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1. Motivation

Where can risk-aware planning be 
useful?
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Science scouts

Courtesy of Andrew J. Wang
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Collaborative manufacturing
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Power supply restoration

Thiébaux & Cordier (2001)

?
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Resilient Space Systems (RSS) demo

Joint work between JPL, Caltech, WHOI, and MIT.
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Our goal for today

How can we generate safe plans that 
optimize performance when 

controlling a system with stochastic 
transitions and hidden state? 
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1. Motivation

2. Handling belief states

3. RAO*

5/4/2016

Today’s topics
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2. Handling belief states

“Probability is common sense reduced to calculation.”
 Pierre-Simon Laplace
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Hidden Markov models (HMMs)

Andrey Markov
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Observing hidden Markov chains

St St+1 St+2… …S0 S1

O1 Ot Ot+1 Ot+2 Observable

Hidden

Definition: Hidden Markov Model (HMM)

A sequence of random variables O1,O2,…,Ot,…, is an HMM if the 
distribution of Ot is completely defined by the current (hidden) state 
St according to

Pr(𝑂𝑡|𝑆𝑡) ,

where St is part of an underlying Markov chain.

11/62



5/4/2016 P. Santana, 16.412/6.834 - RAO*

Robot navigation
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Bayes’ rule
A B

Pr 𝐴, 𝐵 = Pr A B Pr(B)

Joint Conditional Marginal

𝐴, 𝐵: random variables

Pr 𝐴, 𝐵 = Pr B A Pr(A)

Pr A B Pr B = Pr B A Pr(A)

Pr A B =
Pr B A Pr(A)

Pr B
∝ Pr B A Pr(A)

Bayes’  rule!

13/62



5/4/2016 P. Santana, 16.412/6.834 - RAO*

Notation

Pr 𝑆𝑡| ⋅

Random variable!

Probability distribution of St

Pr 𝑆𝑡 = 𝑠| ⋅ = Pr st ⋅ Probability of observing 
𝑆𝑡 = 𝑠 according to Pr(𝑆𝑡| ⋅)

Vector of d
probability values.

Probability ∈ [0,1]
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Filtering (forward)
“Given the available history of observations, what’s the belief 
about the current hidden state?” Pr 𝑆𝑡 𝑜1:𝑡 =  𝑝𝑡

Pr 𝑆𝑡 𝑜1:𝑡 = Pr 𝑆𝑡 𝑜𝑡, 𝑜1:𝑡−1

∝ Pr 𝑜𝑡 𝑆𝑡 , 𝑜1:𝑡−1 Pr(𝑆𝑡|𝑜1:𝑡−1) Bayes

= Pr 𝑜𝑡 𝑆𝑡 Pr(𝑆𝑡|𝑜1:𝑡−1) Obs. model

= 
𝑖=1

𝑑

Pr(𝑆𝑡|𝑆𝑡−1 = 𝑖, 𝑜1:𝑡−1) Pr(𝑆𝑡−1 = 𝑖|𝑜1:𝑡−1) Marg.Pr 𝑆𝑡 𝑜1:𝑡−1

= 
𝑖=1

𝑑

Pr(𝑆𝑡|𝑆𝑡−1 = 𝑖) Pr(𝑆𝑡−1 = 𝑖|𝑜1:𝑡−1) Trans. model

Recursion!

✓

✓
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Filtering
“Given the available history of observations, what’s the belief 
about the current hidden state?” Pr 𝑆𝑡 𝑜1:𝑡 =  𝑝𝑡
1. One-step prediction:

Pr 𝑆𝑡 𝑜1:𝑡−1 =  𝑝𝑡 = 
𝑖=1

𝑑

Pr(𝑆𝑡|𝑆𝑡−1 = 𝑖) Pr(𝑆𝑡−1 = 𝑖|𝑜1:𝑡−1) = 𝑇  𝑝𝑡−1

2. Measurement update:

 𝑝𝑡[𝑖] = 𝜂Pr(𝑜𝑡|𝑆𝑡 = 𝑖)  𝑝𝑡[𝑖]

3. Normalize belief (to get rid of 𝜂):

 𝑝𝑡 𝑖 ←
 𝑝𝑡 𝑖

𝜂
, 𝜂 = 

𝑗=1

𝑑

 𝑝𝑡 𝑗
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Grid World
Robot

Beacon

Actions
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Prediction example

0.6

0.1

0.2

0.1

Robot model
“If told to perform an action, the robot will 

execute it with probability 90% or do 
nothing with probability 10%.”

What is the probability of 
being in the red square?

Action = “Move right!”

