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Assignments

* Problemset5

Out last Wednesday.
Due at midnight this Friday.

* Midterm on Monday, October 19t". Good luck, even though
you won’t need it! ;)

* Readings

10/14/2015

“Beyond Classical Search” [AIMA], Sections 4.3 and 4.4,
“Quantifying Uncertainty” [AIMA], Ch. 13;
“Making Complex Decisions” [AIMA], Ch. 17;

(Optional) Kolobov & Mausam, “Probabilistic Planning with
Markov Decision Processes”, Tutorial.

(Optional) Hansen & Zilberstein, “LAO*: a heuristic search
algorithm that finds solutions with loops”, Al, 2001.
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1. Motivation

Where can probabilistic planning be
useful?
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Courtesy of Andrew J. Wang
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Collaborative manufacturing
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Power supply restoration
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How this relates to what we’ve seen?

LO6: Activity Planning LO8: Markov Decision Processes
David Wang Brian Williams

Planning as state-

Plans that optimize
space search.

L11: Probabilistic | ey

Planning
Observe-Act as Computing utility
AND-OR search. Markovian hidden state with probabilistic
inference. transitions.
L10: Adversarial Games L09: Hidden Markov Models 10/09/15 Recitation
Tiago Vaquero Pedro Santana Enrique Fernandez
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Our goal for today

How can we generate plans that
optimize performance when
controlling a system with stochastic
transitions and hidden state?
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Today’s topics

Motivation

MDP recapitulation

Search-based probabilistic planning
AO*

LAO*

Extension to hidden states

o Uk wh e
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2. MDP recapitulation

Where we will:
- recall what we’ve learned about MDPs;
- learn that recap = recapitulation.
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Elements of an MDP

S: discrete set of states.

A: discrete set of actions.
T: SXAXS— [0,1], transition function
R: SXA-R, reward function.

Yy € [0,1]: discount factor

T(Sk, Ak, Sk+1) = Pr(si+1lsk, ax)

10/14/2015

.05

.10 1§ .80

.05
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Solving MDPs through Vi
ﬁ_) Unknown

V(s ar) = R(s, ar) +v z V*(Sk+1) T(Sk, Ak Sge+1)

Sk+1 Optimal reward

Expected reward Immediate
of executing a, reward | At Sk )
at s, [

Expected, discounted optimal future reward

\
VO (s,), Vs, / m*(s) = arg max V' (s, a)

prE+D) (Sx) = max R(sk, ax) +y z ) (Sk+1) T (S, Qs Sg+1)
ak

k Sk+1 [AIMA] Section 17y
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VI and goal regression

Dynamic programming works backwards from the goals.

V*(sk) = max R(s, ax) +v z V*(sk+1) T(Sk, Ak, Sk+1)

Sk+1
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How does VI scale?
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How does VI scale?

VI allows one to compute the optimal policy
from every state reaching the goal.

Grows linearly with |S].

|S| grows exponentially with the dimensions of S.

What if we only care about policies starting at one (or a
few) possible initial states s,?

Heuristic forward search!
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Searching from an initial state s,

Explored by HFS

Subset of S reachable from s,

Subset of S on the
optimal path from

SptO Sypa

Explored by VI

Good heuristic: -z- Bad heuristic: -z-
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3. Search-based probabilistic planning

LO6: Activity Planning

Planning as state-
space search.

Observe-Act as
AND-OR search.

L10: Adversarial Games

L08: Markov Decision Processes

Plans that optimize
utility

Computing utility
with probabilistic
transitions.

10/09/15 Recitation

10/14/2015
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Searching on the state graph
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Elements of probabilistic search

S: discrete set of states. Q State 5

A: discrete set of actions.

T: SxXAXS— |0,1], transition function .
[0.1] I Looks familiar?

R: SXA—-R, reward function.

So € S: initial state.

T (Sk, Qs Se+1)
S, € S: (terminal) goal states. S R(5e. ) "\ Sk

Could we frame previously-seen shortest path problems
like this? How?
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(Probabilistic) AND-OR search

S, OR node
agent action

a; a, a,
AND node . .
stochastic
- .l
N ~ transition
d =
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Hypergraph representation

All nodes are OR nodes e Actions yield lists of successors
annotated with probabilities

If every action has a single
successor, we go back to a
}@}. standard” graph.

al an
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4. AO* (Nilson, 1982)

Like A*, but for AND-OR search
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AO* in a nutshell

* Input: implicit AND-OR search problem

<S,AT,R,SS, >

and an admissible heuristic function h: S — R.

e Qutput: optimal policy in the form of an acyclic hypergraph
mapping states to actions.

