Risk-aware AO* (RAO*)

When you want to get there well and safely

16.412/6.834 Cognitive Robotics

Pedro Santana (psantana@mit.edu)
May the $4^{\text {th }}$ be with you, 2016.

1. Motivation

Where can risk-aware planning be useful?

AEROASTRO

Science scouts

Courtesy of Andrew J. Wang

Collaborative manufacturing

Power supply restoration

Thiébaux \& Cordier (2001)

Resilient Space Systems (RSS) demo

0.0 : (move rover1 I1 I3)
270.0 : (turnon_mastcam rover1 13)
290.0 : (take_pictures_mastcam rover1 I 3 pic_req1)
310.0 : (move rover1 13 I5)
650.0 : (turnon_mastcam rover1 15)
670.0 : (take_pictures_mastcam rover1 15 pic_req3)
690.0 : (survey_location rover1 15)
740.0 : (collect_rock_sample rover1 15 rock_req1)
790.0 : (move rover1 15 12)
1110.0: (transmit_data rover1 12 rock_req1)
1140.0: (turnon_mastcam rover1 12)
1160.0: (take_pictures_mastcam rover1 12 pic_req2)
1180.0: (transmit_data rover1 12 pic_req2)
1210.0: (transmit_data rover1 12 pic_req1)
1240.0: (transmit_data rover1 12 pic_req3)
1270.0: (survey_location rover1 12)
1320.0: (collect_rock_sample rover1 12 rock_req2)
1370.0: (transmit_data rover1 12 rock_req2)

Joint work between JPL, Caltech, WHOI, and MIT.

Our goal for today

How can we generate safe plans that optimize performance when
controlling a system with stochastic transitions and hidden state?

Today's topics

1. Motivation

2. Handling belief states

3. RAO*

2. Handling belief states

"Probability is common sense reduced to calculation."

Hidden Markov models (HMMs)

Observing hidden Markov chains

Definition: Hidden Markov Model (HMM)

A sequence of random variables $O_{1}, O_{2}, \ldots, O_{t}, \ldots$, is an HMM if the distribution of O_{t} is completely defined by the current (hidden) state S_{t} according to

$$
\operatorname{Pr}\left(O_{t} \mid S_{t}\right)
$$

where S_{t} is part of an underlying Markov chain.

Robot navigation

Bayes' rule

$$
\begin{gathered}
\text { Joint } \\
\operatorname{Pr}(A, B)=\operatorname{Pr}(\mathrm{A} \mid \mathrm{B}) \operatorname{Pr}(\mathrm{B}) \\
\operatorname{Pr}(A, B)=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \operatorname{Pr}(\mathrm{A})
\end{gathered}
$$

A, B : random variables

$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B}) \operatorname{Pr}(\mathrm{B})=\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \operatorname{Pr}(\mathrm{A})$

$\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\frac{\operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \operatorname{Pr}(\mathrm{A})}{\operatorname{Pr}(\mathrm{B})} \propto \operatorname{Pr}(\mathrm{B} \mid \mathrm{A}) \operatorname{Pr}(\mathrm{A})$

Notation

Random variable!
 $\operatorname{Pr}\left(S_{t} \mid \cdot\right) \longrightarrow$ Probability distribution of S_{t}

Vector of d
probability values.

$$
\operatorname{Pr}\left(S_{t}=s \mid \cdot\right)=\operatorname{Pr}\left(s_{\mathrm{t}} \mid \cdot\right)
$$

Probability of observing $S_{t}=s$ according to $\operatorname{Pr}\left(S_{t} \mid \cdot\right)$

Probability $\in[0,1]$

Filtering (forward)

"Given the available history of observations, what's the belief about the current hidden state?"