Pr 𝑆𝑡+1 = 𝑠 𝑎𝑡 = right = Pr 𝑆𝑡+1 = 𝑠 𝑆𝑡 = 𝑠
′, 𝑎𝑡 = right × Pr(𝑆𝑡 = 𝑠′)

+Pr 𝑆𝑡+1 = 𝑠 𝑆𝑡 = 𝑠
′, 𝑎𝑡 = right × Pr(𝑆𝑡 = 𝑠′)

+Pr 𝑆𝑡+1 = 𝑠 𝑆𝑡 = 𝑠
′, 𝑎𝑡 = right × Pr(𝑆𝑡 = 𝑠′)

+Pr 𝑆𝑡+1 = 𝑠 𝑆𝑡 = 𝑠
′, 𝑎𝑡 = right × Pr(𝑆𝑡 = 𝑠′)

s

0

0

0

0

0

0

0

0

0

0

00

Pr 𝑆𝑡+1 = 𝑠 𝑎𝑡 = right ?
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Prediction example

0.6

0.1

0.2

0.1

Robot model
“If told to perform an action, the robot will 

execute it with probability 90% or do 
nothing with probability 10%.”

What is the probability of 
being in the red square?

Action = “Move right!”

Pr 𝑆𝑡+1 = 𝑠 𝑎𝑡 = right = 0.9 × 0.6

+ 0.0 × 0.1
+ 0.1× 0.2
+ 0.0 × 0.1

s

0

0

0

0

0

0

0

0

0

0

00

= 0.56

Pr 𝑆𝑡+1 = 𝑠 𝑎𝑡 = right ?
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Sensor update
Beacon Model
• If at the beacon’s location, 

returns 0 with probability 95%;

• If 1 square away, returns ‘1’ 
with probability 70%;

• If 2 squares away, returns ‘2’ 
with probability 80%;

• If 3 squares away, returns ‘3’ 
with probability 60%;

• In all other cases, the beacon 
returns no reading (‘-’).

1

2

3

0

20/62



5/4/2016 P. Santana, 16.412/6.834 - RAO*

Sensor update
“What is my confidence about being in state s at 
time t+1, given that I took action a at time t and 

received observation o from beacon b at time t+1?”

Pr 𝑆𝑡+1 = 𝑠 𝑎𝑡 = 𝑎, 𝑜𝑡+1 = 𝑜𝑏 ?

Pr 𝑆𝑡+1 = 𝑠 𝑎𝑡 = 𝑎, 𝑜𝑡+1 = 𝑜𝑏 Pr 𝑜𝑡+1 = 𝑜𝑏 𝑆𝑡+1 = 𝑠 Pr 𝑆𝑡+1 = 𝑠 𝑎𝑡 = 𝑎

Pr 𝑆𝑡+1 = 𝑠 𝑎𝑡 = 𝑎, 𝑜𝑡+1 = 𝑜𝑏 
Pr 𝑆𝑡+1 = 𝑠 𝑎𝑡 = 𝑎, 𝑜𝑡+1 = 𝑜𝑏
 𝑠′ Pr 𝑆𝑡+1 = 𝑠

′ 𝑎𝑡 = 𝑎, 𝑜𝑡+1 = 𝑜𝑏

Compute unnormalized probabilities.

Normalize their sum to 1.
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Sensor update example

0.06

0.01

0.56

0.1

s

0

0.18

0.09

0

0

0

0

0

0

00

Prediction example. Go check it!

Action = “Move right!”

Observation = “You’re 2 squares away.”

Pr 𝑆𝑡+1 = 𝑠 𝑎𝑡 = right, 𝑜𝑡+1
′ = 2  Pr 𝑜𝑡+1 = 2 𝑠𝑡+1 = 𝑠 Pr 𝑆𝑡+1 = 𝑠 𝑎𝑡 = 𝑟𝑖𝑔ℎ𝑡

Beacon Model
• If at the beacon’s location, returns 0 with probability 95%;
• If 1 square away, returns ‘1’ with probability 70%;
• If 2 squares away, returns ‘2’ with probability 80%;
• If 3 squares away, returns ‘3’ with probability 60%;
• In all other cases, the beacon returns no reading (‘-’).
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Sensor update example

0.06

0.01

0.56

0.1

s

0

0.18

0.09

0

0

0

0

0

0

00
Action = “Move right!”

Observation = “You’re 2 squares away.”

Pr 𝑆𝑡+1 = 𝑠 𝑎𝑡 = right, 𝑜𝑡+1
′ = 2 Pr 𝑜𝑡+1 = 2 𝑆𝑡+1 = 𝑠 Pr 𝑆𝑡+1 = 𝑠 𝑎𝑡 = 𝑟𝑖𝑔ℎ𝑡

= 0.8× 0.56
= 0.448

Beacon Model
• If at the beacon’s location, returns 0 with probability 95%;
• If 1 square away, returns ‘1’ with probability 70%;
• If 2 squares away, returns ‘2’ with probability 80%;
• If 3 squares away, returns ‘3’ with probability 60%;
• In all other cases, the beacon returns no reading (‘-’).

