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Introduction

Networked Control Systems

Network-Induced Delay

Time-varying;

Applications

Control over sensor
networks;
Remote surgery;
Automated highway
systems;
Unmanned aerial vehicles.

Packet Loss

Retransmitted or discarded;

According to Zhang et al. (2001), the networked delay and the packet
dropout can degrade the performance of control systems and can even cause
destabilization.



System Description

1 Closed-loop NCS with
the possibility of drop-
ping data and disorder-
ing;

2 Single packet transmis-
sion: all data lumped
into one network packet;

3 Sensor module is clock-

driven with sampling pe-
riod h;

4 Controller and ac-
tuator modules are
event-driven;

5 Actuator uses the latest
avaiable control input.



System Description

1 τ sc
k : delay from sensor to

controller module for the
kth network packet;

2 τ c
k : computation de-

lay for the kth network
packet;

3 τ ca
k : delay from controller

to actuator module for
the kth network packet;

4 τk: total delay from
sensor to actuator mod-
ule for the kth network
packet.

5 The switches S1 and S2

model the possibility of
packet loss.



System Description: delays and packet dropout

1 Sensor module samples
data at instants nh;

2 ik denotes the nth sam-
ple number which is car-
ried by the kth received
network packet at the ac-
tuator’s input;

3 {i1, ..., in , ...} = {1, ..., n, ...}

→ no packet dropout or
disordering occured;

4 ik+1 6= ik + 1 → a trans-
mission failure occured.



System Description

Delay constraints

(ik+1 − ik)h + τk+1 ≤ η, (upper bound)

τ ≤ τk , ∀k ∈ N
∗
, (lower bound)

d(t) = t − ikh, ḋ(t) = 1.

Plant’s model

ẋp(t) = Apxp(t) + Bpup(t), (1)

yp(t) = Cpxp(t), (2)

Controller’s input

uc(t) = yp(ikh) = Cpxp(ikh), ∀ k ∈ N
∗
,

(3)

Plant’s input

up(t) = yc(ikh + τ sc
k + τc

k + τca
k )

= KCpxp(ikh), (4)



System Description

Closed loop system

ẋ(t) = Ax(t) + Ad x(t − d(t)), (5)

x(t) = φ(t), t ∈ [t1 − η, t1] (6)

τ ≤d(t) ≤ η (7)

where

Ad = BpKCp

Closed loop system with uncertanties

ẋ(t) = (A + ∆A)x(t) + (Ad + ∆Ad)x(t − d(t)), (8)

where

∆A = MAFANA, (9)

∆Ad = MAdFAdNAd (10)

with

FT
A FA ≤ I ,

FT
AdFAd ≤ I .



Lyapunov function candidate

Considering the Lyapunov function candidate

V (t) =

3
∑

i=1

Vi(t), (11)

where

V1(t) = x
T (t)Px(t),

V2(t) =

∫ t

t−τ

[

x(s)T
Q1x(s)

]

ds +

∫ t

t−η

[

x(s)T
Q2x(s)

]

ds

+

∫ t

t−αd(t)

[

x(s)T
Q3x(s)

]

ds, (12)

V3(t) =

∫ 0

−η

∫ t

t+β

[

ẋ(s)T
Z1ẋ(s)

]

dsdβ

+

∫ −τ

−η

∫ t

t+β

[

ẋ(s)T
Z2ẋ(s)

]

dsdβ,

and matrices P = PT > 0, Qi = QT
i ≥ 0, Zj = Z T

j > 0, i ∈ {1, 2, 3},
j ∈ {1, 2}, the following stability criterion was derived



Robust stability criterion for NCSs

Theorem (1)

For given scalars 0 ≤ τ < η, 0 < α < 1, βA > 0, βAd > 0 and
ε > 0 such that

[

M T
A UMA M T

A UMAd

M T
AdUMA M T

AdUMAd

]

− ε−1I < 0,

the NCS described by (8) is asymptotically stable if there exist
matrices P = PT > 0, Qi = QT

i ≥ 0, Zj = Z T
j > 0, i ∈ {1, 2, 3},

j ∈ {1, 2} such that

[

GTX + XG + K XB
BT X −I

]

< 0. (13)

holds, where



Robust stability criterion for NCSs

U = ηZ1 + (η − τ)Z2,

Rq =

[

AT UMA AT UMAd

AT
d

UMA AT
d

UMAd

]

,

Qq =

[

−ε
−1

I +

[

MT
A

MT
Ad

]

