
Probabilistic Planning
Acting when not everything is under your control

16.410/413 Principles of Autonomy and Decision-Making

Pedro Santana (psantana@mit.edu)
October 14th , 2015.

s0 sgoal

• Problem set 5
– Out last Wednesday.
– Due at midnight this Friday.

• Midterm on Monday, October 19th. Good luck, even though
you won’t need it! ;)

• Readings
– “Beyond Classical Search” [AIMA], Sections 4.3 and 4.4;
– “Quantifying Uncertainty” [AIMA], Ch. 13;
– “Making Complex Decisions” [AIMA], Ch. 17;
– (Optional) Kolobov & Mausam, “Probabilistic Planning with

Markov Decision Processes”, Tutorial.
– (Optional) Hansen & Zilberstein, “LAO*: a heuristic search

algorithm that finds solutions with loops”, AI, 2001.

10/14/2015

Assignments

P. Santana, 16.410/413 - Probabilistic Planning 2/46

10/14/2015

1. Motivation

Where can probabilistic planning be
useful?

P. Santana, 16.410/413 - Probabilistic Planning 3/46

10/14/2015

Science scouts

Courtesy of Andrew J. Wang

P. Santana, 16.410/413 - Probabilistic Planning 4/46

10/14/2015

Collaborative manufacturing

P. Santana, 16.410/413 - Probabilistic Planning 5/46

10/14/2015

Power supply restoration

Thiébaux & Cordier (2001)

?

P. Santana, 16.410/413 - Probabilistic Planning 6/46

10/14/2015

How this relates to what we’ve seen?

L06: Activity Planning
David Wang

L08: Markov Decision Processes
Brian Williams

L10: Adversarial Games
Tiago Vaquero

10/09/15 Recitation
Enrique Fernández

L09: Hidden Markov Models
Pedro Santana

L11: Probabilistic
Planning

Planning as state-
space search.

Plans that optimize
utility

Computing utility
with probabilistic
transitions.

Observe-Act as
AND-OR search. Markovian hidden state

inference.

P. Santana, 16.410/413 - Probabilistic Planning 7/46

10/14/2015

Our goal for today

How can we generate plans that
optimize performance when

controlling a system with stochastic
transitions and hidden state?

P. Santana, 16.410/413 - Probabilistic Planning 8/46

1. Motivation

2. MDP recapitulation

3. Search-based probabilistic planning

4. AO*

5. LAO*

6. Extension to hidden states

10/14/2015

Today’s topics

P. Santana, 16.410/413 - Probabilistic Planning 9/46

10/14/2015

2. MDP recapitulation

Where we will:
- recall what we’ve learned about MDPs;
- learn that recap = recapitulation.

P. Santana, 16.410/413 - Probabilistic Planning 10/46

10/14/2015

Elements of an MDP

.05

.10 .80

.05𝑇(𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1) = Pr 𝑠𝑘+1|𝑠𝑘 , 𝑎𝑘

𝕊
𝕊: discrete set of states.

𝔸: discrete set of actions.

𝑇: 𝕊×𝔸×𝕊→ [0,1], transition function

𝑅: 𝕊×𝔸→ℝ, reward function.
𝔸

𝛾 ∈ [0,1]: discount factor

P. Santana, 16.410/413 - Probabilistic Planning 11/46

Value iteration

10/14/2015

Solving MDPs through VI

𝑉(𝑠𝑘 , 𝑎𝑘) = 𝑅 𝑠𝑘 , 𝑎𝑘 + 𝛾

𝑠𝑘+1

𝑉∗(𝑠𝑘+1) 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1

Expected reward
of executing ak

at sk

Immediate
reward

Optimal reward
at sk+1

Expected, discounted optimal future reward

[AIMA] Section 17.2

𝑉∗ 0 𝑠𝑘 , ∀𝑠𝑘
𝜋∗(𝑠) = arg max

𝑎
𝑉(𝑠, 𝑎)