Prediction example. Go check it!
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Sensor update example

0.048

0.008

0.448

0.0

s

0

0.144

0.0

0

0

0

0

0

0

00
Action = “Move right!”

Observation = “You’re 2 squares away.”

Beacon Model
• If at the beacon’s location, returns 0 with probability 95%;
• If 1 square away, returns ‘1’ with probability 70%;
• If 2 squares away, returns ‘2’ with probability 80%;
• If 3 squares away, returns ‘3’ with probability 60%;
• In all other cases, the beacon returns no reading (‘-’).

Normalize the probabilities on the grid!
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Sensor update example

0.074

0.013

0.691

0.0

s

0

0.222

0.0

0

0

0

0

0

0

00
Action = “Move right!”

Observation = “You’re 2 squares away.”

Beacon Model
• If at the beacon’s location, returns 0 with probability 95%;
• If 1 square away, returns ‘1’ with probability 70%;
• If 2 squares away, returns ‘2’ with probability 80%;
• If 3 squares away, returns ‘3’ with probability 60%;
• In all other cases, the beacon returns no reading (‘-’).

Done with belief state updates!
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3. RAO*

P. Santana, 16.412/6.834 - RAO*

“It’s a trap!”
 RAO*, after determining that a policy was too risky.
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RAO* = AO* + Belief states + Execution risk

b0 bgoal

Key 1: (admissible) value heuristic guiding search towards “promising” policies; 

Key 2: (admissible) execution risk heuristic allowing risk bounds to be propagated forward. 

𝑒𝑟 𝑏0, ঃ 𝜋 ≤ Δ
“Probability of violating constraints 

ঃ during execution.”
≤ Δ ≡

5/4/2016 P. Santana, 16.412/6.834 - RAO*

See also the excellent “Probabilistic and Infinite Horizon Planning”, 
by Katherine, Kristyna, David, Mycal, and Charlotte.
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Elements of a CC-POMDP

.03 .03 .03 .05

.03 .76 .03 .10 .80

.03 .03 .03 .05𝑇(𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1) = Pr 𝑠𝑘+1|𝑠𝑘 , 𝑎𝑘

𝕊, 𝕆
𝕊: discrete set of states.

𝔸: discrete set of actions.

𝑇: 𝕊×𝔸×𝕊→ [0,1], transition function

𝑅: 𝕊×𝔸→ℝ, reward function.

𝔸𝑂: 𝕊×𝕆→ [0,1], observation function

P. Santana, 16.412/6.834 - RAO*

𝕆: discrete set of observations.

𝑂(𝑠𝑘 , 𝑜𝑘) = Pr 𝑜𝑘|𝑠𝑘

ঃ: set of state constraints.

Δ: risk bound.

𝑇𝑂

ঃ: ‘Do not collide.’

Δ=0.01→ ’Collision probability must be less than 1%.’

-1

-1

-1

-1

𝑅
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𝔹

Subset of 𝔹 reachable from b0

5/4/2016

Searching from an initial belief b0

Explored by HFS

Subset of 𝔹 on the 
optimal path from 

b0 to bgoal

Good heuristic: ≈ Bad heuristic: ≈
P. Santana, 16.412/6.834 - RAO* 29/62



RAO* nodes are belief states

Node

Discrete belief state

Pr 𝑆𝑘 = 𝑠𝑖 𝑜1:𝑘 , 𝑎1:𝑘−1

si

P. Santana, 16.412/6.834 - RAO*

State is “safe” 


itself and its ancestors do not violate constraints

5/4/2016

Safe states

Unsafe states

Pr 𝑆𝑘 𝑎1:𝑘−1, 𝑜1:𝑘 =  𝑝𝑘

Filtering
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Partially observable AND-OR search

⋯

⋯ ⋯ ⋯

OR node
agent action

AND node
observation

bk

a2 ana1

Possible bk+1’s

P. Santana, 16.412/6.834 - RAO*5/4/2016 31/62



Hypergraph representation

⋯ ⋯

bk

a1

⋯

a2

an

All nodes are OR nodes Actions yield lists of successors 
annotated with probabilities

P. Santana, 16.412/6.834 - RAO*

If every action has a single 
successor, we go back to a 

“standard” graph.
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1. How to compute transition probabilities

2. How to compute (admissible) utility estimates

3. How to compute (admissible) execution risk 
estimates

4. How to put them all together

5/4/2016 P. Santana, 16.412/6.834 - RAO*

Key concepts
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3.1 Hyperedge probabilities

a

⋯

P. Santana, 16.412/6.834 - RAO*

 𝑝𝑘  𝑝𝑘 = Pr 𝑆𝑘 𝑎1:𝑘−1, 𝑜1:𝑘

 𝑝𝑘+1 = Pr 𝑆𝑘+1 𝑎1:𝑘 , 𝑜1:𝑘

Pr 𝑜𝑘+1 𝑎𝑘 ,  𝑝𝑘 =  

𝑠𝑘+1

Pr 𝑜𝑘+1 𝑠𝑘+1  𝑝𝑘+1(𝑠𝑘+1)