U

[

MA MAd

]

]

,

Aq =

[

0 0 1
αη

Z1
1
η−τ

Z2
1
η−τ

(Z1 + Z2) 1
(1−α)η

Z1

]

,

Zq =

[

Zq11 0 0
0 Zq22 0
0 0 Zq33

]

,

Zq11 = − Q1 −
1

η − τ
Z2

Zq22 = − Q2 −
1

η − τ
(Z1 + Z2)

Zq33 = − (1 − α)Q3 −
1

αη
Z1 −

1

(1− α)η
Z1

X =

[

P 0 0
0 0 0
0 0 0

]

,

G =

[

A Ad 0
0 0 0
0 0 0

]

,

B =

[

MA

√

βA MAd

√

β
−1
Ad

0

0 0 0
0 0 0

]

,

K =

[

K11 K12 0

KT
12 K22 0
0 0 0

]

+

[

0 Aq Rq

AT
q Zq 0

RT
q 0 Qq

]

K11 = A
T

UA + ε
−1

N
T
A NA −

1

αη
Z1

+ Q1 + Q2 + Q3 + β
−1
A

N
T
A NA

K12 = A
T

UAd

K22 = A
T
d UAd + ε

−1
N

T
AdNAd −

1

(1− α)η
Z1

−
1

η − τ
Z2 −

1

η − τ
(Z1 + Z2) + βAdN

T
AdNAd



Numerical Examples

Problem

What is the maximum delay that we guarantee will keep the
system stable?

ẋ(t) = (A + ∆A)x(t) + (Ad + ∆Ad)x(t − d(t)),

τ ≤ d(t) ≤ η.

A =

[

−2 0
1 −3

]

,

Ad =

[

−1.4 0
−0.8 −1.5

]

,

∆A = 0, ∆Ad=0.

Table 1: Maximum delay’s upper
bounds for different criteria (τ = 0.4s)

η

Yue et al. (2005) 1.13s

He et al. (2007) 1.16s

Zhu et al. (2008) 1.17s∗

Theorem (1) a 1.17s∗

∗ The result in Zhu et al. (2008) is a
corollary of Theorem (1) when no
uncertainties are considered.

aChoosing α = 0.75.



Numerical Examples

Problem

What is the maximum delay that we guarantee will keep the
system stable?

ẋ(t) = (A + ∆A)x(t) + (Ad + ∆Ad)x(t − d(t)),

τ ≤ d(t) ≤ η.

A =

[

−2 0
0 −1

]

,Ad =

[

−1 0
−1 −1

]

,

MA = NA =

[√
0.3 0

0
√

0.2

]

,

MAd
= NAd

=

[√
0.2 0

0
√

0.3

]

,

FA(t) = FAd
(t) =

[

cos t 0
0 sin t

]

.

Table 2: Maximum delay’s upper
bounds for different criteria (τ = 0.4s)

η

Su et al. (1992) 0.1575s

Xu (1994) 0.1575s

Cao et al. (1998) 0.2558s

Jing (2004) 0.3916s

Yan et al. (2008) 0.6090s

Theorem (1)b 0.6847s

bChoosing α = 0.6, ǫ = 0.9, βA = βAd
= 0.8.



Numerical Examples

Problem

What is the minimum delay’s influence?

ẋ(t) = (A + ∆A)x(t) + (Ad + ∆Ad)x(t − d(t)),

τ ≤ d(t) ≤ η.

A =

[

−2 0
0 −1

]

,Ad =

[

−1 0
−1 −1

]

,

MA = NA =

[√
0.3 0

0
√

0.2

]

,

MAd
= NAd

=

[√
0.2 0

0
√

0.3

]

,

FA(t) = FAd
(t) =

[

cos t 0
0 sin t

]

.

Table 3: Maximum delay’s upper
bounds for Theorem (1) c

τ η

0.1s 0.6977s

0.2s 0.7133s

0.3s 0.7336s

0.4s 0.7590s

cChoosing α = 0.6, ǫ = 0.9, βA = βAd
= 0.8.



Conclusions and Future Work

1 The new robust stability criterion presented here is able to
deal with:

Bounded model uncertainties;
Time-varying network delay;
Packet losses.

2 The theorem presented gives less conservative results com-
pared with previous works for the network delay’s upper
bound. It can also be seen as an extension of previous cri-
teria that assumed perfect model’s knowledge;

3 Results concerning the system’s stabilization will be pub-
lished soon.
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