
Chance-Constrained Consistency for Probabilistic Temporal Plan Networks

Pedro H.R.Q.A. Santana and Brian C. Williams
Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, MERS

32 Vassar St., Room 32-224, Cambridge, MA 02139, {psantana,williams}@mit.edu

Abstract

Unmanned deep-sea and planetary vehicles operate in highly
uncertain environments. Autonomous agents often are not
adopted in these domains due to the risk of mission fail-
ure, and loss of vehicles. Prior work on contingent plan ex-
ecution addresses this issue by placing bounds on uncer-
tain variables and by providing consistency guarantees for
a ‘worst-case’ analysis, which tends to be too conservative
for real-world applications. In this work, we unify features
from trajectory optimization through risk-sensitive execution
methods and high-level, contingent plan execution in order
to extend existing guarantees of consistency for conditional
plans to a chance-constrained setting. The result is a set
of efficient algorithms for computing plan execution poli-
cies with explicit bounds on the risk of failure. To accom-
plish this, we introduce Probabilistic Temporal Plan Network
(pTPN), which improve previous formulations, by incorpo-
rating probabilistic uncertainty and chance-constraints into
the plan representation. We then introduce a novel method to
the chance-constrained strong consistency problem, by lever-
aging a conflict-directed approach that searches for an exe-
cution policy that maximizes reward while meeting the risk
constraint. Experimental results indicate that our approach for
computing strongly consistent policies has an average scala-
bility gain of about one order of magnitude, when compared
to current methods based on chronological search.

1 Introduction
Real-world environments are inherently uncertain, causing
agents to inevitably experience some level of risk of failure
when trying to achieve their goals. Failure is not restricted
to the operation of autonomous systems in hazardous envi-
ronments, but an integral part of life. For example, an unex-
pected flat tire might incur a lot of extra delay in a usually
quick commute to work. Instead of neglecting the existence
of risk or overlooking the fact that unexpected things might
have important impacts on a mission, it becomes key for
autonomous systems trusted with critical missions in real-
world situations to have a keen sensitivity to risk and to be
able to incorporate uncertainty into their decision-making.

This work addresses the problem of extracting execu-
tion policies with risk guarantees from contingent plans
with uncertainty. It drew great inspiration from interactions

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with groups in the Woods Hole Oceanographic Institution
(WHOI) and NASA’s Jet Propulsion Laboratory (JPL), who
share the responsibility of planning and operating multimil-
lion dollar missions in extreme environments (deep sea and
planetary exploration) with very stringent safety require-
ments. The current practice for ensuring safety in these mis-
sions requires groups of engineers to reason over a very large
number of potential decisions and execution scenarios that
might unfold during execution, which is a challenging, time-
consuming, and error prone process.

There has been significant effort in the scientific com-
munity to help answer the question of whether a feasi-
ble execution policy exists in the presence of uncontrol-
lable contingencies in the plan. Among the most impor-
tant contributions, (Tsamardinos, Vidal, and Pollack 2003;
Effinger et al. 2009; Venable et al. 2010; Hunsberger, Pose-
nato, and Combi 2012) extend the notions of strong, dy-
namic, and weak controllability (also referred as consis-
tency) originally used in the context of temporal uncertainty
(Vidal and Ghallab 1996; Vidal 1999; Morris, Muscettola,
and Vidal 2001) to uncontrollable contingencies. They also
present tests that guarantee the existence of feasible solu-
tions under different levels of information about the uncer-
tainty in the plan. These consistency tests, however, all have
the caveat of representing uncertainty as set-bounded quan-
tities, i.e., as intervals of values with no associated probabil-
ity distribution. In other to guarantee feasibility in all possi-
ble scenarios, consistency-checking algorithms based on set-
bounded uncertainty end up performing a worst-case analy-
sis. When considering situations where uncertainty causes
small plan deviations around otherwise “nominal” values,
these set-bounded consistency criteria work well and output
robust, albeit conservative, execution policies. Nevertheless,
they have difficulties handling problem instances where un-
certainty can potentially lead the system to very hard or even
irrecoverable scenarios, often returning that no robust execu-
tion policy exists. This is most certainly undesirable, since
reasonable amounts of risk can usually be tolerated for the
sake of not having the autonomous agent sit idly due to its
absolute “fear” of the worst.

Given a description of a contingent plan, this work im-
proves on the previously cited literature on conditional plan
execution by extending the notions of weak and strong plan
consistency to a risk-bounded setting and providing effi-

cient algorithms for determining (or refuting) them. These
risk bounds are also known as chance-constraints (Birge and
Louveaux 1997). Weak and strong consistency are useful
concepts when planning missions for agents whose embed-
ded hardware has very limited computation and telecom-
munication power, making it hard for them to come up
with solutions ‘on the fly’ or for remote operators to in-
tervene in a timely fashion. Chance-constrained weak con-
sistency (CCWC) is a useful concept for missions where
agents operate in static or slow changing environments af-
ter an initial scouting mission aimed at reducing plan uncer-
tainty. Chance-constrained strong consistency (CCSC), on
the other hand, removes the need for a scouting mission and
tries to determine the existence of a solution that, with prob-
ability greater than some threshold, will succeed irrespective
of the outcomes of uncertainty in the plan. Strong consis-
tency is clearly more conservative, but it is appealing to mis-
sion managers because strongly consistent policies require
little to no onboard sensing and decision making, greatly re-
ducing the agents’ complexity and costs. They also reduce or
completely eliminate the need to coordinate between multi-
ple agents. Finally, the robustness of a strongly consistent
policy makes it easier to check by human operators before it
is approved for upload to the remote agent.