Pr 𝑆𝑘+1 𝑎1:𝑘, 𝑜1:𝑘 , 𝑜𝑘+1 = 𝑚Pr 𝑆𝑘+1 𝑎1:𝑘 , 𝑜1:𝑘 , 𝑜𝑘+1 = 1

Observation model

(prediction)

(filtering)
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Computing hyperedge probabilities

𝑝

1 − 𝑝

 𝑝𝑘

 𝑝𝑘+1

0.5𝑝

0.5𝑝

0.25(1 − 𝑝)

0.25(1 − 𝑝)

0.25(1 − 𝑝)

0.25(1 − 𝑝)

Action 𝑎𝑘

𝑜
𝑜

𝑜

Pr 𝑜 𝑎𝑘 ,  𝑝𝑘 = 0.25 1 − 𝑝 × 0.8
+ 0.25 1 − 𝑝 × 0.6
+ 0.25 1 − 𝑝 × 0.6
+ 0.5𝑝 × 0.8

𝑜

5/4/2016

 𝑝𝑘+1 = Pr 𝑆𝑘+1 𝑎1:𝑘 , 𝑜1:𝑘 = 𝑇(𝑎𝑘)  𝑝𝑘 Pr 𝑜𝑘+1 𝑎𝑘 ,  𝑝𝑘 =  

𝑠𝑘+1

Pr 𝑜𝑘+1 𝑠𝑘+1  𝑝𝑘+1(𝑠𝑘+1)

Pr 𝑜 ∎ = 0.8

Pr − ∎ = 0.2

Pr 𝑜 ∎ = 0.6

Pr ✕ ∎ = 0.4

35/62
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3.2 Admissible utility estimates

𝑉(𝑠𝑘 , 𝑎𝑘) = 𝑅 𝑠𝑘 , 𝑎𝑘 +  

𝑠𝑘+1

𝑉∗(𝑠𝑘+1) 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1

Expected reward 
of executing ak

at sk

Immediate 
reward

Optimal reward 
at sk+1

Expected optimal future reward

Unknown

ℎ 𝑠𝑘+1 ≥ 𝑉
∗(𝑠𝑘+1)

𝑉ℎ 𝑠𝑘 , 𝑎𝑘 = 𝑅 𝑠𝑘 , 𝑎𝑘 +  

𝑠𝑘+1

ℎ 𝑠𝑘+1 𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1 ≥ 𝑉 𝑠𝑘 , 𝑎𝑘

Admissible (“optimistic”) estimate of future reward.

Should be “easy” to compute.

P. Santana, 16.412/6.834 - RAO* 36/62
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Estimating belief state utility

𝑉ℎ 𝑠𝑘 , 𝑎𝑘 = 𝑅 𝑠𝑘 , 𝑎𝑘 +  

𝑠𝑘+1

𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1 ℎ 𝑠𝑘+1

P. Santana, 16.412/6.834 - RAO*

𝑉ℎ  𝑝𝑘, 𝑎𝑘 = 

𝑠𝑘

 𝑝𝑘(𝑠𝑘)𝑅 𝑠𝑘 , 𝑎𝑘 +  

𝑜𝑘+1

Pr 𝑜𝑘+1 𝑎𝑘 ,  𝑝𝑘 𝐻  𝑝𝑘, 𝑜𝑘+1

𝐻  𝑝𝑘, 𝑜𝑘+1 =  

𝑠𝑘+1

Pr 𝑆𝑘+1 = 𝑠𝑘+1 𝑜1:𝑘, 𝑜𝑘+1 ℎ 𝑠𝑘+1

Fully observable

Partially observable
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3.3 Execution risk

𝑒𝑟 𝑏𝑘 , 𝕔 𝜋 = 1 − Pr  

𝑖=𝑘

𝑇

𝑆𝑎𝑖|𝑏𝑘, 𝜋

𝑆𝑎𝑖 = 1: agent hasn’t violated ঃ until i-th step 

Probability of remaining safe 
from k onwards.

Probability of 
violating constraints 

from k onwards.

𝑒𝑟 𝑏𝑘 𝜋 = 𝑟𝑏 𝑏𝑘 + (1 − 𝑟𝑏 𝑏𝑘 )  

𝑜𝑘+1

𝑃𝑟𝑠𝑎(𝑜𝑘+1|𝜋 𝑏𝑘 , 𝑏𝑘)𝑒𝑟 𝑏𝑘+1 𝜋

Observations originated 
from safe states.

Immediate risk at the 
current belief state.

