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Risk-aware AO* (RAO¥)

When you want to get there well and safely

> xS May the 4t be with you, 2016.




1. Motivation

Where can risk-aware planning be
useful?
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Courtesy of Andrew J. Wang
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Collaborative manufacturing
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Power supply restoration
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esilient Space Systems (RSS) demo

{launc]

»+o 808
Location
e 15

Activity Plan
Generated! g

G _/home/tiago/mers/rss/catki Jsrcfrss
ROS_MASTER_URI=http://localhost:11311

process[enterprise/activity_server-1]: started with pid [5769) Location

- . I3

M Steps 1, Real Time Factor; Sim Time: Real Time: Recations:

: (move roverl I1 13)
} : (turnon_mastcam roverl 13)
ot ot i) : (take_pictures_mastcam roverl I3 pic_reql)
: (move roverl I3 I5)
: (turnon_mastcam roverl I5)
: (take_pictures_mastcam roverl I5 pic_req3)
: (survey_location roverl 15)
: (collect_rock_sample roverl IS rock_reql)
: (move roverl I5 12)
(transmit_data roverl |2 rock_reql)
(turnon_mastcam roverl 12)
(take_pictures_mastcam roverl |2 pic_req2)
(transmit_data roverl 12 pic_req2)
(transmit_data roverl 12 pic_reql)
(transmit_data roverl 12 pic_req3)
(survey_location roverl 12)
(collect_rock_sample roverl 12 rock_req2)
(transmit_data roverl 12 rock_req2)

Joint work between JPL, Caltech, WHOI, and MIT.

ted_activity _server-1]: started with pid [6378]
Send

Mission goal sent

P. Santana, 16.412/6.834 - RAO*



media/Resilient_Space_Systems_Midyear_Review_April_5th_2016.mp4
media/Resilient_Space_Systems_Midyear_Review_April_5th_2016.mp4

Our goal for today

How can we generate safe plans that
optimize performance when
controlling a system with stochastic
transitions and hidden state?
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Today’s topics

1. Motivation
2. Handling belief states

3. RAO*
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2. Handling belief states

“Probability is common sense reduced to calculation.”
— Pierre-Simon Laplace
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Hidden Markov models (HMMs)

Andrey Markov
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Observing hidden Markov chains

Pia N Pl Pl Pia N Pl

G N /’ S “ /7 S N / \ / N
] 0,,‘—>'\ 1,,‘—>---—"\\ t,,‘—"\\ t+1,,‘—"‘\ t+2,,‘—’"'—’
\ \

\N_f, \N f, \N f, \N f’ \N f’
I‘\\ .
\._s Hidden

| J h

A

A sequence of random variables 0,,0,,...,0,,..., is an HMM if the
distribution of O, is completely defined by the current (hidden) state
S, according to

Pr(0¢|S¢),

where S, is part of an underlying Markov chain. /
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Robot navigation
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Bayes’ rule

Joint Conditional  Marginal @

Pr(4, B) = Pr(A|B)Pr(B) A, B: random variables
Pr(4, B) = Pr(B|A)Pr(A)

Pr(A|B)Pr(B) = Pr(B|A)Pr(A)

Bayes’ rule!

Pr(B|A)Pr(A) « Pr(B|A)Pr(A)

Pr(B)

Pr(A|B) =
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Notation

Random variable!

Pr(S;| -) Probability distribution of S,

Vector of d
probability values.

Pr(S;, = s| ) = Pr(s¢| *) Probability of observing
St = s according to Pr(S;| -)

Probability € [0,1]
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Filtering (forward)

“Given the available history of observations, what’s the belief

about the current hidden state? Pr(Stlol:t) _ ﬁt
Pr(S¢log.e) = Pr(Stlog, 01.¢-1)
o Pr(o¢|St, 01:.-1)Pr(S¢[01:6-1) Bayes
= Pr(o|S{)Pr(S¢|01.1—1) Obs. model
d
Pr(S¢log.e—1) = i=1Pr(St|St_1 =1,01.4-1) Pr(8¢—1 = ilo1,4—1)  Marg.

