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Introduction

Networked Control Systems ¢ Applications

o Control over sensor
networks;

@ Remote surgery;

SEes o Automated highway
systems;

o Unmanned aerial vehicles.

Controller

@ Network-Induced Delay o Packet Loss
@ Time-varying; ¢ Retransmitted or discarded;

According to Zhang et al. (2001), the networked delay and the packet
dropout can degrade the performance of control systems and can even cause
destabilization.



System Description
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Controller Module G,

@ Closed-loop NCS with

the possibility of drop-
ping data and disorder-
ing;

Single packet transmis-
sion: all data lumped
into one network packet;

Sensor module is clock-
driven with sampling pe-
riod h;

Controller and ac-
tuator  modules are
event-driven;

Actuator uses the latest
avaiable control input.



System Description

@ 7.°: delay from sensor to
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M ut) Vol ———— : @ 71 computation de-
:'6 Hacruaron] {Process} sa/m.,.e, [senoer |, lay for the kth network
|| Aowaertedue | Senortodus || packet;

. i @ 75 delay from controller
i b NETWORK Tk i to actuator module for
:_S_Z_ﬁ ________________________________ SN | the kth network packet;
- Q@ 7:  total delay from
y°(t)u°(t) sensor to actuator mod-
o ule for the kth network
Controller Module G packet.

@ The switches S1 and S2
model the possibility of
packet loss.



System Description: delays and packet dropout

Lost
packet
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@ Sensor module samples
data at instants nh;

@ i, denotes the nth sam-
ple number which is car-
ried by the kth received
network packet at the ac-
tuator’s input;

@ {(a,.in,} = {1,.n,.)
— no packet dropout or
disordering occured;

Q i1 # ix +1 — a trans-
mission failure occured.



System Description

| @ Plant’s model

NETWORK ip(t) = Apap(t) + Bpup(t), (1)

yp(t) = Cpap(1), 2)

@ Controller’s input

velt) T u(t)
PROCESSOR'

Controller Module G, uc(t) = yp(igh) = Cpzp(irh),V k € N,

3)
@ Plant’s input
@ Delay constraints up(t) = ye(iph + 75° + 75 + 779
(k41 — )b + Trp1 <, (upper bound) = KCpap(ikh), )

T < 7, Vk € N*, (lower bound)
d(t) = t — ixh, d(t) = 1.



System Description

PLANT G,

@ Closed loop system

z(t) = Az(t) + Agz(t — d(t)), (5)
z(t) = ¢(1), te€[th —mn, t1] (6)

NETWORK r<d(t) <n %)

where
Velt) T ue(t)
PROCESSOR Ad — BPKCZ]

Controller Module G

Closed loop system with uncertanties

2(t) = (A+ AA)x(t) + (Ag + AAy)z(t — d(¢)), (8)

where with

AA = MpFNy, 9) FiFa <1,
AAg= MpqFagNaq (10) FI Fag<I.



Lyapunov function candidate

Considering the Lyapunov function candidate

V(t) = Vi(t), (11)

where

Vi(t) = 2" (t)Px(t),

Va(t) = /7 [a:(s)Tle(s)] ds—l—/f [a:(s)Tan:(s)] ds

/ PRECICEDES (12)

/_17 /H} " Zyi(s)] dsdp
/T/HB " Zyi(s)] dsdp3,

and matrices P = PT >0, @ = QF >0, Z; = Z]-T >0, ¢ € {1,2,3},
J € {1,2}, the following stability criterion was derived



Robust stability criterion for NCSs

Theorem (1)

For given scalars 0 <7 <mn, 0<a <1, 84 >0, Bag >0 and
e > 0 such that

[MEUM% MT UM aq

—1
—e 1 <0,
MATd UMa M;{d UMAd]

the NCS described by (8) is asymptotically stable if there exist
matrices P=PT >0, Q; = QF >0, Z; = ZjT >0, i €{1,2,3},
j € {1,2} such that

< 0. (13)

GT'X+XG+K XB
BTX —I

holds, where




Robust stability criterion for NCSs
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Numerical Examples

What is the maximum delay that we guarantee will keep the
system stable?

2(t) = (A+ AA)z(t) + (Ag + AAg)z(t — d(t)),

T <d(t) <.

Table 1: Maximum delay’s upper
bounds for different criteria (7 = 0.4s)

A = -2 0 n
— |1 =3 Yue et al. (2005) 1.13s
14 0 He et al. (2007) 1.16s
Ad = |_o8 _15|° Zhu et al. (2008) | 1.17s*
Theorem (1) 1.17s*

* The result in Zhu et al. (2008) is a
corollary of Theorem (1) when no
uncertainties are considered.

#Choosing a = 0.75.



Numerical Examples

What is the maximum delay that we guarantee will keep the
system stable?

2(t) = (A+ AA)z(t) + (Ag + AAg)z(t — d(t)),

T < d(t) <.
A= [_02 —OJ »Aa = j —OJ ’
Table 2: Maximum delay’s upper
N, = |VO3 0 bounds for different criteria (7 = 0.4s)
wer=[F 2]
n
voz 0 S 1. (1992 i
Ma, =Ny, = . u et al. (1992) | 0.1575s
¢ ¢ { 0 V03 Xu (1994) 0.1575s
Cao et al. (1998) | 0.2558s
cost 0 .
Fa(t) = Fa,(t) = [ 0 sint} Jing (2004) 0.3916s
Yan et al. (2008) | 0.6090s
Theorem (1)P 0.6847s

PChoosing o = 0.6, € = 0.9, B4 = Ba, =0.8.



Numerical Examples
What is the minimum delay’s influence? I

B(t) = (A + AA)z(t) + (Ag + AAg)a(t — d(t)),
T <d(t) <.

My = Ng— V0.3 Table 3: Maximum delay’s upper
0 V02|’ bounds for Theorem (1) ©
V0.2 0
My, =Ny, = T L/
Aa = N [ 0 03|’ 0.1s | 0.6977s
0.2s | 0.7133s
cost 0
Fa(t) = Fa,(t) = { 0 s t} . 0.3s | 0.7336s
0.4s | 0.7590s

°Choosing a = 0.6, € = 0.9, 84 = B4, = 0.8.



Conclusions and Future Work

@ The new robust stability criterion presented here is able to
deal with:

o Bounded model uncertainties;
o Time-varying network delay;
o Packet losses.

@ The theorem presented gives less conservative results com-
pared with previous works for the network delay’s upper
bound. It can also be seen as an extension of previous cri-
teria that assumed perfect model’s knowledge;

@ Results concerning the system’s stabilization will be pub-
lished soon.
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