(Ono et al., 2012)
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Execution risk

𝑒𝑟 𝑏𝑘 𝜋 = 𝑟𝑏 𝑏𝑘 + (1 − 𝑟𝑏 𝑏𝑘 )  

𝑜𝑘+1

𝑃𝑟𝑠𝑎(𝑜𝑘+1|𝜋 𝑏𝑘 , 𝑏𝑘)𝑒𝑟 𝑏𝑘+1 𝜋

Observations originated 
from safe states.

Immediate risk at the 
current belief state.

5/4/2016

Pr𝑠𝑎 𝑜𝑘+1 𝑎𝑘 , 𝑏𝑘 = Pr 𝑜𝑘+1 𝑆𝑎𝑘 , 𝑎𝑘 , 𝑏𝑘 =  

𝑠𝑘+1

𝑂 𝑠𝑘+1, 𝑜𝑘+1  𝑏
𝑠𝑎(𝑠𝑘+1|𝑎𝑘)

 𝑏𝑠𝑎 𝑠𝑘+1 𝑎𝑘 = Pr 𝑠𝑘+1 𝑆𝑎𝑘 , 𝑎𝑘 , 𝑏𝑘 =
 𝑠𝑘:𝑐𝑣 𝑝 𝑠𝑘 ,𝕔 =0𝑇 𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘+1 𝑏(𝑠𝑘)

1 − 𝑟𝑏(𝑏𝑘)

𝑟𝑏 𝑏𝑘 =  

𝑠𝑘∈𝕊

𝑏(𝑠𝑘)𝑐𝑣 𝑝 𝑠𝑘 , 𝕔

39/62
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Execution risk in pictures

𝑒𝑟 𝑏𝑘 𝜋 = 𝑟𝑏 𝑏𝑘 + (1 − 𝑟𝑏 𝑏𝑘 )  

𝑜𝑘+1

𝑃𝑟𝑠𝑎(𝑜𝑘+1|𝜋 𝑏𝑘 , 𝑏𝑘)𝑒𝑟 𝑏𝑘+1 𝜋

𝑟𝑏  𝑏𝑘 = 𝑝

𝑝

1 − 𝑝

 𝑏𝑘

 𝑏𝑘+1

0.5𝑝

0.5𝑝

0.25(1 − 𝑝)

0.25(1 − 𝑝)

0.25(1 − 𝑝)

0.25(1 − 𝑝)

Action 𝜋( 𝑏𝑘)

𝑃𝑟𝑠𝑎 𝑜 ⋅ =
3 × 0.25 1 − 𝑝

1 − 𝑝
= 0.75

𝑜
𝑜

𝑜

𝑜

5/4/2016

What about this term?
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Estimating execution risk

𝑒𝑟 𝑏𝑘 𝜋 = 𝑟𝑏 𝑏𝑘 + (1 − 𝑟𝑏 𝑏𝑘 )  

𝑜𝑘+1

𝑃𝑟𝑠𝑎(𝑜𝑘+1|𝜋 𝑏𝑘 , 𝑏𝑘)𝑒𝑟 𝑏𝑘+1 𝜋

5/4/2016

ℎ𝑒𝑟 𝑏𝑘+1 𝜋 ≤ 𝑒𝑟 𝑏𝑘+1 𝜋

Admissible (“optimistic”) estimate of future execution risk

Should be “easy” to compute.

𝑒𝑟ℎ 𝑏𝑘 𝜋 = 𝑟𝑏 𝑏𝑘 + (1 − 𝑟𝑏 𝑏𝑘 )  

𝑜𝑘+1

𝑃𝑟𝑠𝑎 𝑜𝑘+1 𝜋 𝑏𝑘 , 𝑏𝑘 ℎ𝑒𝑟 𝑏𝑘+1 𝜋

ℎ𝑒𝑟 𝑏𝑘+1 𝜋 = 𝑟𝑏(𝑏𝑘+1) is always admissible

41/62



P. Santana, 16.412/6.834 - RAO*

Propagating execution risk estimates

5/4/2016

Δ𝑘+1
′ =

1

𝑃𝑟𝑠𝑎 𝑜′𝑘+1 𝜋 𝑏𝑘 , 𝑏𝑘

Δ𝑘 − 𝑟𝑏(𝑏𝑘)

1 − 𝑟𝑏(𝑏𝑘)
−  

𝑜𝑘+1≠𝑜𝑘+1
′

𝑃𝑟𝑠𝑎 𝑜𝑘+1 𝜋 𝑏𝑘 , 𝑏𝑘 ℎ𝑒𝑟 𝑏𝑘+1 𝜋

𝑒𝑟ℎ 𝑏𝑘 𝜋 = 𝑟𝑏 𝑏𝑘 + (1 − 𝑟𝑏 𝑏𝑘 )  

𝑜𝑘+1

𝑃𝑟𝑠𝑎 𝑜𝑘+1 𝜋 𝑏𝑘 , 𝑏𝑘 ℎ𝑒𝑟 𝑏𝑘+1 𝜋

𝑏𝑘

Δ𝑘+1
′

Δ𝑘 , 𝑟𝑏(𝑏𝑘)

…
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Risk example

1

Robot model
“If told to move, R2D2 achieves the desired 
cell with probability 90%, or slips to either 

side with probability 5%.”
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Risk example Robot model
“If told to move, R2D2 achieves the desired 
cell with probability 90%, or slips to either 

side with probability 5%.”

