
Dynamic Execution of Temporal Plans with Sensing

Actions and Bounded Risk
by

Pedro Henrique de Rodrigues Quemel e Assis Santana
Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Aerospace Engineering

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2016
c○ Massachusetts Institute of Technology 2016. All rights reserved.

Author .

Department of Aeronautics and Astronautics

August 15𝑡ℎ, 2016

Certified by. .

Brian C. Williams

Professor of Aeronautics and Astronautics, MIT, Thesis Supervisor

Certified by. .

Tomás Lozano-Pérez

Professor of Computer Science & Engineering, MIT

Certified by. .

Sertac Karaman

Associate Professor of Aeronautics and Astronautics, MIT

Certified by. .

Sylvie Thiébaux

Professor of Computer Science, ANU, and Research Leader, NICTA

Certified by. .

Shlomo Zilberstein

Professor of Computer Science, UMass Amherst
Accepted by .

Paulo C. Lozano

Associate Professor of Aeronautics and Astronautics

Chair, Graduate Program Committee

2

Dynamic Execution of Temporal Plans with Sensing Actions

and Bounded Risk

by

Pedro Henrique de Rodrigues Quemel e Assis Santana

Submitted to the Department of Aeronautics and Astronautics
on August 15𝑡ℎ, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Aerospace Engineering

Abstract

A special report on the cover of the June 2016 issue of the IEEE Spectrum maga-
zine reads: “can we trust robots?” In a world that has been experiencing a seem-
ingly irreversible process by which autonomous systems have been given increasingly
more space in strategic areas such as transportation, manufacturing, energy supply,
planetary exploration, and even medical surgeries, it is natural that we start asking
ourselves if these systems could be held at the same or even higher levels of safety
than we expect from humans. In an effort to make a contribution towards a world of
autonomy that we can trust, this thesis argues that one necessary step in this direc-
tion is the endowment of autonomous agents with the ability to dynamically adapt
to their environment while meeting strict safety guarantees.

From a technical standpoint, we propose that autonomous agents in safety-critical
applications be able to execute conditional plans (or policies) within risk bounds
(also referred to as chance constraints). By being conditional, the plan allows the
autonomous agent to adapt to its environment in real-time by conditioning the choice
of activity to be executed on the agent’s current level of knowledge, or belief, about the
true state of world. This belief state is, in turn, a function of the history of potentially
noisy sensor observations gathered by the agent from the environment. With respect
to bounded risk, it refers to the fact that executing such conditional plans should
guarantee to keep the agent “safe” - as defined by sets of state constraints - with high
probability, while moving away from the conservatism of minimum risk approaches.

In this thesis, we propose Chance-Constrained Partially Observable Markov De-
cision Processes (CC-POMDP’s) as a formalism for conditional risk-bounded plan-
ning under uncertainty. Moreover, we present Risk-bounded AO* (RAO*), a heuris-
tic forward search-based algorithm that searches for solutions to a CC-POMDP by
leveraging admissible utility and risk heuristics to simultaneously guide the search
and perform early pruning of overly-risky policy branches. In an effort to facilitate
the specification of risk-bounded behavior by human modelers, we also present the
Chance-constrained Reactive Model-based Programming Language (cRMPL), a novel
variant of RMPL that incorporates chance constraints as part of its syntax. Finally,

3

in support of the temporal planning applications with duration uncertainty that this
thesis is concerned about, we present the Polynomial-time Algorithm for Risk-aware
Scheduling (PARIS) and its extension to conditional scheduling of Probabilistic Tem-
poral Plan Networks (PTPN’s).

The different tools and algorithms developed in the context of this thesis are com-
bined to form the Conditional Planning for Autonomy with Risk (CLARK) system,
a risk-aware conditional planning system that can generate chance-constrained, dy-
namic temporal plans for autonomous agents that must operate under uncertainty.
With respect to our empirical validation, each component of CLARK is benchmarked
against the relevant state of the art throughout the chapters, followed by several
demonstrations of the whole CLARK system working in tandem with other building
blocks of an architecture for autonomy.

Thesis Supervisor: Brian C. Williams
Title: Professor of Aeronautics and Astronautics, MIT

Thesis Committee Member: Tomás Lozano-Pérez
Title: Professor of Computer Science & Engineering, MIT

Thesis Committee Member: Sertac Karaman
Title: Associate Professor of Aeronautics and Astronautics, MIT

Thesis Committee Member: Sylvie Thiébaux
Title: Professor of Computer Science, ANU, and Research Leader, NICTA

Thesis Committee Member: Shlomo Zilberstein
Title: Professor of Computer Science, UMass Amherst

4

Acknowledgments

First and foremost, I would like to thank my advisor, Brian Williams, for his patience,

support, brilliant insights, and many opportunities during my time as his student in

the MERS group. It is the case that you gave me the opportunity of a lifetime

by accepting me into MIT, and provided me with the tools to fulfill dreams that I

never thought would be possible. Does that make sense, or should I clarify with some

grounded examples?

I would also like to thank my thesis committee members, Tomás Lozano-Pérez,

Sertac Karaman, Sylvie Thiébaux, and Shlomo Zilberstein, for their exceptionally

constructive and accurate feedback throughout the process of making this thesis, and

for being such a thoughtful sounding board for my ideas and future goals. For all her

guidance during my time at NICTA, our productive collaboration, and her hatred of

my semicolons, Sylvie deserves an extra round of gratitude and appreciation. More-

over, I would like to thank Julie Shah, the external evaluator in my thesis proposal

defense, whose invaluable remarks turned into a whole chapter in my thesis.

To my family, my eternal love and gratitude for their Herculean effort and sacrifices

to turn me into a well-functioning adult, and for their understanding that the process

did not go as planned. To my father, Paulo, the engineer that I will always want to

be; to my mother, Angélica, for packing more love per square inch than any other

person on the planet; to my second mother, Maria José, for making me feel as her

own son, even though this son is... well, me. To my siblings, Patrícia and Fernando,

for their companionship and supernatural knack for remembering every embarrassing

moment of my life.

To my beautiful wife, Luiza, who gave me strength every time I felt I could no

longer bear the weight. Thank you for accepting my imperfect self in the warm

comfort of your love, and for our countless moments of shared joy. For that, I owe

you my lifelong gratitude and love, and a couple of those annoying little dogs that

will not stop barking!

Navigating the winding and steep road of a thesis would have been much harder,

5

or even impossible, without the daily guidance of postdocs, research scientists, and

visiting scholars with whom I had the privilege to interact. Among those, I would

like to thank Andreas Hofmann for his constant support throughout this thesis, and

his unusual ability to remain calm and point us in the right direction when things

seemed too hard to accomplish; Tiago Vaquero, Erez Karpas, and Christian Muise,

for all the enlightening and productive discussions permeated by moments of sheer

silliness; Geovany Borges and Bruno Adorno, who mentored me at the University of

Brasília, and shone a bit more of their brilliance upon me during their visits to MIT;

and Cláudio Toledo, whose excitement about his work and open-minded approach to

research catapulted my thesis forward.

My sincere gratitude also goes to Beth Marois and Jason McKnight, for their

unwavering support in reducing the entropy of my sometimes chaotic life as a Ph.D.

student. I would also like to thank Jonathan Smith from UPenn, who is deserving of

my deepest admiration and appreciation, despite our short period of interaction.

I am thankful to my dear labmates for sharing their genius with me, and making

my time in MERS a memorable period of my life. After a long discussion with Andrew

about whether the order of appearance in the acknowledgements means anything, I

decided to list people alphabetically. Therefore, thank you Ameya, for clubbing

like a boss; Andrew, for being an extraordinarily special Texas snowflake; Ben, for

being half British, half Yeeeeeeehaw!; Bobby, for inspiring this thesis and teaching

me about socially acceptable chocolate; Dan, for teaching me how to properly say

“robot”, and for winning the contest of how long it would take Steve to sit after he

adopted a standing desk; David, for always knowing how to do things; Enrique, for

his impeccable professionalism; Eric, for the outing adventures and keeping our lab

running like a clock; Hiro, for the impromptu Pink Floyd performances at 2 AM in

the lab; James, for showing us that rugby is, indeed, a gentleman’s sport; Johannes,

for shining both figuratively and literally; Jonathan, for keeping MERS classy; Larry,

for milkshakes that bring all the boys to the yard; Luis (a.k.a. Postinho), for being

as awesome of a friend in the Northern, as in the Southern hemisphere; Peng, for

never being too busy to help or in a bad mood, ever; Shannon, for the amazing

6

tips about graduate life on my very first day at MIT; Simon, for saying the most

inappropriate things at the most appropriate times; Spencer, for being an example

of resilience; Steve, for accepting me into the Jewish faith, and never really charging

me any licensing fees; Szymon, for teaching me so much about Poland; and Yuki, for

making me feel at home in Japan.

My sincere gratitude also goes to Alban, Menkes, Pascal, Patrik, Phil, Scott,

Frank, Philip, Karsten, Boon Ping, Jing, and all the other remarkable people I had

the privilege of working with during my time at NICTA (or should I say Data61?); to

my wonderful students and co-instructors at SUTD and MEET, who showed me how

much I enjoy being in a classroom; and the CSAIL community, which never ceases to

amaze me.

Finally, this thesis would not have been possible without the gracious support of

various institutions. Therefore, I would like to acknowledge the initial financial sup-

port provided by the Fulbright S&T Award, and the various funding agencies through-

out my Ph.D.: the Boeing Company, the Air Force Office of Scientific Research, the

SUTD-MIT Graduate Fellows Program, and the Mitsubishi Electric Corporation.

7

8

Contents

List of Figures 13

List of Tables 23

1 Introduction 25

1.1 Minimal vs bounded risk: key thesis principles 30

1.2 Desiderata . 33

1.3 Problem statement . 35

1.4 Approach in a nutshell . 39

1.5 Thesis contributions . 46

1.6 Thesis roadmap . 47

2 Related work 51

2.1 (Constrained) MDP’s and POMDP’s 52

2.2 Scheduling under uncertainty . 56

2.3 Temporal and hybrid planning . 60

2.4 Programming languages for autonomy 65

3 Generating chance-constrained, conditional plans 69

3.1 Introduction . 70

3.2 Problem formulation . 72

3.2.1 Managing belief states . 72

3.2.2 Computing mission risk dynamically 75

3.2.3 Chance-constrained POMDP’s 80

9

3.2.4 Enforcing safe behavior at all times 82

3.3 Relation to constrained POMDP’s . 83

3.4 Solving CC-POMDP’s through RAO* 86

3.4.1 Propagating risk bounds forward 87

3.4.2 Algorithm . 91

3.4.3 Grounded example . 94

3.4.4 Properties . 100

3.5 Experiments . 102

3.6 Conclusions . 105

4 Programming risk-aware missions with cRMPL 107

4.1 Introduction . 108

4.2 Motivation: programming high level missions 110

4.3 Design desiderata for cRMPL . 113

4.4 Syntax . 115

4.4.1 Episodes . 115

4.4.2 Episode constraints . 118

4.4.3 Composing episodes in cRMPL 120

4.5 Execution semantics . 124

4.5.1 Valid executions of a cRMPL program 125

4.5.2 Execution of cRMPL programs as CC-POMDP 133

4.6 Conclusions . 144

5 Risk-sensitive unconditional scheduling under uncertainty 147

5.1 Introduction . 148

5.1.1 Motivation: planetary rover coordination 150

5.2 Background & PSTNU’s . 151

5.3 Problem formulation . 154

5.3.1 Computing strong schedules 155

5.3.2 Computing scheduling risk . 156

5.4 Polynomial-time, risk-aware scheduling 157

10

5.4.1 Assumptions and walk-through 157

5.4.2 A linear scheduling risk bound 159

5.4.3 The risk of “squeezing” contingent durations 160

5.4.4 Improving piecewise approximations 163

5.4.5 From minimum risk to other linear objectives 165

5.4.6 Algorithm properties . 167

5.5 Experiments . 168

5.6 Conclusions . 171

6 Risk-sensitive scheduling of PTPN’s 175

6.1 Introduction . 176

6.2 Approach in a nutshell . 178

6.3 Problem statement . 181

6.4 Chance-constrained consistency of PTPN’s 183

6.4.1 Chance-constrained weak consistency 184

6.4.2 Chance-constrained strong consistency 185

6.5 Numerical chance constraint evaluation 189

6.6 Conclusions . 192

7 Integrated CLARK experiments 193

7.1 The CLARK system . 194

7.1.1 Inputs . 194

7.1.2 Outputs . 202

7.1.3 Execution on Enterprise . 204

7.1.4 Chance-constrained path planning 207

7.2 Collaborative manufacturing . 213

7.3 Data retrieval missions . 223

7.3.1 Extending RSS with risk-bounded path planning 234

7.4 Conclusions . 237

11

8 Conclusions 239

8.1 Summary of contributions . 239

8.2 Future work . 241

A Extending RAO* to partially-enumerated beliefs and policies 247

A.1 Partial enumeration of belief states 248

A.1.1 Predicting PEBS’s . 250

A.1.2 Updating partially-enumerated beliefs 252

A.1.3 Computing approximate execution risks 255

A.1.4 Approximate forward-propagation of execution risks 260

A.1.5 Computing approximate utilities 260

A.2 Trial-based bounds . 262

B A SAT model for power supply restoration 267

B.1 Modeling circuit-breakers . 268

B.2 Simulating the network . 270

C PTPN XML schema 271

D RSS model 283

Bibliography 289

12

List of Figures

1-1 Curiosity’s self-portrait on Mars. Photo source: http://photojournal.

jpl.nasa.gov/jpeg/PIA16239.jpg. 26

1-2 Examples of underwater vehicles operated by WHOI. Photo 1-2a by

Ben Allsup, TeledyneWebb Research. Photos 1-2b and 1-2c byWHOI’s

Autonomous Underwater Vehicle Application Center. 26

1-3 Current safety-critical robotic applications. Source for photo 1-3a:

https://www.google.com/selfdrivingcar/where/. Photo 1-3b by

John F. Williams, U.S. Navy. 27

1-4 Rural power supply network from [Thiébaux and Cordier, 2001]. . . . 28

1-5 Collaborative manufacturing cell in the MERS group at MIT. 29

1-6 PSTNU used in the sleep maximization problem. Circles represent

temporal events that are under our control, while squares are temporal

events whose occurrence is governed by external forces (“Nature”). A

solid arrow with an interval [𝑙, 𝑢] represents the constraint 𝑙 ≤ 𝑒𝑗−𝑒𝑖 ≤

𝑢, where 𝑒𝑗 and 𝑒𝑖 are, respectively, the events at the end and at

the start of the arrow. A dashed arrow represents an uncontrollable

duration between two events. The unit of time is minutes here. 31

1-7 A risk-minimal solution to the sleep maximization problem in Figure

1-6. If one sleeps for 420 minutes and leaves to work at 7:30 AM, the

risk of being late is no greater than 0.00068%. 32

13

http://photojournal.jpl.nasa.gov/jpeg/PIA16239.jpg
http://photojournal.jpl.nasa.gov/jpeg/PIA16239.jpg
https://www.google.com/selfdrivingcar/where/