We introduce Probabilistic Temporal Plan Networks
(pTPNs) as our representation of contingent plans. Our
pTPN representation holds a lot of similarities with Tem-
poral Plan Networks with Uncertainty (TPNU) (Effinger
et al. 2009; Effinger 2012), Conditional Temporal Plans
(CTPs)(Tsamardinos, Vidal, and Pollack 2003), Disjunctive
Temporal Problems with Uncertainty (DTPU)(Venable et al.
2010), and the Conditional Simple Temporal Network with
Uncertainty (CSTNU) (Hunsberger, Posenato, and Combi
2012), but extends them in two important ways. First, pTPNs
allow uncontrollable choices (discrete, finite domain ran-
dom variables) to have their joint distributions described by
a probability model, as opposed to a purely set-bounded
uncertainty representation in DTPUs and CTPs. Second,
pTPNs allow the user to specify admissible risk thresholds
that upper bound the probability of violating sets of con-
straints in the plan, a missing feature in CTPs, DTPUs,
and TPNUs. The latter extension in an important improve-
ment of pTPNs over previous representations when model-
ing many real-world problems, where risk-free plans that
are robust to all possible uncontrollable scenarios are of-
ten unachievable. Our pTPNs are compiled from contin-
gent plans descriptions in RMPL (Williams et al. 2003;
Effinger et al. 2009), but other forms of generating con-
tingent plans are equally amenable to our methods (Drum-
mond, Bresina, and Swanson 1994; Dearden et al. 2003).

Our algorithms reason quantitatively about the proba-
bility of different random scenarios and explore the space
of feasible solutions efficiently while bounding the risk of
failure of an execution policy below a user-given admis-
sible threshold. While state-of-the-art methods in the con-
ditional and stochastic CSP literature rely on a combina-
tion of chronological (depth-first) search and inference in
the space of contingencies in order to quickly find satisfic-
ing solutions (Fargier et al. 1995; Fargier, Lang, and Schiex

1996; Stergiou and Koubarakis 2000; Gelle and Sabin 2006;
Tarim, Manandhar, and Walsh 2006), in this work we intro-
duce a “diagnostic” approach based on Conflict-Directed A∗

(CDA∗)(Williams and Ragno 2007). By continuously learn-
ing subsets of conflicting constraints and generalizing them
to a potentially much larger set of pathological scenarios,
our algorithms can effectively explore the space of robust
policies in best-first order of risk while ensuring that it is
within the user-specified bound. For the problem of extract-
ing a strongly consistent policy from a contingent plan de-
scription, our numerical results showed significant gains in
scalability for our approach.

This work is organized as follows. Section 2 presents a
simple example motivating our methods, followed by formal
definitions of pTPNs and our notions of chance-constrained
consistency in Section 3. Next, Section 4 presents algorithms
for determining chance-constrained weak and strong consis-
tency of pTPNs. The numerical results in Section 5 indicate
that our framing of the problem of determining CCSC out-
performs the current practice of using chronological search,
followed by our final conclusions in Section 6.

2 Approach in a nutshell
Here we motivate the usefulness of chance-constrained con-
sistency on a very simple commute problem, whose pTPN
representation is given in Figure 1. We start at home and
our goal is to be at work for a meeting in at most 30 min-
utes. Circles represent the start and end events of temporally-
constrained activities called episodes. Simple temporal con-
straints (Dechter, Meiri, and Pearl 1991) are represented by
arcs connecting temporal events and represent linear bounds
on their temporal distance. For simplicity, we assume that
we are given only three possible choices in this pTPN: we
can either ride a bike to work, drive our car, or stay home
and call our employer saying that we will not be able to
make it to work today. The rewards (R values) associated
with each one of these choices in Figure 1 correspond to
how much money we would make that day minus the cost of
transportation. Uncontrollable choices are depicted in Fig-
ure 1 by double circles with dashed lines. These are random,
discrete events that affect our plan and whose probability
model is also given in Figure 1.

In this example, the uncontrollable choices model what
might “go wrong” during plan execution and the impact of
these unexpected events on the overall duration of the plan.
For example, if we decide to ride a bike to work (the op-
tion with the highest reward), there is the possibility that we
might slip and fall. This event has a minor effect on the du-
ration of the ride, but would force us to change clothes at our
workplace because we cannot spend the day in a dirty suit.
Since we only have 30 minutes before the meeting starts, the
uncontrollable event of slipping would cause the overall plan
to be infeasible. A similar situation happens if we choose to
drive our car and happen to be involved in an accident.

By ignoring probabilities and using a consistency checker
for the pTPN in Figure 1 based on a set-bounded representa-
tion of uncertainty, we would realize that the pTPN is guar-
anteed to be consistent. Unfortunately, unless we had a way
of telling ahead of time whether we would slip from the bike

Figure 1: A pTPN for a simple plan to get to work

or be in a car accident, the suggested policy would be to al-
ways stay home! This is because, for the choice of riding
a bike or driving our car to work, there are uncontrollable
scenarios that cause the plan to fail, causing the set-bounded
consistency checker to fall back to the safe, albeit undesir-
able, choice of staying at home. This clearly disagrees with
our common sense, since people try to achieve their goals
while acknowledging that uncontrollable events might cause
them to fail. Next, we show how our chance-constrained
approach would produce execution policies that agree with
what we would expect a “reasonable” agent to do.

