
Probabilistic Planning
Acting when not everything is under your control

16.410/413 Principles of Autonomy and Decision-Making

Pedro Santana (psantana@mit.edu)
October 14th , 2015.

s0 sgoal



• Problem set 5
– Out last Wednesday.
– Due at midnight this Friday.

• Midterm on Monday, October 19th. Good luck, even though 
you won’t need it! ;) 

• Readings
– “Beyond Classical Search” [AIMA], Sections 4.3 and 4.4;
– “Quantifying Uncertainty” [AIMA], Ch. 13;
– “Making Complex Decisions” [AIMA], Ch. 17;
– (Optional) Kolobov & Mausam, “Probabilistic Planning with 

Markov Decision Processes”, Tutorial.
– (Optional) Hansen & Zilberstein, “LAO*: a heuristic search 

algorithm that finds solutions with loops”, AI, 2001.

10/14/2015

Assignments
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1. Motivation

Where can probabilistic planning be 
useful?
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Science scouts

Courtesy of Andrew J. Wang
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Collaborative manufacturing
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Power supply restoration

Thiébaux & Cordier (2001)

?
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How this relates to what we’ve seen?

L06: Activity Planning
David Wang

L08: Markov Decision Processes
Brian Williams

L10: Adversarial Games
Tiago Vaquero

10/09/15 Recitation
Enrique Fernández

L09: Hidden Markov Models
Pedro Santana

L11: Probabilistic 
Planning

Planning as state-
space search.

Plans that optimize 
utility

Computing utility 
with probabilistic 
transitions.

Observe-Act as 
AND-OR search. Markovian hidden state 

inference.
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Our goal for today

How can we generate plans that 
optimize performance when 

controlling a system with stochastic 
transitions and hidden state? 
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1. Motivation

2. MDP recapitulation

3. Search-based probabilistic planning

4. AO*

5. LAO*

6. Extension to hidden states

10/14/2015

Today’s topics

P. Santana, 16.410/413 - Probabilistic Planning 9/46



10/14/2015

2. MDP recapitulation

Where we will:
- recall what we’ve learned about MDPs;
- learn that recap = recapitulation.
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Elements of an MDP

.05

.10 .80

.05𝑇(𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1) = Pr 𝑠𝑘+1|𝑠𝑘 , 𝑎𝑘

𝕊
𝕊: discrete set of states.

𝔸: discrete set of actions.

𝑇: 𝕊×𝔸×𝕊→ [0,1], transition function

𝑅: 𝕊×𝔸→ℝ, reward function.
𝔸

𝛾 ∈ [0,1]: discount factor
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Value iteration
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Solving MDPs through VI

𝑉(𝑠𝑘 , 𝑎𝑘) = 𝑅 𝑠𝑘 , 𝑎𝑘 + 𝛾  

𝑠𝑘+1

𝑉∗(𝑠𝑘+1) 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1

Expected reward 
of executing ak

at sk

Immediate 
reward

Optimal reward 
at sk+1

Expected, discounted optimal future reward

[AIMA] Section 17.2

𝑉∗ 0 𝑠𝑘 , ∀𝑠𝑘
𝜋∗(𝑠) = arg max

𝑎
𝑉(𝑠, 𝑎)

Unknown

𝑉∗ 𝑡+1 𝑠𝑘 = max
𝑎𝑘
𝑅 𝑠𝑘 , 𝑎𝑘 + 𝛾  

𝑠𝑘+1

𝑉∗(𝑡)(𝑠𝑘+1) 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1
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VI and goal regression

sgoal

P. Santana, 16.410/413 - Probabilistic Planning

𝑉∗ 𝑠𝑘 = max
𝑎𝑘
𝑅 𝑠𝑘 , 𝑎𝑘 + 𝛾  

𝑠𝑘+1

𝑉∗(𝑠𝑘+1) 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1

Dynamic programming works backwards from the goals.

13/46



10/14/2015

How does VI scale?

G

⋯
⋮

⋯
⋮

⋯
⋮

⋯
⋮

⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋮

⋮
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How does VI scale?

VI allows one to compute the optimal policy 
from every state reaching the goal.

Grows linearly with |𝕊|.

|𝕊| grows exponentially with the dimensions of 𝕊.

What if we only care about policies starting at one (or a 
few) possible initial states s0?