$$
\operatorname{Pr}\left(S_{t} \mid o_{1: t}\right)=\hat{p}_{t}
$$

$$
\begin{array}{rlr}
\operatorname{Pr}\left(S_{t} \mid o_{1: t}\right) & =\operatorname{Pr}\left(S_{t} \mid o_{t}, o_{1: t-1}\right) & \text { Bayes } \\
& \propto \operatorname{Pr}\left(o_{t} \mid S_{t}, o_{1: t-1}\right) \operatorname{Pr}\left(S_{t} \mid o_{1: t-1}\right) & \text { Obs. model } \\
& =\operatorname{Pr}\left(o_{t} \mid S_{t}\right) \operatorname{Pr}\left(S_{t} \mid o_{1: t-1}\right) & \\
\operatorname{Pr}\left(S_{t} \mid o_{1: t-1}\right) & =\sum_{i=1}^{d} \operatorname{Pr}\left(S_{t} \mid S_{t-1}=i, o_{1: t-1}\right) \operatorname{Pr}\left(S_{t-1}=i \mid o_{1: t-1}\right) & \text { Marg. } \\
& =\sum_{i=1}^{d} \operatorname{Pr}\left(S_{t} \mid S_{t-1}=i\right) \underbrace{\operatorname{Pr}\left(S_{t-1}=i \mid o_{1: t-1}\right)}_{\text {Recursion! }} & \text { Trans. model }
\end{array}
$$

Filtering

"Given the available history of observations, what's the belief about the current hidden state?"

$$
\operatorname{Pr}\left(S_{t} \mid o_{1: t}\right)=\hat{p}_{t}
$$

1. One-step prediction:

$$
\operatorname{Pr}\left(S_{t} \mid o_{1: t-1}\right)=\overline{p_{t}}=\sum_{i=1}^{d} \operatorname{Pr}\left(S_{t} \mid S_{t-1}=i\right) \operatorname{Pr}\left(S_{t-1}=i \mid o_{1: t-1}\right)=T \hat{p}_{t-1}
$$

2. Measurement update:

$$
\widehat{p_{t}}[i]=\eta \operatorname{Pr}\left(o_{t} \mid S_{t}=i\right) \overline{p_{t}}[i]
$$

3. Normalize belief (to get rid of η):

$$
\widehat{p_{t}}[i] \leftarrow \frac{\widehat{p_{t}}[i]}{\eta}, \eta=\sum_{j=1}^{d} \widehat{p_{t}}[j]
$$

Grid World

							,											
			,															
										,								
																	,	

Prediction example

0	0	0	0
0	0.6	0.2^{s}	0
0	0.1	0.1	0
0	0	0	0

Robot model

"If told to perform an action, the robot will execute it with probability 90% or do nothing with probability 10%."

Action = "Move right!"

What is the probability of being in the red square?

$$
\operatorname{Pr}\left(S_{t+1}=s \mid a_{t}=\text { right }\right) ?
$$

$$
\begin{aligned}
\operatorname{Pr}\left(S_{t+1}=s \mid a_{t}=\text { right }\right) & =\operatorname{Pr}\left(S_{t+1}=s \mid S_{t}=s^{\prime}, a_{t}=\text { right }\right) \times \operatorname{Pr}\left(S_{t}=s^{\prime}\right) \\
& +\operatorname{Pr}\left(S_{t+1}=s \mid S_{t}=s^{\prime}, a_{t}=\text { right }\right) \times \operatorname{Pr}\left(S_{t}=s^{\prime}\right) \\
& +\operatorname{Pr}\left(S_{t+1}=s \mid S_{t}=s^{\prime}, a_{t}=\text { right }\right) \times \operatorname{Pr}\left(S_{t}=s^{\prime}\right) \\
& +\operatorname{Pr}\left(S_{t+1}=s \mid S_{t}=s^{\prime}, a_{t}=\text { right }\right) \times \operatorname{Pr}\left(S_{t}=s^{\prime}\right)
\end{aligned}
$$

Prediction example

Robot model

"If told to perform an action, the robot will execute it with probability 90% or do nothing with probability 10%."

Action = "Move right!"

