

Probabilistic Planning

Acting when not everything is under your control

16.410/413 Principles of Autonomy and Decision-Making *Pedro Santana (psantana@mit.edu)* October 14th, 2015.

- Problem set 5
 - Out last Wednesday.
 - Due at midnight this Friday.
- Midterm on Monday, October 19th. Good luck, even though you won't need it!;)
- Readings
 - "Beyond Classical Search" [AIMA], Sections 4.3 and 4.4;
 - "Quantifying Uncertainty" [AIMA], Ch. 13;
 - "Making Complex Decisions" [AIMA], Ch. 17;
 - (Optional) Kolobov & Mausam, "Probabilistic Planning with Markov Decision Processes", Tutorial.
 - (Optional) Hansen & Zilberstein, "LAO*: a heuristic search algorithm that finds solutions with loops", AI, 2001.

Where can probabilistic planning be useful?

AEROASTRO Science scouts

Courtesy of Andrew J. Wang

AEROASTRO Collaborative manufacturing

Power supply restoration

How can we generate **plans** that **optimize performance** when controlling a system with **stochastic transitions** and **hidden state**?

- 1. Motivation
- 2. MDP recapitulation
- 3. Search-based probabilistic planning
- 4. AO*
- 5. LAO*
- 6. Extension to hidden states

Where we will:

- recall what we've learned about MDPs;
- *learn that recap = recapitulation.*

S: discrete set of states. A: discrete set of actions. $T: S \times A \times S \rightarrow [0,1]$, transition function $R: S \times A \rightarrow \mathbb{R}$, reward function. $\gamma \in [0,1]$: discount factor

$$T(s_k, a_k, s_{k+1}) = \Pr(s_{k+1}|s_k, a_k)$$

EXAMPLE Solving MDPs through VI

$$V(s_k, a_k) = R(s_k, a_k) + \gamma \sum_{\substack{s_{k+1} \\ optimal reward \\ at s_k}} V^*(s_{k+1}) T(s_k, a_k, s_{k+1})$$
Expected reward is such as the re

P. Santana, 16.410/413 - Probabilistic Planning

VI allows one to compute the optimal policy *from every state reaching the goal.*

Grows linearly with |S|.

> |S| grows exponentially with the dimensions of S.

What if we only care about policies starting at one (or a few) possible initial states s₀?

Heuristic forward search!

AEROASTRO Searching from an initial state s_0

 \mathbb{S}

Subset of S on the optimal path from

 s_0 to s_{goal}

Explored by VI

Explored by HFS

Good heuristic:

Bad heuristic:

10/14/2015

P. Santana, 16.410/413 - Probabilistic Planning

16/46

- S: discrete set of states.
- A: discrete set of actions.
- $T: S \times A \times S \rightarrow [0,1]$, transition function
- $R: S \times A \rightarrow \mathbb{R}$, reward function.
- $s_0 \in \mathbb{S}$: initial state.
- $\mathbb{S}_g \subseteq \mathbb{S}$: (terminal) goal states.

Could we frame previously-seen shortest path problems like this? How?

Looks familiar?

State S

(Probabilistic) AND-OR search

AEROASTRO Hypergraph representation

Like A*, but for AND-OR search

10/14/2015

P. Santana, 16.410/413 - Probabilistic Planning

• *Input*: implicit AND-OR search problem

 $< S, A, T, R, s_0, S_g >$

and an admissible heuristic function $h: \mathbb{S} \to \mathbb{R}$.

- *Output*: **optimal** policy in the form of an <u>acyclic</u> hypergraph mapping states to actions.
 - Cyclic policies: use LAO* (which we'll see in a bit).
- Strategy: incrementally build solutions forward from s₀, using h to estimate future utilities (just like A*!). The set of explored solutions form the explicit hypergraph G, and the subset of G corresponding to the current estimate of the best policy is called the greedy hypergraph g.

Admissible utility estimates

$$V(s_k, a_k) = R(s_k, a_k) + \sum_{\substack{s_{k+1} \\ \text{of executing } a_k \\ \text{at } s_k}} V^*(s_{k+1}) T(s_k, a_k, s_{k+1})$$
Expected reward

$$V(s_{k+1}) \ge V^*(s_{k+1}) + \sum_{\substack{s_{k+1} \\ \text{optimal reward} \\ \text{optimal future reward}}} V^*(s_{k+1}) + \sum_{\substack{s_{k+1} \\ \text{optimal future reward}}} V^*(s_{k+1}) + \sum_{\substack{s_{k+1} \\ \text{optimal future reward}}} V(s_k, a_k, s_{k+1}) \ge V(s_k, a_k)$$

$$V_h(s_k, a_k) = R(s_k, a_k) + \sum_{\substack{s_{k+1} \\ s_{k+1} \\ n}} h(s_{k+1}) T(s_k, a_k, s_{k+1}) \ge V(s_k, a_k)$$

AEROASTRO AO* example

Node in *g*, the greedy graph.

Node in *G*, the explicit graph, but not in *g*.

