
16.322 - Stochastic Estimation and Control

Final Project

Massachusetts Institute of Technology

Fall 2012

Pedro Santana (psantana@mit.edu), MIT ID 926275295

December 11th 2012

Object tracking using unreliable sensors

1 Introduction

The inspiration for this project came from the two robotic test beds shown in Figure 1 that are

currently being developed in my research group. The robotic manufacturing test bed in Figure 1(a)

requires humans and robots to work in close proximity in a dynamically-changing environment.

Therefore, the camera system shown at the bottom has to be robust to occlusions and occasional

failures of one or more of its components in order to keep track of the system’s state at all times.

The modified iRobot Create platform shown in Figure 1(b) is part of a disaster relief test bed where

autonomous aerial scouts are responsible for guiding a humanitarian aid vehicle through dangerous

terrain in order to provide help to the victims. In both situations, we would like to leverage visual

sensors for object recognition and tracking in order to limit the amount of structure that we need to

add to our environment in order to be able to estimate the state of multiple agents. Not only that,

we would like our localization system to rely on several inexpensive and commercially available

sensors in order to increase redundancy, reduce costs, and facilitate the replacement of parts.

(a) Manufacturing test bed. (b) iRobot Create

Figure 1: Test beds that use the proposed visual localization system.

This project brings two important contributions to the target tracking capabilities of these two

test beds. First, it uses the Hidden Markov Model (MHH) formalism in order to model the some-

times unreliable behavior of the cameras used as sensors. Second, it compares the implementations

of two state-of-the-art algorithms for pose estimation using the combined outputs of several differ-

ent cameras. The distinguishing feature in this pose estimation problem is the nonlinear unit norm

constraint that has to be enforced for the quaternions used to represent orientations, which add a

new dimension of complexity to the problem.

1

2 System Overview

Our experimental setup consists of the two test beds shown in Figure 1 equipped with the webcams

and fiducial markers (referred to as “fiducials” throughout the text) shown in Figure 2. All code

for this project was written in C++ and Java and runs on top of Willow Garage’s Robot Operating

System (ROS). As our sensors, we use the ROS ar pose wrapper for the ARToolKit library (http://

www.hitl.washington.edu/artoolkit/), which outputs a 3D position vector and a 4D quaternion

for each fiducial currently visible to the camera.

(a) Logitech C910 webcam. (b) Fiducial marker used by

ARToolKit.

Figure 2: Hardware for the localization system consisting of one or more webcams used to extract

the pose of multiple black-and-white fiducial markers.

The next sections will describe the internal details of the “HMM filter”, “BDM” (Bayesian

decision maker), and “SCKF” (State-constrained Kalman Filter) components shown in the block

diagram of Figure 3 that describes our visual localization system.

Figure 3: Block diagram for the localization system.

2

3 Modeling unreliable sensors using HMMs

The pose measurements outputted by the ar pose nodes in Figure 3 depend not only on the fact

that a fiducial is present in the camera’s field of view or not, but also on an unobservable hidden

state related to the lighting conditions. In order to model this behavior, we represent the detection

of each fiducial by means of the HMM shown in Figure 4. For each camera, we define the HMM

state of a fiducial as being “Missing” (0), “Intermittent” (1), or “Present” (2). As their names

suggest, “Missing” and “Present” describe, respectively, the behavior of ar pose when the fiducial

is missing from the scene or is definitely present in it. “Intermittent” is a somewhat transient state

in which a fiducial is repeatedly detected by ar pose, but not as much as we would expect if the

fiducial were truly present in the scene. Whenever the fiducial is in the “Intermittent” state, the

output measurements from ar pose tend to be less precise. Using the transition and observation

models from Figures 4(a) and 4(b), respectively, the next section addresses the fact of how to

determine the most likely discrete HMM state of a fiducial given a history of detections.

(a) Hidden Markov chain. (b) Stochastic output model.

Figure 4: Hidden Markov Model (HMM) describing the camera system’s behavior. The probabilities

shown are the currently implemented ones.

3.1 HMM filtering

This section presents the HMM filtering equations that I derived and implemented for the “HMM

Filter” block shown in Figure 3. Even though I acknowledge that HMM filtering is a well-known

problem in the literature, it is also simple enough so that I could derive its equations in a convenient

way for my particular implementation. I start by presenting the results for the filtering of a single

fiducial tracked by a camera, followed by its extension to multiple fiducials in the case when we

assume that their Markov Chains are mutually independent. In the next section, I present the

decision algorithm that takes in the filtered HMM states from all the cameras and outputs the

estimate of the HMM state of each fiducial on the global scene.