0.1

0.9

Both particles share the same position
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Risk example Robot model
“If told to move, R2D2 achieves the desired 
cell with probability 90%, or slips to either 

side with probability 5%.”

0.19

0.81

Both particles share the same position
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• Input: implicit partially observable AND-OR search problem

• Output: optimal policy in the form of an acyclic hypergraph
mapping belief states to actions.

• Strategy: incrementally build solutions forward from b0, 
using h to estimate future utilities (just like A*!) and her to 
estimate policy risk. The set of explored solutions form the 
explicit hypergraph G, and the subset of G corresponding to 
the current estimate of the best policy is called the greedy
hypergraph g.

5/4/2016

3.4 RAO* in a nutshell

P. Santana, 16.412/6.834 - RAO*

< 𝕊,𝔸, 𝕆, 𝑇, 𝑂, 𝑅, 𝕔, Δ >, 𝑏0

Additions to AO* shown in red
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Input: < 𝕊,𝔸, 𝕆, 𝑇, 𝑂, 𝑅, 𝕔, Δ >, 𝑏0
Output: Policy : 𝔹 𝔸

Explicit graph G b0, g Best partial policy of G

while best partial policy graph g has nonterminal leafs

m Expand any nonterminal leaf from g

Add to G the children in m which do not violate risk bound

Z  set containing m and all of its predecessors that are part of g

while Z is not empty

n  Remove from Z a node with no descendants in Z

Update utility and execution risk for n

 Choose best action at n not violating risk bound

Update g with the new 

5/4/2016

RAO*’s pseudocode

Bellman 
backups

Heuristics for 
utility and execution risk

g is the graph obtained by 
following  from b0

P. Santana, 16.412/6.834 - RAO*

Additions to AO* shown in red
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RAO* example

5/4/2016

b0

goal

Heuristic estimate

Known value

Node in g, the greedy graph.

Node in G, the explicit graph, but not in g.

P. Santana, 16.412/6.834 - RAO*

Node with 𝑟𝑏 = 1 (violates constraints)
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Start

5/4/2016 P. Santana, 16.412/6.834 - RAO*

G starts just with just the initial state s0

Open nodes: [s0]

g={s0: None }

s0

Δ=5.0%
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Expansion

5/4/2016 P. Santana, 16.412/6.834 - RAO*

2. Estimate the value and execution risk of leaf nodes

s0

Open nodes: [s0]

g={s0: None }

1. Choose an open node to expand  s0

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

R(s0,a2 )=-2

-10 -11 -10 -9

Δ=8.3% Δ=12.5%Δ=7.1% Δ=16.6%

Δ𝑘+1
′ =

1

𝑃𝑟𝑠𝑎 𝑜′𝑘+1 𝜋 𝑏𝑘 , 𝑏𝑘

Δ𝑘 − 𝑟𝑏(𝑏𝑘)

1 − 𝑟𝑏(𝑏𝑘)
−  

𝑜𝑘+1≠𝑜𝑘+1
′

𝑃𝑟𝑠𝑎 𝑜𝑘+1 𝜋 𝑏𝑘 , 𝑏𝑘 ℎ𝑒𝑟 𝑏𝑘+1 𝜋

=
1

0.6

0.05 − 0

1 − 0
− 0.4 × 0 = 8.3%

3. Propagate risk bounds

Δ=5.0%

ℎ𝑒𝑟 = 𝑟𝑏 = 0 for all leaves 
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Backup

5/4/2016 P. Santana, 16.412/6.834 - RAO*

s0

Open nodes: [s0]

g={s0: None }

3. Backup value and execution risk for the currently expanded node (s0)  and 
all its ancestors that are part of g (no ancestors), recording the best value at 
each node.

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

R(s0,a2 )=-2

-10 -11 -10 -9

𝑉ℎ 𝑠0, 𝑎1 =−1 + −10 ∗ 0.7 − 11 ∗ 0.3 = −11.3

𝑉ℎ 𝑠0, 𝑎2 =−2 + −10 ∗ 0.6 − 9 ∗ 0.4 = −11.6

[-11.3,-11.6]

Δ=8.3% Δ=12.5%Δ=7.1% Δ=16.6%

Δ=5.0%

𝑒𝑟 𝑠0, 𝑎1 = 𝑒𝑟 𝑠0, 𝑎2 = 0 < 5%
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Update g

5/4/2016 P. Santana, 16.412/6.834 - RAO*

s0

Open nodes: [s0]

g={s0: None }

4. Update g and the list of open nodes (non-terminal) by selecting the 
best action at the nodes which got their values updated 