1-8 A chance-constrained solution to the sleep maximization problem in

Figure 1-6. If one sleeps for 444 minutes and leaves to work at 7:54

AM, the risk of being late is no greater than 1.78%. 32

1-9 Architecture diagram of the different elements composing CLARK. In-

puts are shown to the left of CLARK’s core (surrounded by the dotted

line), while outputs are placed on the right. 39

1-10 Depiction of how the CLARK executive, a combination of CLARK and

Pike, can be used in closed-loop control applications. The conditional

temporal policy generated by CLARK is sent to Pike in the form of a

Probabilistic Temporal Plan Network (PTPN), which Pikes then takes

care of dispatching through the physical hardware interface while per-

forming execution monitoring. 41

1-11 Simple morning commute problem from [Santana and Williams, 2014]

written in cRMPL. 42

1-12 Probabilistic Temporal Plan Network obtained from the cRMPL pro-

gram shown in Figure 1-11. Temporal constraints are represented as

in Section 1.1; double circles with solid lines represent controllable

choices (decisions) that the agent can make (in this case, the means of

transportation); and double circles with dashed lines represent uncon-

trollable choices (observations) obtained from the environment. 43

1-13 Temporal network entailed by choosing to ride a bike to work. A con-

sistent schedule exists with probability 94.9% according to the cRMPL

program in Figure 1-11, corresponding to the probability of not slipping

and falling. 44

1-14 Temporal network entailed by choosing to drive to work. A consis-

tent schedule exists with probability 98.7% according to the cRMPL

program in Figure 1-11, corresponding to the probability of not being

involved in an accident. 45

1-15 Temporal network entailed by choosing to stay at home and telecom-

muting. This option has a consistent schedule with probability 100%. 45

14

1-16 Block diagram illustrating the relationship between different compo-

nents developed in this thesis, its goal (blue block on second level from

the top), and the real-world need that motivates it (top block). 48

3-1 Depiction of a discrete belief state over a state space 𝒮. 73

3-2 Simple graphical example of how safe belief states and observation

probabilities are computed. Black circles represent belief states, and

squares with probabilities shown next to them are belief state particles.

Arrows emanating from particles represent stochastic transitions trig-

gered by action 𝜋(𝑏𝑘) at the belief state 𝑏𝑘. Particles shown in red are

those whose states 𝑠 violate constraints, i.e., 𝑐𝑣(𝑠, 𝐶) = 1, while white

particles are safe. For this example, assume that the observation 𝑜𝑘+1

shown in blue is generated with probability 1 by the particles next to

it, and with probability 0 everywhere else. 79

3-3 Modeling chance constraints via unit costs may yield incorrect results

when constraint-violating states (dashed outline) are not terminal.

Numbers within states are constraint violation probabilities. Numbers

over arrows are probabilities for a non-deterministic action. 83

3-4 Impact on belief states of assuming terminal constraint violations, with

squares representing belief state particles. White squares represent par-

ticles for which 𝑐𝑣 indicates no constraint violation, while red squares

denote particles on constraint-violating paths. 84

3-5 Relationship between spaces explored by heuristic forward search. . . 86

3-6 Hypergraph node containing a belief state. 87

3-7 Segment of an AND-OR search tree. 87

3-8 Hypergraph representation of an AND-OR tree. 88

3-9 Visual relationship between (3.30) and the portion of RAO*’s search

hypergraph associated with executing action 𝑎𝑘 = 𝜋(𝑏𝑘) at belief 𝑏𝑘. . 90

15

3-10 From left to right: node in 𝑔, the greedy graph; node in 𝐺, the ex-

plicit graph, but not in 𝑔; node with 𝑟𝑏 = 1 (guaranteed to violate

constraints); color used to represent heuristic estimates. In opposition

to nodes with red outlines, we assume in this particular example that

nodes with black outlines have 𝑟𝑏 = 0. 95

3-11 Initial state of the search for a CC-POMDP policy featuring a chance

constraint er(𝑏0, 𝐶|𝜋) ≤ ∆ = 5%. 95

3-12 State of the search after expanding the initial belief state and propa-

gating execution risk bounds forward. 96

3-13 Outcome of updating the policy graph based on the numbers shown

in Figure 3-12. The highlighted portion of the explicit graph 𝐺 cor-

responds to the best available estimate of the optimal policy graph

𝑔. 97

3-14 Result of expanding node 𝑏21 in Figure 3-13. Notice the child node with

red outline and 𝑟𝑏 = 1, which causes the left hyperedge of 𝑏21 to be

pruned on the grounds of being too risky. 97

3-15 Result of pruning the search graph in Figure 3-14 due to violations of

execution risk bounds. 99

3-16 Estimate of the best policy 𝑔 after two full iterations of RAO* on this

simple example. 99

4-1 Mars rover scenario where a robotic scout must explore different regions

of the map before driving back to a relay location and communicating

with an orbiting satellite. 110

4-2 Simple rover control program expressed in cRMPL. 112

4-3 Example route between two arbitrary locations A and B on a map.

The intermediate dots connecting path segments are intermediate way-

points that the robot should visit in its traversal in order to maintain

a safe distance from obstacles. 113

16

4-4 Result of the CLARK executive dispatching the cRMPL program in

Figure 4-2. 114

4-5 Extended Backus-Naur Form (EBNF) grammar for cRMPL. 116

4-6 Episode specifying that an unmanned aerial vehicle (UAV) should scan

an area for a period between 1 and 10 time units, while making sure

that it maintains itself in a healthy state through the state constraint

Healthy=True. If uav-scan can be directly executed by the UAV,

this would be a primitive episode. Otherwise, if uav-scan requires a

combination of more fundamental episodes, then this episode would be

composite. 117

4-7 Composite episode generated by the sequence operator, which enforces

sequential temporal execution by means of [0,∞] STC’s. 121

4-8 Composite episode generated by the parallel operator. Different from

sequence, component episodes in a parallel composition can be sched-

uled to happen at the same time. 122

4-9 Composite episodes generated by two instances of the choose opera-

tor. The composite episode on the left corresponds to a controllable

choice (decision) 𝑢𝑑, while the one on the right corresponds to an un-

controllable choice (observation) 𝑢𝑜. 123

4-11 Roller coaster-riding scenario described in cRMPL. 134

4-12 Incremental unraveling of the cRMPL program from Figure 4-11. Tem-

poral consistency is checked by PARIS, the probabilistic scheduling

algorithm described in Chapter 5. 135

4-13 Fully unraveled PTPN for the cRMPL program in Figure 4-11 when

the number of loop iterations is limited to be no more than 5. 140

4-14 Elements of the constraint store at 𝑏0, the initial (deterministic) belief

state for the execution of the cRMPL program in Figure 4-11. 141

4-15 Temporal constraints tested for consistency with PARIS after the first

(ride) primitive is unraveled. 142

17

4-16 Temporal constraints tested for consistency with PARIS after the sec-

ond (ride) primitive is unraveled. 142

4-17 Temporal constraints tested for consistency with PARIS after the third

(ride) primitive is unraveled. Unlike the previous cases, here PARIS

returns that no strongly consistent schedule exists. 143

4-18 Temporal constraints tested for consistency at the halting state in the

RAO* policy shown in Figure 4-12. It corresponds to two runs of the

loop, followed by the decision to stop the iteration. As required by

valid cRMPL executions in Definition 4.4, these constraints are jointly

feasible with high probability (100%, in this example). 143

5-1 Rover coordination under temporal uncertainty. (a) Scenario repre-

sentation as PSTNU. (b) Strong activity schedule for the PSTNU in

(a) with scheduling risk bound of 6.7% (i.e., all temporal requirements

met with probability of at least 93.3%). 150

5-2 Elements of a PSTNU, where [𝑙, 𝑢] is a given interval and 𝑓 is a known

probability density function (pdf). From left to right: controllable

event; contingent (uncontrollable) event; Simple Temporal Constraint

(STC); STC with Uncertainty (STCU); Probabilistic STC (PSTC). . 152

5-3 Piecewise-constant approximation of a Gaussian pdf allowing Φ(𝑙𝑖) and

(1−Φ(𝑢𝑖)) in (5.6) to be upper bounded by a piecewise-linear function.

The 𝑝𝑖’s are given partition points. 162

5-4 Performance of Rubato and PARIS on CAR-SHARING dataset. . . . 173

5-5 Performance of PARIS on ROVERS dataset. 174

6-2 Partition of the constraints induced by an assignment to the control-

lable choices. 186

6-3 Average time to solution for CDA* versus CS. 191

6-4 Average time complexity growth for CDA*. 191

18

7-2 Simple scenario that can be modeled as a CC-POMDP: a robot with

unreliable movements and noisy position sensors that must move around

a grid to get to its goal 𝐺. Execution should be carried with bounded

risk of colliding against obstacles (black squares). 196

7-3 Durative action in PDDL2.1 representing a traversal between two lo-

cations by a rover. 200

7-4 Grounded version of the durative action from Figure 7-3 written in

cRMPL. Unlike PDDL, the cRMPL version supports probabilistic un-

controllable durations. 201

7-5 Depiction of the episode generated by the cRMPL code in Figure 7-4. 202

7-6 Example of a PTPN obtained from a CC-POMDP policy. 204

7-8 CLARK executive as part of Enterprise. The diagram is a courtesy of

Catharine McGhan and Tiago Vaquero. 206

7-9 A chance-constrained traversal generated by pSulu for a robot with

linear dynamics and Gaussian noise. The 3𝜎 ellipses are shown in red. 208

7-10 Process of converting traversals generated by pSulu into chance-constrained

cRMPL episodes. 210

7-11 First two waypoint episodes for the traversal in Figure 7-9. 210

7-12 Solution quality as a function of the chance constraint ∆ for traversals

between the two locations in Figure 7-9. The ProOFFull model con-

tains the complete set of constraints for collision avoidance in pSulu,

while ProOFCSA is an approximation of ProOFFull that can be com-

puted faster. 211

7-13 A closer look at the low risk portion of Figure 7-12. 212

7-14 Baxter and pieces of a mock electronic component assembly task con-

stituting the ECA scenario for collaborative manufacturing demon-

strations. Small boxes represent electronic components; the elongated

yellow box is a circuit board cleaner; and the elongated green box is a

soldering iron. 214

19

7-15 Simple collaborative pick-and-place task between the Baxter and a

human coworker. 215

7-16 Top level function defining the cRMPL control program for the collab-

orative pick-and-place task. 216

7-17 Recursive function modeling the process of the Baxter observing whether

the human modified the environment, choosing the next block to move,

and repeating the process until no more blocks are left. 216

7-18 The say activity is primitive for the Baxter, and causes the string

passed as an argument to be read by a text-to-speech module. The

pick_and_place_block activity, on the other hand, is represented by

a composite sequence episode composed of the primitive activities

pick and place. 217

7-19 PTPN for the collaborative pick-and-place task featuring two blocks. 218

7-20 Scheduling risk and time to compute a temporally feasible execution

of the collaborative pick-and-place task with 3 blocks, as a function of

the width of the time window. 222

7-21 Resilient Spacecraft Executive (RSE) architecture. In the RSS demon-

stration, the role of the risk-aware deliberative layer was performed by

the CLARK executive within Enterprise (Figure 7-8). The diagram is

a courtesy of Catharine McGhan and Tiago Vaquero. 224

7-22 Snapshot of the RSS demonstration environment. 225

7-23 Different stage of the RSS demonstration available at the aforemen-

tioned video link. The “nominal temporal plan” shown in 7-23a is the

same one depicted on the bottom right quadrant of Figure 7-22. The

figures are a courtesy of Tiago Vaquero and Catharine McGhan. . . . 228

7-24 PTPN generated by CLARK and sent to Pike for the simple case where

only a picture at location 3 is needed. The actual scheduling of activ-

ities is performed by Pike in real time as it dispatches the plan. . . . 230

20

7-25 CLARK policy for the RSS scenario with picture requests at locations

3 and 5, and two types of move actions with bounded risk of collision:

move-low (risk bound of 0.01%) and move-high (risk bound of 0.04%). 235

7-26 Comparison between RSS scenarios with (label Collision) and without

(label No collision) collision handling. The order of goal combinations

on the horizontal axes follows the first column of Table 7.6. 236

A-1 Example PEBS. Squares on the tree represent enumerated particles

with non-zero probabilities; clouds represent unenumerated (lumped)

particles; and layers represent belief states. 248

A-2 Situation in which an interval of width 2𝑡 around the sample mean 𝑋

does not contain the true mean 𝜇. 264

A-3 Sensitivity of 𝑡 with respect to 𝑛 for a constant term multiplying

1/(𝑛
√
𝑛) equals to −1. The more negative the value, the better. . . . 265

A-4 Ambiguity for selecting between actions 𝑎1 and 𝑎2, which generated,

respectively, the sample means 𝑋1 and 𝑋2. 266

B-1 Small instance of a power network with fault sensors. 268

B-2 Electrical model of a feeder. 269

21

22

List of Tables

3.1 SA results for various time windows and risk levels. The Window col-

umn refers to the time window for the SA agent to gather information,

not a runtime limit for RAO*. 105

3.2 PSR results for various numbers of faults (#) and risk levels. Top:

avg. of 7 single faults. Middle: avg. of 3 double faults. Bottom: avg.

of 2 triple faults. Left (right) numbers correspond to 12 (16) network

sensors. 105

4.1 Relationship between the pRMPL variant of [Effinger, 2012], cRMPL,

and HCA [Williams et al., 2003]. 126

4.2 Relationship between cRMPL and PTPN constructs. 131

7.1 Number of elements involved in the scheduling of the collaborative

pick-and-place task as a function of the number of blocks. Decisions

are controllable choices; observations are probabilistic uncontrollable

choices; CD are controllable durations represented as simple temporal

constraints; and UD are uncontrollable probabilistic durations. 217

7.2 Number of elements in the PTPN’s given to Pike, which contain no

decisions (controllable choices) and only simple temporal constraints

(controllable durations). Refer to the numbers in Table 7.1 for a com-

parison of relative complexity. 219

23

7.3 Performance comparison between CLARK and Pike in the collabora-

tive pick-and-place scenario. The complexity of the scheduling prob-

lems for CLARK and Pike are described, respectively, in Tables 7.1 and

7.2. The CD columns are used for cRMPL programs containing only

controllable durations, while UD columns are for programs containing

both controllable and uncontrollable (probabilistic) durations. We use

NA to denote that Pike cannot handle uncontrollable durations, and

TO to represent a compilation timeout (ran beyond 1 hour without

returning a result). Numbers are averages over ten runs. 220

7.4 Duration models used in the RSS demonstration. Set-bounded dura-

tions 𝑢[𝑎, 𝑏] are those found in STNU’s and represent random variables

that take values within the interval [𝑎, 𝑏] with unknown probability dis-

tribution. Similar to set-bounded durations, a uniform duration 𝑈(𝑎, 𝑏)

also takes values in the interval [𝑎, 𝑏], but with known density (𝑏−𝑎)−1

anywhere within the interval. Finally, a Gaussian duration 𝑁(𝜇, 𝜎2)

has mean 𝜇 and variance 𝜎2. 227

7.5 Possible schedule for the risk-aware “nominal” temporal plan generated

by CLARK for the RSS demonstration scenario. 229

7.6 CLARK’s performance on the RSS demonstration for different combi-

nations of goals. PL is the Plan Length (number of actions); TTS is

the Time to Solution, i.e., the amount of time to generate a temporal

plan with a schedule that meets the chance constraint; ER is RAO* ex-

ecution risk, which corresponds to the scheduling risk for these plans;

MR-MS is the Minimum Risk Makespan, i.e., the temporal span to

the temporal plan when scheduling risk is minimized; and CC-MS is

the Chance-Constrained Makespan, where the risk bound ∆ = 0.1% is

exploited to reduce the total execution time. 232

24

Chapter 1

Introduction

“Space: the final frontier. These are the voyages of the starship

Enterprise. Its five-year mission: to explore strange new worlds, to seek

out new life and new civilizations, to boldly go where no man has gone

before.”