For the i-th fiducial being tracked within the field of view of one camera, definemi,k ∈ {0, 1, 2} as

the state of its corresponding HMM at time step k. The numerical values mi,k={0, 1, 2} correspond,

respectively, to the fiducial being “Missing”, “Intermittent”, or “Present”. In order to obtain the

most likely HMM state m∗

i,k, we first have to determine the posterior probability Pr(mi,k|y1:k),

3

where y1:k is the full measurement history for that particular fiducial. This is done as follows:

Pr(mi,k|y1:k) =
Pr(yk|mi,k, y1:k−1) Pr(mi,k|y1:k−1)

Pr(yk|y1:k−1)
, (1)

= η Pr(yk|mi,k)

2
∑

q=0

Pr(mi,k|mi,k−1 = q) Pr(mi,k−1 = q|y1:k−1), (2)

where Pr(yk|mi,k) is the measurement likelihood corresponding to Figure 4(b); Pr(mi,k|mi,k−1 =

q), q ∈ {0, 1, 2}, are the transition probabilities for the Markov Chain shown in Figure 4(a);

Pr(mi,k−1 = q|y1:k−1) is the probability of having mi,k−1=q at time step k − 1, which is a known

quantity from the previous filtering step; and η is a constant given by

η =





2
∑

s=0

Pr(yk|mi,k = s)

2
∑

q=0

Pr(mi,k = s|mi,k−1 = q) Pr(mi,k−1 = q|y1:k−1)





−1

. (3)

Therefore, we obtain the most likely HMM state m∗

i,k for the i-th fiducial by selecting the

maximum a posteriori (MAP) value of (2), i.e.,

m∗

i,k = argmax
mi,k

ηPr(yk|mi,k)

2
∑

q=0

Pr(mi,k|mi,k−1 = q) Pr(mi,k−1 = q|y1:k−1), (4)

where η is computed according to (3). If we assume that the probability distribution of mi,k is

independent from mj,k, ∀i, j ∈ {1, 2, . . . , N}, the joint probability of the HMM state of all fiducials

becomes

Pr(m1,k,m2,k, . . . ,mN,k|y1:k) =

N
∏

i=1

Pr(mi,k|y1:k). (5)

Hence, we conclude from (5) that the joint MAP estimate for all fiducial being tracked by a camera

is just the concatenation of the MAP estimate of each individual fiducial.

3.2 Bayesian decision maker (BDM)

Given the MAP HMM state estimates of the fiducials within each camera’s field of view, the

Bayesian Decision Maker (BDM) block in Figure 3 performs two tasks. First, it determines the

discrete HMM state of a fiducial within the global scene given the local MAP state estimates coming

from each one of the cameras. Second, it assigns higher uncertainty to the pose measurements of

fiducials in the “Intermittent” state, since this is usually an indication that ar pose might be

generating spurious detections. For the first task, the BDM uses the following rule:

• If the fiducial is “Present” within the field of view of at least one camera, it is “Present” on

the global scene.

• Else, if the fiducial is in the “Intermittent” state for at least one of the cameras, it is “Inter-

mittent” on the global scene.

• Otherwise, the fiducial is deemed “Missing”.

4

4 State-constrained Kalman Filtering (SCKF)

4.1 System dynamics

The continuous state vector1 for each fiducial being tracked is given by xk =
[

pTk bTk qTk
]T

, where

pk = [px,k py,k pz,k]
T is a 3D position vector; bk = [bx,k by,k bz,k]

T is a bias vector; and qk =

[q0,k q1,k q2,k q3,k]
T is a unit quaternion representing the object’s 3D orientation. For this system,

we define the discrete-time dynamical model

xk+1 = I10×10xk + wk, E{wk} = 0, E{wkw
T
k } =







Wp 0 0

0 Wb 0

0 0 Wq






,

yk+1 =

[

I3×3 I3×3 03×4

04×3 04×3 I4×4

]

xk+1 + rk, E{rk} = 0, E{rkr
T
k } =

[

Rp 0

0 Rq

]

,

s.t.‖qk‖ = 1, (6)

which is a linear model with a nonlinear equality state constraint ‖qk‖ = 1. Before we proceed, it is

worthwhile to mention the reasons behind the choice of such a simple model for the object tracker.