Unknown

𝑉∗ 𝑡+1 𝑠𝑘 = max
𝑎𝑘
𝑅 𝑠𝑘 , 𝑎𝑘 + 𝛾

𝑠𝑘+1

𝑉∗(𝑡)(𝑠𝑘+1) 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1

P. Santana, 16.410/413 - Probabilistic Planning 12/46

10/14/2015

VI and goal regression

sgoal

P. Santana, 16.410/413 - Probabilistic Planning

𝑉∗ 𝑠𝑘 = max
𝑎𝑘
𝑅 𝑠𝑘 , 𝑎𝑘 + 𝛾

𝑠𝑘+1

𝑉∗(𝑠𝑘+1) 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1

Dynamic programming works backwards from the goals.

13/46

10/14/2015

How does VI scale?

G

⋯
⋮

⋯
⋮

⋯
⋮

⋯
⋮

⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋮

⋮

P. Santana, 16.410/413 - Probabilistic Planning 14/46

10/14/2015

How does VI scale?

VI allows one to compute the optimal policy
from every state reaching the goal.

Grows linearly with |𝕊|.

|𝕊| grows exponentially with the dimensions of 𝕊.

What if we only care about policies starting at one (or a
few) possible initial states s0?

Heuristic forward search!

P. Santana, 16.410/413 - Probabilistic Planning 15/46

𝕊

Subset of 𝕊 reachable from s0

10/14/2015

Searching from an initial state s0

Explored by HFS

Subset of 𝕊 on the
optimal path from

s0 to sgoal

Good heuristic: ≈ Bad heuristic: ≈
P. Santana, 16.410/413 - Probabilistic Planning

Explored by VI

16/46

10/14/2015

3. Search-based probabilistic planning

L06: Activity Planning L08: Markov Decision Processes

L10: Adversarial Games 10/09/15 Recitation

Planning as state-
space search.

Plans that optimize
utility

Computing utility
with probabilistic
transitions.

Observe-Act as
AND-OR search.

+

P. Santana, 16.410/413 - Probabilistic Planning 17/46

10/14/2015

Searching on the state graph

s0 sgoal

P. Santana, 16.410/413 - Probabilistic Planning 18/46

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning

Elements of probabilistic search

𝕊: discrete set of states.

𝔸: discrete set of actions.

𝑇: 𝕊×𝔸×𝕊→ [0,1], transition function

𝑅: 𝕊×𝔸→ℝ, reward function.

State S

sk+1sk

𝑇(𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1)

𝑅(𝑠𝑘 , 𝑎𝑘)

Looks familiar?

Could we frame previously-seen shortest path problems
like this? How?

𝕊𝑔 ⊆ 𝕊: (terminal) goal states.

𝑠0 ∈ 𝕊: initial state.

19/46

10/14/2015

(Probabilistic) AND-OR search

⋯

⋯ ⋯ ⋯

OR node
agent action

AND node
stochastic
transition

sk

a2 ana1

sk+1=1 sk+1=2 sk+1=d

P. Santana, 16.410/413 - Probabilistic Planning 20/46

10/14/2015

Hypergraph representation

⋯ ⋯

sk

a1

⋯sk+1=1 sk+1=2 sk+1=d sk+1=1 sk+1=2 sk+1=d

a2

an

All nodes are OR nodes Actions yield lists of successors
annotated with probabilities

P. Santana, 16.410/413 - Probabilistic Planning

If every action has a single
successor, we go back to a

“standard” graph.

21/46

10/14/2015

4. AO* (Nilson, 1982)

Like A*, but for AND-OR search

P. Santana, 16.410/413 - Probabilistic Planning 22/46

• Input: implicit AND-OR search problem

and an admissible heuristic function ℎ: 𝕊 → ℝ.

• Output: optimal policy in the form of an acyclic hypergraph
mapping states to actions.
– Cyclic policies: use LAO* (which we’ll see in a bit).

• Strategy: incrementally build solutions forward from s0, using h to
estimate future utilities (just like A*!). The set of explored solutions
form the explicit hypergraph G, and the subset of G corresponding
to the current estimate of the best policy is called the greedy
hypergraph g.