Captain Kirk, Starship Enterprise

We hold these truths to be self-evident: warp drives would be amazingly useful

tools to have at our disposal; and it is remarkably difficult to prevent our delicate

human bodies from freezing, burning, choking, starving, disintegrating, or some other

painful combination thereof as we try to visit increasingly distant corners of our

galaxy. Unfortunately, by the time of this thesis’ writing, humankind had not yet

found acceptable solutions to any of these problems, thus forcing us earthlings to

rely on robotic proxies to physically explore the immensity of space beyond our blue

planet’s immediate vicinity.

When scientists envision robotics as a means to conquer the skies, a fundamental

question comes to mind: “can we trust these robots to do the right thing?” As we move

towards trusting robots and other autonomous systems with increasingly important

missions, one must be able to provide a decisive answer to this question. Evidently, a

thorough discussion of “do the right thing” would require us to sift through centuries

of human lucubrations on moral and ethics, a journey as wonderful as it is out of the

25

scope of this thesis. Therefore, here, we circumscribe ourselves to the much narrower

field of applications in which “do the right thing” means “complete their tasks well

and safely”. In particular, this thesis delivers a series of methods that have been

demonstrated to enable autonomous agents to plan missions and its contingencies for

stochastic outcomes, while guaranteeing user-specified levels of risk. We justify this

thesis focus below.

Figure 1-1: Curiosity’s self-portrait on Mars. Photo source: http://photojournal.
jpl.nasa.gov/jpeg/PIA16239.jpg.

(a) Slocum glider. (b) Sentry autonomous un-
derwater vehicle.

(c) Nereus remotely-operated
vehicle.

Figure 1-2: Examples of underwater vehicles operated by WHOI. Photo 1-2a by Ben
Allsup, Teledyne Webb Research. Photos 1-2b and 1-2c by WHOI’s Autonomous
Underwater Vehicle Application Center.

Fortunately, one does not necessarily have to go to outer space, as in the robotic

26

http://photojournal.jpl.nasa.gov/jpeg/PIA16239.jpg
http://photojournal.jpl.nasa.gov/jpeg/PIA16239.jpg

space missions operated by NASA’s Jet Propulsion Laboratory (JPL) (Figure 1-1),

to find situations in which autonomous agents must be trusted with safety-critical

missions. Within our own planet, one could mention, for instance, the sea exploration

missions undertaken by the Woods Hole Oceanographic Institution (WHOI) and its

suite of autonomous and remotely-operated underwater vehicles, some of which are

shown in Figure 1-2. Closer to our daily lives, there has been a tremendous push

in recent years by traditional automakers, Silicon Valley giants, universities, and

start-ups in the United States and abroad towards the development of semi and fully

autonomous vehicles to be operated on roads alongside human drivers (Figure 1-3a).

In disaster relief and search-and-rescue domains, where safety is also of paramount

importance, one could mention the recently completed DARPA Robotics Challenge

(Figure 1-3b) and automated power supply restoration (Figure 1-4).

(a) One of Google’s self-driving vehicles. (b) HUBO, from the Korea Advanced In-
stitute of Science and Technology (KAIST),
winner of the DARPA Robotics Challenge.

Figure 1-3: Current safety-critical robotic applications. Source for photo 1-3a: https:
//www.google.com/selfdrivingcar/where/. Photo 1-3b by John F. Williams, U.S.
Navy.

Finally, outside the streets and inside modern factories and warehouses, one can

observe a clear progression from the traditional manufacturing cell model, in which

humans and robots work in complete physical separation, to a more dynamic, collabo-

rative production environment in which teams of humans and robots must coordinate

amongst themselves in order to achieve common goals. As indication of such a trend,

consider Amazon’s recent purchase of Kiva System’s robotic warehouse management

27

https://www.google.com/selfdrivingcar/where/
https://www.google.com/selfdrivingcar/where/

CB1

CB2

CB3

CB4

CB6

CB7

open closed

circuit−breaker

feeder

line

CB5 S50
B50

B40

S40

B41 B42

S42 S43

B43

S44

S41

B53

S52 S51

B52

B70

S71

B71

B35

S34B32

S31
B31

B30

S30

B20

S20

B21

S21

B33

S33 S61

B34 B61

B72

S60

S70

B11

S10

S11
B12

S12

S62

B13
S13

switch

B14

S53

B60

B10

S32 S72

B51

bus

Figure 1-4: Rural power supply network from [Thiébaux and Cordier, 2001].

technology and sponsorship of the Amazon picking challenge; and the Boeing Com-

pany’s multi-year alliance with MIT to allow robots to be seamlessly integrated within

their intrinsically unstructured and fluid aircraft manufacturing environments (Figure

1-5).

In this thesis, we assert that trusting autonomous agents with real-world, high-

stakes missions requires that these agents develop a keen sensitivity to risk and in-

corporate uncertainty into their decision-making. By risk, we mean the commonly

accepted notion of the probability of some failure event taking place, such as a mo-

bile agent crashing against obstacles, missing communication windows, running out

of battery, crossing no-fly zones, etc. Due to the lack of guarantees that plans will

be carried out within their very stringent safety requirements, the current practice

for ensuring mission safety generally requires groups of engineers to reason over a

very large number of potential decisions and scenarios that might unfold during ex-

ecution, which is a challenging, time-consuming, and error-prone process. Given the

overwhelming number of possible scenarios, one opts, in many cases, to follow the

28

Figure 1-5: Collaborative manufacturing cell in the MERS group at MIT.

“safest”, most predictable strategy, in which the impact of uncertainty in the plan is

limited. Such “safe” fixed sequences of actions, however, tend to be far from ideal

in terms of utility or brittle to disturbances due to their inability to adapt to the

environment. For example, the authors in [Benazera et al., 2005a] report that “it has

been estimated that the 1997 Mars Pathfinder rover spent between 40% and 75% of

its time doing nothing because plans did not execute as expected”, a clear underuti-

lization of such an invaluable resource. Extensions of this planning paradigm have

been proposed in order to improve robustness, such as conditioning execution on the

state of the world and dynamic task scheduling. However, mission operators resist to

incorporate those improvements, due to a lack of explicit guarantees on the risk of

mission failure.

Suppose we have a meaningful way of measuring “risk of failure” for an agent

executing a plan dynamically in an uncertain environment, a concept developed in

Chapter 3. The next question is what the agent should do with this new quantity.

By means of a simple example of scheduling under uncertainty, a subproblem within

the risk-aware conditional temporal planning theme of this thesis, the next section

provides insights on the principles behind our choice for risk-bounded autonomy.

29

Throughout this thesis, we leverage chance constraints [Birge and Louveaux, 1997]

to impose risk bounds on a mission.

1.1 Minimal vs bounded risk: key thesis principles

Risk-aware decision-making is not privy to autonomous agents. On the contrary,

handling different notions and levels of “risk” is an integral part of everyone’s daily

routines. A recurring concept in this thesis is the notion of risk-bounded plan execu-

tion [Blackmore, 2007,Undurti, 2011,Ono et al., 2012a], and its contrast with previous

risk-minimal strategies [Effinger, 2012]. Therefore, in an effort to develop an intu-

itive understanding of this distinction, this section brings a simple sleep maximization

problem, a pedagogical example of risk-aware scheduling that seeks to provide a con-

vincing answer to the question: “why should I opt for a higher risk solution to a

problem, should a lower risk one exist?” Its description follows:

“I go to bed at midnight and must sleep for at least 5 hours (300 minutes)

every night. Once I wake up, it takes me at least 30 minutes to get ready

to leave home and go to work. Historically, the duration of my commute

can be well approximated by a Gaussian random variable with mean of 45

minutes and standard deviation of 10 minutes. I would like to sleep as

much as possible, but still make sure I arrive at work by 9 AM with high

certainty. ”

Figure 1-6 shows the Probabilistic Simple Temporal Network with Uncertainty

(PSTNU) used for solving the sleep maximization problem: pick times to wake up

(event 𝑒1) and leave to work (event 𝑒2) so that the sleeping period is maximized, while

making sure to arrive at work (or school) on time. Even though PSTNU’s and risk-

aware scheduling are formally introduced only in Chapter 5, the example in Figure

1-6 is simple enough to allow us to quickly understand the reasoning process.

The first thing we should notice about Figure 1-6 is that no risk-free solution

to the sleep maximization problem exists ! The reason for that is simple: even if we

30

Figure 1-6: PSTNU used in the sleep maximization problem. Circles represent tem-
poral events that are under our control, while squares are temporal events whose
occurrence is governed by external forces (“Nature”). A solid arrow with an interval
[𝑙, 𝑢] represents the constraint 𝑙 ≤ 𝑒𝑗 − 𝑒𝑖 ≤ 𝑢, where 𝑒𝑗 and 𝑒𝑖 are, respectively,
the events at the end and at the start of the arrow. A dashed arrow represents an
uncontrollable duration between two events. The unit of time is minutes here.

choose to wake up at 5:00 AM (𝑒1 = 300) and leave to work at 5:30 AM (𝑒2 = 330),

there is negligible, albeit nonzero, probability that the duration of the commute will

be greater than 210 minutes according to the Gaussian duration model, therefore

causing us to be late for work. This is a rather trivial example of a more general

notion that pervades the algorithms in this thesis:

Principle 1.1. When designing dynamic temporal plans to be executed by autonomous

agents in real-world, uncertain environments, allowing for nonzero risk of failure is

often required to be able to generate any solution at all.

With Principle 1.1 in mind, let us make the following approximation in the sleep

maximization problem: instead of considering the complete, unbounded support of

the commute duration model, let us focus on the restricted ±4.5𝜎 interval around

the mean, i.e., the interval [0, 90]. Assuming that the Gaussian duration model was,

indeed, a good approximation1 of our morning commute’s uncertain duration, such

an assumption would exclude 0.00068% of the total probability mass. If we agree

that the risk yielded by such an approximation is justifiable, we arrive at the second

important principle motivating the algorithms in this thesis:

Principle 1.2. Allowing autonomous agents to execute plans with nonzero risk of

failure allows us to focus our attention (i.e., computation) on the most likely scenarios

1It most certainly cannot be exact, given that the negative support of a Gaussian random variable
cannot represent the duration of any physical process.

31

for the task at hand.

Figure 1-7: A risk-minimal solution to the sleep maximization problem in Figure 1-6.
If one sleeps for 420 minutes and leaves to work at 7:30 AM, the risk of being late is
no greater than 0.00068%.

Figure 1-8: A chance-constrained solution to the sleep maximization problem in Fig-
ure 1-6. If one sleeps for 444 minutes and leaves to work at 7:54 AM, the risk of being
late is no greater than 1.78%.

With this approximation of the commute model, we are ready to go back to

our original goal of developing an intuitive understanding of risk-minimal vs risk-

bounded strategies. In Figure 1-7, we see what a risk-minimal solution to the sleep

maximization problem looks like: instead of prolonging our sleep, this solution forces

us to sleep as little as possible and be ready to leave to work by 7:30 AM, so that

we can accommodate the worst-case scenario where our commute takes 1:30 hours

(90 minutes). On the other hand, Figure 1-8 shows what our schedule would look

like if we allowed our risk of arriving late to work to be no higher than 2%: instead

of getting up as early as possible in the fear that the worst commute scenario might

happen every day, we allow ourselves to sleep for 24 additional minutes every morning

and leave to work at 7:54 AM. For a commute that is expected to take 45 minutes,

the latter strategy would have us arrive at work, on average, at 8:39 AM (instead of

8:15 AM), and is arguably much closer to what we would expect the average person

to do. Once again, despite the simplicity of this example, the comparison between

32

the risk-minimal and the risk-bounded solutions in Figures 1-7 and 1-8 is effective at

communicating another important algorithm design principle in this thesis:

Principle 1.3. While risk-minimal (including risk-free) execution strategies tend to

be overly conservative and yield poor performance, risk-bounded, also referred to as

chance-constrained, strategies allow autonomous agents to operate strictly within the

bounds of acceptable safety while performing at the best of their capacity.