Heuristic forward search!
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𝕊

Subset of 𝕊 reachable from s0

10/14/2015

Searching from an initial state s0

Explored by HFS

Subset of 𝕊 on the 
optimal path from 

s0 to sgoal

Good heuristic: ≈ Bad heuristic: ≈
P. Santana, 16.410/413 - Probabilistic Planning

Explored by VI
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3. Search-based probabilistic planning

L06: Activity Planning L08: Markov Decision Processes

L10: Adversarial Games 10/09/15 Recitation

Planning as state-
space search.

Plans that optimize 
utility

Computing utility 
with probabilistic 
transitions.

Observe-Act as 
AND-OR search.

+
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Searching on the state graph

s0 sgoal
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Elements of probabilistic search

𝕊: discrete set of states.

𝔸: discrete set of actions.

𝑇: 𝕊×𝔸×𝕊→ [0,1], transition function

𝑅: 𝕊×𝔸→ℝ, reward function.

State S

sk+1sk

𝑇(𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1)

𝑅(𝑠𝑘 , 𝑎𝑘)

Looks familiar?

Could we frame previously-seen shortest path problems 
like this? How?

𝕊𝑔 ⊆ 𝕊: (terminal) goal states.

𝑠0 ∈ 𝕊: initial state.
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(Probabilistic) AND-OR search

⋯

⋯ ⋯ ⋯

OR node
agent action

AND node
stochastic 
transition

sk

a2 ana1

sk+1=1 sk+1=2 sk+1=d
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Hypergraph representation

⋯ ⋯

sk

a1

⋯sk+1=1 sk+1=2 sk+1=d sk+1=1 sk+1=2 sk+1=d

a2

an

All nodes are OR nodes Actions yield lists of successors 
annotated with probabilities

P. Santana, 16.410/413 - Probabilistic Planning

If every action has a single 
successor, we go back to a 

“standard” graph.
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4. AO* (Nilson, 1982)

Like A*, but for AND-OR search
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• Input: implicit AND-OR search problem

and an admissible heuristic function ℎ: 𝕊 → ℝ.

• Output: optimal policy in the form of an acyclic hypergraph
mapping states to actions.
– Cyclic policies: use LAO* (which we’ll see in a bit).

• Strategy: incrementally build solutions forward from s0, using h to 
estimate future utilities (just like A*!). The set of explored solutions 
form the explicit hypergraph G, and the subset of G corresponding 
to the current estimate of the best policy is called the greedy
hypergraph g.

10/14/2015

AO* in a nutshell

P. Santana, 16.410/413 - Probabilistic Planning

< 𝕊,𝔸, 𝑇, 𝑅, 𝑠0, 𝕊𝑔 >

23/46



10/14/2015

Admissible utility estimates

𝑉(𝑠𝑘 , 𝑎𝑘) = 𝑅 𝑠𝑘 , 𝑎𝑘 +  

𝑠𝑘+1

𝑉∗(𝑠𝑘+1) 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1

Expected reward 
of executing ak

at sk

Immediate 
reward

Optimal reward 
at sk+1

Expected optimal future reward

Unknown

ℎ 𝑠𝑘+1 ≥ 𝑉
∗(𝑠𝑘+1)

𝑉ℎ 𝑠𝑘 , 𝑎𝑘 = 𝑅 𝑠𝑘 , 𝑎𝑘 +  

𝑠𝑘+1

ℎ 𝑠𝑘+1 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1 ≥ 𝑉 𝑠𝑘 , 𝑎𝑘

Admissible (“optimistic”) estimate of future reward.

Should be “easy” to compute.
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AO* example

10/14/2015

s0

goal

Heuristic estimate

Known value

Node in g, the greedy graph.

Node in G, the explicit graph, but not in g.

P. Santana, 16.410/413 - Probabilistic Planning 25/46



Start
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G starts just with just the initial state s0

Open nodes: [s0]

g={s0: None }

s0
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Expansion

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning

2. Estimate the value of the leaf nodes using the heuristic h.

s0

Open nodes: [s0]

g={s0: None }

1. Choose an open node to expand  s0

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

R(s0,a2 )=-2

-10 -11 -10 -9
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Backup
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s0

Open nodes: [s0]

g={s0: None }

3. Backup values for the currently expanded node (s0)  and all its ancestors 
that are part of g (no ancestors), recording the best value at each node.