Known value

Heuristic estimate

 S_0

Open nodes: [s₀] g={s₀: None }

G starts just with just the initial state s_0

1. Choose an open node to expand \rightarrow s0

2. Estimate the value of the leaf nodes using the **heuristic h**.

3. Backup values for the currently expanded node (s_0) and all its ancestors that are part of g (no ancestors), recording the best value at each node.

$$V_h(s_k, a_k) = R(s_k, a_k) + \sum_{s_{k+1}} h(s_{k+1}) T(s_k, a_k, s_{k+1})$$

$$V_h(s_0, a_1) = -1 + (-10 * 0.7 - 11 * 0.3) = -11.3$$

 $V_h(s_0, a_2) = -2 + (-10 * 0.6 - 9 * 0.4) = -11.6$

4. Update g and the list of open nodes (non-terminal) by selecting the best action at the nodes which got their values updated

$$V_h(s_0, a_1) = -1 + (-10 * 0.7 - 11 * 0.3) = -11.3$$

 $V_h(s_0, a_2) = -2 + (-10 * 0.6 - 9 * 0.4) = -11.6$

4. Update g and the list of open nodes (non-terminal) by selecting the best action at the nodes which got their values updated

$$V_h(s_0, a_1) = -1 + (-10 * 0.7 - 11 * 0.3) = -11.3$$

 $V_h(s_0, a_2) = -2 + (-10 * 0.6 - 9 * 0.4) = -11.6$

1. Choose any open node to expand $\rightarrow s_1^2$

2. Estimate the value of the leaf nodes using the **heuristic h**.

3. Backup values for the currently expanded node (s_1^2) and all its ancestors that are part of g (s_0) , recording the best value at each node.

$$V_{h}(s_{1}^{2}, a_{1}) = -1 + (-10 * 0.2 - 12 * 0.8) = -12.6$$

$$V_{h}(s_{1}^{2}, a_{2}) = -2 + (-13 * 0.5 - 14 * 0.5) = -15.5$$

$$V_{h}(s_{0}, a_{1}) = -1 + (-10 * 0.7 - 12.6 * 0.3) = -11.78$$

$$V_{h}(s_{0}, a_{2}) = -2 + (-10 * 0.6 - 9 * 0.4) = -11.6$$

4. Update g and the list of open nodes (non-terminal) by selecting the best action at the nodes which got their values updated.

$$V_{h}(s_{1}^{2}, a_{1}) = -1 + (-10 * 0.2 - 12 * 0.8) = -12.6$$

$$V_{h}(s_{1}^{2}, a_{2}) = -2 + (-13 * 0.5 - 14 * 0.5) = -15.5$$

$$V_{h}(s_{0}, a_{1}) = -1 + (-10 * 0.7 - 12.6 * 0.3) = -11.78$$

$$V_{h}(s_{0}, a_{2}) = -2 + (-10 * 0.6 - 9 * 0.4) = -11.6$$
From leafs to the root

4. Update g and the list of open nodes (non-terminal) by selecting the best action at the nodes which got their values updated.

$$V_{h}(s_{1}^{2}, a_{1}) = -1 + (-10 * 0.2 - 12 * 0.8) = -12.6$$

$$V_{h}(s_{1}^{2}, a_{2}) = -2 + (-13 * 0.5 - 14 * 0.5) = -15.5$$

$$V_{h}(s_{0}, a_{1}) = -1 + (-10 * 0.7 - 12.6 * 0.3) = -11.78$$

$$V_{h}(s_{0}, a_{2}) = -2 + (-10 * 0.6 - 9 * 0.4) = -11.6$$

Search terminates when the list of open nodes is empty, i.e., all leaf nodes in g are terminal (goals).

At this point, return g as the **optimal** policy π .

AEROASTRO AO*'s pseudocode

Input: $< S, A, T, R, s_0, S_q >$, heuristic *h*. Heuristics for **Output**: Policy $\pi: \mathbb{S} \to \mathbb{A}$ value-to-go Explicit graph $G \leftarrow s_{\rho}$, $g \leftarrow$ Best partial policy of G while best partial policy graph g has nonterminal leafs $m \leftarrow \text{Expand any nonterminal leaf from } g$ and add children to $G \leftarrow$ $Z \leftarrow$ set containing m and all of its predecessors that are part of g while Z is not empty Bellman $n \leftarrow$ Remove from Z a node with no descendants in Z backups Update utilities (*V values*) for *n* $\pi \leftarrow$ Choose next best action at *n* Update q with the new π q is the graph obtained by following π from s_o

What happens if we find loops in the policy?

AEROASTRC Loops require iteration $V_h(s_k, a_k) = R(s_k, a_k) + \gamma \sum h(s_{k+1}) T(s_k, a_k, s_{k+1})$ S_{k+1} Value iteration $V^{*(0)}(s_k) = h(s_k)$, for s_k among the policy nodes $V^{*(t+1)}(s_k) = \max_{a_k} R(s_k, a_k) + \gamma \sum V^{*(t)}(s_{k+1}) T(s_k, a_k, s_{k+1})$ S_{k+1} Updates go both directions

- *Input*: MDP < $S, A, T, R, \gamma >$, initial state s_0 , and an admissible heuristic $h: S \to \mathbb{R}$.
- *Output*: **optimal** policy mapping states to actions.
- Strategy: same as in AO*, but value updates are performed through value or policy iteration.

Perform VI on the expanded node and all of its ancestors in g.

Value iteration on policy nodes $V^{*(0)}(s_k) = h(s_k)$, for s_k among the policy nodes $V^{*(t+1)}(s_k) = \max_{a_k} R(s_k, a_k) + \gamma \sum_{s_{k+1}} V^{*(t)}(s_{k+1}) T(s_k, a_k, s_{k+1})$

What changes if the state isn't directly observable?

L09: Hidden Markov Models Pedro Santana

AEROASTRO Incorporating HMM observations

Estimating belief state utility

Partially observable AO* in a nutshell

- Input: $< S, A, T, R, O, S_g, h, \hat{p}_0 >$, where O is the HMM observation model and \hat{p}_0 is the initial belief.
- Output: optimal policy in the form of an <u>acyclic</u> hypergraph mapping beliefs to actions.
- Strategy: same as in AO*, replacing: s_0 by \hat{p}_0 ; $T(s_k, a_k, s_{k+1})$ by $\Pr(o_{k+1}|a_k, \hat{p}_k)$; $V_h(s_k, a_k)$ by $V_h(\hat{p}_k, a_k)$.