Probabilistic Planning

Acting when not everything is under your control

16.410/413 Principles of Autonomy and Decision-Making Pedro Santana (psantana@mit.edu) October 14 ${ }^{\text {th }}, 2015$.

Assignments

- Problem set 5
- Out last Wednesday.
- Due at midnight this Friday.
- Midterm on Monday, October 19 ${ }^{\text {th }}$. Good luck, even though you won't need it! ;)
- Readings
- "Beyond Classical Search" [AIMA], Sections 4.3 and 4.4;
- "Quantifying Uncertainty" [AIMA], Ch. 13;
- "Making Complex Decisions" [AIMA], Ch. 17;
- (Optional) Kolobov \& Mausam, "Probabilistic Planning with Markov Decision Processes", Tutorial.
- (Optional) Hansen \& Zilberstein, "LAO*: a heuristic search algorithm that finds solutions with loops", AI, 2001.

1. Motivation

Where can probabilistic planning be useful?

AEROASTRO

Science scouts

Collaborative manufacturing

Power supply restoration

Thiébaux \& Cordier (2001)

How this relates to what we've seen?

L06: Activity Planning
David Wang

L10: Adversarial Games
Tiago Vaquero

L08: Markov Decision Processes
Brian Williams

10/14/2015

Our goal for today

How can we generate plans that optimize performance when
controlling a system with stochastic transitions and hidden state?

Today's topics

1. Motivation
2. MDP recapitulation
3. Search-based probabilistic planning 4. AO*
4. LAO*
5. Extension to hidden states

2. MDP recapitulation

Where we will:

- recall what we've learned about MDPs;
- learn that recap = recapitulation.

Elements of an MDP

\mathbb{S} : discrete set of states.
A: discrete set of actions.
$T: \mathbb{S} \times \mathbb{A} \times \mathbb{S} \rightarrow[0,1]$, transition function
$R: \mathbb{S} \times \mathbb{A} \rightarrow \mathbb{R}$, reward function.
$\gamma \in[0,1]$: discount factor

$$
T\left(s_{k}, a_{k}, s_{k+1}\right)=\operatorname{Pr}\left(s_{k+1} \mid s_{k}, a_{k}\right)
$$

			A						
				噋	\square				
							. 05		
						. 10	. 80		
							. 05		

Solving MDPs through VI

Expected, discounted optimal future reward

Value iteration

$$
\begin{aligned}
& V^{*(0)}\left(s_{k}\right), \forall s_{k} \quad \text { After convergence } \\
& V^{*(t+1)}\left(s_{k}\right)=\pi_{a_{k}}^{*}(s)=\arg \max _{a} V(s, a) \\
& \text { [AIMA] Section 17.2 }
\end{aligned}
$$

VI and goal regression

How does VI scale?

How does VI scale?

VI allows one to compute the optimal policy from every state reaching the goal.

Grows linearly with $|\mathbb{S}|$.
$|\mathbb{S}|$ grows exponentially with the dimensions of \mathbb{S}.
What if we only care about policies starting at one (or a few) possible initial states s_{0} ?

Heuristic forward search!

AEROASTRO

Searching from an initial state s_{0}

Good heuristic: \square \approx

Bad heuristic:
 \approx

3. Search-based probabilistic planning

Searching on the state graph

Elements of probabilistic search

\mathbb{S} : discrete set of states.
$\mathbb{A}:$ discrete set of actions.

$T: \mathbb{S} \times \mathbb{A} \times \mathbb{S} \rightarrow[0,1]$, transition function
$R: S \times \mathbb{A} \rightarrow \mathbb{R}$, reward function.
$s_{0} \in \mathbb{S}$: initial state.
$\mathbb{S}_{g} \subseteq \mathbb{S}:$ (terminal) goal states

Could we frame previously-seen shortest path problems like this? How?

(Probabilistic) AND-OR search

Hypergraph representation

All nodes are OR nodes
Actions yield lists of successors annotated with probabilities If every action has a single successor, we go back to a "standard" graph.