10/14/2015

AO* in a nutshell

P. Santana, 16.410/413 - Probabilistic Planning

< 𝕊,𝔸, 𝑇, 𝑅, 𝑠0, 𝕊𝑔 >

23/46

10/14/2015

Admissible utility estimates

𝑉(𝑠𝑘 , 𝑎𝑘) = 𝑅 𝑠𝑘 , 𝑎𝑘 +

𝑠𝑘+1

𝑉∗(𝑠𝑘+1) 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1

Expected reward
of executing ak

at sk

Immediate
reward

Optimal reward
at sk+1

Expected optimal future reward

Unknown

ℎ 𝑠𝑘+1 ≥ 𝑉
∗(𝑠𝑘+1)

𝑉ℎ 𝑠𝑘 , 𝑎𝑘 = 𝑅 𝑠𝑘 , 𝑎𝑘 +

𝑠𝑘+1

ℎ 𝑠𝑘+1 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1 ≥ 𝑉 𝑠𝑘 , 𝑎𝑘

Admissible (“optimistic”) estimate of future reward.

Should be “easy” to compute.

P. Santana, 16.410/413 - Probabilistic Planning 24/46

AO* example

10/14/2015

s0

goal

Heuristic estimate

Known value

Node in g, the greedy graph.

Node in G, the explicit graph, but not in g.

P. Santana, 16.410/413 - Probabilistic Planning 25/46

Start

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning

G starts just with just the initial state s0

Open nodes: [s0]

g={s0: None }

s0

26/46

Expansion

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning

2. Estimate the value of the leaf nodes using the heuristic h.

s0

Open nodes: [s0]

g={s0: None }

1. Choose an open node to expand  s0

0.7

0.3

R(s0,a1)=-1
0.4

0.6

R(s0,a2)=-2

-10 -11 -10 -9

27/46

Backup

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning

s0

Open nodes: [s0]

g={s0: None }

3. Backup values for the currently expanded node (s0) and all its ancestors
that are part of g (no ancestors), recording the best value at each node.

0.7

0.3

R(s0,a1)=-1
0.4

0.6

R(s0,a2)=-2

-10 -11 -10 -9

𝑉ℎ 𝑠𝑘 , 𝑎𝑘 = 𝑅 𝑠𝑘 , 𝑎𝑘 +

𝑠𝑘+1

ℎ 𝑠𝑘+1 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1

𝑉ℎ 𝑠0, 𝑎1 =−1 + −10 ∗ 0.7 − 11 ∗ 0.3 = −11.3

𝑉ℎ 𝑠0, 𝑎2 =−2 + −10 ∗ 0.6 − 9 ∗ 0.4 = −11.6

[-11.3,-11.6]

28/46

Update g

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning

s0

Open nodes: [s0]

g={s0: None }

4. Update g and the list of open nodes (non-terminal) by selecting the
best action at the nodes which got their values updated

0.7

0.3

R(s0,a1)=-1
0.4

0.6

R(s0,a2)=-2

-10 -11 -10 -9

𝑉ℎ 𝑠0, 𝑎1 =−1 + −10 ∗ 0.7 − 11 ∗ 0.3 = −11.3

𝑉ℎ 𝑠0, 𝑎2 =−2 + −10 ∗ 0.6 − 9 ∗ 0.4 = −11.6

[-11.3,-11.6]

29/46

R(s0,a2)=-2Update g

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning

s0

Open nodes: [𝑠1
1, 𝑠1
2]

g={s0: a1}

4. Update g and the list of open nodes (non-terminal) by selecting the
best action at the nodes which got their values updated

0.7

0.3

R(s0,a1)=-1
0.4

0.6

-10 -11 -10 -9

𝑉ℎ 𝑠0, 𝑎1 =−1 + −10 ∗ 0.7 − 11 ∗ 0.3 = −11.3

𝑉ℎ 𝑠0, 𝑎2 =−2 + −10 ∗ 0.6 − 9 ∗ 0.4 = −11.6

𝑠1
1 𝑠1

2

[-11.3,-11.6]