What is the probability of being in the red square?

$$
\begin{aligned}
\operatorname{Pr}\left(S_{t+1}=s \mid a_{t}=\text { right }\right) & =0.9 \times 0.6=0.56 \\
& +0.0 \times 0.1 \\
& +0.1 \times 0.2 \\
& +0.0 \times 0.1
\end{aligned}
$$

Sensor update

Beacon Model

- If at the beacon's location, returns 0 with probability 95\%;
- If 1 square away, returns ' 1 ' with probability 70\%;
- If 2 squares away, returns '2' with probability 80\%;
- If 3 squares away, returns ' 3 ' with probability 60\%;

In all other cases, the beacon returns no reading (${ }^{-}-$').

Sensor update

"What is my confidence about being in state s at time $t+1$, given that I took action a at time t and received observation o from beacon b at time $t+1$?"

$$
\operatorname{Pr}\left(S_{t+1}=s \mid a_{t}=a, o_{t+1}=o_{b}\right) ?
$$

$$
\operatorname{Pr}\left(S_{t+1}=s \mid a_{t}=a, o_{t+1}=o_{b}\right) \propto \operatorname{Pr}\left(o_{t+1}=o_{b} \mid S_{t+1}=s\right) \operatorname{Pr}\left(S_{t+1}=s \mid a_{t}=a\right)
$$

Compute unnormalized probabilities.

$$
\operatorname{Pr}\left(S_{t+1}=s \mid a_{t}=a, o_{t+1}=o_{b}\right) \leftarrow \frac{\operatorname{Pr}\left(S_{t+1}=s \mid a_{t}=a, o_{t+1}=o_{b}\right)}{\sum_{s^{\prime}} \operatorname{Pr}\left(S_{t+1}=s^{\prime} \mid a_{t}=a, o_{t+1}=o_{b}\right)}
$$

Normalize their sum to 1.

Sensor update example

Prediction example. Go check it!

Action = "Move right!"

Observation = "You're 2 squares away."

Beacon Model

- If at the beacon's location, returns 0 with probability 95%;
- If 1 square away, returns ' 1 ' with probability 70%;
- If 2 squares away, returns ' 2 ' with probability 80%;
- If 3 squares away, returns ' 3 ' with probability 60%;
- In all other cases, the beacon returns no reading ('-').
$\operatorname{Pr}\left(S_{t+1}=s \mid a_{t}=\right.$ right, $\left.o_{t+1}^{\prime}=2\right) \quad \propto \operatorname{Pr}\left(o_{t+1}=2 \mid s_{t+1}=s\right) \operatorname{Pr}\left(S_{t+1}=s \mid a_{t}=\right.$ right $)$

Sensor update example

Prediction example. Go check it!

Action = "Move right!"

Observation = "You're 2 squares away."

Beacon Model

- If at the beacon's location, returns 0 with probability 95%;
- If 1 square away, returns ' 1 ' with probability 70%;
- If 2 squares away, returns ' 2 ' with probability 80%;
- If 3 squares away, returns ' 3 ' with probability 60%;
- In all other cases, the beacon returns no reading ('-').

$$
\begin{aligned}
\operatorname{Pr}\left(S_{t+1}=s \mid a_{t}=\text { right, } o_{t+1}^{\prime}=2\right) & \propto \operatorname{Pr}\left(o_{t+1}=2 \mid S_{t+1}=s\right) \operatorname{Pr}\left(S_{t+1}=s \mid a_{t}=\text { right }\right) \\
& =0.8 \times 0.56 \\
& =0.448
\end{aligned}
$$

Sensor update example

> Action = "Move right!"
\square
Observation = "You're 2 squares away."

Beacon Model

- If at the beacon's location, returns 0 with probability 95%;
- If 1 square away, returns ' 1 ' with probability 70%;
- If 2 squares away, returns ' 2 ' with probability 80%;
- If 3 squares away, returns ' 3 ' with probability 60%;
- In all other cases, the beacon returns no reading ('-').

Normalize the probabilities on the grid!