5/4/2016

d
= z Pr(S¢|Se—1 = 1) Pr(S¢—1 = iloy.t—1)  Trans. model
i=1

Recursion!
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Filtering

“Given the available history of observations, what’s the belief

about the current hidden state?” n
Pr(S¢lo1.+) = Py
1. One-step prediction:
d
Pr(S¢|o1.4-1) = D = _ 1Pr(5t|5t—1 = 1) Pr(S¢-1 = il01.4-1) = TPht-1
1=

2. Measurement update:
Deli] = nPr(o¢|S: = D)p:li]
3. Normalize belief (to get rid of n):

d
. Pl O
peli] « . ,n—;pt[f]
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Grid World
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Prediction example

0 Robot model
“If told to perform an action, the robot will
0 execute it with probability 90% or do
nothing with probability 10%.”
0
0 Action = “Move right!” ‘

What is the probability of Pr(S,,, = sla, = right)?
being in the red square?

Pr(S;y1 = sla; = right) = Pr(S;4; = s|S; = s', a; = right) X Pr(S; = s")
+Pr(S;4q = s|S; = s',a; = right) X Pr(S; = s')
+Pr(S;41 = s|S; = s', a; = right) X Pr(S; = s')
+Pr(S;11 = slS; ,a; = right) X Pr(S; =
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Prediction example

Robot model
“If told to perform an action, the robot will
execute it with probability 90% or do
nothing with probability 10%.”

Action = “Move right!” ‘

What is the probability of Pr(S,,, = sla, = right)?
being in the red square?

Pr(S;;1 = sla; = right) =09x0.6 = 0.56
+ 0.0 X 0.1

+ 0.1x 0.2
+ 0.0 x 0.1
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Sensor update

Beacon Model

3__ ] * |f at the beacon’s location,
returns 0 with probability 95%;

* If 1 square away, returns ‘1’
with probability 70%;

* If 2 squares away, returns ‘2’
with probability 80%;

* |If 3 squares away, returns ‘3’
with probability 60%;

* Inall other cases, the beacon
returns no reading (*-').
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Sensor update

:i-— “What is my confidence about being in state s at
T time t+1, given that | took action a at time t and
I
|
|
!

-

(a2

el
=1
| |

!

|

[ |

|

received observation o from beacon b at time t+1?”

r—1rn

Pr(S;11 =sla; = a,0;41 = 0p)?

r1=-1-1+-F-1-1

Pr(S;41 = sla; = a,0p41 = 0p)c Pr(0p41 = 0p|St41 = ) Pr(Ses1 = slay = a)
Compute unnormalized probabilities.

Pr(Si41 = sla; = a, 0041 = 0p)

Zsl Pr(Se+1 = s'lag = a,0¢41 = 0p)

Pr(S;y1 = sla; = a,0;41 = 0p) <

Normalize their sum to 1.
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Sensor update example

0 0 0 0
. Action = “Move right! ‘
0 |0.06 § 0.56|0.18
Observation = “You’re 2 squares away.”
o oo [om
1T ol o Beacon Model
A « |If atthe beacon’s location, returns 0 with probability 95%;
| | | e If 1 square away, returns ‘1’ with probability 70%;

o _ * If 2 squares away, returns ‘2’ with probability 80%;

Prediction example. Go check it! * If 3 squares away, returns ‘3’ with probability 60%;

* Inall other cases, the beacon returns no reading (*-).

Pr(S¢41 = sla; =right, 0444 =2) o Pr(og41 = 2|s¢4q = 5) Pr(Seqq = sla; = right)
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Sensor update example

0 0 0 0
. Action = “Move right! ‘
0 |0.06 § 0.56|0.18
Observation = “You’re 2 squares away.”
o oo [om
1T ol o Beacon Model
A « |If atthe beacon’s location, returns 0 with probability 95%;
| | | e If 1 square away, returns ‘1’ with probability 70%;

o _ * If 2 squares away, returns ‘2’ with probability 80%;

Prediction example. Go check it! * If 3 squares away, returns ‘3’ with probability 60%;

* Inall other cases, the beacon returns no reading (*-).