30/46

R(s0,a2)=-2Expansion

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning

s0

Open nodes: [𝑠1
1, 𝑠1
2]

g={s0: a1}

0.7

0.3

R(s0,a1)=-1
0.4

0.6

-10 -11 -10 -9

𝑠1
1 𝑠1

2

2. Estimate the value of the leaf nodes using the heuristic h.

1. Choose any open node to expand  𝑠1
2

-10

[-11.3,-11.6]

0.2 0.8 0.5 0.5

-12 -13 -14

R(𝑠1
2,a2)=-2R(𝑠1

2,a1)=-1

31/46

R(s0,a2)=-2Backup

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning

s0

Open nodes: [𝑠1
1, 𝑠1
2]

g={s0: a1}

0.7

0.3

R(s0,a1)=-1
0.4

0.6

-10 -11 -10 -9

𝑠1
1 𝑠1

2

-10

0.2 0.8 0.5 0.5

-12 -13 -14

3. Backup values for the currently expanded node (𝑠1
2) and all its ancestors that

are part of g (s0), recording the best value at each node.

𝑉ℎ 𝑠1
2, 𝑎1 =−1 + −10 ∗ 0.2 − 12 ∗ 0.8 = −12.6

𝑉ℎ 𝑠1
2, 𝑎2 =−2 + −13 ∗ 0.5 − 14 ∗ 0.5 = −15.5

R(𝑠1
2,a2)=-2R(𝑠1

2,a1)=-1

[-12.6,-15.5]

From leafs to the root

[-11.78,-11.6]

𝑉ℎ 𝑠0, 𝑎1 =−1 + −10 ∗ 0.7 − 12.6 ∗ 0.3 = −11.78

𝑉ℎ 𝑠0, 𝑎2 =−2 + −10 ∗ 0.6 − 9 ∗ 0.4 = −11.6

32/46

R(s0,a2)=-2Update g

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning

s0

Open nodes: [𝑠1
1, 𝑠1
2]

g={s0: a1}

0.7

0.3

R(s0,a1)=-1
0.4

0.6

-10 -12.6 -10 -9

𝑠1
1 𝑠1

2

-10

0.2 0.8 0.5 0.5

-12 -13 -14

4. Update g and the list of open nodes (non-terminal) by selecting the best
action at the nodes which got their values updated.

𝑉ℎ 𝑠1
2, 𝑎1 =−1 + −10 ∗ 0.2 − 12 ∗ 0.8 = −12.6

𝑉ℎ 𝑠1
2, 𝑎2 =−2 + −13 ∗ 0.5 − 14 ∗ 0.5 = −15.5

R(𝑠1
2,a2)=-2R(𝑠1

2,a1)=-1

[-12.6,-15.5]

From leafs to the root

[-11.78,-11.6]

𝑉ℎ 𝑠0, 𝑎1 =−1 + −10 ∗ 0.7 − 12.6 ∗ 0.3 = −11.78

𝑉ℎ 𝑠0, 𝑎2 =−2 + −10 ∗ 0.6 − 9 ∗ 0.4 = −11.6

33/46

R(s0,a2)=-2Update g

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning

s0

Open nodes: [𝑠1
3, 𝑠1
4]

g={s0: a2}

0.7

0.3

R(s0,a1)=-1
0.4

0.6

-10 -10 -9

𝑠1
1 𝑠1

2

-10

0.2 0.8 0.5 0.5

-12 -13 -14

4. Update g and the list of open nodes (non-terminal) by selecting the best
action at the nodes which got their values updated.