Sensor update example

> Action = "Move right!"

$$
\text { Observation = "You're } 2 \text { squares away." }
$$

Beacon Model

- If at the beacon's location, returns 0 with probability 95\%;
- If 1 square away, returns ' 1 ' with probability 70%;
- If 2 squares away, returns ' 2 ' with probability 80%;
- If 3 squares away, returns ' 3 ' with probability 60%;
- In all other cases, the beacon returns no reading ('-').

Done with belief state updates!

3. RAO*

"It's a trap!"
 — RAO*, after determining that a policy was too risky.

RAO* $=A O^{*}+$ Belief states + Execution risk

"Probability of violating constraints © during execution."

$$
\leq \Delta \equiv \operatorname{er}\left(b_{0}, \mathbb{C} \mid \pi\right) \leq \Delta
$$

Key 1: (admissible) value heuristic guiding search towards "promising" policies;
Key 2: (admissible) execution risk heuristic allowing risk bounds to be propagated forward.

Elements of a CC-POMDP

\mathbb{S} : discrete set of states.
$\Delta=0.01 \rightarrow$ 'Collision probability must be less than 1%.'

$\mathbb{A}:$ discrete set of actions.

(1): discrete set of observations.
$T: \mathbb{S} \times \mathbb{A} \times \mathbb{S} \rightarrow[0,1]$, transition function
$0: \mathbb{S} \times \mathbb{C} \rightarrow[0,1]$, observation function
$R: \mathbb{S} \times \mathbb{A} \rightarrow \mathbb{R}$, reward function.
\mathbb{C} : set of state constraints.
Δ : risk bound.

$$
\begin{aligned}
& T\left(s_{k}, a_{k}, s_{k+1}\right)=\operatorname{Pr}\left(s_{k+1} \mid s_{k}, a_{k}\right) \\
& O\left(s_{k}, o_{k}\right)=\operatorname{Pr}\left(o_{k} \mid s_{k}\right)
\end{aligned}
$$

Searching from an initial belief b_{0}

Good heuristic: \square

Bad heuristic:

RAO* nodes are belief states

Partially observable AND-OR search

Hypergraph representation

All nodes are OR nodes

Actions yield lists of successors annotated with probabilities
a_{n} If every action has a single successor, we go back to a "standard" graph.

Key concepts

1. How to compute transition probabilities
2. How to compute (admissible) utility estimates
3. How to compute (admissible) execution risk estimates
4. How to put them all together

3.1 Hyperedge probabilities

Computing hyperedge probabilities

$$
\begin{array}{r}
\bar{p}_{k+1}=\operatorname{Pr}\left(S_{k+1} \mid a_{1: k}, o_{1: k}\right)=T\left(a_{k}\right) \hat{p}_{k} \operatorname{Pr}\left(o_{k+1} \mid a_{k}, \hat{p}_{k}\right)=\sum_{s_{k+1}} \operatorname{Pr}\left(o_{k+1} \mid s_{k+1}\right) \bar{p}_{k+1}\left(s_{k+1}\right) \\
\operatorname{Pr}(o \mid \square)=0.8 \\
\operatorname{Pr}(-\mid \square)=0.2
\end{array} \quad \begin{aligned}
& \operatorname{Pr}(o \mid \square)=0.6 \\
& \operatorname{Pr}(\times \mid \square)=0.4
\end{aligned}
$$

3.2 Admissible utility estimates

Admissible ("optimistic") estimate of future reward. Should be "easy" to compute.

$$
V_{h}\left(s_{k}, a_{k}\right)=R\left(s_{k}, a_{k}\right)+\sum_{s_{k+1}} h\left(s_{k+1}\right) T\left(s_{k}, a_{k}, s_{k+1}\right) \geq V\left(s_{k}, a_{k}\right)
$$