1.2 Desiderata

Recalling the principles and motivating scenarios from previous sections, we argue

that a path towards risk-aware autonomy for safety-critical applications must go

through the endowment of autonomous agents with the ability to

I Handle state uncertainty and its impact on risk: when autonomous agents

leave controlled laboratory environments and meet the real world, it is rarely, if

ever, the case that decisions will be made under complete information about

the agent’s state and the state of its environment. As examples, consider the

planetary and underwater robotic explorers described before, or an automated

medical advice system that must suggest a series of treatments for a patient

with an unknown ailment based on results of imperfect exams. In those and

many other applications, one cannot expect more than the availability of a belief

state, or some approximation thereof, that captures our uncertainty about the

true underlying state of the system. At the same time, the impact of this un-

certainty on mission risk should be properly quantified and handled dynamically

during execution. For instance, an autonomous Mars rover that is unsure about

its energy levels should refrain from further exploring the environment until its

internal state can be diagnosed due to the risk of damaging its batteries.

II Dynamically leverage real-time (noisy) sensor information: related to

the previous point, an autonomous agent operating under uncertainty must con-

stantly adapt its behavior in response to real-time measurements that it receives

33

from its sensors. Otherwise, safety can only be ensured by following static, and

often exceedingly conservative, conformant [Smith and Weld, 1998] strategies

that must “fit all cases”. For example, a manufacturing robot that follows a con-

formant strategy in order not to negatively interfere with its human counterpart

would probably settle for the policy of not doing anything at all. On the other

hand, if the robot could observe the human through its sensors and use that

to infer, up to some level of uncertainty, what were the human’s goals and in-

tended next steps, it could dynamically adapt its behavior and promote a more

synergistic collaboration.

III Provide strict safety guarantees over rich sets of mission constraints:

consider again the example of a robot that must work in tandem with humans

to complete manufacturing tasks. Ensuring safe behavior in this environment

requires the robot not only to decide what activities to perform and how to

react to their outcomes, but also how it should move its joints so as to not hit

obstacles, and schedule activities under temporal uncertainty to avoid violating

any temporal deadlines. In order to be able to dynamically manage risk stemming

from diverse sets of mission requirements in hybrid (continuous and discrete)

domains, autonomous agents must be able to efficiently quantify, or at least

estimate, how likely it is that they will find themselves trapped in “dangerous”

situations in which one or more safety requirements might get violated, and

incorporate these risk estimates into their decision-making.

IV Allow mission operators to specify risk-aware autonomous behavior

at a high level of abstraction: skilled humans communicate goals and task

requirements at a high level of abstraction, while relying on each other’s reasoning

capabilities to “unravel” these high level requirements into sequences of more

elementary activities that achieve these goals. For instance, take the example

of two people working collaboratively to assemble a piece of furniture: there

might be different ways of dividing up the task between them, with each possible

method potentially entailing different requirements in terms on how the two

34

should coordinate in order to have the pieces ready to be put together. Once

this high level plan is laid out, it is up to the individuals to devise a course of

action that will ensure that they meet their own subgoals while ensuring proper

team coordination. Therefore, if we are to have autonomous agents serve one

or even both roles in such a scenario, it becomes necessary that the process

of communicating the “mission” to them happens at a level of detail that feels

natural from a person’s perspective.

In light of these key enabling capabilities for risk-aware autonomy, we are now

ready to delve into this thesis’ problem statement.

1.3 Problem statement

Towards the fulfillment of the desiderata, we propose that risk-bounded, dynamic

plans (or policies) with sensing actions for safety-critical applications be generated

as solutions to Chance-Constrained Partially Observable Markov Decision Process

(CC-POMDP) [Santana et al., 2016b] instances, a formalism explained in detail in

Chapter 3 that extends traditional POMDP’s [Smallwood and Sondik, 1973] with a

notion of probabilistic execution risk. In simple words, a CC-POMDP is a model of

decision-making under uncertainty in which an autonomous agent seeks to optimize

some expected measure of performance, such as minimize expected energy consump-

tion or maximize expected science return, by continuously executing actions in its

environment. As it does so, we assume that the agent may also be able to collect

potentially noisy or ambiguous observations from its sensors in order to mitigate un-

certainty about the environment and its own state. Finally, safety is ensured in a

CC-POMDP by means of conditional state constraints, which define feasible regions

for the state of the underlying system under control (the Plant), and their associ-

ated chance constraints, i.e., user-defined upper bounds on the probability of subsets

of these conditional state constraints being violated during execution. We use the

term conditional when referring to state constraints to make it clear that, in a CC-

POMDP, we allow the state constraints that a plan must fulfill to depend on real-time

35

observations acquired during execution. This is in contrast to only supporting global

constraints, a particular type of conditional constraint that must hold regardless of

the execution scenario. More formally, a CC-POMDP is a tuple

𝐻 = ⟨𝒮,𝒜,𝒪, 𝑇, 𝑂,𝑅, 𝑏0, 𝒞, 𝑐𝑣,∆⟩,

where

∙ 𝒮, 𝒜, and 𝒪 are, respectively, discrete sets of planning states, actions, and

observations;

∙ 𝑇 : 𝒮 ×𝒜× 𝒮 → [0, 1] is a stochastic state transition function such that

𝑇 (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1) = Pr(𝑠𝑘+1|𝑠𝑘, 𝑎𝑘);

∙ 𝑂 : 𝒮 ×𝒪 → [0, 1] is a stochastic observation function such that

𝑂(𝑠𝑘, 𝑜𝑘) = Pr(𝑜𝑘|𝑠𝑘);

∙ 𝑅 : 𝒮 ×𝒜 → R is a reward function;

∙ 𝑏0 is the initial belief state;

∙ 𝒞 is a set of conditional constraints defined over 𝒮;

∙ 𝑐𝑣 = [𝑐1𝑣, . . . , 𝑐
𝑞
𝑣] is a vector of constraint violation indicators 𝑐𝑖𝑣 : 𝒮 × 2𝒞 →

{0, 1}, 𝑖 = 1, 2, . . . , 𝑞, such that 𝑐𝑣(𝑠, 𝐶𝑖) = 1 if, and only if, 𝑠 violates constraints

in a subset 𝐶𝑖 of 𝒞;

∙ ∆ = [∆1, . . . ,∆𝑞] is a vector of 𝑞 execution risk bounds used to define 𝑞 chance

constraints

er(𝑏𝑘, 𝐶
𝑖|𝜋) ≤ ∆𝑖, 𝑖 = 1, 2, . . . , 𝑞, 𝑘 ≥ 0, (1.1)

36

where

er(𝑏𝑘, 𝐶
𝑖|𝜋) = 1− Pr

(︃
ℎ⋀︁

𝑖=𝑘

𝑆𝑎𝑖(𝐶
𝑖)

⃒⃒⃒⃒
⃒ 𝑏𝑘, 𝜋

)︃

is the execution risk of a policy 𝜋; Sa𝑘(𝐶𝑖) (for “safe at step 𝑘”) is a Bernoulli

random variable denoting whether the system has not violated any constraints

in 𝐶𝑖 at planning step 𝑘; and ℎ is the planning horizon.

A solution to a CC-POMDP is an optimal policy (or plan) 𝜋* : ℬ → 𝒜 mapping

belief states (or just beliefs) in ℬ to actions in 𝒜 such that

𝜋* = arg max
𝜋

E

[︃
ℎ∑︁

𝑡=0

𝑅(𝑠𝑡, 𝑎𝑡)
⃒⃒⃒
𝜋

]︃

and (1.1) holds. By enforcing (1.1) and conditioning action choices on belief states,

which in turn depend on real-time (noisy) observations received by the agent, we see

that CC-POMDP policies meet desiderata I and II.

With respect to ensuring safety over rich sets of constraints in desideratum III, CC-

POMDP’s incorporate a hierarchical constraint satisfaction structure akin to Planning

Modulo Theories (PMT) [Gregory et al., 2012], semantic attachment [Dornhege et al.,

2012], and the approach in [Ivankovic et al., 2014], through constraint violation func-

tions 𝑐𝑣 that are theory-dependent. As in general SMT-like [Nieuwenhuis et al., 2006]

hierarchical problem decompositions, CC-POMDP solution scalability is strongly tied

to how efficiently these risk-aware constraint checkers run. Therefore, in close connec-

tion with the temporal applications that this thesis is concerned about, Chapters 5

and 6 present the current fastest algorithm for risk-aware scheduling of Probabilistic

Simple Temporal Networks (PSTN’s) and PSTN’s with Uncertainty (PSTNU’s), as

well as the first algorithms for risk-aware scheduling of Probabilistic Temporal Plan

Networks (PTPN’s). The reason why these scheduling algorithms are needed is be-

cause this thesis pursues a continuous time approach to the generation of temporal

plans with duration uncertainty, as opposed to resorting to time discretization. Thus,

instead of folding discrete increments of time directly into the CC-POMDP’s discrete

37

state space 𝒮, our models collect within 𝒞 temporal requirements (e.g., “this plan

has to finish within 10 minutes”), as well as uncertain duration models for durative

CC-POMDP actions (e.g. “driving from A to B takes anything between 10 to 20

minutes”), as conditional and unconditional temporal constraints from the scheduling

literature, as reviewed in Section 2.2.

In lieu of providing general solution methods for CC-POMDP models, this thesis

focuses on a temporal subset that is relevant to the risk-aware applications that this

thesis is concerned about, in which autonomous agents must complete their tasks

under time pressure. More specifically, we consider CC-POMDP models in which

actions have non-instantaneous durations - also referred to as activities - and where

one or more elements of 𝒞 force the execution of policy 𝜋* to eventually terminate.

This, in turn, causes the planning horizon ℎ to be limited by ⌈𝑡max/𝑑min⌉, where 𝑡max

is the maximum temporal plan length, and 𝑑min is the shortest activity duration.

Furthermore, even though optimal CC-(PO)MDPs policies may, in general, require

some limited amount of randomization [Altman, 1999], we follow [Dolgov and Dur-

fee, 2005] and focus on optimal deterministic policies for technical and application-

dependent reasons. On the technical side, while deterministic policies can be ef-

fectively solved using heuristic forward search (HFS), computing exact randomized

policies for Constrained POMDP’s (C-POMDP’s) generally involves intractable for-

mulations over reachable beliefs, and current approximate methods [Kim et al., 2011,

Poupart et al., 2015] do not guarantee solution feasibility. In this context, it is worth-

while to mention [Trevizan et al., 2016] as a recent advancement in the constrained

MDP literature combining HFS and C-MDP policy optimization in dual space to ef-

ficiently compute randomized policies over infinite horizons. On the application side,

preference for agent predictability in safety-critical systems causes operators to rarely

trust stochastic autonomous behavior.

Finally, for the fulfillment of desideratum IV, we introduce the Chance-constrained

Reactive Model-based Programming Language (cRMPL) in Chapter 4, where we show

that the problem of extracting optimal execution policies for this decision-theoretic

language can also be framed as a CC-POMDP instance.

38

The reasoning tools developed in this thesis are combined to form CLARK2, whose

overview is given in the next section. CLARK is a risk-aware conditional planning

system that can generate chance-constrained, dynamic temporal plans for autonomous

agents that must operate under uncertainty.

1.4 Approach in a nutshell

The different tools and algorithms developed in the context of this thesis are combined

to form the Conditional Planning for Autonomy with Risk (CLARK) system, whose

block diagram in shown in Figure 1-9.

Figure 1-9: Architecture diagram of the different elements composing CLARK. Inputs
are shown to the left of CLARK’s core (surrounded by the dotted line), while outputs
are placed on the right.

The input to CLARK is always a CC-POMDP, either directly supplied to the

system, or generated from some other type of user-provided input. This thesis focuses

on the forms of input to CLARK shown in Figure 1-9. In the generative conditional

planning discussion in Chapter 3, we consider inputs given directly as CC-POMDP’s

instances. Alternatively, in the decision-theoretic programming setting of Chapter 4

and Section 7.2, the input is a program in the Chance-constrained Reactive Model-

based Programming Language (cRMPL), a novel variant of RMPL [Ingham et al.,

2001,Williams et al., 2001,Williams and Ingham, 2002,Williams et al., 2003,Ingham,

2This acronym a desperate attempt at evoking the Lewis and Clark Expedition towards the
Pacific Ocean, a mission undertaken under strong uncertainty and numerous risks. The fact that
Lewis and Clark leveraged Sacagawea’s expert knowledge to navigate uncharted territory also creates
an interesting parallel with the heuristic-guided search methods developed in this thesis.

39

2003,Effinger, 2012] developed in this thesis that adds support to chance-constrained

execution. The mapping from optimal cRMPL execution to CC-POMDP depicted

in Figure 1-9 is given in Chapter 4. Finally, in the experimental demonstration of

CLARK described in Section 7.3, we show how initial planning models in the Planning

Domain Definition Language (PDDL) [McDermott et al., 1998] are used to bootstrap

CC-POMDP models for a real-world application involving resilient planetary rovers.

The flow of information that maps inputs to outputs within CLARK starts with

the CC-POMDP instance given as input becoming part of the Model in CLARK’s

core, shown in Figure 1-9 surrounded by the dotted line. Within the core, the RAO*

algorithm (Chapter 3) accesses the different functions available as part of the CC-

POMDP model to incrementally construct an optimal deterministic conditional plan

with bounded risk. It is important to stress the terms conditional and bounded risk.

By being conditional, the plan allows the autonomous agent to adapt to its environ-

ment in real-time by conditioning the choice of activity to be executed on its current

level of knowledge, or belief, about the true state of world. This belief state is, in

turn, a function of the history of observations gathered by the agent from the envi-

ronment according to the CC-POMDP’s observation model. With respect to bounded

risk, it refers to the fact that the execution of such optimal conditional policies by

the autonomous agent is guaranteed to keep the agent safe by ensuring that “good

behavior”, as defined by a set of conditional state constraints, can be expected from

the autonomous agent with high probability. In order to assess the level of safety

entailed by such conditional policies, RAO* leverages a potentially diverse suite of

constraint solvers to quantify the likelihood of one or more such state constraints

being violated during execution. Such calls to the constraint solvers are not done

directly by RAO*; instead, they are routed through general risk-measuring interfaces

attached to the Model block of CLARK. Among these constraint solvers, the PARIS

algorithm (Chapter 5) is highlighted in Figure 1-9 due to its key role in efficiently

computing risk-aware schedules in the presence of temporal uncertainty.

As previously mentioned, the solution to the input CC-POMDP given to CLARK

is an optimal conditional policy that entails a consistent conditional constraint system

40

with high probability. Then, according to Figure 1-9, this policy can optionally be

converted into an output cRMPL program representing the optimal behavior for the

autonomous agent (the process for performing this conversion is given in Chapter

7). An advantage of representing CLARK’s outputs as cRMPL programs is the fact

that these can later be used as optimal subroutines within a hierarchical composition

of cRMPL programs, as defined by the cRMPL composition operators presented in

Chapter 4.

