7^{th} IEEE International Conference on Control & Automation (ICCA'09)

Christchurch, December 11th 2009.

Robust Stability of Networked Control Systems

L.F.C. Figueredo lfc.figueredo@yahoo.com.br E.S. Alves ealves@ieee.org G.A. Borges gaborges@unb.br P.H.R.Q.A. Santana phrqas@ieee.org J.Y. Ishihara ishihara@ene.unb.br A. Bauchspiess adolfobs@unb.br

<ロト (四) (注) (注) (注)

Robotics and Automation Laboratory (LARA) Robotics, Automation and Computational Vision Group (GRAV) Department of Electrical Eng. – University of Brasília (UnB)

- 2 System Description
- 3 Stability Analysis
- **4** Numerical Examples
- **5** Conclusions and Future Work
- 6 Acknowledgments

Networked Control System h $y_p(t)$ $u_p(t)$ Actuator Process Sensors Network Controller u_c(t) $y_c(t)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Networked Control Systems

- Network-Induced Delay
 - Time-varying;

- Applications
 - Control over sensor networks;
 - Remote surgery;
 - Automated highway systems;
 - Unmanned aerial vehicles.
- Packet Loss
 - Retransmitted or discarded;

According to Zhang *et al.* (2001), the networked delay and the packet dropout can degrade the performance of control systems and can even cause destabilization.

Controller Module G_c

- O Closed-loop NCS with the possibility of dropping data and disordering;
- 2 Single packet transmission: all data lumped into one network packet;
- Sensor module is clockdriven with sampling period h;
- Controller and actuator modules are event-driven;
- Actuator uses the latest 6 avaiable control input.

- \$\tau_k^{sc}\$: delay from sensor to controller module for the kth network packet;
- 3 au_k^{ca} : delay from controller to actuator module for the *k*th network packet;
 - τ_k : total delay from sensor to actuator module for the *k*th network packet.
- The switches S₁ and S₂ model the possibility of packet loss.

System Description: delays and packet dropout

- Sensor module samples data at instants nh;
 - ▶ i_k denotes the nth sample number which is carried by the kth received network packet at the actuator's input;
- {*i*₁,...,*i*_n,...} = {1,..., n, ...}
 → no packet dropout or disordering occured;
- (1) $i_{k+1} \neq i_k + 1 \rightarrow \text{a transmission failure occured.}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Delay constraints

$$\begin{split} &(i_{k+1} - i_k)h + \tau_{k+1} \leq \eta, (upper \ bound) \\ &\tau \leq \tau_k, \qquad \forall k \in \mathbb{N}^*, (lower \ bound) \\ &d(t) = t - i_k h, \dot{d}(t) = 1. \end{split}$$

- Plant's model
 - $\dot{x}_p(t) = A_p x_p(t) + B_p u_p(t),$ (1) $y_p(t) = C_p x_p(t),$ (2)
- Controller's input

$$u_c(t) = y_p(i_k h) = C_p x_p(i_k h), \forall k \in \mathbb{N}^*,$$
(3)

Plant's input

$$u_p(t) = y_c(i_k h + \tau_k^{sc} + \tau_k^c + \tau_k^{ca})$$

= $KC_p x_p(i_k h),$ (4)

・ロト ・ 一下・ ・ ヨト ・ ヨト

э.

• Closed loop system

$$\dot{x}(t) = Ax(t) + A_d x(t - d(t)), \quad (5)$$

$$x(t) = \phi(t), \quad t \in [t_1 - \eta, t_1]$$
 (6)

$$\tau \le d(t) \le \eta \tag{7}$$

where

$$A_d = B_p K C_p$$

Closed loop system with uncertanties

$$\dot{x}(t) = (A + \Delta A)x(t) + (A_d + \Delta A_d)x(t - d(t)),$$
(8)

where

with

 $\Delta A = M_A F_A N_A, \tag{9}$

$$\Delta A_d = M_{Ad} F_{Ad} N_{Ad} \tag{10}$$

$$F_A^T F_A \le I, F_{Ad}^T F_{Ad} \le I.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○