Let’s consider the case where we accept that our plan
might fail, as long as the risk ∆ is no more than 2%. Given
that riding a bike is the option with the highest reward, our
algorithm would deem bike ridding the most promising and
would start by checking if choosing to ride a bike meets the
chance-constraint ∆ ≤ 2%. If there existed a feasible ac-
tivity schedule satisfying the temporal constraints for both
values of Slip, we could pick this schedule and our risk of
failure would be zero, which is clearly less than our risk
bound. However, our algorithm concludes that the scenario
Slip = True is inconsistent with the overall temporal con-
straint of arriving at the meeting in less than 30 minutes, so
there must exist a nonzero risk of failure in this case. Ac-
cording to the model in Figure 1, the probability of having
slip is Pr(Slip) = 5.1%, so riding a bike does not meet
the chance-constraint ∆ ≤ 2%. The next best option is rid-
ing a car, where now we are subject to the uncontrollable
event of being in a car accident. Following a similar anal-
ysis, we conclude that the risk of our plan being infeasi-
ble in this case is Pr(Accident) = 1.3%, which meets the
chance-constraint. Therefore, our algorithm would advise us
to drive to work within the temporal bounds shown in Figure
1 for the case where no accident happens. We claim that this
chance-constrained type of reasoning approximates the deci-
sion making process of mission managers much better than
its set-bounded alternative, since operators need to commit
to plans with acceptable levels of risk in order to extract
some useful output from the remote explorer.

It is worthwhile to notice that choosing ∆ < 1.3 would

have made staying at home the only feasible alternative.
Hence, as in the set bounded approach, a chance constraint
may still be too conservative to allow for a feasible solution.
Moreover, if the overall temporal constraint of 30 minutes
in Figure 1 were relaxed to 35 minutes, our algorithm would
have been capable of finding a risk free scheduling policy for
its first choice of riding a bike. This is because, in this case,
there would exist a feasible schedule satisfying all temporal
constraints on the upper side of the pTPN, i.e., temporal con-
straints activated by both Slip = True and Slip = False .

This example highlights a few key elements of our ap-
proach. First, we divide the problem into generating a can-
didate “plan” as an assignment to the controllable choices
and testing the plan against the chance constraints. Second,
candidates are enumerated in best-first order based on re-
ward. Third, testing feasibility of a chance-constraint is a
fundamental task, in which estimating risk is costly. We
frame risk estimation as a process of enumerating the most
likely sets of scenarios that incur and do not incur risk
(called conflicts and kernels, respectively). We observe that
this can be formulated as a symptom-directed, “diagnos-
tic” process, allowing us to leverage an efficient, conflict-
directed best-first enumeration algorithm, Conflict-Directed
A∗ (CDA∗)(Williams and Ragno 2007), to generate kernels
and conflicts, and hence feasible and infeasible scenarios.

3 Problem statement
The previous section motivated the need to explicitly rea-
son about risk and uncertainty when trusting autonomous
systems with critical missions in hazardous environments.
The outcome of this reasoning is an execution policy that
not only performs well in terms of reward, but also keeps
the risk of failure bounded below some acceptable thresh-
old chosen by the mission manager. In this section, we make
these notions precise.

3.1 Probabilistic Temporal Plan Networks
Recall that our objective is to robustly execute time crit-
ical missions, while being responsive to the environment

and providing a bound on the risk of failure. A TPN (Kim,
Williams, and Abramson 2001; Walcott 2004; Effinger et al.
2009) as we define it here is a temporal plan that includes
contingencies and sensing actions. Temporal plans encode
mission activities and mission critical timing constraints be-
tween these activities. Conditions on sensing actions im-
prove robustness, by enabling the plan to tailor its course
of action based on environment conditions. Contingencies
improve robustness by offering alternative courses of action
with varying requirements, such as constraints on duration,
utility and resources employed. Sensing actions and contin-
gencies are represented, respectively, as uncontrollable and
controllable choices.

A probabilistic TPN models uncertainty by representing
exogenous inputs as random variables, and specifies require-
ments on risk of failure in terms of chance constraints over
subsets of the TPN. This is in contrast to a TPNU (Effinger et
al. 2009), which specifies interval bounds over possible val-
ues of exogenous variables, and requires that a consistent ex-
ecution of the TPNU is feasible for all possible assignments
to exogenous variables. An example graphical representa-
tion of a pTPN was previously given in Figure 1. Formally,
a pTPN is defined as follows:

Definition 1 (pTPN). A Probabilistic Temporal Plan Net-
work (pTPN) is a tuple P = 〈E,T,D,U, R, P,CH〉, where
E is the set of episodes; T is the set of temporal constraints
between episodes in the plan; D = {D1, . . . , DN} is the
set of N controllable choices (also called decisions), each
Di being a discrete, finite domain variable with domain
Dom(Di); U = {U1, . . . , UM} is the set of M uncontrol-
lable choices, each Ui being a discrete, finite domain ran-
dom variable with domain Dom(Ui); R : D→R is a re-
ward function that maps from decisions to values of reward;
P : U→[0, 1] is a probability model that maps from joint
realizations of uncontrollable choices to probability values.
CH is the set of chance-constraints defined over sets of con-
straints in the plan.

Episodes in a pTPN model activities that have to be per-
formed, such as “Drive” in Figure 1. They are defined as
follows:

Definition 2 (Episode). An episode is a tuple E =
〈es, ee, A,SC , G〉, where es, ee ∈ R are the episode’s start
and end events, respectively1; A is an activity to be per-
formed during the period of time ve−vs; SC is a set of state
constraints that should hold during ee − es, where “state”
refers to the internal state of the system that is being con-
trolled during plan execution; and G is a guard condition
that activates the constraints in the episode.

As previously mentioned, one important feature of pTPNs
is the possibility of specifying admissible risk thresholds for
the violation of plan constraints. These risk thresholds are
called chance-constraints (Birge and Louveaux 1997).

The combination of assignments to controllable and un-
controllable choices defines which constraints in the pTPN
should be satisfied by our scheduling policy. This motivates
our definition of controllable and uncontrollable scenarios.

1Time values with respect to a temporal reference eref = 0.