Estimating belief state utility

Fully observable

$$
\begin{aligned}
& V_{h}\left(s_{k}, a_{k}\right)=R\left(s_{k}, a_{k}\right)+\sum_{s_{k+1}} T\left(s_{k}, a_{k}, s_{k+1}\right) h\left(s_{k+1}\right) \\
& V_{h}\left(\hat{p}_{k}, a_{k}\right)=\sum_{s_{k}} \hat{p}_{k}\left(s_{k}\right) R\left(s_{k}, a_{k}\right)+\sum_{o_{k+1}} \operatorname{Pr}\left(o_{k+1} \mid a_{k}, \hat{p}_{k}\right) H\left(\hat{p}_{k}, o_{k+1}\right) \\
& H\left(\hat{p}_{k}, o_{k+1}\right)=\sum_{s_{k+1}} \operatorname{Pr}\left(S_{k+1}=s_{k+1} \mid o_{1: k}, o_{k+1}\right) h\left(s_{k+1}\right)
\end{aligned}
$$

3.3 Execution risk

$S a_{i}=1$: agent hasn't violated \mathbb{C} until i-th step
$\operatorname{er}\left(b_{k}, \mathbb{C} \mid \pi\right)=1-\operatorname{Pr}\left(\bigwedge_{i=k}^{T} S a_{i} \mid b_{k}, \pi\right.$
Probability of violating constraints from k onwards.

Probability of remaining safe from k onwards.

$$
\operatorname{er}\left(b_{k} \mid \pi\right)=\underbrace{r_{b}\left(b_{k}\right)}_{\begin{array}{c}
\text { Immediate risk at the } \\
\text { current belief state. }
\end{array}}+\left(1-r_{b}\left(b_{k}\right)\right) \sum_{o_{k+1}} \underbrace{\operatorname{Pr}^{s a}\left(o_{k+1} \mid \pi\left(b_{k}\right), b_{k}\right)}_{\begin{array}{c}
\text { Observations originated } \\
\text { from safe states. }
\end{array}} \operatorname{er}\left(b_{k+1} \mid \pi\right)
$$

Execution risk

$$
\operatorname{er}\left(b_{k} \mid \pi\right)=\underbrace{r_{b}\left(b_{k}\right)}_{\begin{array}{c}
\text { Immediate risk at the } \\
\text { current belief state. }
\end{array}}+\left(1-r_{b}\left(b_{k}\right)\right) \sum_{o_{k+1}} \underbrace{\operatorname{Pr} s a\left(o_{k+1} \mid \pi\left(b_{k}\right), b_{k}\right)}_{\begin{array}{c}
\text { Observations originated } \\
\text { from safe states. }
\end{array}} \operatorname{er}\left(b_{k+1} \mid \pi\right)
$$

$$
\begin{aligned}
& r_{b}\left(b_{k}\right)=\sum_{s_{k} \in \mathbb{S}} b\left(s_{k}\right) c_{v}\left(p\left(s_{k}\right), \mathbb{C}\right) \\
& \bar{b}^{s a}\left(s_{k+1} \mid a_{k}\right)=\operatorname{Pr}\left(s_{k+1} \mid S a_{k}, a_{k}, b_{k}\right)=\frac{\sum_{s_{k}: c_{v}\left(p\left(s_{k}\right), \mathbb{c}\right)=0} T\left(s_{k}, a_{k}, s_{k+1}\right) b\left(s_{k}\right)}{1-r_{b}\left(b_{k}\right)} \\
& \operatorname{Pr}^{s a}\left(o_{k+1} \mid a_{k}, b_{k}\right)=\operatorname{Pr}\left(o_{k+1} \mid S a_{k}, a_{k}, b_{k}\right)=\sum_{s_{k+1}} O\left(s_{k+1}, o_{k+1}\right) \bar{b}^{s a}\left(s_{k+1} \mid a_{k}\right)
\end{aligned}
$$

Execution risk in pictures

$$
\operatorname{er}\left(b_{k} \mid \pi\right)=r_{b}\left(b_{k}\right)+\left(1-r_{b}\left(b_{k}\right)\right) \sum_{o_{k+1}} P r^{s a}\left(o_{k+1} \mid \pi\left(b_{k}\right), b_{k}\right) \operatorname{er}\left(b_{k+1} \mid \pi\right)
$$