Pr(Sg41 = sla; =right, 0444 =2) o Pr(ogyq = 2|Sp41 = 5) Pr(Se41 = sla, = right)
= 0.8x 0.56
= 0.448
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Sensor update example

0 0 0 0
. Action = “Move right! ‘
0 0.048 0.448 || 0.144
Observation = “You’re 2 squares away.”
o=l =
1T ol o Beacon Model
A « |If atthe beacon’s location, returns 0 with probability 95%;
| | | e If 1 square away, returns ‘1’ with probability 70%;

* If 2 squares away, returns ‘2’ with probability 80%;
* If 3 squares away, returns ‘3’ with probability 60%;
* Inall other cases, the beacon returns no reading (*-).

Normalize the probabilities on the grid!
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Sensor update example

0 0 0 0
. Action = “Move right! ‘
0 0.074 § 0.691 |§ 0.222
Observation = “You’re 2 squares away.”
===
1T ol o Beacon Model
A « |If atthe beacon’s location, returns 0 with probability 95%;
| | | e If 1 square away, returns ‘1’ with probability 70%;

* If 2 squares away, returns ‘2’ with probability 80%;
* If 3 squares away, returns ‘3’ with probability 60%;
* Inall other cases, the beacon returns no reading (*-).

Done with belief state updates!
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3. RAO*

“It’s a trap!”
— RAO*, after determining that a policy was too risky.
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RAO* = AO* + Belief states + Execution risk

“Probability of violating constraints

. . ) S A
c during execution.

er(by,clm) < A
Key 1: (admissible) value heuristic guiding search towards “promising” policies;

Key 2: (admissible) execution risk heuristic allowing risk bounds to be propagated forward.

See also the excellent “Probabilistic and Infinite Horizon Planning”,
by Katherine, Kristyna, David, Mycal, and Charlotte.
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Elements of a CC-POMDP

S: discrete set of states.
A: discrete set of actions.
O: discrete set of observations.

T: SXAXS— [0,1], transition function
0: SX0- [0,1], observation function

R: SXA-R, reward function.
C: set of state constraints.
A: risk bound.

T(Sk, Ak, Sk+1) = Pr(Sg41|Sk, ax)
O(Sk, o) = Pr(og|sk)

'- C: ‘Do not collide!

A=0.01- 'Collision probability must be less than 1%.

S, 0

A
-1| 4t

.03

.03

.03

.76

.10

.05

.80

.03

.03

.05
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Searching from an initial belief b,

Explored by HFS

Subset of B reachable from 5,

Subset of B on the

optimal path from
b,to b

goal

Good heuristic: -z- Bad heuristic: -z-
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RAO* nodes are belief states

Discrete belief state ... A
o Pr(Sklal:k—lJ Ol:k) = Pk

ul Filtering
'-_“ ~ Pr(Sk = Silol:kral:k—l)
Node "'., — — .."'

--------
.........
e

Safe states

State is “safe”
&
itself and its ancestors do not violate constraints

Unsafe states
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Partially observable AND-OR search

@ OR node
agent action

a, a, a

AND node . . .
observation

- )(,\0336

=
[ ‘
. . . . . . . Tt .

Poss:ble b.,’s
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Hypergraph representation

All nodes are OR nodes @ Actions yield lists of successors
annotated with probabilities

If every action has a single
successor, we go back to a
“standard” graph.

al an
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Key concepts

1. How to compute transition probabilities
2. How to compute (admissible) utility estimates

3. How to compute (admissible) execution risk
estimates

4. How to put them all together
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3.1 Hyperedge probabilities

ﬁk = Pr(Sklal:k—lrol:k)
Pre+1 = Pr(Ses1laip, 01:40) (prediction)

Pr(ogs1lag, D) = z ‘Pr(ok+1|5k+1)’ Di+1(Sk+1)

Sk+1 i

Observation model

Pr(Sk+1|a1:kr O1:k) Ok+1 = 1) Pr(Sk+1|a1:k; 01:k)Og+1 = m) (ﬁltering)
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Computing hyperedge probabilities

Pr+1 = Pr(Sg+1laik, 01.x) = T(ar)Dr Pr(ogsqlag, Pr) = Z Pr(og+1lSk+1) Pr+1(Sk+1)
Sk+1