Definition 3 (Controllable (Uncontrollable) scenario). A
controllable (uncontrollable) scenario CS ∈ CS (US ∈
US) corresponds to a full assignment D=d (U= u) to the
controllable (uncontrollable) choices in the pTPN.

As seen in Figure 1, the choices in a pTPN define a “path”
of episodes and constraints that should be taken into account
in the plan. This path is encoded in the pTPN by the guard
conditions for each episode. Similar to (Effinger 2006), we
frame the problem of finding a feasible plan in a pTPN as
solving a Constraint Optimization Problem (COP):

Definition 4 (pTPN as COP). Let a pTPN be defined as be-
fore. Its equivalent COP is given by:

• Variables V = Vco∪Vch∪VI ,Vco∩Vch = ∅, where Vco

is the set of constraint variables and Vch = D ∪ U is the
set of choice variables (controllable and uncontrollable).
Every V ∈ V has domain Dom(V);

• Initial variable VI , Dom(VI) = True;
• Activity constraints CA, where CA ∈ CA is of the form

CA : {Vch = v} → Active(V′), with Vch ∈ Vch, V′ ⊆
V;

• Compatibility constraints Cc =
⋃

i SC i, where SC i are
the constraints for the i−th episode. A compatibility con-
straint only needs to be satisfied if all of its variables are
active;

• Chance constraints CH defined over sets of constraints in
the plan;

• Reward function R : D → R mapping from decisions to
values of reward;

• Probability model P : U→[0, 1] mapping from joint real-
izations of uncontrollable choices to probability values.

In this work, we will focus on the case where there is a
single overall chance-constraint with admissible risk ∆ over
the complete set of temporal constraints in the plan. In other
words, this chance-constraint upper bounds the probability
of violating any of the temporal constraints in our plan.

3.2 Chance-constrained consistency
This section extends the “risk-averse” notions of weak and
strong consistency from (Vidal and Ghallab 1996; Tsamardi-
nos, Vidal, and Pollack 2003; Effinger et al. 2009) to a set-
ting where solutions involving some level of risk are ac-
cepted. As previously mentioned, allowing plans to contain
reasonable levels of risk is usually required for systems op-
erating under uncertainty. If no risk is allowed, a robust exe-
cution strategy will hardly ever exist.

Intuitively, a chance-constrained weakly consistent pTPN
is one that, for every possible uncontrollable scenario within
a set US′, there exists at least one controllable scenario CS
so as to yield a feasible CSP. Therefore, given knowledge
about which uncontrollable scenario is true, we can always
choose CS such that a solution to the CSP exists. In our
chance-constrained formulation, we guarantee that the risk
of the true uncontrollable scenario being outside of the fea-
sible set US′ is less or equal to ∆. Strong consistency, on the
other hand, requires that at least one controllable scenario

CS exists such that there exists at least one common solu-
tion to all CSP’s generated by all uncontrollable scenarios
US ∈ US′. Once again, our chance-constrained formulation
guarantees that our strongly consistent policy will be feasi-
ble with probability at least 1−∆. While weak consistency
requires complete prior knowledge of the true uncontrollable
scenario prior to choosing CS , strong consistency requires
none: we could just “close our eyes” and pick a common
solution to all CSP’s while completely disregarding the un-
controllable scenario being unfolded.

Let CSP←Ac(pTPN,CS,US) be a function that re-
turns a CSP formed by all active constraints from a pTPN
given a controllable scenario CS and an uncontrollable one
US . Also, let sols←Sol(CSP) by an algorithm that is able
to return a set of possible solutions (the absence of solu-
tions is denoted by sols=∅) to a CSP2. We are now ready
to define the notions of chance-constrained weak and strong
consistency.
Definition 5 (Chance-constrained weak consistency
(CCWC)). A pTPN is said to be CCWC with risk
∆ iff there exists a set of uncontrollable scenarios
US′⊆US, where Pr(US′)>1−∆, such that ∀US ∈ US′,
there exists a controllable scenario CS such that
Sol(Ac(pTPN ,CS ,US)) 6= ∅.
Definition 6 (Chance-constrained strong consistency
(CCSC)). A pTPN is said to be CCSC with risk ∆ iff there
exists a controllable scenario CS and a set of uncontrol-
lable scenarios US′⊆US, where Pr(US′)>1−∆, such
that ⋂

USi∈US′
Sol(Ac(pTPN ,CS ,USi)) 6= ∅. (1)

Definitions 5 and 6 become equivalent to the standard def-
initions of weak and strong consistency if we choose ∆ = 0,
i.e., no risk. Moreover, they formally define the concepts of
weak and strong chance-constrained consistency in terms of
a subset of uncontrollable scenarios US′ ⊆ US with appro-
priate probability and feasible assignments to the control-
lable choices in the plan. Determining those assignments is
the topic of the subsequent sections.

4 Chance-constrained consistency of pTPNs
Our goal in determining chance-constrained weak and
strong consistency as defined in Section 3.2 was to provide
the user with an execution policy that maximizes plan re-
ward while keeping the risk of failure bounded by ∆. The
execution policy consists of (I) an assignment to the control-
lable choices in the plan, plus (II) a set of consistent sched-
ules, represented by a Simple Temporal Network3 (STN)

2There are various methods available in the literature for check-
ing consistency of simple temporal networks, whether they are
fully controllable STNs (Dechter, Meiri, and Pearl 1991) or STNs
with Uncertainty (STNUs) (Vidal 1999), the latter admitting the
existence of uncontrollable activity durations. Checking temporal
consistency of STNs and STNUs is not the focus of this work, so
we treat Sol(·) as a black box.

3Simply stated, a consistent STN consists of a conjunction of
simple temporal constraints that can be jointly satisfied.

(Dechter, Meiri, and Pearl 1991) with a risk of failure up-
per bounded by ∆ ∈ [0, 1].