Estimating execution risk

$$
\operatorname{er}\left(b_{k} \mid \pi\right)=r_{b}\left(b_{k}\right)+\left(1-r_{b}\left(b_{k}\right)\right) \sum_{o_{k+1}} \operatorname{Pr}^{s a}\left(o_{k+1} \mid \pi\left(b_{k}\right), b_{k}\right) \operatorname{er}\left(b_{k+1} \mid \pi\right)
$$

Admissible ("optimistic") estimate of future execution risk
$h_{e r}\left(b_{k+1} \mid \pi\right) \leq \operatorname{er}\left(b_{k+1} \mid \pi\right)$
Should be "easy" to compute.

$$
e r_{h}\left(b_{k} \mid \pi\right)=r_{b}\left(b_{k}\right)+\left(1-r_{b}\left(b_{k}\right)\right) \sum_{o_{k+1}} P r^{s a}\left(o_{k+1} \mid \pi\left(b_{k}\right), b_{k}\right) h_{e r}\left(b_{k+1} \mid \pi\right)
$$

$$
h_{e r}\left(b_{k+1} \mid \pi\right)=r_{b}\left(b_{k+1}\right) \text { is always admissible }
$$

Propagating execution risk estimates

$$
e r_{h}\left(b_{k} \mid \pi\right)=r_{b}\left(b_{k}\right)+\left(1-r_{b}\left(b_{k}\right)\right) \sum_{o_{k+1}} P r^{s a}\left(o_{k+1} \mid \pi\left(b_{k}\right), b_{k}\right) h_{e r}\left(b_{k+1} \mid \pi\right)
$$

$$
\Delta_{k+1}^{\prime}=\frac{1}{P r^{s a}\left(o^{\prime}{ }_{k+1} \mid \pi\left(b_{k}\right), b_{k}\right)}\left(\frac{\Delta_{k}-r_{b}\left(b_{k}\right)}{1-r_{b}\left(b_{k}\right)}-\sum_{o_{k+1} \neq o_{k+1}^{\prime}} P r^{s a}\left(o_{k+1} \mid \pi\left(b_{k}\right), b_{k}\right) h_{e r}\left(b_{k+1} \mid \pi\right)\right)
$$

Risk example

Robot model

"If told to move, R2D2 achieves the desired cell with probability 90%, or slips to either side with probability 5%."

Risk example

Robot model

"If told to move, R2D2 achieves the desired cell with probability 90%, or slips to either side with probability 5\%."

Both particles share the same position

Risk example

Robot model

"If told to move, R2D2 achieves the desired cell with probability 90%, or slips to either side with probability 5\%."

Both particles share the same position

3.4 RAO* in a nutshell

- Input: implicit partially observable AND-OR search problem

$$
<\mathbb{S}, \mathbb{A}, \mathbb{O}, T, O, R, \mathbb{C}, \Delta>, b_{0}
$$

- Output: optimal policy in the form of an acyclic hypergraph mapping belief states to actions.
- Strategy: incrementally build solutions forward from b_{0}, using h to estimate future utilities (just like A^{*} !) and $h_{e r}$ to estimate policy risk. The set of explored solutions form the explicit hypergraph G, and the subset of G corresponding to the current estimate of the best policy is called the greedy hypergraph g.

RAO*'s pseudocode

Additions to AO* shown in red
Input: $<\mathbb{S}, \mathbb{A}, \mathbb{O}, T, O, R, \mathbb{C}, \Delta>, b_{0}$
Output: Policy π : $\mathbb{B} \rightarrow \mathbb{A}$
Explicit graph $G \leftarrow \mathrm{~b}_{0}, g \leftarrow$ Best partial policy of G
Heuristics for utility and execution risk
while best partial policy graph g has nonterminal leafs $m \leftarrow$ Expand any nonterminal leaf from g Add to G the children in m which do not violate risk bound

Bellman backups
$Z \leftarrow$ set containing m and all of its predecessors that are part of g while Z is not empty
$n \leftarrow$ Remove from Z a node with no descendants in Z
Update utility and execution risk for n
$\pi \leftarrow$ Choose best action at n not violating risk bound
Update g with the new π
g is the graph obtained by following π from b_{0}

RAO* example

Node in g, the greedy graph.