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

R(s0,a2 )=-2

-10 -11 -10 -9

𝑉ℎ 𝑠𝑘 , 𝑎𝑘 = 𝑅 𝑠𝑘 , 𝑎𝑘 +  

𝑠𝑘+1

ℎ 𝑠𝑘+1 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1

𝑉ℎ 𝑠0, 𝑎1 =−1 + −10 ∗ 0.7 − 11 ∗ 0.3 = −11.3

𝑉ℎ 𝑠0, 𝑎2 =−2 + −10 ∗ 0.6 − 9 ∗ 0.4 = −11.6

[-11.3,-11.6]
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Update g
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s0

Open nodes: [s0]

g={s0: None }

4. Update g and the list of open nodes (non-terminal) by selecting the 
best action at the nodes which got their values updated 

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

R(s0,a2 )=-2

-10 -11 -10 -9

𝑉ℎ 𝑠0, 𝑎1 =−1 + −10 ∗ 0.7 − 11 ∗ 0.3 = −11.3

𝑉ℎ 𝑠0, 𝑎2 =−2 + −10 ∗ 0.6 − 9 ∗ 0.4 = −11.6

[-11.3,-11.6]
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R(s0,a2 )=-2Update g
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s0

Open nodes: [𝑠1
1, 𝑠1
2]

g={s0: a1}

4. Update g and the list of open nodes (non-terminal) by selecting the 
best action at the nodes which got their values updated 

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

-10 -11 -10 -9

𝑉ℎ 𝑠0, 𝑎1 =−1 + −10 ∗ 0.7 − 11 ∗ 0.3 = −11.3

𝑉ℎ 𝑠0, 𝑎2 =−2 + −10 ∗ 0.6 − 9 ∗ 0.4 = −11.6

𝑠1
1 𝑠1

2

[-11.3,-11.6]

30/46



R(s0,a2 )=-2Expansion

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning

s0

Open nodes: [𝑠1
1, 𝑠1
2]

g={s0: a1}

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

-10 -11 -10 -9

𝑠1
1 𝑠1

2

2. Estimate the value of the leaf nodes using the heuristic h.

1. Choose any open node to expand  𝑠1
2

-10

[-11.3,-11.6]

0.2 0.8 0.5 0.5

-12 -13 -14

R(𝑠1
2,a2 )=-2R(𝑠1

2,a1 )=-1
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R(s0,a2 )=-2Backup
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s0

Open nodes: [𝑠1
1, 𝑠1
2]

g={s0: a1}

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

-10 -11 -10 -9

𝑠1
1 𝑠1

2

-10

0.2 0.8 0.5 0.5

-12 -13 -14

3. Backup values for the currently expanded node (𝑠1
2)  and all its ancestors that 

are part of g (s0), recording the best value at each node.

𝑉ℎ 𝑠1
2, 𝑎1 =−1 + −10 ∗ 0.2 − 12 ∗ 0.8 = −12.6

𝑉ℎ 𝑠1
2, 𝑎2 =−2 + −13 ∗ 0.5 − 14 ∗ 0.5 = −15.5

R(𝑠1
2,a2 )=-2R(𝑠1

2,a1 )=-1

[-12.6,-15.5]

From leafs to the root

[-11.78,-11.6]

𝑉ℎ 𝑠0, 𝑎1 =−1 + −10 ∗ 0.7 − 12.6 ∗ 0.3 = −11.78

𝑉ℎ 𝑠0, 𝑎2 =−2 + −10 ∗ 0.6 − 9 ∗ 0.4 = −11.6
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R(s0,a2 )=-2Update g
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s0

Open nodes: [𝑠1
1, 𝑠1
2]

g={s0: a1}

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

-10 -12.6 -10 -9

𝑠1
1 𝑠1

2

-10

0.2 0.8 0.5 0.5

-12 -13 -14

4. Update g and the list of open nodes (non-terminal) by selecting the best 
action at the nodes which got their values updated.