The conditional nature of temporal constraints on a pTPN,
which might be activated by different combinations of as-
signments to controllable and uncontrollable choices, makes
the evaluation of chance-constraints challenging when con-
structing a solution to (I) and (II). Hence, as per our example
in Section 2, here we adopt a “generate and test” approach to
solving (I) and (II), where (I) corresponds to the “generate”
step and (II) to “test”. More precisely, the first step in our al-
gorithms enumerates assignments to controllable choices in
best-first order so that the most promising solutions in terms
of reward are checked for feasibility first. Once (I) is fixed,
step (II) then answers the question of whether it is possible
to find a feasible STN with probability at least 1−∆.

The algorithms in Sections 4.2 and 4.3 frame (I) as a com-
binatorial optimization problem and solve it using OpSAT
(Williams and Ragno 2007):

1. Decision variables: Controllable choices D;

2. Objective function: maxR, the reward function defined
over D described in Definition 1;

3. Constraints: Step (II) returns a feasible solution.

Throughout the algorithms in this section, the function
NextBest(·) is implemented using CDA∗ in order to enu-
merate candidate solutions in best-first order while taking
previously discovered conflicts into account. A very detailed
discussion of how to perform this enumeration can be found
in (Williams and Ragno 2007).

Evaluating (II) is a key step in our algorithms, specially
for chance-constrained strong consistency. In fact, one im-
portant contribution of this paper is the framing of chance-
constraint evaluation for strongly consistent plans as a dis-
crete “diagnostic” process, where “symptoms” correspond
to inconsistencies in temporal constraints and “diagnoses”
are pathological uncontrollable scenarios. Recalling our ex-
ample in Section 2, the pathological scenarios for an over-
all temporal constraint of 30 minutes were Slip = True if
we chose to ride a bike to work, or Accident = True if we
chose to drive a car. Step (II) is handled differently in weak
and strong consistency, so its explanation is deferred to later
sections.

Section 4.1 introduces a labeled constraint representation
of Definition 4, an encoding that makes explicit the connec-
tion between each temporal constraint and the choices that
activate it, while eliminating intermediate activation con-
straints. Next, Section 4.2 presents an algorithm for check-
ing chance-constrained weak consistency of a pTPN and
its corresponding mapping from uncontrollable scenarios
to corresponding feasible assignments to the controllable
choices. We then proceed to the formulation of chance-
constrained strong consistency as a “diagnosis” problem
solved by CDA∗ in Section 4.3.

4.1 Labeled constraint representation of a pTPN
Similar to (Tsamardinos, Vidal, and Pollack 2003), our al-
gorithms use an internal representation of pTPNs as labeled

constraints for efficient determination of the active plan con-
straints under different controllable and uncontrollable sce-
narios. Intuitively, a constraint label is a complete descrip-
tion of the set of choices leading to the activation of a given
constraint in the plan, as seen in Figure 1. We define label
and labeled constraint as follows:
Definition 7 (Label). A label L denotes a logical ex-
pression written in Disjunctive Normal Form (DNF), i.e.,
L=a1∨. . .∨an. The term ai represents the i-th set of im-
plicants of the constraint (De Kleer 1986) in the form of as-
signments to choice variables.
Definition 8 (Labeled constraint). A labeled constraint
LC=〈L,C〉 consists of a label L and a constraint C such
that

L⇒ C. (2)
We say that LC is active iff L is true.
Definition 9 (Constraint). A constraint is a pair
C=〈Sc,Re〉, where Sc represents the constraint’s scope
(the set of variables involved in the constraint) and Re is a
relation between the variables in Sc.

For example, a simple temporal constraint between
events vi and vj can be written as Sc={vi, vj} and
Re: lb≤vi−vj≤ub, where ub and lb correspond, respec-
tively, to the upper and lower bounds on the temporal dis-
tance between the events. As a grounded example, we could
extract the following labeled constraints from the pTPN in
Figure 1:

(D1=Car) ∧ (U2=F)⇒ Drive ∈ [10, 20],

True⇒ Complete ∈ [0, 30]. (3)

The bottom labeled constraint in (3) has a “True” label
because the plan has to be completed within 30 minutes, no
matter the outcomes of choices in the plan. For the purposes
of the forthcoming sections, we assume the availability of a
simple function LC ← toLC (pTPN) capable of convert-
ing a pTPN into a list of labeled constraints.

4.2 Chance-constrained weak consistency
Determining weak consistency is special in the sense that we
are allowed to assume that the true uncontrollable scenario
will be revealed to the agent before it has to make any de-
cisions. This is what happens, for example, when we use a
smart phone to determine the state of traffic before commit-
ting to a specific route to some destination. By doing so, we
implicitly assume that the state of the roads will not change
during the trip. Since the agent knows which uncontrollable
scenario is the true one, the problem is no longer stochas-
tic and the agent can pick the best possible assignment to
the controllable choices in terms of reward for that specific
uncontrollable scenario. This is exactly the process that Al-
gorithm 1 reproduces.