Pr(o|m) =0.8| Pr(o|m) =0.6

Pr(—|m) =0.2| Pr(X|m)=0.4

Action a,,

-
-
___———
-
p—

-
-
L]
-

=y
L T
~

~-~~

~o ~

LI
e
~
~
~

™~
-
-
~-~~
-
-
-y

+0.25(1 —p) X 0.6
- +0.25(1 —p) x 0.6
Pk+1 + 0.5p x 0.8

5/4/2016
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3.2 Admissible utility estimates

Unknown

V(sk, ax) = R(sg, ag) + z V*(sk+1) T(Sk, g, Sg+1)

Sk+1 Optimal reward

Expected reward Immediate
of executing a, reward at Sy,
ats,

Expected optimal future reward

» Admissible (“optimistic”) estimate of future reward.

h(s = V(s
5( e+1) (Sk+1) Should be “easy” to compute.

V(s ax) = R(sk, ax) + z h(Sk+1) TSk, Ak, Sk1) = V(sk, ax)

Sk+1
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Estimating belief state utility

Fully observable

Vit @) = R(510 @) + ) T(Si G S (S5e41)

Sk+1

-

~

Vi (P, ax) = Z Dr (Sk)R (S, ag) + 2 Pr(ogylag, B) H( Py, Ok +1)
Sk

Ok+1

H Dy, 0k +1) = Z Pr(Sk+1 = Sk+1101:k Ok +1) h(Sk41)

\_

Sk+1

Partially observable

5/4/2016
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3.3 Execution risk

Sa; = 1: agent hasn’t violated c until i-th step

T
er(by,clm) =1 —Pr /\Sai|bk,n
i=K

Probability of (Ono et al., 2012)

violating constraints

Probability of remaining safe
from k onwards.

from k onwards.

|

er(bi|m) = rp(by) + (1 —1p(by)) Pr3%(0g4+1|m(by), by )er(byiq|m)

Immediate risk at the

_ Observations originated
current belief state.

from safe states.
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Execution risk

er(bi|m) = rp(by) + (1 —1p(by)) z Pr>%(ok+1|m(by), br)er(bgiq|m)

. . Ok+1
Immediate f'Sk at the Observations originated
current belief state. from safe states
_ » 1 if the sequence of states (“path”)
Tp (bk) — z b(sk)cv (p(Sk), (C) leading to s, violates c

SKES
Zsk:cv(p(sk),(c)=0 T(Sk: Ak, Sk+1)b(sk)
1 —1y(bg)

Pro%(ox41lak, bi) = Pr(ogsq|Sag, ag, by) = Z O(Sk+1,O+1) D% (Skes1lak)

Sk+1

Esa(5k+1|ak) = Pr(sk4+1/Say, ak, by) =
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Execution risk in pictures

er(bi|m) = rp(by) + (1 —1p(by)) z Pr>%(ok+1|m(by), b )er(bgiq|m)

Ok+1

Action 1 (by,)

—————————— —0 What about this term?

-
-
L]
-

LTS
~
LT
~

-
-~

-
\N -~

LI
e
~
~
~

R
~
~
~
NN
~

3 x0.25(1 —
Prsa(o] ) = (1-p)
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Estimating execution risk

er(bi|m) = rp(by) + (1 —1p(by)) z Pr>%(ok+1|m(by), br)er(bgiq|m)

Ok+1

Admissible (“optimistic”) estimate of future execution risk

her (by+11m) < er(byyq|m)

» Should be “easy” to compute.

ety (bi|m) = rp(by) + (1 — 1 (b)) z Pr3%(og41|m(by), b ) her (bt |m)

Ok+1

oy (bis1|m) = 1, (bg41) is always admissible
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Propagating execution risk estimates

ery (bi|m) = rp(by) + (1 — (b)) Z Pr3%(og4+1|m(by), b ) her (bt |m)

Ok+1
1 Ag — 1, (by)
Biesr = 5sars = ) Pr0e b, bdher (bsaIT)
o PrSd(oka(bk),bk)(1—rb<bk> oL R e
k+17Y%c4+1
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RiS k exXam p | e Robot model

“If told to move, R2D2 achieves the desired
cell with probability 90%, or slips to either
side with probability 5%.”
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RiS k exXam p | e Robot model

“If told to move, R2D2 achieves the desired
cell with probability 90%, or slips to either
side with probability 5%.”