𝑉ℎ 𝑠1
2, 𝑎1 =−1 + −10 ∗ 0.2 − 12 ∗ 0.8 = −12.6

𝑉ℎ 𝑠1
2, 𝑎2 =−2 + −13 ∗ 0.5 − 14 ∗ 0.5 = −15.5

R(𝑠1
2,a2 )=-2R(𝑠1

2,a1 )=-1

[-12.6,-15.5]

From leafs to the root

[-11.78,-11.6]

𝑉ℎ 𝑠0, 𝑎1 =−1 + −10 ∗ 0.7 − 12.6 ∗ 0.3 = −11.78

𝑉ℎ 𝑠0, 𝑎2 =−2 + −10 ∗ 0.6 − 9 ∗ 0.4 = −11.6

33/46



R(s0,a2 )=-2Update g

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning

s0

Open nodes: [𝑠1
3, 𝑠1
4]

g={s0: a2}

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

-10 -10 -9

𝑠1
1 𝑠1

2

-10

0.2 0.8 0.5 0.5

-12 -13 -14

4. Update g and the list of open nodes (non-terminal) by selecting the best 
action at the nodes which got their values updated.

𝑉ℎ 𝑠1
2, 𝑎1 =−1 + −10 ∗ 0.2 − 12 ∗ 0.8 = −12.6

𝑉ℎ 𝑠1
2, 𝑎2 =−2 + −13 ∗ 0.5 − 14 ∗ 0.5 = −15.5

R(𝑠1
2,a2 )=-2R(𝑠1

2,a1 )=-1

[-12.6,-15.5]

From leafs to the root

[-11.78,-11.6]

𝑉ℎ 𝑠0, 𝑎1 =−1 + −10 ∗ 0.7 − 12.6 ∗ 0.3 = −11.78

𝑉ℎ 𝑠0, 𝑎2 =−2 + −10 ∗ 0.6 − 9 ∗ 0.4 = −11.6

𝑠1
3 𝑠1

4

-12.6
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R(s0,a2 )=-2Termination
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s0

Open nodes: [𝑠1
3, 𝑠1
4]

g={s0: a2}

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

-10 -10 -9

𝑠1
1 𝑠1

2

-10

0.2 0.8 0.5 0.5

-12 -13 -14

Search terminates when the list of open nodes is empty, i.e., all leaf nodes in g
are terminal (goals). 

R(𝑠1
2,a2 )=-2R(𝑠1

2,a1 )=-1

[-12.6,-15.5]

[-11.78,-11.6]

𝑠1
3 𝑠1

4

At this point, return g as the optimal policy π.

-12.6
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Input: < 𝕊,𝔸, 𝑇, 𝑅, 𝑠0, 𝕊𝑔 >, heuristic h.

Output: Policy : 𝕊 𝔸

Explicit graph G s0, g Best partial policy of G

while best partial policy graph g has nonterminal leafs

m Expand any nonterminal leaf from g and add children to G

Z  set containing m and all of its predecessors that are part of g

while Z is not empty

n  Remove from Z a node with no descendants in Z

Update utilities (V values) for n

  Choose next best action at n

Update g with the new 

10/14/2015

AO*’s pseudocode

Bellman 
backups

Heuristics for 
value-to-go

g is the graph obtained by 
following  from s0
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5. LAO* (Hansen & Zilberstein, 2001)

P. Santana, 16.410/413 - Probabilistic Planning

What happens if we find loops in the 
policy?
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Acyclic value updates

𝑉ℎ 𝑠𝑘 , 𝑎𝑘 = 𝑅 𝑠𝑘 , 𝑎𝑘 +  

𝑠𝑘+1

ℎ 𝑠𝑘+1 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1

Direction of update

Policy nodes are updated 
no more than once.

No loops
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Loops require iteration

𝑉ℎ 𝑠𝑘 , 𝑎𝑘 = 𝑅 𝑠𝑘 , 𝑎𝑘 + 𝛾  

𝑠𝑘+1

ℎ 𝑠𝑘+1 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1

Updates go both directions

Value iteration 𝑉∗ 0 𝑠𝑘 = ℎ 𝑠𝑘 , for 𝑠𝑘 among the policy nodes

𝑉∗ 𝑡+1 𝑠𝑘 = max
𝑎𝑘
𝑅 𝑠𝑘 , 𝑎𝑘 + 𝛾  

𝑠𝑘+1

𝑉∗(𝑡)(𝑠𝑘+1) 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1
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• Input: MDP < 𝕊,𝔸, 𝑇, 𝑅, 𝛾 >, initial state 𝑠0,
and an admissible heuristic ℎ: 𝕊 → ℝ.

• Output: optimal policy mapping states to 
actions.

• Strategy: same as in AO*, but value updates 
are performed through value or policy 
iteration.