Algorithm 1 starts by creating an OpSAT instance for re-
ward maximization (Line 2). For each possible uncontrol-
lable scenario (US), Algorithm 1 searches for assignments
to the controllable choices (candCS) that maximize reward
while yielding a feasible set of constraints. If it is able to
find it, it adds US to the set of consistent scenarios (Line

Algorithm 1 Chance-constrained weak consistency.
Input: pTPN, risk threshold ∆.
Output: Mapping UtoC from uncontrol. to control. scenarios.
1: UtoC←∅, conUS←∅, incUS ← ∅
2: OpS←RewardMax (pTPN)
3: for US ∈ US do
4: cConf ← ∅, nextUS←False
5: while not nextUS do
6: if (candCS ← NextBest(cConf ,OpS))==∅ then
7: incUS ← incUS ∪US , nextUS←True
8: if Pr(incUS)>∆ then return FAIL
9: else

10: if Ac(pTPN , candCS ,US) is consistent then
11: conUS←conUS∪US , nextUS←True
12: UtoC [US]← candCS
13: if Pr(conUS)≥1−∆ then return UtoC

14: else
15: cConf←LearnConflict(cConf , candCS)

16: return UtoC

11) and marks CS as the optimal assignment to control-
lable choices given US (Line 12). However, if the search
algorithm runs out of candidate assignments to controllable
choices, it marks US as being inconsistent (Line 7). If the
probability of inconsistent scenarios ever violates the over-
all chance-constraint ∆, we are guaranteed that the plan is
not weakly consistent within the given risk bound. Similarly,
if the probability of consistent scenarios surpasses 1−∆, we
can return the optimal mapping from uncontrollable to con-
trollable scenarios. It is worthwhile to notice that uncontrol-
lable scenarios are always disjoint, so computing probabil-
ities in Lines 8 and 13 consists of just adding together the
probability for each scenario.

Revealing all uncertainty associated with a plan might be
as hard and costly as the plan itself, so determining CCWC
might be of limited use in some cases. In situations where
the cost of sensing and coordination between agents is con-
siderable, it might be better to extract a policy from the plan
description that is robust to a large enough fraction of the
uncertainty in the plan. This is the topic of the next section.

4.3 Chance-constrained strong consistency
Differently from weak consistency, which considers the fea-
sibility of each uncontrollable scenario separately, Defini-
tion 6 for strong consistency connects all uncontrollable sce-
narios US ⊆ US′ together by requiring that they share a
common solution to the CSPs defined by their sets of ac-
tive constraints. Thus, evaluating the chance-constraint for a
strongly consistent policy becomes a challenging and key
subproblem, since we now have to consider how differ-
ent subsets of constraints become active and interact across
many possible different realizations of the uncontrollable
choices. In weak consistency, the given uncontrollable sce-
nario clearly revealed which constraints dependent on un-
controllable choices could be active in the plan. In the case
of strong consistency, the subset of temporal constraints that
must be satisfied to meet the chance-constraint is not known
a priori, and finding it is computationally difficult.

Recall from the introduction of Section 4 that we pursue
a “generate and test” approach in order to compute chance-
constrained strongly consistent policies that maximize re-
ward. As previously mentioned, step (I) in this approach is
to choose a promising assignment CS to the controllable
choices in terms of reward. Once the assignment is made, it
separates the list of labeled constraints from the pTPN into
three mutually exclusive groups defined in terms of the prob-
ability of activation of their labels:
- Necessarily Active (NA): composed of all labeled con-

straints such that Pr(Li|CS)=1, which includes True la-
bels (a True label will always be active). This is the set of
all labels Li that CS made True;

- Necessarily Inactive (NI): composed of all labeled con-
straints such that Pr(Li|CS)=0. This is the set of all la-
bels Li that CS made False. According to Definition 8,
these constraints are all inactive and do not influence plan
feasibility.

- Potentially Active (PA): the set of all remaining labeled
constraints, for which 0 < Pr(Li|CS) < 1. This is the set
of all labels Li containing assignments to uncontrollable
choices that have not been made False by CS .

Figure 2: Partition of the constraints induced by an assign-
ment to the controllable choices.

This split of the labeled constraints is schematically de-
picted on the left side of Figure 2. Given this partition,
the subsequent evaluation of the chance-constraint can be
graphically represented by the right side of Figure 2. In this
figure, our algorithm is trying to find a subset of the tempo-
ral constraints in NA ∪ PA that is consistent and has prob-
ability greater than 1 − ∆ of containing the true set of ac-
tive constraints for any possible uncontrollable scenario. If
it succeeds, the set of schedules corresponding to step (II)
of our “generate and test” approach can be computed from
the STN composed of the temporal constraints contained in
this subset. However, this is not an easy task to accomplish,
since we are required that this subset of constraints is al-
ways consistent in order for a schedule to exist. Our chance-
constraint then becomes important, since it allows temporal
infeasibility to be resolved by dropping constraints activated
by uncontrollable choices. This is done at the expense of
increasing the risk of the resulting schedule being inconsis-
tent in a number of different uncontrollable scenarios. The
larger the admissible risk bound ∆, the more constraints can
be dropped. It is easy to see that this subset of constraints
must always cover all of NA in order for a strongly consis-
tent schedule to exist. Also, no effort should be spent trying
to cover any portion of NI.

It is usually the case that infeasibility with respect to the
constraints in NA ∪ PA only manifests itself in a handful

of scenarios that activate constraints that are hard to satisfy.
Hence, one key contribution from this work is to frame the
evaluation of the chance-constraint as a diagnostic process.
The key insight behind the use of a conflict-directed method
is to be able to quickly isolate constraints causing infeasibil-
ity of the STN and evaluate whether they incur a significant
amount of risk. The numerical results in Section 5 show that
our conflict-directed approach is able to detect violation of
the chance-constraint ∆ more efficiently than prior art based
on chronological search methods.

Similar to step (I), we frame the problem of finding a sub-
set of PA that allows the chance constraint to be satisfied as
OpSAT.

1. Decision variables: Binary Bi∈{True,False} for each la-
beled constraints in PA;

2. Objective function: min Pr(LB=False), where LB=False is
the set of all labels of constraints such that Bi=False;

3. Constraints: Pr(LB=False)≤∆ and CB=True∧NA is con-
sistent, where CB=True is the set of all constraints such
that Bi=True.