Figure 1-10: Depiction of how the CLARK executive, a combination of CLARK and
Pike, can be used in closed-loop control applications. The conditional temporal policy
generated by CLARK is sent to Pike in the form of a Probabilistic Temporal Plan
Network (PTPN), which Pikes then takes care of dispatching through the physical
hardware interface while performing execution monitoring.

When combined with the Pike dispatcher from [Levine and Williams, 2014], the

CLARK system from Figure 1-9 becomes the CLARK executive, shown in Figure 1-10

surrounded by the dotted line. The input to Pike is a Probabilistic Temporal Plan

Network (PTPN) [Levine and Williams, 2014, Santana and Williams, 2014], which

Figure 1-9 shows can be obtained from the cRMPL program generated from CLARK’s

output. In our goal of developing risk-aware autonomous agents that can quickly react

to their environment in order to perform their tasks well and safely, Pike offers yet

another line of defense: as it schedules activities and dispatches them through the

physical hardware interface, Pike constantly monitors the true state of system in the

hopes of detecting failure conditions that may not have been included in the CC-

POMDP model used to generate CLARK’s conditional policy. Should such failure

conditions be detected, Pike immediately triggers a replanning signal to CLARK using

41

the current state of the system as the initial belief. The hybrid state estimator in

Figure 1-10 translates sensor measurements into discrete logical predicates that Pike

uses to monitor execution, and has been investigated in this thesis and elsewhere

[Timmons, 2013,Santana et al., 2014,Santana et al., 2015,Santana et al., 2016a,Lane,

2016]. However, for the sake of focusing our attention on the core contributions of this

thesis, we refer the reader to these references for details on how the hybrid estimation

block works, and to the video at https://www.youtube.com/watch?v=Fz1s5jAgEew

for a hardware demonstration.

Figure 1-11: Simple morning commute problem from [Santana and Williams, 2014]
written in cRMPL.

Seeking to provide an intuitive understanding of CLARK’s inner workings, con-

sider the cRMPL program in Figure 1-11 modeling the simple morning commute

problem3 from [Santana and Williams, 2014]. In this problem, a person must decide

3The apparent obsession with commute problems in the examples given so far is intended to
show that our tools should be broadly applicable to decision-making under uncertainty, as opposed
to being restricted to niche robotics applications.

42

https://www.youtube.com/watch?v=Fz1s5jAgEew

between riding a bike to work, driving, or staying at home and “telecommuting” in

order to attend an important meeting starting in 30 minutes. Due to health and

cost concerns, the person places higher value on riding a bike (reward of 100 units),

followed by driving (reward of 70 units) and telecommuting (no reward, since being

present at the meeting is very important). In this simple example, we assume that

the person has enough command over the means of transportation that the duration

of each activity is fully within their control. However, there are two ways in which the

environment can impact the schedule. If the person chooses to ride a bike, slippery

road conditions may cause them to fall and get dirty, forcing them to change clothes

before attending the meeting. Alternatively, if the person chooses to drive, there is

the possibility of being involved in an accident, forcing them to first tow the vehicle

and then catch a cab to get to work. The last and least preferred, albeit the safest,

is staying home and telecommuting.

Figure 1-12: Probabilistic Temporal Plan Network obtained from the cRMPL pro-
gram shown in Figure 1-11. Temporal constraints are represented as in Section 1.1;
double circles with solid lines represent controllable choices (decisions) that the agent
can make (in this case, the means of transportation); and double circles with dashed
lines represent uncontrollable choices (observations) obtained from the environment.

When mapped to a CC-POMDP, different executions of the cRMPL program

43

shown in Figure 1-11 can be represented as the PTPN shown in Figure 1-12. The

goal is to choose the means of transportation that yields the highest reward, while

making sure that the probability of being late for the meeting is no greater than

∆ = 2%. In this pedagogical example, it should be evident that the only decision

that the person (playing the role of the autonomous agent) can make is how to get to

the meeting, which is represented by the double circle with solid lines in Figure 1-12.

If the person chooses to ride a bike (top branch of the choice node), the schedule

will depend on the environment’s “choice” of having them slip and fall or not (dashed

double circle at the top). Similarly, if the person chooses to drive (middle branch of

the choice node), the schedule will depend on the environment “choosing” whether

to have them be involved in an accident or not (dashed double circle in the middle).

Finally, if the person chooses to stay home and telecommute, the environment has no

impact on the schedule4.

Figure 1-13: Temporal network entailed by choosing to ride a bike to work. A con-
sistent schedule exists with probability 94.9% according to the cRMPL program in
Figure 1-11, corresponding to the probability of not slipping and falling.

In order to understand the requirement of a policy 𝜋 entailing a conditional con-

straint system for which a solution exists with high probability, consider the temporal

networks in Figures 1-13, 1-14, and 1-15, which are entailed by the different commute

choices that the person can make. Figures 1-13 and 1-14 are examples of conditional

constraint systems, since the temporal constraints ultimately used for scheduling de-

pend on the assignment to uncontrollable choices made by the environment, while

Figure 1-15 is unconditional. Focusing on the conditions under which the temporal

4In an ideal world where Internet service providers are perfectly reliable.

44

Figure 1-14: Temporal network entailed by choosing to drive to work. A consistent
schedule exists with probability 98.7% according to the cRMPL program in Figure
1-11, corresponding to the probability of not being involved in an accident.

Figure 1-15: Temporal network entailed by choosing to stay at home and telecom-
muting. This option has a consistent schedule with probability 100%.

network in Figure 1-13 is consistent, we see that, if the person does not fall from the

bike, there is plenty of time to ride it to work and arrive on time for the meeting. On

the other hand, in case of a fall, the amount of time required to arrive at work and

change is at least 35 minutes, causing the person to be late for the meeting. According

to the execution model in the cRMPL program in Figure 1-11, falling from the bike

is expected to happen with probability 5.1%, which violates our upper bound on tol-

erable risk of ∆ = 2%. Therefore, even though riding a bike is the preferred option in

terms of value, it does not meet the safety requirements expressed by the chance con-

straint. A similar analysis of Figure 1-14 would lead us to the conclusion that driving

a car entails a risk of not having a consistent schedule of 1.3%, which corresponds to

the probability of being involved in an accident. However, different from the previous

case, a risk of 1.3% is within the tolerance of our chance constraint, rendering driv-

ing the optimal deterministic5 choice. Had the chance constraint ∆ been lower than

1.3%, the only feasible option would have been to stay home and telecommute, since

the temporal network in Figure 1-15 is guaranteed to have a consistent schedule (no

5In fact, the globally optimal strategy would be to randomize between riding a bike and driving
a car, as explained in Chapter 3.

45

risk).

1.5 Thesis contributions

In its effort to make a contribution towards the endowment of autonomous agents

with the ability to behave well and safely while operating under uncertainty, this

thesis makes the following contributions:

Contribution 1: Chance-constrained POMDP’s as framework for risk-

bounded planning under uncertainty: our first contribution is a systematic

derivation of dynamic execution risk for partially observable planning domains

in Chapter 3, which we then use to propose Chance-constrained POMDP’s

(CC-POMDP’s) as extensions of POMDP’s for risk-bounded planning under

uncertainty. The advent of CC-POMDP’s and their associated dynamic mea-

sure of execution risk addresses shortcomings of existing static risk allocation

and “risk-as-a-cost”-based methods. With respect to the former, we provide two

different formulations of chance constraints in terms of CC-POMDP’s execution

risk that are guaranteed to be no more conservative than the particular form of

chance constraint used in static risk allocation. Regarding the latter, we show

that CC-POMDP’s, unlike “risk-as-a-cost”-based methods, are not restricted to

applications in which constraint violation must cause plan execution to halt.

Contribution 2: Risk-bounded AO* (RAO*): our second contribution is Risk-

bounded AO* (RAO*), the first algorithm for solving CC-POMDP’s that lever-

ages heuristic forward search (HFS) over belief spaces. Similar to the original

AO* [Nilsson, 1982], RAO* guides the search towards promising policies using

an admissible value heuristic. In addition, RAO* leverages a second admissi-

ble heuristic to propagate dynamic execution risk upper bounds at each search

node, allowing it to identify and prune overly risky paths as the search proceeds.

Contribution 3: Chance-constrained RMPL (cRMPL): our third contribu-

tion is the Chance-constrained Reactive Model-based Programming Language

46

(cRMPL), a novel variant of the RMPL language that introduces support to

chance-constraints and probabilistic sensing actions. In addition to the language

itself, we provide a novel CC-POMDP-based execution semantics for cRMPL

that is the first to exploit the language’s hierarchical structure in order to extract

optimal, risk-bounded execution policies from user-provided programs without

the need of first “unraveling” all their possible execution traces, as was done in

previous approaches.

Contribution 4: Fast, risk-aware probabilistic scheduling: since this thesis is

particularly focused on temporal planning problems, our last contributions are

in the form of PARIS (Chapter 5), the current fastest algorithm for risk-aware

scheduling of Probabilistic Simple Temporal Networks (PSTN’s) and PSTN’s

with Uncertainty (PSTNU’s); and the first algorithms for risk-aware scheduling

of Probabilistic Temporal Plan Networks (PTPN’s) (Chapter 6).

1.6 Thesis roadmap

“A picture is worth a thousand words” is as much of a cliché as it is true. Therefore,

prior to its textual explanation, we illustrate the structure of this thesis in Figure

1-16. The real-world need that motivates this thesis is featured at the very top of the

block diagram, followed by this thesis’ goal on the second level supporting, but not

completely fulfilling, this need, and the different components developed in this thesis

to achieve its goal.

After this chapter motivates the need for risk-bounded dynamic execution of tem-

poral plans by autonomous agents and presents an overview of this thesis’ contribu-

tions and key ideas, Chapter 2 places them in the context of the great body of work

from which this thesis draws great inspiration and builds upon. Next, Chapters 3 to

5 present fundamental building blocks for the results shown in later chapters. Chap-

ter 3 introduces Chance-constrained Partially Observable Markov Decision Processes

(CC-POMDP’s) and the Risk-bounded AO* (RAO*) algorithm, two core components

of the CLARK system explained in Section 1.4. In Chapter 4, we introduce Chance-

47

Figure 1-16: Block diagram illustrating the relationship between different components
developed in this thesis, its goal (blue block on second level from the top), and the
real-world need that motivates it (top block).

constrained RMPL (cRMPL), and how it allows mission operators to specify safe

desired behavior for autonomous agents and provide expert “advice” at a high level

of abstraction. When discussing the RAO* algorithm, a need for fast risk-aware

constraint checkers becomes evident. Thus, in Chapters 5 and 6, we present condi-

tional and unconditional temporal consistency checkers developed in this thesis for

risk-aware scheduling under uncertainty.

After previous chapters provide a clear understanding of the fundamental pieces

composing the CLARK system, Chapter 7 provides a holistic view of the system,

and discusses experiments that show CLARK achieving its goal of generating risk-

bounded conditional plans over rich sets of mission constraints in two application

domains that can greatly benefit from risk-aware autonomy: collaborative human-

robot manufacturing and data retrieval agents. In the decision-theoretic setting of

Section 7.2, an operator provides a partial behavior specification in the form of a

cRMPL program with contingency nodes, where the latter can be either controllable

48

(decisions by the autonomous agent) or uncontrollable (observations received from

the environment). Alternatively, in the generative setting of Section 7.3, planning

problems are encoded as CC-POMDP instances by enhancing an initial planning

model specified in PDDL, and rely solely on the CC-POMDP model to determine the

sequence in which activities are executed and observations are taken. Conclusions and

avenues for future work are presented in Chapter 8, followed by appendices containing

material that complements the core thesis discussions.

Appendix A shows how the RAO* algorithm from Chapter 3 can be extended to

support partial belief state and policy branching, while Appendix B briefly presents a

SAT-based model of electric power supply networks used as part of the experimental

validation of RAO*. Appendix C shows the XML schema used to translate cRMPL

programs into PTPN’s, the input type to Pike. Finally, Appendix D shows the

PDDL model used to construct a CC-POMDP model for CLARK in the Resilient

Space Systems (RSS) demonstration of Chapter 7.

49

50

Chapter 2

Related work

“If I have seen further, it is by standing on the shoulders of giants.”

Isaac Newton, 1676.

Seeking to contribute to the widespread adoption of autonomous systems in safety-

critical applications, we argue in Chapter 1 that autonomous agents must be able

to execute risk-bounded, dynamic temporal plans that are conditional on sensing

actions. Towards this goal, we propose that such risk-bounded conditional policies

be generated as solutions to CC-POMDP’s, while further focusing on the particular

case of temporal missions where agents must execute tasks under time pressure and

temporal uncertainty. We also introduce the RAO* algorithm for computing CC-

POMDP policies, and novel algorithms for risk-aware scheduling under uncertainty

that efficiently provide RAO* with estimates of a mission’s scheduling risk. Finally, in

order to allow mission operators to specify risk-aware autonomous behavior at a high

level of abstraction, we introduce the cRMPL language and its execution semantics

in terms of CC-POMDP’s.

The thesis contributions briefly summarized in the previous paragraph would not

have been possible without leveraging invaluable insights and results from a broad

range of related research fields. In this chapter, we strive to place this thesis within

the large body of work that inspired it by drawing parallels between our contributions

and related results in the literature.

51

2.1 (Constrained) MDP’s and POMDP’s

The excellent introduction to automated planning methods by Geffner and Bonet

[Geffner and Bonet, 2013] states that “planning is the model-based approach to au-

tonomous behavior where the agent behavior is derived automatically from a model

of the actions, sensors, and goals.” The broadness of this definition should serve as an

indication of how vast the planning field is, depending on a planning model’s partic-

ular features and assumptions. Therefore, for the sake of clarity, this section focuses

on the subset of automated planning that had a direct impact on the development of

CC-POMDP models in this thesis, as well as on the RAO* algorithm for solving the

temporal subset of CC-POMDP’s that this thesis is concerned about.

Partially Observable Markov Decision Processes (POMDP’s), originally intro-

duced in [Smallwood and Sondik, 1973], provide a conceptually simple, yet powerful,

framework for generating plans (usually referred to as policies) that condition an

agent’s actions on its belief about the hidden state of the world. Despite their inher-

ent intractability [Papadimitriou and Tsitsiklis, 1987], POMDP models have grown

in popularity in recent years with the advent of faster, cheaper computers, and a

growing number of robotics applications that can directly benefit from a POMDP’s

ability to handle state uncertainty [Kaelbling et al., 1998].