The first version of (6) had a velocity vector vk = [vx,k vy,k vz,k]
T as part of the state vector

xk, whose purpose was to improve the time propagation step of the filter in the absence of visual

measurements. This initial formulation, however, failed to yield good tracking performance in the

manufacturing test bed shown in Figure 1(a) unless a very small covariance Wv were assigned

to the process noise affecting vk. Due to the natural jitter of the pose measurements generated

by ar pose, nonzero velocities were erroneously computed by the state estimator even when the

objects were static on the scene. This in turn caused the objects to constantly oscillate, hindering

our manipulator’s ability to plan a trajectory in order to correctly grasp the object. As mentioned

before, the workaround found for this problem was to force Wv to be very small, causing velocities

to slowly drift from zero due to the “low-pass” effect induced by a small Wv. This, however, caused

the velocity estimates to remain around 0 almost all the time, defeating their purpose of aiding in

the estimates’ time propagation. Hence, we decided to remove vk from the state vector in order to

reduce the filter’s complexity and adopted the static time propagation model shown in (6). This

assumption clearly makes this localization system not suitable for the tracking of agile systems, for

which it is important to incorporate inertial measurements into the filtering loop and an accurate

dynamical model in order to improve the time propagation performance between measurement

update steps.

The presence of the bias vector bk as part of the state vector was also motivated by the particular

features of the measurements generated by ar pose. Using a grid and a tape measure in order to

position objects at well-defined coordinates, I realized that the position measurements coming from

the cameras were always off by a few centimeters. This bias seemed to be different depending on

the position of the fiducial with respect to the camera, but was approximately constant for the

same relative orientation. The bias vector bk was then introduced as part of the state vector in

order to compensate for that effect. Nevertheless, future improvements of this localization system

should consider a different bias vector for each camera tracking the fiducial.

1As opposed to the discrete HMM state.

5

Despite the simplicity of (6), the nonlinear constraint ‖qk‖=1 renders the filtering problem

harder to tackle. The next section briefly describes the two state-of-the-art algorithms that I have

implemented for this project.

4.2 Dealing with state constraints

Equality-constrained state estimation extends our usual filtering setup by adding a constraint

g(xk) = 0, (7)

where the function g(.) can have arbitrary form. For the particular case in which g(.) is a lin-

ear function, the authors in [1] develop three different estimate projection methods that yield the

optimal solution. On the other hand, when g(.) is a nonlinear function of the state such as in

‖qk‖=1, estimate optimality cannot be assured. For the latter case, the same authors propose

in [2, 3] several different methods to deal with nonlinear state constraints that yield good perfor-

mance. In this project, I decided to implement and compare two of these approaches, namely the

Measurement-Augmented Extended Kalman Filter (MAEKF) and the Measurement-Augmented

Unscented Kalman Filter (MAUKF). The measurement-augmented term comes from the fact that

we extend the model in (6) to include a virtual measurement of the form

1 = q20,k + q21,k + q22,k + q23,k + vn,k, E{vn,k} = 0, E{v2n,k} ≈ 0. (8)

The idea of augmenting your model with a pseudo-norm measurement (8) in order to enforce the

constraint (7) is not new and can also be found in [4], where the authors also perform a thorough

analysis of potential stability problems caused by the “brute force” approach of normalizing qk

using the inverse of its quadratic norm at each time step. Ideally, the covariance of the normalizing

measurement (8) should be zero, but the authors in [2–4] point out that this might lead to filter

instability issues. Hence, a small nonzero number should be chosen for E{v2n,k}
2.

Dealing with (8) within an UKF is straightforward, but the EKF requires the computation of

the Jacobian matrix of (8). For this simple measurement equation, the Jacobian is given by

H(x̂k) =
[

0 0 0 0 0 0 2q̂0,k 2q̂1,k 2q̂2,k 2q̂3,k

]

. (9)

5 Experimental Results

This section presents the performance of the MAEKF and the MAUKF when tracking the Cre-

ate platform shown in Figure 1(b) while it is visiting a series of waypoints in closed-loop with a

pose controller. For the manufacturing test bed, my original intention was to show videos of the

manipulator using the filtered pose estimates in order to localize blocks and move them around.

However, due to a recent hardware damage, this could not be performed. In order to assess the

performance of the object tracking system when operating in the manufacturing test bed, please

refer to the links below.

• Raw ar pose data on a completely static scene: http://youtu.be/plLPCT7gYJA.

2This project uses E{v2n,k} = 1e−13.

6

īpx īpy īpz īq0 īq1 īq2 īq3

-7.3e-04 6.06e-0.5 1.71e-0.4 0.0102 0.0038 0.0030 -0.0026

Table 1: Average value for each component of the innovation process.

• Filtered block pose while being handled: http://youtu.be/NnR_NyR7GO0.

First of all, it should be noticed that the tracking performance for the MAEKF and the MAUKF

was very similar, so just the results for the MAEKF will be shown here due to space limitations.