The Boolean variable Bi represents whether the labeled
constraints Li⇒Ci in the constraint region PA is covered or
not. In this formulation, a schedule extracted from a consis-
tent set of temporal constraints CB=True∧NA has risk given
by

Pr(LB=False) = Pr

(⋃
i:Bi=False

Li

)
. (4)

The probability (4) is computed using the Inclusion-
Exclusion principle. However, since we are only concerned
about the risk being below ∆, it is possible to compute
simpler upper and lower bounds for Pr(LB=False) using the
Bonferroni inequalities (Comtet 1974), as shown in Algo-
rithm 2. A particular case of the Bonferroni inequalities
is the upper bound Pr(LB=False) ≤

∑
i:Bi=False Pr(Li),

known as Boole’s inequality.

Algorithm 2 Sequential probability approximations.
Input: Set of labels LB=False, prob. model P , risk threshold ∆.
Output: Whether Pr(LB=False) is below, above, or is equal to ∆.
1: bound ← 0
2: for i = 1 to |LB=False| do
3: [e1, . . . , em]← All subsets of LB=False with i elements.
4: probInc ←

∑m
i=1 Pr(ei)

5: if i is odd then bound ← bound + probInc
6: if bound < ∆ then return BELOW
7: else bound ← bound − probInc
8: if bound > ∆ then return ABOVE
9: return EQUAL

The worst case performance of Algorithm 2 is equivalent
to computing (4) and comparing it with ∆. The procedure
for determining CCSC of pTPNs in Algorithm 3 is explained
below.

Lines 2,3 Creates an OpSAT instance for reward maximiza-
tion.

Lines 4,5 Partitions constraints as described in this section.
If NA is inconsistent, learns a new conflict and backtracks
immediately.

Lines 6-8 Creates an OpSAT instance for risk minimiza-
tion as described in this section. Risk bounds are com-
puted with Algorithm 2. If the chance-constraint is vio-
lated, learns a new conflict and backtracks.

Lines 9-12 If the chance-constraint is satisfied with a con-
sistent STN, returns the assignment candCS that maxi-
mizes reward and the STN from which schedules can be
extracted. Otherwise, learns a new conflict in terms of in-
feasible constraints.

Algorithm 3 Chance-constrained strong consistency.
Input: pTPN, risk threshold ∆.
Output: Controllable scenario CS and feasible STN.
1: LC←toLC(pTPN)
2: OpS1←RewardMax (pTPN); cConf← ∅
3: while (candCS ← NextBest(cConf ,OpS1)) 6=∅ do
4: {NA,NI ,PA}←Partition(candCS ,LC)
5: if NA is inconsistent then BREAK
6: OpS2←RiskMin(NA,PA, pTPN); bConf← ∅
7: while (candB ← NextBest(bConf ,OpS2)) 6=∅ do
8: if Pr(LB=False(candB)) > ∆ then BREAK
9: if CB=True(candB) ∧NA is consistent then

10: return {candCS,CB=True(candB) ∧NA}
11: else
12: bConf ← LearnConflict(bConf, candB)

13: cConf ← LearnConflict(cConf, candCS)

14: return FAIL

5 Numerical chance-constraint evaluation
The results in this section only concern the OpSAT prob-
lem in lines 6-12 of Algorithm 3, which is responsible for
the challenging problem of evaluating the chance-constraint.
Figure 3 compares the relative average performance of our
conflict-directed approach versus the current practice us-
ing chronological search (CS) when evaluating the chance-
constraint for strongly consistent policies on a set of ran-
domly generated pTPNs. Conflict-directed methods have the
additional overhead of learning conflicts whenever infeasi-
bility is detected, so it was not clear whether they would per-
form better when trying to evaluate the chance-constraint.

When dealing with hand-written examples, searching for
a CCSC policy using CS or CDA∗ yielded the same perfor-
mance. For small instances, there is no practical value on
learning conflicts, since CS is able to explore all solutions in
a matter of milliseconds. Thus, no useful conclusions could
be drawn. Therefore, we randomly generated labeled tem-
poral constraints conditioned on controllable and uncontrol-
lable choices with moderately-sized domains (about 10 el-
ements each). Probability models were also randomly gen-
erated. Simple temporal constraints were created between
random pairs of nodes with varying bounds. The goal was
to either find a CCSC schedule or return that no solution ex-
isted. Our implementation of CDA∗ searches for a strongly
consistent policy as explained in Section 4.3, while CS tries

Figure 3: Average time to solution for CDA∗ versus CS.

Figure 4: Average time complexity growth for CDA∗.

to find a feasible STN by relaxing temporal constraints in
best-first order of risk.

A problem with N conditional constraints induces a
search space of size 2N possible solutions. Both algorithms
were run until the first candidate satisfying the risk bound
∆ was found or no more solutions were available. When-
ever more than one solution existed, CDA∗ returned the one
incurring minimum risk. For relatively small plans with no
more than 10 conditional constraints, we see that CS and
CDA∗ showed very similar performances. However, if one
increases the size of the problem by a few more constraints,
we see a strong exponential growth in the time required by
CS to either find a solution or return that no solution ex-
ists. Our approach using CDA∗, on the other hand, kept its
performance virtually unchanged. Despite the exponential
trend in Figure 4 for CDA∗, we see that it happens at a much
smaller rate than for CS.

It is worthwhile to mention that CS was able to find fea-
sible STNs quickly when the “hard” temporal constraints
causing infeasibility had low probabilities assigned to them.
In this cases, it was easy to restore feasibility of the STN
by relaxing these low probability constraints while meeting
the chance-constraint. It ran into troubles, however, when-
ever temporal constraints causing the STN to be infeasible
were assigned high probabilities. In these cases, CS pre-
ferred to explore numerous lower risk alternatives before re-
alizing that the source of infeasibility had high probability
and, therefore, violated the chance-constraint. In these situ-
ations, the conflict extraction overhead paid off by quickly

revealing the problematic constraints with high probabilities
and determining that the chance-constraint was infeasible.