Both particles share the same position
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RiS k exXam p | e Robot model

“If told to move, R2D2 achieves the desired
cell with probability 90%, or slips to either
side with probability 5%.”

0.81

0.19

Both particles share the same position
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3.4 RAO* in a nutshell

* Input: implicit partially observable AND-OR search problem
<S,A0,T,0,R,cA>,b,

* QOutput: optimal policy in the form of an acyclic hypergraph
mapping belief states to actions.

Additions to AO* shown in red

* Strategy: incrementally build solutions forward from b,,
using h to estimate future utilities (just like A*1) and h,_, to
estimate policy risk. The set of explored solutions form the
explicit hypergraph G, and the subset of G corresponding to
the current estimate of the best policy is called the greedy

hypergraph g.
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RAO*’s pseudocode

Additions to AO* shown in red
Input: < §,A,O,T,0,R,c,A >, by
Output: Policy m: B > A Heuristics for
Explicit graph G < b, g < Best partial policy of G utility and execution risk
while best partial policy graph g has nonterminal leafs
m < Expand any nonterminal leaf from g
Add to G the children in m which do not violate risk bound

izlclrlpuapr; Z < set containing m and all of its predecessors that are part of g
while Zis not empty

n < Remove from Z a node with no descendants in Z
Update utility and execution risk for n

1 <— Choose best action at n not violating risk bound
g is the graph obtained by

Update g with the new &
following m from b,
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RAO* example

Node in g, the greedy graph.

Node in G, the explicit graph, but not in g.

O

Node with 1, = 1 (violates constraints)

o
»

Known value

—_—
Heuristic estimate

Oon
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Start T ®

Open nodes: [s,] _ o o
G starts just with just the initial state s,

g={s,: None }
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Expansion

Open nodes: [s,]

= 0 = 0 — 0, — 0
g={s,: None } A=71% A=16.6% A=8.3% A=12.5%

1. Choose an open node to expand — s,

2. Estimate the value and execution risk of leaf nodes

h.. = 1, = 0 for all leaves
3. Propagate risk bounds er— b

1 A, —1,(b
App— DO N prst o), e (i )
Prs®(0'k41|m(by), b)) | 1 — 1, (by) .
Ok+1F04q
=1 (095-0 4x0) =839
06\ 1-0 - 00N
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[-11.3,-11.6]

Backup

Open nodes: [s,]

= 0 = 0 — 0, — 0
g={s,: None } A=71% A=16.6% A=8.3% A=12.5%

3. Backup value and execution risk for the currently expanded node (s,) and
all its ancestors that are part of g (no ancestors), recording the best value at
each node.

Vi(sg,a;) =—1+(-10%0.7 —11%0.3) = —11.3
Vi(sg,a,) =—2+4+(—10%0.6 —9%0.4) = —11.6

er(sg,ay) = er(sy,a,) =0<5%
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[-11.3,-11.6]

Update g

Open nodes: [s,]

= 0 = 0 — 0, — 0
g={s,: None } A=71% A=16.6% A=8.3% A=12.5%

4. Update g and the list of open nodes (non-terminal) by selecting the
best action at the nodes which got their values updated

Vih(sg,a1) =—1+(—10%0.7—-11%0.3) = —-11.3
Vi(sg,a,) =—2+(—10%x0.6 —9+0.4) = —-11.6
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[-11.3,-11.6]
Update g | (%)

Open nodes: [s1, s?

g={s,: al}

-10 -9

4. Update g and the list of open nodes (non-terminal) by selecting the
best action at the nodes which got their values updated

Vih(sg,a1) =—1+(—10%0.7—-11%0.3) = —-11.3
Vi(sg,a,) =—2+(—10%x0.6 —9+0.4) = —-11.6
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[-11.3,-11.6]

Expansion

-10 -9
A::8J396 A::12.596

Open nodes: [s1, s?

g={s,: al}

A=-317% A=20.8% A=33.2% A=33.2%

1 (0.166 -0

08x1)=-317% 1 (01660
02\ 1-0 ' - 0

_ — 0
rleEE 0.2><0> 20.8%

;o 1 A =1y (bi)
L Prsao’ 1 lm(br), bi) \ 1 —1(by)

D Prsa<ok+1|n<bk).bk>her(bk+1|n)>

0k+1¢0k+1

1. Choose any open node to expand — 512

2. Estimate the value and execution risk of leaf nodes
3. Propagate risk bounds
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[-12.65,-11.6]

Backup

-10 -9

Open nodes: [s1, s?

g={s,: al}

3. Backup values and execution risk for the currently expanded node (s#) and all
its ancestors that are part of g (s,), recording the best value at each node.