4. AO* (Nilson, 1982)

Like A*, but for AND-OR search

AO* in a nutshell

- Input: implicit AND-OR search problem

$$
<\mathbb{S}, \mathbb{A}, T, R, s_{0}, \mathbb{S}_{g}>
$$

and an admissible heuristic function $h: \mathbb{S} \rightarrow \mathbb{R}$.

- Output: optimal policy in the form of an acyclic hypergraph mapping states to actions.
- Cyclic policies: use LAO* (which we'll see in a bit).
- Strategy: incrementally build solutions forward from s_{0}, using h to estimate future utilities (just like A*!). The set of explored solutions form the explicit hypergraph G, and the subset of G corresponding to the current estimate of the best policy is called the greedy hypergraph g.

Admissible utility estimates

$$
V_{h}\left(s_{k}, a_{k}\right)=R\left(s_{k}, a_{k}\right)+\sum_{s_{k+1}} h\left(s_{k+1}\right) T\left(s_{k}, a_{k}, s_{k+1}\right) \geq V\left(s_{k}, a_{k}\right)
$$

ADB *

Node in g, the greedy graph.

Node in G, the explicit graph, but not in g.

Known value

Heuristic estimate

goal

Start

Open nodes: $\left[s_{0}\right]$ $g=\left\{s_{0}:\right.$ None $\}$
G starts just with just the initial state s_{0}

Expansion

Open nodes: $\left[s_{0}\right]$ $g=\left\{s_{0}\right.$: None $\}$

1. Choose an open node to expand \rightarrow sO
2. Estimate the value of the leaf nodes using the heuristic h.

Backup

Open nodes: [s_{0}]
$g=\left\{s_{0}:\right.$ None $\}$

3. Backup values for the currently expanded node (s_{0}) and all its ancestors that are part of g (no ancestors), recording the best value at each node.

$$
V_{h}\left(s_{k}, a_{k}\right)=R\left(s_{k}, a_{k}\right)+\sum_{s_{k+1}} h\left(s_{k+1}\right) T\left(s_{k}, a_{k}, s_{k+1}\right)
$$

$$
\begin{aligned}
& V_{h}\left(s_{0}, a_{1}\right)=-1+(-10 * 0.7-11 * 0.3)=-11.3 \\
& V_{h}\left(s_{0}, a_{2}\right)=-2+(-10 * 0.6-9 * 0.4)=-11.6
\end{aligned}
$$

Update g

Open nodes: $\left[s_{0}\right]$
 $g=\left\{s_{0}\right.$: None $\}$

$0.3 \quad 0.6$

4. Update g and the list of open nodes (non-terminal) by selecting the best action at the nodes which got their values updated

$$
\begin{aligned}
& V_{h}\left(s_{0}, a_{1}\right)=-1+(-10 * 0.7-11 * 0.3)=-11.3 \\
& V_{h}\left(s_{0}, a_{2}\right)=-2+(-10 * 0.6-9 * 0.4)=-11.6
\end{aligned}
$$

Update g

0.3

Open nodes: $\left[s_{1}^{1}, s_{1}^{2}\right]-10$
$g=\left\{s_{0}: a 1\right\}$
s_{1}^{1}

0.4
0.3
0.6
s_{1}^{2}
4. Update g and the list of open nodes (non-terminal) by selecting the best action at the nodes which got their values updated

$$
\begin{aligned}
& V_{h}\left(s_{0}, a_{1}\right)=-1+(-10 * 0.7-11 * 0.3)=-11.3 \\
& V_{h}\left(s_{0}, a_{2}\right)=-2+(-10 * 0.6-9 * 0.4)=-11.6
\end{aligned}
$$

1. Choose any open node to expand $\rightarrow s_{1}^{2}$
2. Estimate the value of the leaf nodes using the heuristic h.

Backup

Open nodes: $\left[s_{1}^{1}, s_{1}^{2}\right]-10$
$g=\left\{s_{0}:\right.$ a1 $\}$
3. Backup values for the currently expanded node (s_{1}^{2}) and all its ancestors that are part of $g\left(s_{0}\right)$, recording the best value at each node.