A solution to a risk-neutral, “standard” POMDP is a policy that maps belief

states to actions in order to optimize some measure of expected utility [Smallwood

and Sondik, 1973,Papadimitriou and Tsitsiklis, 1987,Kaelbling et al., 1998,Silver and

Veness, 2010]. Nevertheless, this might not be sufficient to specify constrained au-

tonomous behavior. For instance, an autonomous vehicle in an urban scenario should

not minimize travel times at the expense of unlawful driving and unreasonable risk of

collision. A straightforward way to incorporate a notion of constraint violation into

POMDP models is to penalize states that violate these constraints in the objective

function, and perform policy optimization as usual. However, this strategy has two

important caveats. First, it might not be straightforward to precisely quantify “how

bad” constraint violations are in units of the objective function: in the previous exam-

52

ple, what should be the penalty, measured in units of time, for hitting another car on

the road? Second, even if one had a concrete way of quantifying these penalties, [Un-

durti and How, 2010,Undurti, 2011] show that there might not always be a smooth

mapping from constraint violation penalties to the probability (risk) of these con-

straints being violated. In other words, variations of the constraint violation penalty

over a continuous interval might entail discontinuous transitions from unreasonably

risk-averse to unreasonably risk-taking behavior, with nothing in between. In light

of these important limitations for the use of POMDP models in modeling risk-aware

autonomous behavior, we proceed to the consideration of existing approaches in the

literature for modeling risk-sensitive behavior.

One of the earlier works dealing with decision-making under uncertainty and prob-

abilistic notions of risk is [Yu et al., 1998], which introduces Risk-Sensitive MDP’s

(RS-MDP’s). Different from risk-neutral MDP’s, where the goal is to optimize an ob-

jective function, a policy for an RS-MDP is one that maximizes the probability of a

cumulative cost function remaining below a user-specified threshold over a finite exe-

cution horizon. Therefore, instead of mapping states to actions, policies for RS-MDP’s

map states and accumulated costs to actions. Improving upon the Value Iteration

strategy of [Yu et al., 1998], the authors in [Hou et al., 2014] propose combinations of

Topological Value Iteration [Dai et al., 2011] with Depth First Search and Dynamic

Programming to efficiently compute RS-MDP policies. The RS-MDP framework has

also been extended to POMDP’s [Marecki and Varakantham, 2010,Hou et al., 2016],

where the objective becomes maximizing the joint probability of initial states and

their cumulative costs exceeding the user-defined threshold.

Our approach to risk-aware conditional planning differs from RS-(PO)MDP’s in

two important ways. First, our methods generate risk-bounded policies, whereas

RS-(PO)MDP policies are risk-minimal. Second, RS-(PO)MDP’s assume that cost

bound violations can be accurately detected by the autonomous agent and cause

execution to halt, whereas we do not make assumptions about the observability of

constraint violations in this thesis. The first distinction is important because risk-

minimal strategies, as motivated in Section 1.1, can lead to strong conservatism by

53

inducing a “remain safe at all costs” behavior; a risk-bounded approach, on the other

hand, allows an autonomous agent to optimize the value of its mission while keeping

itself strictly within user-specified tolerable levels of risk. Concerning the observability

of constraint violations, we develop in Chapter 3 a dynamic measure of execution risk

that requires no assumptions regarding the observability of constraint violations, as

it is necessary for RS-(PO)MDP’s. In that same chapter, we show that requiring

constraint violations to halt execution in the modeling of risk-aware behavior can

lead to conservatism and overconfidence.

Closer to the approach in this thesis, the Constrained MDP (C-MDP) [Fein-

berg and Shwarz, 1995,Altman, 1999,Dolgov and Durfee, 2005,Teichteil-Königsbuch,

2012,Sprauel et al., 2014,Trevizan et al., 2016] and POMDP (C-POMDP) [Isom et al.,

2008,Undurti and How, 2010,Undurti, 2011,Kim et al., 2011, Poupart et al., 2015]

literatures model situations in which a policy must optimize an objective while bound-

ing the expected value of zero or more cost functions below user-specified thresholds.

In this context, a bound on mission risk can be specified by creating an indicator cost

function that outputs 1 whenever the agent enters a state that violates constraints,

and 0 otherwise. Therefore, C-(PO)MDP’s can avoid excessive conservatism by not

being restricted to the generation of risk-minimal policies. However, as shown in

Chapter 3, the cost-based approach to risk in C-(PO)MDP’s requires constraint vio-

lations to halt execution, e.g., [Undurti and How, 2010,Poupart et al., 2015], in order

to be guaranteed to return consistent values of risk, potentially causing the same

conservatism and overconfidence issues previously mentioned for RS-(PO)MDP’s.

Related to C-(PO)MDP’s and this thesis, Lexicographic (PO)MDP’s [Wray et al.,

2015,Pineda et al., 2015,Wray and Zilberstein, 2015] model multi-objective sequen-

tial decision problems under uncertainty where an agent lexicographically prefers to

improve the value of objective 𝑖 over objective 𝑖 + 1 at all states. Since ties between

multiple objectives are highly unlikely in practice, an L(PO)MDP that exactly op-

timizes objectives in lexicographic order would almost certainly focus all effort on

optimizing the first objective, and completely disregard secondary ones. In order to

prevent this from happening, L(PO)MDP’s allow a vector of user-defined slacks 𝛿 to

54

be associated with the competing objectives, so that actions available for improving

objective 𝑖+1 are restricted to those that keep objective 𝑖, preferred over 𝑖+1, within

a small degradation 𝛿𝑖 from its expected value under the optimal policy for the 𝑖-th

objective.

Even though risk-aware planning is not specifically mentioned in [Wray et al.,

2015,Pineda et al., 2015,Wray and Zilberstein, 2015], L(PO)MDP’s can be an inter-

esting alternative to risk-minimizing models such as RS-(PO)MDP. For instance, an

L(PO)MDP with mission risk as the primary objective could exploit its risk slack 𝛿1

to improve upon the conservatism of a policy seeking to minimize risk at all costs.

However, in the risk-bounded planning setting of this thesis, L(PO)MDP have two im-

portant shortcomings. First, they leverage the same cost-based measure of risk used

in C-(PO)MDP, therefore inheriting from the latter the same issues from requiring

terminal constraint violations. Second, since slacks are defined relative to (usually)

unknown optimal values of the different objectives, enforcing specific risk bounds on

an L(PO)MDP policy can be difficult. For instance, in order to ensure that a policy

has a risk bound of ∆, we would have to choose the risk slack to be 𝛿1 = ∆ − 𝑟min,

with 𝑟min being the unknown minimum risk value for a specific L(PO)MDP instance.

In order to solve CC-POMDP’s, this thesis introduces RAO*, an algorithm that

follows a heuristic forward search strategy in the space of belief states similar to

the originally proposed in [Washington, 1996,Washington, 1997,Hansen, 1998], and

later revisited within a larger context of contingent and conformant planning methods

in [Bonet and Geffner, 2000]. Our RAO* is the first risk-aware member of a family of

search algorithms based on AO* [Nilsson, 1982,Pearl, 1984], the latter an extension

of A* [Hart et al., 1968] to search on AND-OR graphs. Some notorious members

of this family are LAO* [Hansen and Zilberstein, 2001], an extension of AO* that

can search for infinite-horizon MDP policies by leveraging Value Iteration (VI) in

its value update step; HAO* [Benazera et al., 2005a,Benazera et al., 2005b,Meuleau

et al., 2009], a generalization of AO* that can handle hybrid (continuous and discrete)

state spaces and continuous resources; and MAA* [Szer et al., 2005], a heuristic search

algorithm for computing optimal finite-horizon policies for decentralized POMDP’s

55

(DEC-POMDPs).

Examples of sampling-based algorithms outside the “AO* family” that can also

be used to solve (PO)MDP’s are Real-Time Dynamic Programming (RTDP) [Barto

et al., 1995], Labeled RTDP (LRTDP) [Bonet and Geffner, 2003], UCT [Kocsis and

Szepesvári, 2006], SARSOP [Kurniawati et al., 2008], and POMCP [Silver and Veness,

2010], among others. Even though none of these incorporate a notion of risk within

their search process, risk-aware extensions using the notion of execution risk for CC-

POMDP’s similar to RAO*’s should be possible. In Appendix A, we investigate

the use Hoeffding’s inequality [Hoeffding, 1963] to develop risk-aware sampling-based

solvers.

2.2 Scheduling under uncertainty

Generating conditional plans that allow autonomous agents to execute activities un-

der time pressure, while dealing with stochastic activity durations and their associated

scheduling risk, have always been a primary goal of this thesis, and one of its contri-

butions. In this section, we review some of the most important results in the fields

of conditional and unconditional scheduling that inspired the scheduling components

used within CLARK (Chapters 5 and 6).

The work of Dechter, Meiri, and Pearl [Dechter et al., 1991], which introduces

the Simple Temporal Problem (STP), should arguably be the first stop in any re-

view of temporal reasoning methods. An STP is concerned about the existence of

assignments (also known as a schedule) to temporal events 𝑒𝑖 such that a conjunction

of linear inequalities (or simple temporal constraints) 𝑙 ≤ 𝑒𝑖 − 𝑒𝑗 ≤ 𝑢 hold, where

𝑙 and 𝑢 are given real numbers. An STP is said to be consistent if, and only if, a

schedule respecting all simple temporal constraints exists. A graph representation of

the simple temporal constraints in an STP is usually referred to as a Simple Temporal

Network (STN). An STN can model temporal problems where the activity scheduler

has complete control over temporal assignments. Thus, if the STN is used by an au-

tonomous agent to schedule activities, there is an implicit assumption that the agent

56

can exactly control how long each one of the activities is going to take. However, this

might not be reasonable in situations where activity durations are influenced by the

external environment, such as “boil water”, “search for rock”, or “drive from MIT to

Logan airport during rush hour”. In other to address this limitation, the STN with

Uncertainty (STNU) was introduced [Vidal, 1999].

An STNU extends an STN with contingent (also called uncontrollable) constraints

and events. In an STNU, a contingent constraint allows the difference between two

temporal events to be non-deterministic, but bounded by a known interval [𝑙, 𝑢]. De-

pending on how much information about contingent durations is made available to

the scheduler during execution, [Vidal, 1999] defines different levels of controllabil-

ity for STNU’s: weak controllability assumes all values of contingent durations to

be known to the scheduler before it has to make any decisions; strong controllability

assumes that no such information is ever available to the scheduler; and dynamic con-

trollability assumes that the scheduler can only use information about past contingent

durations when making future scheduling decisions. Over the years, increasingly more

efficient algorithms for STNU scheduling were developed, specially for dynamic con-

trollability [Morris et al., 2001,Morris and Muscettola, 2005,Morris, 2006,Hunsberger,

2009,Hunsberger, 2010,Hunsberger, 2013,Hunsberger, 2014,Morris, 2014].

Modeling contingent durations using STNU’s, however, offers no way to incor-

porate probabilistic information into contingent duration models. For instance, an

STNU cannot model the statement “my morning commute takes 32 minutes on av-

erage, with a standard deviation of 10 minutes”. Due to this lack of probabilistic

information, STNU scheduling algorithms ensure correctness by resorting to an “all-

or-nothing” approach: either a schedule works for all possible realizations of contin-

gent durations, or no schedule is returned, which tends to lead to strong conservatism,

as shown in the motivating example in Section 1.1.

The Probabilistic STN (PSTN) [Tsamardinos, 2002] improves upon STNU’s by

allowing contingent durations to be represented as random variables with known

probability distributions. The notions of controllability for STNU’s can be readily

transferred to PSTN’s, and have been further extended with a notion of scheduling

57

risk : different from STNU algorithms, which generate schedules with no schedul-

ing risk or no solution at all, current PSTN algorithms [Tsamardinos, 2002,Wang,

2013,Fang et al., 2014,Fang, 2014,Wang and Williams, 2015a,Santana et al., 2016c]

allow schedules to consider restricted intervals of contingent durations - a process in-

formally referred to as “squeezing” -, provided that these restricted duration intervals

are observed with high probability. While previous approaches to PSTN scheduling

resorted to nonlinear problem formulations, Chapter 5 describes PARIS, the current

fastest algorithm for strong PSTN scheduling, which leverages linearized models of

temporal uncertainty that are key to CLARK’s empirical tractability when dealing

with planning problems with probabilistic temporal uncertainty.

All related work mentioned so far falls into the realm of unconditional scheduling,

in which the set of temporal constraints composing the temporal reasoning problem

is known from the beginning. However, as evidenced by the grounded example in

Section 1.4, the conditional nature of the plans generated by CLARK gives rise to

conditional scheduling problems, in which the set of temporal constraints composing

the scheduling problem can depend on decisions (or controllable choices) made by

the autonomous agent and real-time observations (or uncontrollable choices) collected

during plan execution. Therefore, in the following we review extensions of the previous

unconditional scheduling formalisms to conditional settings involving controllable and

uncontrollable choices.

In addition to STP’s, the authors in [Dechter et al., 1991] define the Temporal

Constraint Satisfaction Problem (TCSP), a superclass of STP’s in which the sched-

uler can choose to enforce one out of potentially several different simple temporal con-

straints between pairs of events. The Disjunctive Temporal Problem (DTP) [Stergiou

and Koubarakis, 2000] improves upon TCSP’s by not requiring that these choices be-

tween temporal constraints be restricted to the same pairs of events. The conditional

temporal network associated with a DTP is called a Disjunctive Temporal Network

(DTN). The first strategy for dynamic execution of DTP’s [Tsamardinos et al., 2001],

which generated an exponential number of choice combinations and compiled them

independently, was later improved by incremental and labeled compilation strategies

58

presented in [Shah et al., 2007, Shah and Williams, 2008, Shah et al., 2009, Conrad

et al., 2009].

Temporal Plan Networks (TPN’s) [Kim et al., 2001,Effinger, 2006] are within the

same group of temporal networks with simple temporal constraints and controllable

choices as TCSP’s and DTN’s. However, unlike the two previous, TPN’s allow pref-

erences to be placed over the choice assignments, therefore extending the notion of

network consistency to optimal network consistency. In terms of structure, TPN’s are

a hierarchical subset of DTN’s that are particularly useful in representing execution

traces of non-deterministic programs, as shown in Section 1.4 and Chapter 4. Current

dynamic executives for TPN’s are Kirk [Kim et al., 2001,Shu et al., 2005,Block et al.,

2006,Effinger, 2006], Drake [Conrad et al., 2009,Conrad, 2010,Conrad and Williams,

2011], and Pike [Levine and Williams, 2014].