Node in G, the explicit graph, but not in g.

Node with $r_{b}=1$ (violates constraints)

Known value

Heuristic estimate

Start

$\Delta=5.0 \%$ S

Open nodes: $\left[s_{0}\right]$ $g=\left\{s_{0}:\right.$ None $\}$
G starts just with just the initial state s_{0}

Expansion

Open nodes: $\left[s_{0}\right]$ $g=\left\{s_{0}\right.$: None $\}$

1. Choose an open node to expand $\rightarrow s_{0}$
2. Estimate the value and execution risk of leaf nodes
3. Propagate risk bounds

$$
h_{e r}=r_{b}=0 \text { for all leaves }
$$

$$
\begin{aligned}
\Delta_{k+1}^{\prime} & =\frac{1}{P r^{s a}\left(o^{\prime}{ }_{k+1} \mid \pi\left(b_{k}\right), b_{k}\right)}\left(\frac{\Delta_{k}-r_{b}\left(b_{k}\right)}{1-r_{b}\left(b_{k}\right)}-\sum_{o_{k+1} \neq o_{k+1}^{\prime}} P r^{s a}\left(o_{k+1} \mid \pi\left(b_{k}\right), b_{k}\right) h_{e r}\left(b_{k+1} \mid \pi\right)\right) \\
& =\frac{1}{0.6}\left(\frac{0.05-0}{1-0}-0.4 \times 0\right)=8.3 \% \longleftarrow \longleftarrow
\end{aligned}
$$

Backup

Open nodes: $\left[s_{0}\right]$ $g=\left\{s_{0}:\right.$ None $\}$

3. Backup value and execution risk for the currently expanded node (s_{0}) and all its ancestors that are part of g (no ancestors), recording the best value at each node.

$$
\begin{gathered}
V_{h}\left(s_{0}, a_{1}\right)=-1+(-10 * 0.7-11 * 0.3)=-11.3 \\
V_{h}\left(s_{0}, a_{2}\right)=-2+(-10 * 0.6-9 * 0.4)=-11.6 \\
\operatorname{er}\left(s_{0}, a_{1}\right)=\operatorname{er}\left(s_{0}, a_{2}\right)=0<5 \%
\end{gathered}
$$

4. Update g and the list of open nodes (non-terminal) by selecting the best action at the nodes which got their values updated

$$
\begin{aligned}
& V_{h}\left(s_{0}, a_{1}\right)=-1+(-10 * 0.7-11 * 0.3)=-11.3 \\
& V_{h}\left(s_{0}, a_{2}\right)=-2+(-10 * 0.6-9 * 0.4)=-11.6
\end{aligned}
$$

4. Update g and the list of open nodes (non-terminal) by selecting the best action at the nodes which got their values updated

$$
\begin{aligned}
& V_{h}\left(s_{0}, a_{1}\right)=-1+(-10 * 0.7-11 * 0.3)=-11.3 \\
& V_{h}\left(s_{0}, a_{2}\right)=-2+(-10 * 0.6-9 * 0.4)=-11.6
\end{aligned}
$$

Expansion

 $\begin{aligned} & \Delta=5.0 \% \\ & \left.a_{1}\right)=-1\end{aligned} S_{0} R\left(s_{0}, a_{2}\right)=-2$$\Delta=7.1 \%$
Open nodes: $\left[s_{1}^{1}, s_{1}^{2}\right](-10)$
$g=\left\{s_{0}: a 1\right\}$

$$
\begin{aligned}
& g=\left\{s_{0}: a 1\right\} \\
& h_{e r}=0 \\
& \frac{1}{0.2}\left(\frac{0.166-0}{1-0}-0.8 \times 1\right)=-317 \% \\
& \left.\left.\Delta_{k+1}^{\prime}=\frac{1}{P_{r}^{s a}\left(o^{\prime}\right.}{ }_{k+1}^{2} \right\rvert\, \pi\left(b_{k}\right), b_{k}\right)=-317 \% \\
& \frac{1}{0.8}\left(\frac{\Delta_{k}-r_{b}\left(b_{k}\right)}{1-r_{b}\left(b_{k}\right)}-\sum_{o_{k+1} \neq o_{k+1}^{\prime}}^{1-0} \operatorname{Pr}_{e r}^{s a}\left(o_{k+1} \mid \pi\left(b_{k}\right), b_{k}\right) h_{e r}\left(b_{k+1} \mid \pi\right)\right)
\end{aligned}
$$

