF fails. Because there are no

sensor measurements of the aircraft movement in the XY

plane, translation is not discussed here. For the following

equations, consider the coordinate frames in Fig. 1.

Fig. 1. Body (b) and reference (n) coordinate frames. The rotation angles
between the two frames are called roll (φ ), pitch (θ ), and yaw (ψ).

A. Prediction

Let qb
n = [q0 q1 q2 q3]

T , ‖qb
n‖= 1, be the quaternion that

represents the orientation of b with respect to n. The equation

that relates qb
n to its corresponding rotation matrix is

Cb
n=





q2
0+q2

1−q2
2−q2

3 2(q1q2−q0q3) 2(q1q3+q0q2)
2(q1q2+q0q3) q2

0−q2
1+q2

2−q2
3 2(q2q3−q0q1)

2(q1q3−q0q2) 2(q2q3+q0q1) q2
0−q2

1−q2
2+q2

3



 . (8)

During rotation, gyros measure angular rates ωx, ωy, and

ωz around the axes Xb, Y b, and Zb, respectively (Fig. 1).The
discrete-time quaternion evolution model is given by [18]

qb
n,k =



I4×4 cos

(

δ

2

)

−W τ
sin

(

δ
2

)

δ



qb
n,k−1, (9)

W =







0 ωx ωy ωz

−ωx 0 −ωz ωy

−ωy ωz 0 −ωx

−ωz −ωy ωx 0






,δ =

(
√

ω2
x +ω2

y +ω2
z

)

τ,

where τ denotes the sampling period and the subscript k ∈N

denotes the sample taken at instant kτ .

B. Correction

The accelerometer and the magnetometer are used to
correct attitude estimates. Their readings relate to the true
attitude of the system according to the model

f b
k =

(

Cb
n,k

)T
(an

k−gn
E )+ε f ,k,ε f ,k ∼ N

(

0,Rε f ,k

)

, (10)

mb
mag,k =

(

Cb
n,k

)T
mn

E+εm,k,εm,k ∼ N
(

0,Rεm,k

)

, (11)

where f b
k is the specific force measurement of the accelerom-

eter in b; mb
mag,k is the magnetometer reading; Cb

n,k is as in

(8); an
k is the body acceleration in n; gn

E and mn
E are the local

gravitational and magnetic fields, respectively; and εi,k and
i ∈ { f ,m}, model sensor noise. For attitude correction, it is
important that an

k be minimized in (10) so that it reduces to

f b
k ≈

(

Cb
n,k

)T
(−gn

E)+ ε f ,k , (12)

creating a correspondence between attitude and the gravity

vector gn
E in the reference frame b. The approximation (12)

is reasonable for non-acrobatic flights.

C. Modeling magnetometer faults

The magnetometer is important in the quadrotor attitude
estimation, because it is the only sensor responsible for
correcting the yaw angle estimates of the aircraft. The
accelerometer measurements in (12) remain unchanged when
the UAV rotates along its vertical axis because the local
gravitational field gn

E and Zn are collinear. Therefore, it is
important to mitigate all sources of disturbances that act
over this sensor, because reliable yaw estimates are neces-
sary to control the UAV’s heading during flight. Following
the hybrid-system approach in [5], the attitude estimation
instruments of the aircraft are modeled as an MM system
with two distinct modes. The first mode corresponds to the
equation

mb
mag,k

‖mb
mag,k‖

=
(

Cb
n,k

)T mn
E

‖mn
E‖

+εnorm
m,k ,εm,k∼N

(

0,R
(1)
εm,k

)

, (13)

and models normalized magnetometer measurements during
nominal operation, that is, when the sensor readings are
analogous to the body’s orientation in space. The second
mode seeks to mathematically represent the spurious read-
ings and local magnetic field distortions observed during the



calibration tests. Because these disturbances do not seem
to have a clear correlation with the vehicle’s state, the
magnetometer faults are modeled as

mb
mag,k

‖mb
mag,k‖

= 0.5+ ε
f ault

m,k ,εm,k∼N
(

0,R
(2)
εm,k

)

, (14)

where the 0.5 value represents half of the range of the nor-

malized readings. The noise covariance matrices for different

magnetometer operating modes are R
(1)
εm,k

= I× 4.4e− 3 and

R
(2)
εm,k

= I× 0.1.

V. EXPERIMENTAL RESULTS

This section compares the performance of four nonlinear

filters that were used to estimate the attitude of a quadrotor

based on real inertial and magnetic sensor measurements.

The classical solution using a single EKF was compared

against the MHMF, the M3H filter, and the IP-MHMF, all

benefiting from the hybrid modeling presented in Section

IV-C to handle magnetometer faults. All MM filters used a

bank of EKFs to track each hypothesis of the system.

Figure 2 shows the results of the first experiment per-

formed to verify whether the EKF and the MM filters were

capable of performing accurate attitude estimation accord-

ing to the model in Section IV in the absence of sensor

faults. The experiment consisted of three manual rotations

of the quadrotor around each of its coordinated axes by

approximately 45◦ in both directions. Figure 2(a) shows the

actual magnetometer measurements collected during the ex-

periment, which were used to generate the attitude estimates

in Fig. 2(b). The latter only shows the results for the EKF, but

the curves were virtually identical for all other filters. This

experiment served to demonstrate that the attitude estimation

algorithms were correctly implemented and served as a basis

of comparison for the next experiment.