Similar to how STNU’s extend STN’s, a DTN with Uncertainty (DTNU) [Ven-

able and Yorke-Smith, 2005] extends DTN’s by allowing choices between both simple

temporal constraints and contingent durations. The concepts of strong [Peintner

et al., 2007], weak [Venable et al., 2010], and dynamic [Venable et al., 2010,Cimatti

et al., 2014,Cimatti et al., 2016b] consistency for DTNU’s are directly borrowed from

STNU’s, with the added feature that the scheduler, in addition to assigning times

to controllable temporal events, can also choose which members of disjunctions of

temporal constraints to satisfy.

On a complementary side of the conditional scheduling spectrum, the Conditional

Temporal Problem (CTP) [Tsamardinos et al., 2003] was the first to allow the con-

ditioning of the temporal constraints composing a scheduling problem on real-time

observations. Thus, unlike DTP’s, the scheduler for a CTP can only observe the out-

come of these uncontrollable choices, instead of being able to directly assign them.

Depending on when information about these observations is available, the authors

in [Tsamardinos et al., 2003] define notions of weak, strong, and dynamic consistency

for CTP’s analogous to STNU’s: weak consistency assumes all values of observa-

tions to be known beforehand; strong consistency assumes that no such information

is ever available; and dynamic consistency assumes that the scheduler can only use

59

information about past observations when making future scheduling decisions.

Taking CTP’s one step further, the Conditional STNU (CSTNU) [Hunsberger

et al., 2012] allows both contingent STNU-like durations, as well as the condition-

ing of constraints on real-time observations. Therefore, weak, strong, and dynamic

consistency for CSTNU refer to the availability of information about both contingent

durations and real-time observations. The problem of checking dynamic consistency

of CSTNU’s is a topic of very recent research interest [Combi et al., 2013, Cimatti

et al., 2016a], with state-of-the-art methods based on fast algorithms for Timed Game

Automata [Cassez et al., 2005].

Unifying features from all previous formalisms, a TPN with Uncertainty (TPNU)

[Effinger, 2006, Effinger et al., 2009, Effinger, 2012] extends TPN’s with STNU-like

contingent durations and real-time observations, while a Probabilistic TPN (PTPN)

[Effinger, 2012,Santana and Williams, 2014] adds another increment of expressiveness

to TPNU’s by allowing PSTN-like durations and probabilistic models for observation

nodes. The current algorithm in [Effinger, 2012] for dynamic scheduling of PTPN’s is

based on mapping to a risk-minimizing MDP with time discretization, which prevents

it from scaling beyond very small problems over short time horizons. Therefore,

in addition to the PARIS algorithm for risk-aware unconditional scheduling from

Chapter 5, this thesis also proposes the first algorithms for risk-aware strong and

weak scheduling of PTPN’s [Santana and Williams, 2014]. Chapter 6 describes an

improvement upon the original algorithms proposed in [Santana and Williams, 2014]

by replacing the STN scheduler used in [Santana andWilliams, 2014] by PARIS, which

can handle any combination of STNU- and PSTN-like uncontrollable durations.

2.3 Temporal and hybrid planning

As pointed out in Chapter 1, the development of CLARK in this thesis is motivated by

temporal planning applications, particularly by situations in which activity scheduling

must be performed under temporal uncertainty. Moreover, in an effort to extend

CLARK to handle state constraints commonly found in robotic applications, such

60

obstacle-avoidance constraints in path planning, we incorporate insights from the

hybrid planning community in our introduction of a theory-dependent constraint

violation functions 𝑐𝑣 in our definition of CC-POMDP’s (see Section 1.3 and Chapter

3). Therefore, CLARK is closely related to existing temporal and hybrid planners in

the literature, which we review next.

The advent of the Planning Domain Definition Language (PDDL) [McDermott

et al., 1998] was invaluable to the field of classical planning, for it provided a stan-

dardized input language to existing planners that facilitated the assessment of their

relative strengths and weaknesses in subsequent iterations of the International Plan-

ning Competition. However, the original PDDL lacked features that are key for the

appropriate modeling of realistic planning domains, such as robotics and industrial

control applications. Among these features, the ability to handle continuous time, nu-

merical resources, and complex dynamics are key [Fox and Long, 2003,Fox and Long,

2006]. In this context, the PDDL2.1 [Fox and Long, 2003] and PDDL+ [Fox and

Long, 2006] languages were proposed as enhancements to PDDL for the modeling,

respectively, of temporal and hybrid (mixed discrete-continuous) planning domains,

ushering the development of many algorithms that extend beyond the limitations of

classical planning and relate to this thesis.

Temporal planning [Fox and Long, 2003,Cushing et al., 2007] is concerned with

the generation of plans consisting of durative actions, which may or may not be exe-

cuted concurrently. With the introduction of timed initial literals in PDDL2.2 during

the 4𝑡ℎ International Planning Competition [Hoffmann and Edelkamp, 2005], it also

became possible to designate time windows and goal deadlines in temporal plan-

ning domains. Starting with ZENO [Penberthy and Weld, 1994], a temporal planner

predating PDDL2.1, many different temporal planning algorithms were proposed.

Among some of the most noteworthy, we can mention TGP [Smith and Weld, 1999],

which incrementally expands a compact planning graph representing mutual exclu-

sions between actions of different durations; Sapa [Do and Kambhampati, 2003], a

heuristic forward-chaining planner that can handle durative actions, metric resource

constraints, and goal deadlines; CRIKEY3 [Coles et al., 2008], a forward-chaining

61

temporal planner that supports discrete and duration-independent numeric change;

COLIN [Coles et al., 2009, Coles et al., 2012], CRIKEY3’s direct successor, which

leverages linear programming to support continuous processes with linear dynamics;

POPF [Coles et al., 2010], also a forward-chaining temporal planner that, rather than

enforcing a strict total order on all steps added to the plan, pursues a partial-order

planning strategy; OPTIC [Benton et al., 2012], which builds upon POPF and sup-

ports a wider variety of temporal and non-temporal preferences; and tBurton [Wang

and Williams, 2015b,Wang, 2015], a temporal planner for complex networked sys-

tems that follows a divide-and-conquer approach for the generation of plans that

meet deadlines and maintain durative goals.

Common to all previously-mentioned temporal planners is the assumption that

time is fully controllable, i.e., the temporal planner can freely choose the start and

stop times for the durative actions in the plan, which may not be reasonable for real-

world planning domains. Therefore, recent efforts have been undertaken to extend

temporal planning to situations in which temporal uncertainty is explicitly taken into

account. Along these lines, conditional [Mausam and Weld, 2008,Effinger, 2012] and

unconditional strategies [Beaudry et al., 2010,Cimatti et al., 2015,Micheli et al., 2015]

exist.

In the context of conditional strategies, the authors in [Mausam and Weld, 2008]

propose Concurrent MDP (CoMDP) models, in which sets of primitive MDP actions

can be simultaneously triggered, and use them to solve Concurrent Probabilistic Tem-

poral Planning (CPTP) problems, where the durations of primitive MDP actions can

be probabilistic. They map a CPTP into a CoMDP by considering all subsets of

actions that can be executed concurrently and, for those, extend the state space with

interwoven execution states. The latter are obtained by discretizing the duration

intervals of each action being currently executed, and recording the number of time

increments since they were started. A similar approach is used in [Effinger, 2012]

for the dynamic execution of temporal plans with probabilistic durations, but only

sequential (rather than concurrent) plans are considered.

Discretized time models are convenient for mapping problems of temporal plan-

62

ning under uncertainty directly into standard MDP frameworks, which can then be

solved with existing algorithms. However, this comes at the expense of an exponential

explosion in complexity, given the potentially enormous number of extra states gen-

erated by small deltas of temporal discretization over long planning horizons. In fact,

some of the main contributions in [Mausam and Weld, 2008] are pruning strategies

to mitigate the growth in complexity caused by temporal discretization. CLARK, on

the other hand, avoids time discretization by representing the temporal constraints

and uncertain durations as (conditional) networks of temporal constraints, and us-

ing risk-aware temporal consistency checkers (see Chapters 5 and 6) to verify the

temporal feasibility of partial temporal plans.

With respect to unconditional planning with temporal uncertainty, [Beaudry et al.,

2010] avoids time discretization by performing heuristic forward search in the space

of planning states, while also constructing a Bayesian network that tracks the depen-

dencies between random variables defining the times of events and the durations of

actions. As new actions are added to the plan, samples are drawn from the Bayesian

network to estimate the probability of the plan being temporally feasible, as well as

its expected makespan. The generated plans are risk-bounded, for search terminates

when a plan with high probability of success is found.

Direct sampling from a Bayesian network has the advantage of supporting gen-

eral probabilistic dependencies between random durations, but introduces a signifi-

cant overhead that grows with the size of the network [Cooper, 1990]. The authors

in [Beaudry et al., 2010] address this overhead through a smart caching of samples,

which sometimes causes their algorithm to run out of memory. In any case, their

approach to temporal planning is similar to CLARK’s when restricted to the gen-

eration of unconditional plans, with the added distinction that CLARK’s scheduler

for unconditional plans with temporal uncertainty (PARIS, Chapter 5) pursues an

analytical approach when handling probabilistic temporal uncertainty.

Still in the field of unconditional planning with temporal uncertainty, there have

also been recent developments for the Strong Planning Problem with Temporal Un-

certainty (SPPTU) [Cimatti et al., 2015]. A temporal plan for an SPPTU is valid

63

if, for all possible durations of the uncontrollable actions, the plans resulting from

considering such durations as fixed are valid, disregarding temporal uncertainty. Ac-

cording to [Micheli et al., 2015], such strong plans (where “strong” means that the

plan is robust to temporal uncertainty) are simple to execute and check, thus being

suitable for safety-critical systems where guarantees are needed for the uncertainty,

while potentially paying a sub-optimality price.

In order to solve SPPTU’s, [Cimatti et al., 2015] replaces the STN scheduler in

COLIN [Coles et al., 2009, Coles et al., 2012] with an STNU strong controllabil-

ity checker, while [Micheli et al., 2015] describes a sound-and-complete compilation

technique from temporal plans with STNU-like durations to temporal plans without

uncertainty, which is applied to a fragment of the ANML [Smith et al., 2008] language.

CLARK differs from these planners by supporting both STNU- and PSTN-like mod-

els of duration uncertainty, and including a notion of scheduling risk in the temporal

plans that it outputs.

This thesis’ approach to the generation of conditional plans subject to different

types of hybrid (continuous-discrete) state constraints, e.g., scheduling under uncer-

tainty, path planning, and power supply, is directly influenced by Planning Modulo

Theories (PMT) [Gregory et al., 2012], an extension of concepts from SAT Modulo

Theories (SMT) [Nieuwenhuis et al., 2006] to planning; semantic attachment [Dorn-

hege et al., 2012]; and the approach to optimal planning with global numerical state

constraints in [Ivankovic et al., 2014]. The idea is to perform a decomposition of a

planning problem with hybrid state constraints in two parts: a master planning prob-

lem over symbolic operators, whose “high-level” actions usually have a direct impact

on the “low-level” hybrid state of the Plant; and a series of reasoning modules that

verify the feasibility of constraint theories through specialized solvers.

Variations of this decomposition approach can be found in Task And Motion

Planning [Lozano-Pérez and Kaelbling, 2014,Srivastava et al., 2014,Toussaint, 2015,

Fernández-González et al., 2015, Lin et al., 2016], usually in the context of activity

planning for mobile robots with path planning and manipulation constraints; the use

of linear programs in COLIN [Coles et al., 2009,Coles et al., 2012], uNICOrn [Bajada

64

et al., 2015], and in [Ivankovic et al., 2014] for checking temporal and dynamics con-

straints; the SMT-based nonlinear planning approach in [Bryce et al., 2015] involving

a SAT solver combined with a differential equation solver; the conversion of PDDL+

problems into SAT modulo linear programs in TM-LPSAT [Shin and Davis, 2005];

and the UPMurphi [Della Penna et al., 2012] and DiNo [Piotrowski et al., 2016] hybrid

planners for PDDL+, both based on the discretize and validate approach using the

plan validator VAL [Howey et al., 2004,Della Penna et al., 2012]. Kongming [Li and

Williams, 2008,Li, 2010,Li and Williams, 2011], one of the first planners for hybrid

domains, follows a decomposition approach that combines Graphplan’s [Blum and

Furst, 1997] planning graph with Mixed Integer Linear Programs (MILP’s) for tra-

jectory optimization over continuous states. Our approach in CLARK is different from

these hybrid planners by generating conditional plans that handle state uncertainty;

and leveraging risk-aware constraint checkers for the generation of risk-bounded con-

ditional plans, such as risk-aware path planners with uncertain dynamics [Ono and

Williams, 2008,Ono et al., 2012b,Ono et al., 2012a,Arantes et al., 2016b] and risk-

aware schedulers (Chapters 5 and 6).

2.4 Programming languages for autonomy

In an effort to provide agent designers with a convenient tool to specify risk-aware

autonomous behavior at a high level of abstraction, this thesis draws great inspira-

tion from the Probabilistic Reactive Model-based Programming Language (pRMPL)

in [Effinger, 2012] to develop Chance-constrained RMPL (cRMPL) in Chapter 4.

A key contribution of pRMPL is the inclusion of exception handling and sensing

into the RMPL language [Ingham et al., 2001,Williams et al., 2001,Williams and

Ingham, 2002,Williams et al., 2003, Ingham, 2003]: sensing is crucial when operat-

ing autonomously in an unstructured environment, while exception handling enables

graceful recovery from failures by localizing error identification and recovery, rather

than halting the entire executive.

Our cRMPL differs from and improves upon [Effinger, 2012] in three important

65

ways: first, cRMPL enables risk-bounded programming by adding support to chance

constraints, thus moving away from the potential conservatism of risk-minimizing pro-

grams in pRMPL. Second, we define the execution semantics of cRMPL in terms of

CC-POMDP’s, and show that RAO* can exploit the language’s hierarchical structure

in order to extract optimal, risk-bounded execution policies from user-provided pro-

grams without the need to first “unravel” all possible execution traces. On the other

hand, pRMPL programs are first unraveled into a Probabilistic Temporal Plan Net-

work (PTPN) [Effinger et al., 2009,Effinger, 2012,Santana and Williams, 2014,Levine

and Williams, 2014], an exponentially large representation of all possible program

traces, which is then used to construct an MDP with discretized temporal dura-

tions that is solved through Value Iteration. Since Value Iteration operates on a

complete representation of the state space, which becomes significantly larger due

to time discretization, execution of pRMPL programs suffers from scalability issues.