$$
\begin{aligned}
& V_{h}\left(s_{1}^{2}, a_{1}\right)=-1+(-10 * 0.2-12 * 0.8)=-12.6 \\
& V_{h}\left(s_{1}^{2}, a_{2}\right)=-2+(-13 * 0.5-14 * 0.5)=-15.5 \\
& V_{h}\left(s_{0}, a_{1}\right)=-1+(-10 * 0.7-12.6 * 0.3)=-11.78 \\
& V_{h}\left(s_{0}, a_{2}\right)=-2+(-10 * 0.6-9 * 0.4)=-11.6
\end{aligned}
$$

Update g

4. Update g and the list of open nodes (non-terminal) by selecting the best action at the nodes which got their values updated.

$$
\begin{aligned}
& V_{h}\left(s_{1}^{2}, a_{1}\right)=-1+(-10 * 0.2-12 * 0.8)=-12.6 \\
& V_{h}\left(s_{1}^{2}, a_{2}\right)=-2+(-13 * 0.5-14 * 0.5)=-15.5 \\
& V_{h}\left(s_{0}, a_{1}\right)=-1+(-10 * 0.7-12.6 * 0.3)=-11.78 \\
& V_{h}\left(s_{0}, a_{2}\right)=-2+(-10 * 0.6-9 * 0.4)=-11.6
\end{aligned}
$$

Update g

Open nodes: $\left[s_{1}^{3}, s_{1}^{4}\right]-10 \quad-12.6 \begin{gathered}0.3 \\ {[-12.6,-15.5]}\end{gathered}$ $g=\left\{s_{0}: a 2\right\}$

0.7
0.4

$$
0.6
$$

$$
R\left(s_{1}^{2}, a_{2}\right)=-2
$$

$$
0.5 \quad 0.5
$$

s_{1}^{3}

4. Update g and the list of open nodes (non-terminal) by selecting the best action at the nodes which got their values updated.

$$
\begin{aligned}
& V_{h}\left(s_{1}^{2}, a_{1}\right)=-1+(-10 * 0.2-12 * 0.8)=-12.6 \\
& V_{h}\left(s_{1}^{2}, a_{2}\right)=-2+(-13 * 0.5-14 * 0.5)=-15.5 \\
& V_{h}\left(s_{0}, a_{1}\right)=-1+(-10 * 0.7-12.6 * 0.3)=-11.78 \\
& V_{h}\left(s_{0}, a_{2}\right)=-2+(-10 * 0.6-9 * 0.4)=-11.6
\end{aligned}
$$

Search terminates when the list of open nodes is empty, i.e., all leaf nodes in g are terminal (goals).

At this point, return g as the optimal policy π.

AO*'s pseudocode

Input: $<\mathbb{S}, \mathbb{A}, T, R, s_{0}, \mathbb{S}_{g}>$, heuristic h.
Output: Policy $\pi: \mathbb{S} \rightarrow \mathbb{A}$
Heuristics for
Explicit graph $G \leftarrow \mathrm{~s}_{0}, g \leftarrow$ Best partial policy of G value-to-go while best partial policy graph g has nonterminal leafs
$m \leftarrow$ Expand any nonterminal leaf from g and add children to G
$\mathrm{Z} \leftarrow$ set containing m and all of its predecessors that are part of g
while Z is not empty

Bellman backups
$n \leftarrow$ Remove from Z a node with no descendants in Z
Update utilities (V values) for n
$\pi \leftarrow$ Choose next best action at n
Update g with the new π
g is the graph obtained by following π from s_{0}

5. LAO* (Hansen \& Zilberstein, 2001)

What happens if we find loops in the policy?