Lyapunov function candidate

Considering the Lyapunov function candidate

$$V(t) = \sum_{i=1}^{3} V_i(t),$$
(11)

where

$$V_{1}(t) = x^{T}(t)Px(t),$$

$$V_{2}(t) = \int_{t-\tau}^{t} \left[x(s)^{T}Q_{1}x(s)\right] ds + \int_{t-\eta}^{t} \left[x(s)^{T}Q_{2}x(s)\right] ds$$

$$+ \int_{t-\alpha d(t)}^{t} \left[x(s)^{T}Q_{3}x(s)\right] ds,$$

$$V_{3}(t) = \int_{-\eta}^{0} \int_{t+\beta}^{t} \left[\dot{x}(s)^{T}Z_{1}\dot{x}(s)\right] dsd\beta$$

$$+ \int_{-\eta}^{-\tau} \int_{t+\beta}^{t} \left[\dot{x}(s)^{T}Z_{2}\dot{x}(s)\right] dsd\beta,$$
(12)

and matrices $P = P^T > 0$, $Q_i = Q_i^T \ge 0$, $Z_j = Z_j^T > 0$, $i \in \{1, 2, 3\}$, $j \in \{1, 2\}$, the following stability criterion was derived

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Theorem (1)

For given scalars $0 \leq \tau < \eta$, $0 < \alpha < 1$, $\beta_A > 0$, $\beta_{Ad} > 0$ and $\varepsilon > 0$ such that

$$\begin{bmatrix} M_A^T U M_A & M_A^T U M_{Ad} \\ M_{Ad}^T U M_A & M_{Ad}^T U M_{Ad} \end{bmatrix} - \varepsilon^{-1} I < 0,$$

the NCS described by (8) is asymptotically stable if there exist matrices $P = P^T > 0$, $Q_i = Q_i^T \ge 0$, $Z_j = Z_j^T > 0$, $i \in \{1, 2, 3\}$, $j \in \{1, 2\}$ such that

$$\begin{bmatrix} G^T X + XG + K & XB \\ B^T X & -I \end{bmatrix} < 0.$$
 (13)

holds, where

Robust stability criterion for NCSs

$$\begin{split} U &= \eta Z_1 + (\eta - \tau) Z_2, \\ R_q &= \begin{bmatrix} A^T U M_A & A^T U M_{Ad} \\ A^T_d U M_A & A^T_d U M_{Ad} \end{bmatrix}, \\ Q_q &= \begin{bmatrix} -\varepsilon^{-1} I + \begin{bmatrix} M^T_A \\ M^T_A \end{bmatrix} U \begin{bmatrix} M_A & M_{Ad} \end{bmatrix} \end{bmatrix}, \\ A_q &= \begin{bmatrix} 0 & 0 & \frac{1}{\alpha \eta} Z_1 \\ \frac{1}{\eta - \tau} Z_2 & \frac{1}{\eta - \tau} (Z_1 + Z_2) & \frac{1}{(1 - \alpha)\eta} Z_1 \end{bmatrix}, \\ Z_q &= \begin{bmatrix} Z_{q11} & 0 & 0 \\ 0 & Z_{q22} & 0 \\ 0 & 0 & Z_{q33} \end{bmatrix}, \\ Z_{q11} &= -Q_1 - \frac{1}{\eta - \tau} Z_2 \\ Z_{q22} &= -Q_2 - \frac{1}{\eta - \tau} (Z_1 + Z_2) \\ Z_{q33} &= -(1 - \alpha) Q_3 - \frac{1}{\alpha \eta} Z_1 - \frac{1}{(1 - \alpha)\eta} Z_1 \end{split}$$

$$\begin{split} X &= \begin{bmatrix} P & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \\ G &= \begin{bmatrix} A & A_d & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \\ B &= \begin{bmatrix} M_A \sqrt{\beta_A} & M_{Ad} \sqrt{\beta_{Ad}^{-1}} & 0 \\ 0 & 0 & 0 \end{bmatrix}, \\ K &= \begin{bmatrix} K_{11} & K_{12} & 0 \\ K_{12}^T & K_{22} & 0 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & A_q & R_q \\ A_q^T & Z_q & 0 \\ R_q^T & 0 & Q_q \end{bmatrix} \\ K_{11} &= A^T UA + \varepsilon^{-1} N_A^T N_A - \frac{1}{\alpha \eta} Z_1 \\ &+ Q_1 + Q_2 + Q_3 + \beta_A^{-1} N_A^T N_A \\ K_{12} &= A^T UA_d \\ K_{22} &= A_d^T UA_d + \varepsilon^{-1} N_{Ad}^T N_A - \frac{1}{(1 - \alpha)\eta} Z_1 \\ &- \frac{1}{\eta - \tau} Z_2 - \frac{1}{\eta - \tau} (Z_1 + Z_2) + \beta_{Ad} N_{Ad}^T N_A \end{split}$$