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

R(s0,a2 )=-2

-10 -11 -10 -9

𝑉ℎ 𝑠0, 𝑎1 =−1 + −10 ∗ 0.7 − 11 ∗ 0.3 = −11.3

𝑉ℎ 𝑠0, 𝑎2 =−2 + −10 ∗ 0.6 − 9 ∗ 0.4 = −11.6

[-11.3,-11.6]

Δ=8.3% Δ=12.5%Δ=7.1% Δ=16.6%

Δ=5.0%
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R(s0,a2 )=-2Update g

5/4/2016 P. Santana, 16.412/6.834 - RAO*

s0

Open nodes: [𝑠1
1, 𝑠1
2]

g={s0: a1}

4. Update g and the list of open nodes (non-terminal) by selecting the 
best action at the nodes which got their values updated 

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

-10 -11 -10 -9

𝑉ℎ 𝑠0, 𝑎1 =−1 + −10 ∗ 0.7 − 11 ∗ 0.3 = −11.3

𝑉ℎ 𝑠0, 𝑎2 =−2 + −10 ∗ 0.6 − 9 ∗ 0.4 = −11.6

𝑠1
1 𝑠1

2

[-11.3,-11.6]

Δ=8.3% Δ=12.5%Δ=7.1% Δ=16.6%

Δ=5.0%
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R(s0,a2 )=-2Expansion

5/4/2016 P. Santana, 16.412/6.834 - RAO*

s0

Open nodes: [𝑠1
1, 𝑠1
2]

g={s0: a1}

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

-10 -11 -10 -9

𝑠1
1 𝑠1

2

2. Estimate the value and execution risk of leaf nodes

1. Choose any open node to expand  𝑠1
2

-10

[-11.3,-11.6]

0.2 0.8 0.5 0.5

-12 -13 -14

R(𝑠1
2,a2 )=-2R(𝑠1

2,a1 )=-1

Δ=8.3% Δ=12.5%

Δ=7.1%

Δ=16.6%

3. Propagate risk bounds

Δ=33.2%Δ=33.2%Δ=-317%

Δ𝑘+1
′ =

1

𝑃𝑟𝑠𝑎 𝑜′𝑘+1 𝜋 𝑏𝑘 , 𝑏𝑘

Δ𝑘 − 𝑟𝑏(𝑏𝑘)

1 − 𝑟𝑏(𝑏𝑘)
−  

𝑜𝑘+1≠𝑜𝑘+1
′

𝑃𝑟𝑠𝑎 𝑜𝑘+1 𝜋 𝑏𝑘 , 𝑏𝑘 ℎ𝑒𝑟 𝑏𝑘+1 𝜋

1

0.2

0.166 − 0

1 − 0
− 0.8 × 1 = −317%

1

0.8

0.166 − 0

1 − 0
− 0.2 × 0 = 20.8%

Δ=20.8%

Δ=5.0%

ℎ𝑒𝑟 = 0 ℎ𝑒𝑟 = 1 ℎ𝑒𝑟 = 0 ℎ𝑒𝑟 = 0
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R(s0,a2 )=-2Backup
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s0

Open nodes: [𝑠1
1, 𝑠1
2]

g={s0: a1}

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

-10 -11 -10 -9

𝑠1
1 𝑠1

2

0.5 0.5

-13 -14

3. Backup values and execution risk for the currently expanded node (𝑠1
2)  and all 

its ancestors that are part of g (s0), recording the best value at each node.

𝑉ℎ 𝑠1
2, 𝑎2 =−2 + −13 ∗ 0.5 − 14 ∗ 0.5 = −15.5

R(𝑠1
2,a2 )=-2

[-15.5]

From leafs to the root

[-12.65,-11.6]

𝑉ℎ 𝑠0, 𝑎1 =−1 + −10 ∗ 0.7 − 15.5 ∗ 0.3 = −12.65

𝑉ℎ 𝑠0, 𝑎2 =−2 + −10 ∗ 0.6 − 9 ∗ 0.4 = −11.6

Δ=8.3% Δ=12.5%

Δ=7.1%

Δ=16.6%

Δ=33.2%Δ=33.2%

Δ=5.0%

𝑒𝑟 𝑠1
2, 𝑎2 = 0 < 16.6%, 𝑒𝑟 𝑠0, 𝑎2 = 0 < 5%
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R(s0,a2 )=-2Update g

5/4/2016 P. Santana, 16.412/6.834 - RAO*

s0

Open nodes: [𝑠1
1, 𝑠1
2]

g={s0: a1}

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

-10 -15.5 -10 -9

𝑠1
1 𝑠1

2

0.5 0.5

-13 -14

4. Update g and the list of open nodes (non-terminal) by selecting the best 
action at the nodes which got their values updated.