Acyclic value updates

No loops

Policy nodes are updated no more than once.
$V_{h}\left(s_{k}, a_{k}\right)=R\left(s_{k}, a_{k}\right)+\sum_{s_{k+1}} h\left(s_{k+1}\right) T\left(s_{k}, a_{k}, s_{k+1}\right)$

Loops require iteration

$$
V_{h}\left(s_{k}, a_{k}\right)=R\left(s_{k}, a_{k}\right)+\gamma \sum_{s_{k+1}} h\left(s_{k+1}\right) T\left(s_{k}, a_{k}, s_{k+1}\right)
$$

Value iteration $V^{*(0)}\left(s_{k}\right)=h\left(s_{k}\right)$, for s_{k} among the policy nodes
$V^{*(t+1)}\left(s_{k}\right)=\max _{a_{k}} R\left(s_{k}, a_{k}\right)+\gamma \sum_{s_{k+1}} V^{*(t)}\left(s_{k+1}\right) T\left(s_{k}, a_{k}, s_{k+1}\right)$

LAO* in a nutshell

- Input: $\mathrm{MDP}<\mathbb{S}, \mathbb{A}, T, R, \gamma>$, initial state s_{0}, and an admissible heuristic $h: \mathbb{S} \rightarrow \mathbb{R}$.
- Output: optimal policy mapping states to actions.
- Strategy: same as in AO*, but value updates are performed through value or policy iteration.
VI on g

Open nodes: $\left[s_{1}^{1}, s_{1}^{2}\right]$

| | 0.3 | 0.6 |
| :--- | :--- | :--- | $g=\left\{s_{0}: a 1\right\}$

Perform VI on the expanded node and all of its ancestors in g.

Value iteration on policy nodes

$$
V^{*(0)}\left(s_{k}\right)=h\left(s_{k}\right) \text {, for } s_{k} \text { among the policy nodes }
$$

$$
V^{*(t+1)}\left(s_{k}\right)=\max _{a_{k}} R\left(s_{k}, a_{k}\right)+\gamma \sum_{s_{k+1}} V^{*(t)}\left(s_{k+1}\right) T\left(s_{k}, a_{k}, s_{k+1}\right)
$$

6. Extension to hidden state

What changes if the state isn't directly observable?

L09: Hidden Markov Models
Pedro Santana

From states to belief states

Discrete belief state

Incorporating HMM observations

Estimating belief state utility

Fully observable

$$
\begin{aligned}
& V_{h}\left(s_{k}, a_{k}\right)=R\left(s_{k}, a_{k}\right)+\sum_{s_{k+1}} T\left(s_{k}, a_{k}, s_{k+1}\right) h\left(s_{k+1}\right) \\
& V_{h}\left(\hat{p}_{k}, a_{k}\right)=\sum_{s_{k}} \hat{p}_{k}\left(s_{k}\right) R\left(s_{k}, a_{k}\right)+\sum_{o_{k+1}} \operatorname{Pr}\left(o_{k+1} \mid a_{k}, \hat{p}_{k}\right) H\left(\hat{p}_{k}, o_{k+1}\right) \\
& H\left(\hat{p}_{k}, o_{k+1}\right)=\sum_{s_{k+1}} \operatorname{Pr}\left(s_{k+1}=s_{k+1} \mid o_{1: k}, o_{k+1}\right) h\left(s_{k+1}\right)
\end{aligned}
$$

Partially observable AO* in a nutshell

- Input: $<\mathbb{S}, \mathbb{A}, T, R, O, \mathbb{S}_{g}, h, \hat{p}_{0}>$, where O is the HMM observation model and \hat{p}_{0} is the initial belief.
- Output: optimal policy in the form of an acyclic hypergraph mapping beliefs to actions.
- Strategy: same as in AO* , replacing: s_{0} by \hat{p}_{0}; $T\left(s_{k}, a_{k}, s_{k+1}\right)$ by $\operatorname{Pr}\left(o_{k+1} \mid a_{k}, \hat{p}_{k}\right) ; V_{h}\left(s_{k}, a_{k}\right)$ by $V_{h}\left(\hat{p}_{k}, a_{k}\right)$.