𝑉ℎ 𝑠1
2, 𝑎1 =−1 + −10 ∗ 0.2 − 12 ∗ 0.8 = −12.6

𝑉ℎ 𝑠1
2, 𝑎2 =−2 + −13 ∗ 0.5 − 14 ∗ 0.5 = −15.5

R(𝑠1
2,a2)=-2R(𝑠1

2,a1)=-1

[-12.6,-15.5]

From leafs to the root

[-11.78,-11.6]

𝑉ℎ 𝑠0, 𝑎1 =−1 + −10 ∗ 0.7 − 12.6 ∗ 0.3 = −11.78

𝑉ℎ 𝑠0, 𝑎2 =−2 + −10 ∗ 0.6 − 9 ∗ 0.4 = −11.6

𝑠1
3 𝑠1

4

-12.6

34/46

R(s0,a2)=-2Termination

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning

s0

Open nodes: [𝑠1
3, 𝑠1
4]

g={s0: a2}

0.7

0.3

R(s0,a1)=-1
0.4

0.6

-10 -10 -9

𝑠1
1 𝑠1

2

-10

0.2 0.8 0.5 0.5

-12 -13 -14

Search terminates when the list of open nodes is empty, i.e., all leaf nodes in g
are terminal (goals).

R(𝑠1
2,a2)=-2R(𝑠1

2,a1)=-1

[-12.6,-15.5]

[-11.78,-11.6]

𝑠1
3 𝑠1

4

At this point, return g as the optimal policy π.

-12.6

35/46

Input: < 𝕊,𝔸, 𝑇, 𝑅, 𝑠0, 𝕊𝑔 >, heuristic h.

Output: Policy : 𝕊 𝔸

Explicit graph G s0, g Best partial policy of G

while best partial policy graph g has nonterminal leafs

m Expand any nonterminal leaf from g and add children to G

Z  set containing m and all of its predecessors that are part of g

while Z is not empty

n  Remove from Z a node with no descendants in Z

Update utilities (V values) for n

  Choose next best action at n

Update g with the new 

10/14/2015

AO*’s pseudocode

Bellman
backups

Heuristics for
value-to-go

g is the graph obtained by
following  from s0

P. Santana, 16.410/413 - Probabilistic Planning 36/46

10/14/2015

5. LAO* (Hansen & Zilberstein, 2001)

P. Santana, 16.410/413 - Probabilistic Planning

What happens if we find loops in the
policy?

37/46

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning

Acyclic value updates

𝑉ℎ 𝑠𝑘 , 𝑎𝑘 = 𝑅 𝑠𝑘 , 𝑎𝑘 +

𝑠𝑘+1

ℎ 𝑠𝑘+1 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1

Direction of update

Policy nodes are updated
no more than once.

No loops

38/46

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning

Loops require iteration

𝑉ℎ 𝑠𝑘 , 𝑎𝑘 = 𝑅 𝑠𝑘 , 𝑎𝑘 + 𝛾

𝑠𝑘+1

ℎ 𝑠𝑘+1 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1

Updates go both directions

Value iteration 𝑉∗ 0 𝑠𝑘 = ℎ 𝑠𝑘 , for 𝑠𝑘 among the policy nodes

𝑉∗ 𝑡+1 𝑠𝑘 = max
𝑎𝑘
𝑅 𝑠𝑘 , 𝑎𝑘 + 𝛾

𝑠𝑘+1

𝑉∗(𝑡)(𝑠𝑘+1) 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1

39/46

• Input: MDP < 𝕊,𝔸, 𝑇, 𝑅, 𝛾 >, initial state 𝑠0,
and an admissible heuristic ℎ: 𝕊 → ℝ.

• Output: optimal policy mapping states to
actions.

• Strategy: same as in AO*, but value updates
are performed through value or policy
iteration.

10/14/2015

LAO* in a nutshell

P. Santana, 16.410/413 - Probabilistic Planning 40/46

R(s0,a2)=-2VI on g

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning

s0

Open nodes: [𝑠1
1, 𝑠1
2]

g={s0: a1}

0.7

0.3

R(s0,a1)=-1
0.4

0.6

-10 -10 -9

𝑠1
1

𝑠1
2

0.2 0.8 0.5 0.5

-12

Perform VI on the expanded node and all of its ancestors in g.