𝑉ℎ 𝑠1
2, 𝑎2 =−2 + −13 ∗ 0.5 − 14 ∗ 0.5 = −15.5

R(𝑠1
2,a2 )=-2

[-15.5]

From leafs to the root

[-12.65,-11.6]

𝑉ℎ 𝑠0, 𝑎1 =−1 + −10 ∗ 0.7 − 15.5 ∗ 0.3 = −12.65

𝑉ℎ 𝑠0, 𝑎2 =−2 + −10 ∗ 0.6 − 9 ∗ 0.4 = −11.6

Δ=5.0%

Δ=8.3% Δ=12.5%

Δ=33.2%Δ=33.2%

Δ=7.1%

Δ=16.6%
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R(s0,a2 )=-2Update g
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s0

Open nodes: [𝑠1
3, 𝑠1
4]

g={s0: a2}

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

-10 -10 -9

𝑠1
1 𝑠1

2

0.5 0.5

-13 -14

4. Update g and the list of open nodes (non-terminal) by selecting the best 
action at the nodes which got their values updated.

𝑉ℎ 𝑠1
2, 𝑎2 =−2 + −13 ∗ 0.5 − 14 ∗ 0.5 = −15.5

R(𝑠1
2,a2 )=-2

[-15.5]

From leafs to the root

[-12.65,-11.6]

𝑉ℎ 𝑠0, 𝑎1 =−1 + −10 ∗ 0.7 − 15.5 ∗ 0.3 = −12.65

𝑉ℎ 𝑠0, 𝑎2 =−2 + −10 ∗ 0.6 − 9 ∗ 0.4 = −11.6

𝑠1
3 𝑠1

4

-15.5

Δ=5.0%

Δ=8.3% Δ=12.5%

Δ=33.2%Δ=33.2%
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R(s0,a2 )=-2Termination

5/4/2016 P. Santana, 16.412/6.834 - RAO*

s0

Open nodes: [𝑠1
3, 𝑠1
4]

g={s0: a2}

0.7

0.3

R(s0,a1 )=-1
0.4

0.6

-10 -10 -9

𝑠1
1 𝑠1

2

0.5 0.5

-13 -14

R(𝑠1
2,a2 )=-2

[-15.5]

[-12.65,-11.6]

𝑠1
3 𝑠1

4

-15.5

Δ=5.0%

Δ=8.3% Δ=12.5%

Δ=33.2%Δ=33.2%

Search terminates when the list of open nodes is empty, i.e., all leaf nodes in g
are terminal (goals). 

At this point, return g as the optimal policy π.
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How hard is it to assess risk in RAO*?

𝑟𝑏 𝑏𝑘

𝑏𝑘

Constraint checker
𝑐𝑣(𝑝, 𝐶)

𝑏𝑘

Must run really fast for RAO* to be useful in practice!

P. Santana, 16.412/6.834 - RAO*

e.g., see the probabilistic scheduling lecture by Andrew Wang and Cheng Fang.
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Terminal violations = Observable violations

Dead!

𝑝𝑐

Alive!

 𝑏0

𝑏1

 𝑏1(⋅ |𝑜1 = 𝐴𝑙𝑖𝑣𝑒)

 𝑏1(⋅ |𝑜1 = 𝐷𝑒𝑎𝑑)

1 − 𝑝𝑐

𝑝𝑐

x

Probabilistic operator

𝑟𝑏 𝑏𝑘 = 0, ∀ non-terminal 𝑏𝑘

Complete constraint violation 
awareness!
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Dynamic vs Static risk allocation

Δ𝑘+1
′ =

1

𝑃𝑟𝑠𝑎 𝑜′𝑘+1 𝜋 𝑏𝑘 , 𝑏𝑘

Δ𝑘 − 𝑟𝑏(𝑏𝑘)

1 − 𝑟𝑏(𝑏𝑘)
−  

𝑜𝑘+1≠𝑜𝑘+1
′

𝑃𝑟𝑠𝑎 𝑜𝑘+1 𝜋 𝑏𝑘 , 𝑏𝑘 ℎ𝑒𝑟 𝑏𝑘+1 𝜋

5/4/2016

Δ𝑘+1
′

Δ𝑘
Δ𝑘+1
′ = Δ𝑘 − 𝑝𝑐Static allocation:

Δ𝑘+1
′ =

1

1 − 𝑝𝑐

Δ𝑘 − 0

1 − 0
− 𝑝𝑐 ⋅ 1 =

Δ𝑘 − 𝑝𝑐
1 − 𝑝𝑐

Dynamic allocation:
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1. Execution risk should be applicable to risk-aware 
planning in general and could be incorporated 
into other POMDP solvers to endow them with a 
keen sensitivity to risk;

2. Risk-bounded plan execution improves upon the 
conservatism of risk-minimal alternatives while 
offering strict safety guarantees;

3. Efficient risk-aware constraint solvers are 
necessary for risk-aware planning;

Some takeaways
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