— Cyclic policies: use LAO* (which we’ll see in a bit).

* Strategy: incrementally build solutions forward from s, using h to
estimate future utilities (just like A*!). The set of explored solutions
form the explicit hypergraph G, and the subset of G corresponding
to the current estimate of the best policy is called the greedy

hypergraph g.
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Admissible utility estimates

Unknown

V(sk, ax) = R(sg, ag) + z V*(sk+1) T(Sk, g, Sg+1)

Sk+1 Optimal reward
at Sk+1

Expected reward Immediate
of executing a, reward

ats,
Expected optimal future reward

» Admissible (“optimistic”) estimate of future reward.

h(s = V(s
5( e+1) (Sk+1) Should be “easy” to compute.

V(s ax) = R(sk, ax) + z h(Sk+1) TSk, Ak, Sk1) = V(sk, ax)

Sk+1
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AO* example

Node in g, the greedy graph.

Node in G, the explicit graph, but not in g.

o
»

Known value

—
Heuristic estimate

Oon
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Start

Open nodes: [s,] _ o o
G starts just with just the initial state s,

g={s,: None }
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Expansion

Open nodes: [s,]

g={s,: None }

1. Choose an open node to expand — sO

2. Estimate the value of the leaf nodes using the heuristic h.
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[-11.3,-11.6]

Backup

Open nodes: [s,]

g={s,: None }

3. Backup values for the currently expanded node (s,) and all its ancestors
that are part of g (no ancestors), recording the best value at each node.

Vi(sk,ax) = R(sk, ax) + Z h(Sik+1) T(Sk, Qi Sie+1)

Sk+1
Vi(sg,a;) =—1+(—-10%0.7—11%0.3) = —11.3
Vi(sg,a,) =—2+(—10%x0.6 —9+x04) = —-11.6
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[-11.3,-11.6]

Update g

Open nodes: [s,]

g={s,: None }

4. Update g and the list of open nodes (non-terminal) by selecting the
best action at the nodes which got their values updated

Vih(sg,a1) =—1+(—10%0.7—-11%0.3) = —-11.3
Vi(sg,a,) =—2+(—10%x0.6 —9+0.4) = —-11.6
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[-11.3,-11.6]

0.4

Open nodes: [s1, s? -10

g={s,: al}

4. Update g and the list of open nodes (non-terminal) by selecting the
best action at the nodes which got their values updated

Vih(sg,a1) =—1+(—10%0.7—-11%0.3) = —-11.3
Vi(sg,a,) =—2+(—10%x0.6 —9+0.4) = —-11.6
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[-11.3,-11.6]

Open nodes: [s1, s? -10

g={s,: al}

1. Choose any open node to expand — s?

2. Estimate the value of the leaf nodes using the heuristic h.
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[-11.78,-11.6]

Backup

Open nodes: [s1, s?

g={s,: al}

3. Backup values for the currently expanded node (s?) and all its ancestors that
are part of g (s,), recording the best value at each node.

Vh(si,a;) = =14 (=10%0.2 —12 % 0.8) = —12.6
Va(st,az) = =2+ (=13%0.5—14%0.5) = =155 | g0 feafs to the root

Vi(sg,a;) = =1+ (=10 % 0.7 — 12.6 * 0.3) = —11.78
V(S0 a5) = =2+ (—10%0.6 —9%0.4) = —11.6 | §
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[-11.78,-11.6]

Open nodes: [s1, s?

g={s,: al}

4. Update g and the list of open nodes (non-terminal) by selecting the best
action at the nodes which got their values updated.

Vh(si,a;) = =14 (=10%0.2 —12 % 0.8) = —12.6
Va(st,az) = =2+ (=13%0.5—14%0.5) = =155 | g0 feafs to the root

Vi(sg,a;) = =1+ (=10 % 0.7 — 12.6 * 0.3) = —11.78
V(S0 a5) = =2+ (—10%0.6 —9%0.4) = —11.6 | §
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[-11.78,-11.6]

Update g e

. 0.3
[e3 41 . (
Open nodes: [s7,s7] -10 12.6/ 1 12.6,-15.5]
g={s,: a2} s1 st 2 °1 o1
R(Slz;al )=-1 R(s1,a; )=-2
10 -12 -13 -14

4. Update g and the list of open nodes (non-terminal) by selecting the best
action at the nodes which got their values updated.