The second experiment consisted of introducing typical

magnetometer faults in the magnetometer data so as to

simulate a “worst-case” scenario for the attitude estima-

tion system, as shown in Figure 3(a). There are basically

two types of typical disturbances: either the magnetometer

returns a short sequence of spurious readings, often with

one component of its measurement vector set to 0, or it

becomes biased in a fixed direction due to the presence

of a strong electromagnetic field. Figure 3(b) shows the

performance of the traditional attitude estimation approach

using a single EKF. One can observe in the plots the presence

of minor disturbances in the roll and pitch estimates, since

the accelerometer helps correct them. The yaw estimates, on

the other hand, became strongly degraded when compared

to Fig. 2(b), which is due to the fact that they depend solely

on magnetometer readings for their correction step.

This strong performance degradation is not found on

the attitude estimates in Fig. 3(c), which shows the best

performance for the IP-MHMF (all other MM filters yielded

almost identical plots at their best performances). The roll

and pitch estimates remained virtually unchanged when com-

pared to the undisturbed case and the yaw estimates exhibited

only minor perturbations compared to Fig. 2(b). Despite the
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(a) Normalized magnetometer measurements.
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(b) Attitude estimates for the EKF (virtually identical
results for all other filters).

Fig. 2. Attitude estimates using undisturbed magnetometer measurements.

similarity in the quality of their estimates, the true distinction

between the different algorithms can be seen in the results

shown in Table I. It shows the computational load results

for the best performance of all filters using both normal and

faulty measurements, where the computational complexity

for MM filters is linear in the number of tracked hypotheses.

The MHMF exhibited strong performance degradation even

for small values of α , due to incorrect pruning of hypotheses,

and was outperformed by the IP-MHMF in all test instances.

Therefore, Table I only shows the comparison between the

EKF, the M3H, and the IP-MHMF.

The EKF was the lightest choice in all cases, but Fig.

3(b) clearly illustrates that its estimates are not robust to

the sensor disturbances and may jeopardize the stability and

safe operation of the quadrotor. Regarding the MM filters,

the M3H filter performed slightly better than the IP-MHMF

when operating with the measurements in Fig. 2(a). However,

an important aspect should be considered when comparing

these two filters: the M3H filter considers the TPM as given

and requires it to be properly tuned to operate correctly. The

IP-MHMF, on the other hand, assumes no initial information

regarding the mode transition probabilities, and estimates Π̂k

in real time using the output sensor measurements, forcing it

to conserve a larger number of hypotheses during the initial

sample instants. Nevertheless, during the approximately 18 s

in Fig. 3, the filters only differ during the first 60 ms. Then,

both filters conserve a single hypothesis that corresponds to

the correct magnetometer operation.

The second half of Table I, which corresponds to the mea-

surements in Fig. 3(a), presents a different perspective for the

comparison of the MM filters. Because the more informed

hypothesis-pruning step in the IP-MHMF uses corrected
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(a) Faulty magnetometer measurements.
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(b) EKF.
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(c) IP-MHMF (same for the other MM filters).

Fig. 3. Attitude estimates using faulty magnetometer measurements.

TABLE I

COMPUTATIONAL COST FOR THE BEST FILTERING PERFORMANCE.

EKF M3H IP-MHMF

Undisturbed measurements

Mean number of hyp. 1 1.004 1.007
Max number of hyp. 1 2 4

Pruning threshold − 30% 50%

Faulty measurements

Mean number of hyp. 1 2.297 1.007
Max number of hyp. 1 3 4

Pruning threshold − 3% 50%

probability estimates rather than predicted ones, one can

maintain much higher pruning thresholds, which drastically

reduce the computational complexity, while not affecting

the filter’s performance. For the M3H, however, raising the

pruning threshold above 3% caused incorrect elimination of

hypotheses and performance degradation. Once again, the

two filters have different maximum numbers of hypotheses

because the IP-MHMF conserves more hypotheses at the

beginning due to the lack of information on the TPM, but

the computational complexity of 4 hypotheses is no longer

observed after the first 70 ms.

VI. CONCLUSIONS

This paper presented the IP-MHMF, a novel filter for

hybrid multiple model systems. It generalizes the IMM’s

hypothesis-merging step to depths greater than one and

introduces a more informed hypothesis-pruning step than

previous algorithms in the literature. By leveraging state

prediction information from its bank of single-model filters,

the IP-MHMF performs hypotheses pruning on corrected

rather than predicted probability estimates, therefore improv-

ing its performance. It also allows a much more aggres-

sive hypothesis-pruning strategy that significantly reduces

its computational load, therefore making it suitable for em-

bedded applications with processing and energy constraints.

Its usefulness was demonstrated on an attitude estimation

application for a quadrotor UAV with faulty sensors.
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