Given the waypoints shown in Figure 5(a), a pose controller drove the robot around the map using

the localization system’s output. The reconstructed trajectory is shown in Figure 5(b), where we

can clearly see that the robot visits the desired waypoints despite its deviations from the “nominal”

trajectory consisting of purely straight lines. Please keep in mind that there is a 0.3m offset in

both X and Y between Figures 5(a) and 5(b). Despite our best efforts to circumvent the problem

of inconsistent pose measurements coming from ar pose, it is evident that a spurious measurement

caused the pose trajectory to present a spike on the right side of Figure 5(b), which could have

been problematic to the pose controller had it lasted for an extended period of time.

(a) Robot waypoints. (b) Filtered trajectory.

Figure 5: Waypoints and filtered trajectory for the Create platform operating in closed-loop.

Another perspective about the performance of our filters is given by the analysis of the in-

novation process, which is shown in Figures 6 and 7 and Table 1. The very small values of the

first columns in Table 1 suggest that our position estimates are unbiased, which is a very desirable

feature. For the remaining columns corresponding to the quaternion innovations, the values are

still small, but not as much as for the positions estimates. The plots in Figure 7 do suggest that

our filters are not estimating quaternions as well as positions, but the higher values for the inno-

vations could also be a result of the aforementioned jitter in the pose measurements generated by

ar pose. An evidence of this possible cause are the clearly oscillatory patterns in Figure 7, followed

by periods of almost zero innovation, i.e., the filters are doing a good job estimating the orientation.

Despite these errors, the pose controller successfully managed to drive the robot to the specified

positions on the map using the filtered pose estimates, as shown on the videos below.

7

Figure 6: From left to right, innovation process for px, py and pz.

• Closed-loop tracking: http://youtu.be/2p36vw06Pcc.

• Closed-loop tracking (computer view): http://youtu.be/mkBCuoJLSSo.

6 Conclusions

The most important lesson learned in this project came from the study of state-constrained filtering

papers, where the authors address the issues of how to incorporate state constraints into filtered

estimates in a principled way. In the linear constraint case, the authors in [1] derive the optimal

constrained state estimates and show that they only help the filter by reducing the total amount

of uncertainty. They show that the projection step is an instance of the conventional measurement

update step where a “perfect” (no sensor noise) measurement corresponding to the constraint is

used. Motivated by this observation, the same authors propose in [2] to use the same idea to

deal with nonlinear state constraints, giving rise to the MAEKF and MAUKF implemented in this

project.

In terms of performance, the MAEKF and the MAUKF behaved almost identically. This is

probably due to the fact that pose measurements were frequently sampled from the cameras and

that the robotic platform being tracked did not move very fast, rendering the EKF linearizations

reasonably accurate. Concerning difficulty of implementation, the MAEKF was slightly easier to

implement, since the Jacobian in (9) was very easy to derive and implement when compared to the

Unscented Transform (UT) operations necessary for the UKF. Nevertheless, implementing the UT

in C++ was almost the same effort as doing so in Matlab, since the Eigen matrix library was used.

Finally, early experimental results showed the importance of analyzing the closed-loop dynamics

8

Figure 7: Innovations for each one of the four components of the orientation quaternion.

of systems with state estimators and controllers. In an early setup of the filters, the process

covariance matrices in (6) had been chosen to be small due to the estimates oscillation effect caused

by the jitter in the pose measurements coming from ar pose. This, however, caused the filter to lag

behind the true state of the system while it was been acted upon by the pose controller, generating

instability. The solution was to speed up filter convergence by increasing the covariance matrices

for the time propagation equations, which cause the Kalman gain to be higher. Unfortunately, this

had the negative effect of accentuating the jitter coming from ar pose and propagating it to the

state estimates, an effect that we studied analytically in class and that can be clearly observed on

the zig-zag pattern seen in Figure 5(b).

9

Bibliography

[1] B. O. S. Teixeira, J. Chandrasekar, L. a. B. Torres, L.A. Aguirre, and D. S. Bernstein. State

estimation for equality-constrained linear systems. 2007 46th IEEE Conference on Decision

and Control, pages 6220–6225, 2007.

[2] B. Teixeira, J. Chandrasekar, H.J. Palanthandalam-Madapusi, L. Torres, L.A. Aguirre, and

D. S. Bernstein. Gain-Constrained Kalman Filtering for Linear and Nonlinear Systems. IEEE

Transactions on Signal Processing, 56(9):4113–4123, September 2008.

[3] Bruno O. Soares Teixeira, J. Chandrasekar, Leonardo a. Borges Torres, L.A. Aguirre, and

D. S. Bernstein. Unscented filtering for equality-constrained nonlinear systems. 2008 American

Control Conference, pages 39–44, June 2008.

[4] I.Y. Bar-Itzhack and J. Deutschmann F.L. Markley. Quaternion normalization in additive

EKF for spacecraft attitude determination. In Proceedings of the Flight Mechanics/Estimation

Theory Symposium, pages 403–421, October 1991.

10