V,(s?,a,) = =2+ (=13 % 0.5 — 14 % 0.5) = —15.5

Vh(sg,a1) = =1+ (=10 0.7 —15.5% 0.3) = —12.65 | From leafs to the root
Vih(sg,a,) =—2+(—-10%0.6 —9x0.4) = —11.6

er(s?,a,) =0 < 16.6%,er(sy,a,) =0 < 5%

<€
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[-12.65,-11.6]

-10 -9

Open nodes: [s1, s?

g={s,: al}

4. Update g and the list of open nodes (non-terminal) by selecting the best
action at the nodes which got their values updated.

V,(s?,a,) = =2+ (=13 % 0.5 — 14 x 0.5) = —15.5

Vh(sg,a;) =—14+(—=10%0.7 —15.5 % 0.3) = —12.65
V. (S0, @z) = =2 + (=10 % 0.6 — 9 + 0.4) = —11.6

From leafs to the root
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[-12.65,-11.6]

Update g IO

. 0.3
T3 o4 (
Open nodes: [s7,s7] -10 1550115 5]

L A=8.3% A=12.5%
g={s,: a2} st s2 ) s3 st 0
R(Sl ,az ):'2

0.5 0.5

-13 -14
A=33.2% A=33.2%

4. Update g and the list of open nodes (non-terminal) by selecting the best
action at the nodes which got their values updated.

V,(s?,a,) = =2+ (=13 % 0.5 — 14 x 0.5) = —15.5

Vi(sg,a;) = =1+ (=10% 0.7 — 15.5 % 0.3) = —12.65 |From leafs to the root
Vi(sg,a,) =—2+(—-10%0.6 —9x0.4) = —-11.6
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[-12.65,-11.6]

Termination O

Open nodes: [s3, sf] -10

A=8.30 —1250
g={sy: a2} st s2 s3 /0 sz 12.5%

0.5 0.5

-13 -14
A=33.2% A=33.2%

Search terminates when the list of open nodes is empty, i.e., all leaf nodes in g
are terminal (goals).

l

At this point, return g as the optimal policy .
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How hard is it to assess risk in RAO*?

4 )

Constraint checker

cy(p, C)
" y

“Must run really fast for RAO* to be useful in practice!

e.g., see the probabilistic scheduling lecture by Andrew Wang and Cheng Fang.
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Terminal violations = Observable violations

Probabilistic operator

-
-
—‘——
-

-
- e == =
gsE=p=="

——————————————
-_—
-

-

———————————

*~::::::: ____ BI( o, = Alive)
— pe T
b, .
b, Pc
. Dead! h _X__,
1, (by) = 0,V non-terminal by,
Complete constraint violation bi(- |o; = Dead)

awareness!
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Dynamic vs Static risk allocation

1 A, — b
k+1 = Dosar ! ke ~ bl k)'— :E: Pr3%(og+1|m(by), bx) hey (b4 11m)
Prs®(0'yq|m(by), bx)\ 1 —1,(by)

!
Ok+1#0k41

\ e AL d . . ,
s e ) Static allocation: A}, = A, — p,
‘T-“”::-‘-‘-‘::;;:; s AN by(- |o; = Alive)
b_l Pe \\\

bi(: lo; = Dead)

1 A, —0 A, —
Dynamic allocation: A}, = =3 ( 1k_ ok D, - 1) I B
C
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Some takeaways

1. Execution risk should be applicable to risk-aware
planning in general and could be incorporated
into other POMDP solvers to endow them with a
keen sensitivity to risk;

2. Risk-bounded plan execution improves upon the
conservatism of risk-minimal alternatives while
offering strict safety guarantees;

3. Efficient risk-aware constraint solvers are
necessary for risk-aware planning;
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