6 Conclusions
This work introduced a representation of contingent plans
with uncertainty, the Probabilistic Temporal Plan Network
(pTPN), and presented formal definitions and algorithms
for determining two novel types of consistency guarantees,
namely chance-constrained weak and strong consistency.
Our goal was to extend existing consistency guarantees for
set-bounded representations of uncertainty to a more useful
setting where execution policies are allowed to have an ac-
ceptable level of risk.

In the presentation of strong consistency, we introduced
an efficient algorithm for evaluating the feasibility of the
chance-constraint and generating a strongly consistent tight-
ened schedule based on a conflict-directed “diagnostic” ap-
proach. This is an important result by itself, since it provides
a way to quickly assess the risk of conditional plans with no
contingencies with direct applications to the operation of re-
mote agents in uncertain, hazardous environments.

Acknowledgments
Thanks to the anonymous reviewers and our colleagues
Andrew Wang, Cheng Fang, Steven Levine, Peng Yu, and
David Wang for their invaluable comments. We would also
like to thank Mitch Ingham for sharing his experience with
flight missions at JPL. This research is funded by AFOSR
grant 6926079.

References
Birge, J. R., and Louveaux, F. V. 1997. Introduction to
stochastic programming. Springer.
Comtet, L. 1974. Advanced Combinatorics: The art of finite
and infinite expansions. Springer.
De Kleer, J. 1986. An assumption-based tms. Artificial
intelligence 28(2):127–162.
Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D.; and
Washington, R. 2003. Incremental contingency planning.
In ICAPS03 Workshop on Planning under Uncertainty and
Incomplete Information, 38–47.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial intelligence 49(1):61–95.
Drummond, M.; Bresina, J.; and Swanson, K. 1994. Just-
in-case scheduling. In AAAI, volume 94, 1098–1104.
Effinger, R.; Williams, B.; Kelly, G.; and Sheehy, M. 2009.
Dynamic Controllability of Temporally-flexible Reactive
Programs. In Proceedings of the 19th International Confer-
ence on Automated Planning and Scheduling (ICAPS 09).
Effinger, R. T. 2006. Optimal Temporal Planning at Reactive
Time Scales via Dynamic Backtracking Branch and Bound.
Master’s thesis, Massachusetts Institute of Technology.
Effinger, R. T. 2012. Risk-minimizing program execution in
robotic domains. Ph.D. Dissertation, Massachusetts Institute
of Technology.

Fargier, H.; Lang, J.; Martin-Clouaire, R.; and Schiex, T.
1995. A constraint satisfaction framework for decision un-
der uncertainty. In Proceedings of the Eleventh conference
on Uncertainty in artificial intelligence, 167–174. Morgan
Kaufmann Publishers Inc.
Fargier, H.; Lang, J.; and Schiex, T. 1996. Mixed constraint
satisfaction: A framework for decision problems under in-
complete knowledge. In Proceedings of the National Con-
ference on Artificial Intelligence, 175–180.
Gelle, E., and Sabin, M. 2006. Solver framework for con-
ditional constraint satisfaction problems. In Proceeding of
European Conference on Artificial Intelligence (ECAI-06)
Workshop on Configuration, 14–19.
Hunsberger, L.; Posenato, R.; and Combi, C. 2012. The
Dynamic Controllability of Conditional STNs with Uncer-
tainty. In Proceedings of the Planning and Plan Execution
for Real-World Systems: Principles and Practices (PlanEx)
Workshop, 121–128.
Kim, P.; Williams, B. C.; and Abramson, M. 2001. Exe-
cuting reactive, model-based programs through graph-based
temporal planning. In IJCAI, volume 17, 487–493.
Morris, P.; Muscettola, N.; and Vidal, T. 2001. Dynamic
control of plans with temporal uncertainty. In IJCAI, vol-
ume 1, 494–502.
Stergiou, K., and Koubarakis, M. 2000. Backtracking al-
gorithms for disjunctions of temporal constraints. Artificial
Intelligence 120(1):81–117.
Tarim, S. A.; Manandhar, S.; and Walsh, T. 2006. Stochastic
constraint programming: A scenario-based approach. Con-
straints 11(1):53–80.
Tsamardinos, I.; Vidal, T.; and Pollack, M. 2003. CTP:
A new constraint-based formalism for conditional, temporal
planning. Constraints 8(4):365–388.
Venable, K. B.; Volpato, M.; Peintner, B.; and Yorke-Smith,
N. 2010. Weak and dynamic controllability of temporal
problems with disjunctions and uncertainty. In Workshop on
Constraint Satisfaction Techniques for Planning & Schedul-
ing, 50–59.
Vidal, T., and Ghallab, M. 1996. Dealing with uncertain
durations in temporal constraint networks dedicated to plan-
ning. In ECAI, 48–54.
Vidal, T. 1999. Handling contingency in temporal constraint
networks: from consistency to controllabilities. Journal of
Experimental & Theoretical Artificial Intelligence 11(1):23–
45.
Walcott, A. 2004. Unifying Model-Based Programming
and Path Planning Through Optimal Search. Master’s thesis,
Massachusetts Institute of Technology.
Williams, B. C., and Ragno, R. J. 2007. Conflict-directed
A* and its role in model-based embedded systems. Discrete
Applied Mathematics 155(12):1562–1595.
Williams, B. C.; Ingham, M. D.; Chung, S. H.; and Elliott,
P. H. 2003. Model-based programming of intelligent em-
bedded systems and robotic space explorers. Proceedings of
the IEEE 91(1):212–237.