Vh(si,a;) = =14 (=10%0.2 —12 % 0.8) = —12.6
Va(st,az) = =2+ (=13%0.5—14%0.5) = =155 | g0 feafs to the root

Vi(sg,a;) = =1+ (=10 % 0.7 — 12.6 * 0.3) = —11.78
V(S0 a5) = =2+ (—10%0.6 —9%0.4) = —11.6 | §
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[-11.78,-11.6]

Termination ,,

” 0.3
[e3 41 . (
Open nodes: [s7,s7] -10 12.6/ 1 12.6,-15.5]
g={s,: a2} s1 st 2 °1 o1
R(Slz;al )=-1 R(s1,a; )=-2
10 -12 -13 -14

Search terminates when the list of open nodes is empty, i.e., all leaf nodes in g
are terminal (goals).

l

At this point, return g as the optimal policy .
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AO*’s pseudocode

Input: < §,A, T, R, s, Sg > heuristic h.
Output: Policy t: § — A Heuristics for
Explicit graph G <— s,, g < Best partial policy of G value-to-go
while best partial policy graph g has nonterminal leafs
m < Expand any nonterminal leaf from g and add children to G
Z < set containing m and all of its predecessors that are part of g
while Zis not empty
Bellman n < Remove from Z a node with no descendants in Z
backups Update utilities (V values) for n

1t < Choose next best action at n

Update g with the new &t g is the graph obtained by
following m from s,

10/14/2015 P. Santana, 16.410/413 - Probabilistic Planning



5. LAO* (Hansen & Zilberstein, 2001)

What happens if we find loops in the
policy?
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Acyclic value updates

No loops

Policy nodes are updated <
no more than once.

Vi (s, ax) = R(sk, ay) + 2 h(sk+1) T(Sk, ke, Sk+1)

Sk+1

Direction of update
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Vn(sk, ax) = R(sy,ax) +v Z h(sk+1) T(Sk, ak, Sk+1)

l Sk+1

Value iteration

V*©(s.) = h(sy), for s, among the policy nodes

V¢ (s,) = max R(sg, ax) + ¥ 2 V*® (sk41) T(Sks s Se1)
a
k Sk+1 J

Updates go both directions
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LAO* in a nutshell

* Input: MDP < §,A, T, R,y >, initial state s,
and an admissible heuristic h: S — R.

* Output: optimal policy mapping states to
actions.

e Strategy: same as in AO*, but value updates
are performed through value or policy
iteration.
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Vliong

Open nodes: [s1, s? -10 -9

g={s,: al}

Perform VI on the expanded node and all of its ancestorsin g.

S . N
Value iteration on policy nodes V*0)(s,) = h(sy), for s, among the policy nodes

p*t+1) (sx) = max R(sy,a;) +vy E y*® (Sk+1) T(Sk, Ax» Sk+1)
a
\_ ‘ Sk+1 Y,
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6. Extension to hidden state

What changes if the state isn’t directly
observable?

L09: Hidden Markov Models
Pedro Santana
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From states to belief states

Pr(Sgloq.x) = Dx

S Filtering (forward)
u 1' i (see LO9: HMMs)
Pr(Sk = sil01:x)

)
o L4
~
“
T L4

]

L]
o .
[
. ]
o L]
‘_." [ ]
[

04 -

.

.
.
e, .
., .
e, *
*

N Od e .. "" [ el e ’.0

Discrete belief state
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Incorporating HMM observations

Dr = Pr(Sklog.x) » Pr(Si411Sk, ar)

“ Pr = Pr(Sksqlag, 01.x) = T(ag)Dx  (prediction)

Pr(ogi1lag, r) = z Pr(ok+1lSk+1) Pr(Sk+1)

%? A Sk+1
< ?o; HMM obs. model
H
X

Il \g Q
+ >

5 %

\— Py

a Z)

Pr(Sk+1101:6) Og+1 = 1) Pr(Sk+1101.x, 0s1 = m) (filtering)
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Estimating belief state utility

Fully observable

Vit @) = R(510 @) + ) T(Si G S (S5e41)

Sk+1

-

~

Vi (P, ax) = Z Dr (Sk)R (S, ag) + 2 Pr(ogylag, B) H( Py, Ok +1)
Sk

Ok+1

H Dy, 0k +1) = Z Pr(Sk+1 = Sk+1101:k Ok +1) h(Sk41)

\_

Sk+1

Partially observable

10/14/2015
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Partially observable AO* in a nutshell

* Input: < S,AT,R,0,S,,h,py >, where O is the

HMM observation mod%l and Py is the initial
belief.

* Output: optimal policy in the form of an acyclic
hypergraph mapping beliefs to actions.

* Strategy: same as in AO*, replacing: sq by Dg;
T (Sk, a, Sk+1) by Pr(0k+1|ak:pk) Vi (sk, ax) by
Vi (Dk, ax)-
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