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < 0</p>

Numerical Examples

Problem

What is the maximum delay that we guarantee will keep the system stable?

$$\dot{x}(t) = (A + \Delta A)x(t) + (A_d + \Delta A_d)x(t - d(t)),$$

$$\tau \le d(t) \le \eta.$$

Table 1: Maximum delay's upper bounds for different criteria ($\tau = 0.4s$)

	η
Yue et al. (2005)	1.13s
He et al. (2007)	1.16s
Zhu et al. (2008)	$1.17s^{*}$
Theorem (1) $^{\rm a}$	$1.17s^{*}$

* The result in Zhu *et al.* (2008) is a corollary of Theorem (1) when no uncertainties are considered.

^aChoosing $\alpha = 0.75$.

 $A = \begin{bmatrix} -2 & 0 \\ 1 & -3 \end{bmatrix},$

 $A_d = \begin{bmatrix} -1.4 & 0\\ -0.8 & -1.5 \end{bmatrix},$ $\Delta A = 0, \ \Delta A_d = 0.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Numerical Examples

Problem

What is the maximum delay that we guarantee will keep the system stable?

$$\dot{x}(t) = (A + \Delta A)x(t) + (A_d + \Delta A_d)x(t - d(t)),$$

$$\tau \le d(t) \le \eta.$$

$$A = \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix}, A_d = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix}$$
$$M_A = N_A = \begin{bmatrix} \sqrt{0.3} & 0 \\ 0 & \sqrt{0.2} \end{bmatrix},$$
$$M_{A_d} = N_{A_d} = \begin{bmatrix} \sqrt{0.2} & 0 \\ 0 & \sqrt{0.3} \end{bmatrix},$$
$$F_A(t) = F_{A_d}(t) = \begin{bmatrix} \cos t & 0 \\ 0 & \sin t \end{bmatrix}.$$

Table 2: Maximum delay's upper bounds for different criteria ($\tau = 0.4s$)

	η
Su et al. (1992)	0.1575s
Xu (1994)	0.1575s
Cao et al. (1998)	0.2558s
Jing (2004)	0.3916s
Yan et al. (2008)	0.6090s
Theorem $(1)^{\rm b}$	0.6847s

^bChoosing $\alpha = 0.6, \epsilon = 0.9, \beta_A = \beta_{A_d} = 0.8.$

Numerical Examples

Problem

What is the minimum delay's influence?

$$\dot{x}(t) = (A + \Delta A)x(t) + (A_d + \Delta A_d)x(t - d(t)),$$

$$\tau \le d(t) \le \eta.$$

$$\begin{split} A &= \begin{bmatrix} -2 & 0 \\ 0 & -1 \end{bmatrix}, A_d = \begin{bmatrix} -1 & 0 \\ -1 & -1 \end{bmatrix}, \\ M_A &= N_A = \begin{bmatrix} \sqrt{0.3} & 0 \\ 0 & \sqrt{0.2} \end{bmatrix}, \\ M_{A_d} &= N_{A_d} = \begin{bmatrix} \sqrt{0.2} & 0 \\ 0 & \sqrt{0.3} \end{bmatrix}, \\ F_A(t) &= F_{A_d}(t) = \begin{bmatrix} \cos t & 0 \\ 0 & \sin t \end{bmatrix}. \end{split}$$

Table 3: Maximum delay's upper bounds for Theorem $(1)^{c}$

au	η
0.1s	0.6977s
0.2s	0.7133s
0.3s	0.7336s
0.4s	0.7590s

^cChoosing $\alpha = 0.6$, $\epsilon = 0.9$, $\beta_A = \beta_{A_d} = 0.8$.

- The new robust stability criterion presented here is able to deal with:
 - Bounded model uncertainties;
 - Time-varying network delay;
 - Packet losses.
- The theorem presented gives less conservative results compared with previous works for the network delay's upper bound. It can also be seen as an extension of previous criteria that assumed perfect model's knowledge;
- Results concerning the system's stabilization will be published soon.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The authors are supported by research grants funded by the National Council of Technological and Scientific Development - CNPq, Brazil.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Questions?