R(𝑠1
2,a2)=-2R(𝑠1

2,a1)=-1

s0s0 𝑠1
2

Value iteration on policy nodes 𝑉∗ 0 𝑠𝑘 = ℎ 𝑠𝑘 , for 𝑠𝑘 among the policy nodes

𝑉∗ 𝑡+1 𝑠𝑘 = max
𝑎𝑘
𝑅 𝑠𝑘 , 𝑎𝑘 + 𝛾

𝑠𝑘+1

𝑉∗(𝑡)(𝑠𝑘+1) 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1

41/46

10/14/2015

6. Extension to hidden state

P. Santana, 16.410/413 - Probabilistic Planning

What changes if the state isn’t directly
observable?

L09: Hidden Markov Models
Pedro Santana

42/46

10/14/2015

From states to belief states

Node

Discrete belief state

Pr 𝑆𝑘 = 𝑠𝑖 𝑜1:𝑘

si

P. Santana, 16.410/413 - Probabilistic Planning

Pr 𝑆𝑘 𝑜1:𝑘 = 𝑝𝑘

Filtering (forward)
(see L09: HMMs)

43/46

10/14/2015

Incorporating HMM observations

a

⋯

P. Santana, 16.410/413 - Probabilistic Planning

 𝑝𝑘 𝑝𝑘 = Pr 𝑆𝑘 𝑜1:𝑘

 𝑝𝑘 = Pr 𝑆𝑘+1 𝑎𝑘 , 𝑜1:𝑘 = 𝑇(𝑎𝑘) 𝑝𝑘

Pr 𝑜𝑘+1 𝑎𝑘 , 𝑝𝑘 =

𝑠𝑘+1

Pr 𝑜𝑘+1 𝑠𝑘+1 𝑝𝑘(𝑠𝑘+1)

Pr 𝑆𝑘+1 𝑜1:𝑘 , 𝑜𝑘+1 = 𝑚Pr 𝑆𝑘+1 𝑜1:𝑘 , 𝑜𝑘+1 = 1

Pr(𝑆𝑘+1|𝑆𝑘 , 𝑎𝑘)

HMM obs. model

(prediction)

(filtering)

44/46

10/14/2015

Estimating belief state utility

𝑉ℎ 𝑠𝑘 , 𝑎𝑘 = 𝑅 𝑠𝑘 , 𝑎𝑘 +

𝑠𝑘+1

𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1 ℎ 𝑠𝑘+1

P. Santana, 16.410/413 - Probabilistic Planning

𝑉ℎ 𝑝𝑘, 𝑎𝑘 =

𝑠𝑘

 𝑝𝑘(𝑠𝑘)𝑅 𝑠𝑘 , 𝑎𝑘 +

𝑜𝑘+1

Pr 𝑜𝑘+1 𝑎𝑘 , 𝑝𝑘 𝐻 𝑝𝑘, 𝑜𝑘+1

𝐻 𝑝𝑘, 𝑜𝑘+1 =

𝑠𝑘+1

Pr 𝑆𝑘+1 = 𝑠𝑘+1 𝑜1:𝑘, 𝑜𝑘+1 ℎ 𝑠𝑘+1

Fully observable

Partially observable

45/46

• Input: < 𝕊,𝔸, 𝑇, 𝑅, 𝑂, 𝕊𝑔, ℎ, 𝑝0 >, where 𝑂 is the
HMM observation model and 𝑝0 is the initial
belief.

• Output: optimal policy in the form of an acyclic
hypergraph mapping beliefs to actions.

• Strategy: same as in AO*, replacing: 𝑠0 by 𝑝0;
𝑇 𝑠𝑘 , 𝑎𝑘, 𝑠𝑘+1 by Pr 𝑜𝑘+1 𝑎𝑘, 𝑝𝑘 ; 𝑉ℎ 𝑠𝑘, 𝑎𝑘 by
𝑉ℎ 𝑝𝑘, 𝑎𝑘 .

10/14/2015

Partially observable AO* in a nutshell

P. Santana, 16.410/413 - Probabilistic Planning 46/46