1. Choose any open node to expand $\rightarrow s_{1}^{2}$
2. Estimate the value and execution risk of leaf nodes
3. Propagate risk bounds

Backup

3. Backup values and execution risk for the currently expanded node (s_{1}^{2}) and all its ancestors that are part of $g\left(s_{0}\right)$, recording the best value at each node.

$$
\begin{gathered}
V_{h}\left(s_{1}^{2}, a_{2}\right)=-2+(-13 * 0.5-14 * 0.5)=-15.5 \\
V_{h}\left(s_{0}, a_{1}\right)=-1+(-10 * 0.7-15.5 * 0.3)=-12.65 \\
V_{h}\left(s_{0}, a_{2}\right)=-2+(-10 * 0.6-9 * 0.4)=-11.6 \\
\operatorname{er}\left(s_{1}^{2}, a_{2}\right)=0<16.6 \%, \operatorname{er}\left(s_{0}, a_{2}\right)=0<5 \%
\end{gathered}
$$

From leafs to the root

Update g

4. Update g and the list of open nodes (non-terminal) by selecting the best action at the nodes which got their values updated.

$$
\begin{array}{|l|}
\hline V_{h}\left(s_{1}^{2}, a_{2}\right)=-2+(-13 * 0.5-14 * 0.5)=-15.5 \\
V_{h}\left(s_{0}, a_{1}\right)=-1+(-10 * 0.7-15.5 * 0.3)=-12.65 \\
V_{h}\left(s_{0}, a_{2}\right)=-2+(-10 * 0.6-9 * 0.4)=-11.6
\end{array}
$$

Search terminates when the list of open nodes is empty, i.e., all leaf nodes in g are terminal (goals).

At this point, return g as the optimal policy π.

How hard is it to assess risk in RAO*?

Must run really fast for RAO* to be useful in practice!
e.g., see the probabilistic scheduling lecture by Andrew Wang and Cheng Fang.

Terminal violations = Observable violations

Complete constraint violation
$\widehat{b_{1}}\left(\cdot \mid o_{1}=\right.$ Dead $)$ awareness!

Dynamic vs Static risk allocation

$$
\Delta_{k+1}^{\prime}=\frac{1}{P r^{s a}\left(o^{\prime}{ }_{k+1} \mid \pi\left(b_{k}\right), b_{k}\right)}\left(\frac{\Delta_{k}-r_{b}\left(b_{k}\right)}{1-r_{b}\left(b_{k}\right)}-\sum_{o_{k+1} \neq o_{k+1}^{\prime}} P r^{s a}\left(o_{k+1} \mid \pi\left(b_{k}\right), b_{k}\right) h_{e r}\left(b_{k+1} \mid \pi\right)\right)
$$

Static allocation: $\Delta_{k+1}^{\prime}=\Delta_{k}-p_{c}$

Dynamic allocation: $\Delta_{k+1}^{\prime}=\frac{1}{1-p_{c}}\left(\frac{\Delta_{k}-0}{1-0}-p_{c} \cdot 1\right)=\frac{\Delta_{k}-p_{c}}{1-p_{c}}$

Some takeaways

1. Execution risk should be applicable to risk-aware planning in general and could be incorporated into other POMDP solvers to endow them with a keen sensitivity to risk;
2. Risk-bounded plan execution improves upon the conservatism of risk-minimal alternatives while offering strict safety guarantees;
3. Efficient risk-aware constraint solvers are necessary for risk-aware planning;