10/14/2015

LAO* in a nutshell

P. Santana, 16.410/413 - Probabilistic Planning 40/46



R(s0,a2 )=-2VI on g

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning

s0

Open nodes: [𝑠1
1, 𝑠1
2]

g={s0: a1}

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

-10 -10 -9

𝑠1
1

𝑠1
2

0.2 0.8 0.5 0.5

-12

Perform VI on the expanded node and all of its ancestors in g.

R(𝑠1
2,a2 )=-2R(𝑠1

2,a1 )=-1

s0s0 𝑠1
2

Value iteration on policy nodes 𝑉∗ 0 𝑠𝑘 = ℎ 𝑠𝑘 , for 𝑠𝑘 among the policy nodes

𝑉∗ 𝑡+1 𝑠𝑘 = max
𝑎𝑘
𝑅 𝑠𝑘 , 𝑎𝑘 + 𝛾  

𝑠𝑘+1

𝑉∗(𝑡)(𝑠𝑘+1) 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1
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6. Extension to hidden state

P. Santana, 16.410/413 - Probabilistic Planning

What changes if the state isn’t directly 
observable?

L09: Hidden Markov Models
Pedro Santana

42/46
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From states to belief states

Node

Discrete belief state

Pr 𝑆𝑘 = 𝑠𝑖 𝑜1:𝑘

si

P. Santana, 16.410/413 - Probabilistic Planning

Pr 𝑆𝑘 𝑜1:𝑘 =  𝑝𝑘

Filtering (forward)
(see L09: HMMs)

43/46



10/14/2015

Incorporating HMM observations

a

⋯

P. Santana, 16.410/413 - Probabilistic Planning

 𝑝𝑘  𝑝𝑘 = Pr 𝑆𝑘 𝑜1:𝑘

 𝑝𝑘 = Pr 𝑆𝑘+1 𝑎𝑘 , 𝑜1:𝑘 = 𝑇(𝑎𝑘)  𝑝𝑘

Pr 𝑜𝑘+1 𝑎𝑘 ,  𝑝𝑘 =  

𝑠𝑘+1

Pr 𝑜𝑘+1 𝑠𝑘+1  𝑝𝑘(𝑠𝑘+1)

Pr 𝑆𝑘+1 𝑜1:𝑘 , 𝑜𝑘+1 = 𝑚Pr 𝑆𝑘+1 𝑜1:𝑘 , 𝑜𝑘+1 = 1

Pr(𝑆𝑘+1|𝑆𝑘 , 𝑎𝑘)

HMM obs. model

(prediction)

(filtering)
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Estimating belief state utility

𝑉ℎ 𝑠𝑘 , 𝑎𝑘 = 𝑅 𝑠𝑘 , 𝑎𝑘 +  

𝑠𝑘+1

𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1 ℎ 𝑠𝑘+1

P. Santana, 16.410/413 - Probabilistic Planning

𝑉ℎ  𝑝𝑘, 𝑎𝑘 = 

𝑠𝑘

 𝑝𝑘(𝑠𝑘)𝑅 𝑠𝑘 , 𝑎𝑘 +  

𝑜𝑘+1

Pr 𝑜𝑘+1 𝑎𝑘 ,  𝑝𝑘 𝐻  𝑝𝑘, 𝑜𝑘+1

𝐻  𝑝𝑘, 𝑜𝑘+1 =  

𝑠𝑘+1

Pr 𝑆𝑘+1 = 𝑠𝑘+1 𝑜1:𝑘, 𝑜𝑘+1 ℎ 𝑠𝑘+1

Fully observable

Partially observable
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• Input: < 𝕊,𝔸, 𝑇, 𝑅, 𝑂, 𝕊𝑔, ℎ,  𝑝0 >, where 𝑂 is the 
HMM observation model and  𝑝0 is the initial 
belief.

• Output: optimal policy in the form of an acyclic
hypergraph mapping beliefs to actions.

• Strategy: same as in AO*, replacing: 𝑠0 by  𝑝0; 
𝑇 𝑠𝑘 , 𝑎𝑘, 𝑠𝑘+1 by Pr 𝑜𝑘+1 𝑎𝑘,  𝑝𝑘 ; 𝑉ℎ 𝑠𝑘, 𝑎𝑘 by 
𝑉ℎ  𝑝𝑘, 𝑎𝑘 . 

10/14/2015

Partially observable AO* in a nutshell
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