Finally, from a software engineering standpoint, our choice to implement cRMPL as

an extension of Python, as opposed to pRMPL’s implementation as a standalone lan-

guage, makes it easy to integrate cRMPL within current robotics frameworks, e.g.,

the Robot Operating System (ROS) [Quigley et al., 2009], a key capability for modern

agent programming languages [Ziafati et al., 2012].

As the most recent variant of the RMPL language [Ingham et al., 2001,Williams

et al., 2001,Williams and Ingham, 2002,Williams et al., 2003,Ingham, 2003], cRMPL

inherits from the latter its relationship to several robot execution [Firby, 1990,Gat,

1997, Simmons and Apfelbaum, 1998], concurrent constraint [Gupta et al., 1996],

decision-theoretic [Andre and Russell, 2002,Boutilier et al., 2000,Fritz and McIlraith,

2005, Effinger, 2012], and concurrent reactive [Le Guernic et al., 1986, Harel, 1987,

Halbwachs et al., 1991, Halbwachs, 1998, Berry and Gonthier, 1992] programming

languages for autonomous systems, which are discussed in the following.

With respect to decision-theoretic languages, DTGolog [Boutilier et al., 2000,Fritz

and McIlraith, 2005] extends GOLOG [Levesque et al., 1997] to handle decision-

theoretic choice and stochastic outcomes via an interpreter that views optimal com-

pletion of a GOLOG program as an MDP. DTGolog allows the programmer to sense

66

the state of the world, as in an if-then-else construct, and is able to estimate the

likelihood of program success. In the context of reinforcement learning [Sutton and

Barto, 1998], where an autonomous agent observes the outcomes of its actions in the

environment in order to learn a policy, ALisp [Andre and Russell, 2002] augments

the Lisp language with a non-deterministic choice operator and the ability to execute

primitive MDP actions. Similarly to cRMPL, the nondeterministic choice operator

in ALisp improves tractability by restricting the decisions made by an agent to those

explicitly outlined by the programmer. Both DTGolog and ALisp differ from cRMPL

by not supporting concurrency and timing uncertainty, which are key elements for

the temporal planning applications that this thesis is concerned about.

As explained in [Effinger, 2012], synchronous languages adhere to a strict notion

of concurrency, called the synchrony hypothesis, to ensure that safety-critical systems

are capable of responding in real time, and that system behavior is defined in a mathe-

matically precise way. By doing so, synchronous languages provide a strong model for

concurrency and precision in the construction of reactive embedded systems. The syn-

chronous approach originated in France with the sister languages ESTEREL [Berry

and Gonthier, 1992], Lustre [Halbwachs et al., 1991], and Signal [Le Guernic et al.,

1986], and then grew to include other languages such as STATECHARTS [Harel,

1987]. However, unlike cRMPL, synchronous languages do not support decision-

theoretic temporal planning.

Model-based programming and concurrent constraint programming share com-

mon underlying principles, including the notion of computation as deduction over

systems of partial information [Gupta et al., 1996]. The goal of control programs

written in variants of RMPL, including cRMPL, is to specify the desired behavior of

the Plant by means of state trajectory constraints [Williams et al., 2003]. Therefore,

cRMPL’s model of interaction is in contrast to the Timed Concurrent Constraint

(TCC) programming language [Gupta et al., 1996], which interacts with “low-level”

program memory, sensors, and control variables directly, not with the Plant state. By

specifying state trajectories at a high level of abstraction, cRMPL releases the pro-

grammer from the responsibility to perform the mapping between intended state and

67

the sensors and actuators, a burden that gets transferred to the program executive.

Finally, as all previous versions of RMPL, cRMPL builds upon previous work

on robotic execution languages, such as RAPS [Firby, 1990], ESL [Gat, 1997], and

TDL [Simmons and Apfelbaum, 1998], and their goal-directed tasking and monitor-

ing capabilities. A key distinction is that cRMPL constructs fully cover synchronous

programming, thus providing integrated goal-directed and temporal reasoning capa-

bilities.

68

Chapter 3

Generating chance-constrained,

conditional plans

“A key element of risk decision-making is determining if the risk is

justified.”

FAA Risk Management Handbook. [Administration, 2009]

In this thesis, we argue that an important step towards safe and trustworthy

autonomous agents is their endowment with the ability to execute risk-bounded,

dynamic temporal plans that are conditional on sensing actions. In this chapter,

we lay the foundations for this goal by introducing Chance-Constrained POMDP’s

(CC-POMDP’s), a formalism that extends POMDP’s with a dynamic notion of risk

and risk-bounded execution. As shown in Section 1.4, CC-POMDP’s play a central

role in this thesis by serving as inputs to CLARK, and CC-POMDP solutions are

exactly the risk-bounded, conditional plans that this thesis seeks to generate. To

achieve the latter, this chapter also introduces RAO*, a heuristic forward search

algorithm producing optimal, deterministic, finite-horizon policies for CC-POMDP’s

that, in addition to a utility heuristic, leverages an admissible execution risk heuristic

to quickly detect and prune overly-risky policy branches.

The experimental results presented in this chapter focus on the performance im-

provements that result from the modeling of risk-sensitive planning domains as CC-

69

POMDP’s, and RAO*’s usefulness in efficiently generating policies for challenging

CC-POMDP domains of practical interest. In Chapter 7, we make it clear how CC-

POMDP’s and RAO* can be combined with the scheduling algorithms presented in

Chapters 5 and 6 to allow CLARK to generate risk-bounded, conditional temporal

plans featuring scheduling uncertainty.

3.1 Introduction

Partially Observable Markov Decision Processes (POMDP’s) [Smallwood and Sondik,

1973] have become one popular framework for optimal planning under actuator and

sensor uncertainty, where POMDP solvers find policies that maximize some measure

of expected utility [Kaelbling et al., 1998,Silver and Veness, 2010].

In many application domains, however, maximum utility is not enough. Critical

missions in real-world scenarios require agents to develop a keen sensitivity to risk,

which needs to be traded-off against utility. For instance, a search and rescue drone

should maximize the value of the information gathered, subject to safety constraints

such as avoiding dangerous areas and keeping sufficient battery levels. In these do-

mains, autonomous agents should seek to optimize expected reward while remain-

ing safe by deliberately keeping the probability of violating one or more constraints

within acceptable levels. A bound on the probability of violating constraints is called

a chance constraint [Birge and Louveaux, 1997]. Unsurprisingly, attempting to model

chance constraints as negative rewards leads to models that are over-sensitive to the

particular penalty value chosen, and to policies that are overly risk-averse or overly

risk-taking [Undurti and How, 2010]. Therefore, to accommodate the aforementioned

scenarios, new models and algorithms for constrained MDP’s have started to emerge,

which handle chance constraints explicitly.

Research has mostly focused on fully observable constrained MDP’s, for which

non-trivial theoretical properties are known [Altman, 1999, Feinberg and Shwarz,

1995]. Existing algorithms cover an interesting spectrum of chance constraints over

secondary objectives or even execution paths, e.g., [Dolgov and Durfee, 2005, Hou

70

et al., 2014,Teichteil-Königsbuch, 2012]. For constrained POMDP’s (C-POMDP’s),

the state of the art is less mature. It includes a few suboptimal or approximate meth-

ods based on extensions of dynamic programming [Isom et al., 2008], point-based

value iteration [Kim et al., 2011], approximate linear programming [Poupart et al.,

2015], or on-line search [Undurti and How, 2010]. Moreover, as we later show, the

modeling of chance constraints through unit costs in the C-POMDP literature has a

number of shortcomings.

The first contribution brought by this chapter is a systematic derivation of execu-

tion risk in POMDP domains, which can be used to enforce different types of chance

constraints and improves upon the restrictions of previous cost-based approaches.

A second contribution is Risk-bounded AO* (RAO*), the first algorithm for solving

chance-constrained POMDP’s (CC-POMDP’s), which harnesses the power of heuris-

tic forward search in belief space [Washington, 1996, Bonet and Geffner, 2000, Szer

et al., 2005,Bonet and Geffner, 2009]. Similar to AO* [Nilsson, 1982], RAO* guides

the search towards promising policies with respect to reward using an admissible

heuristic. In addition, RAO* leverages a second admissible heuristic to propagate

execution risk upper bounds at each search node, allowing it to identify and prune

overly risky paths as the search proceeds. We demonstrate the usefulness of RAO*

in two risk-sensitive domains of practical interest: automated power supply restora-

tion and autonomous science agents. As pointed out in Chapter 1, for computational

tractability reasons and the time-bounded nature of the applications that this thesis

is concerned about, we follow [Dolgov and Durfee, 2005] in deliberately developing an

approach focused on deterministic policies with a finite number of steps, even though

the exact bound on the number of planning steps might not be known beforehand.

The chapter is organized as follows. Section 3.2 formally present CC-POMDP’s,

and details how execution risk for a conditional plan can be dynamically computed.

Next, Section 3.3 discusses shortcomings related to the cost-based treatment of chance

constraints in the C-POMDP literature. Section 3.4 presents the RAO* algorithm,

followed by our experiments in Section 3.5, and chapter conclusions in Section 3.6.

71

3.2 Problem formulation

The goal of this section is to formally introduce all the necessary concepts to fully

define and understand CC-POMDP’s, expanding upon the brief introduction given in

Section 1.3. We start by presenting fundamental equations involved in the handling

of belief states in Section 3.2.1, followed by a thorough development in Section 3.2.2

of the dynamic mission risk equations that sit at the core of CC-POMDP’s (Section

3.2.3) and the RAO* algorithm. We end this section with a discussion about different

types of chance constraints in Section 3.2.4.

3.2.1 Managing belief states

When the true state of the underlying system under control, also referred to as the

Plant, is uncertain and cannot be directly observed, one can only maintain a proba-

bility distribution over possible Plant states at any given point in time. We call this

representation of state uncertainty a belief state, or just belief, and we denote by ℬ

the set of beliefs states over 𝒮. For the conditional planning application in this thesis,

we will focus on belief states over a discrete set of states 𝒮. As depicted in Figure

3-1, a discrete belief state can be understood as set of 𝑁 state-probability pairs (𝑠, 𝑝),

each pair also referred to as a particle, such that 𝑝 represents the probability of 𝑠

being the true hidden state of the Plant. For notational convenience when dealing

with belief states that evolve over time, we denote a belief state at planning step 𝑘

by 𝑏𝑘 : 𝒮→[0, 1], and 𝑏(𝑠𝑘) as the probability of state 𝑠 at step 𝑘 according to belief

𝑏. Moreover, in order for 𝑏 to be a proper belief, it must be the case that all particle

probabilities sum to 1, i.e.,

∑︁
𝑠𝑘

𝑏(𝑠𝑘) = 1, ∀𝑘 ∈ N. (3.1)

We now distinguish between beliefs based on how much information they incorpo-

rate. For that, let 𝒪 denote a discrete set of possible sensor observations, and let 𝑜𝑚:𝑛

denote a sequence of sensor observations between, and including, time steps 𝑚 and

72

Figure 3-1: Depiction of a discrete belief state over a state space 𝒮.

𝑛. Similarly, let 𝒜 and 𝑎𝑚:𝑛 denote, respectively, a discrete set of plan actions and a

sequence of such actions. When a belief state at time 𝑘 incorporates all sensor and

action information available up to, and including, time 𝑘, we call this belief posterior

and will use the notation �̂�𝑘. If, however, the belief state at time 𝑘 includes action

information up to time 𝑘, but does not incorporate the latest observation 𝑜𝑘, we call

this belief prior 1 and denote it by �̄�𝑘. More precisely, prior and posterior beliefs

represent the following probability distributions:

�̄�(𝑠𝑘) = Pr(𝑠𝑘|𝑜1:𝑘−1, 𝑎0:𝑘−1),

�̂�(𝑠𝑘) = Pr(𝑠𝑘|𝑜1:𝑘, 𝑎0:𝑘−1). (3.2)

Our goal now is to develop equations that allow us to propagate beliefs forward

in time as the agent executes actions from its conditional plan and collects sensor

observations. In order to do so, we follow the standard practice in the POMDP

literature and assume the availability of a stochastic state transition model 𝑇 : 𝒮 ×

𝒜× 𝒮 → [0, 1] such that

𝑇 (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1) = Pr(𝑠𝑘+1|𝑠𝑘, 𝑎𝑘); (3.3)

1It is also common to refer to prior and posterior beliefs as a priori and a posteriori beliefs,
respectively. We say prior and posterior to highlight the fact that these are belief states before and
after incorporating the last available sensor observation.

73

and a stochastic observation model 𝑂 : 𝒮 ×𝒪 → [0, 1] such that

𝑂(𝑠𝑘, 𝑜𝑘) = Pr(𝑜𝑘|𝑠𝑘). (3.4)

The Markovian2 models (3.3) and (3.4) are directly borrowed from Hidden Markov

Models (HMM’s) [Baum and Petrie, 1966], with the added feature that the state

transition model in (3.3) is parametrized by the action selection.

Suppose that the posterior belief �̂�(𝑠𝑘) is available, and that the agent has chosen

to execute action 𝑎𝑘. The process through which information about 𝑎𝑘 is incorporated

into �̂�(𝑠𝑘) is called prediction and allows us to compute �̄�(𝑠𝑘+1) using (3.3) as follows:

�̄�(𝑠𝑘+1) = Pr(𝑠𝑘+1|𝑜1:𝑘, 𝑎0:𝑘) =
∑︁
𝑠𝑘

Pr(𝑠𝑘+1, 𝑠𝑘|𝑜1:𝑘, 𝑎0:𝑘),

=
∑︁
𝑠𝑘

Pr(𝑠𝑘+1|𝑠𝑘, 𝑜1:𝑘, 𝑎0:𝑘) Pr(𝑠𝑘|𝑜1:𝑘, 𝑎0:𝑘−1, 𝑎𝑘), (3.5)

=
∑︁
𝑠𝑘

Pr(𝑠𝑘+1|𝑠𝑘, 𝑎𝑘) Pr(𝑠𝑘|𝑜1:𝑘, 𝑎0:𝑘−1), (3.6)

=
∑︁
𝑠𝑘

𝑇 (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1)�̂�(𝑠𝑘). (3.7)

In the transition from (3.5) to (3.6), we exploit the Markov property of (3.3) to

write Pr(𝑠𝑘+1|𝑠𝑘, 𝑜1:𝑘, 𝑎0:𝑘) = Pr(𝑠𝑘+1|𝑠𝑘, 𝑎𝑘) and the fact that executing 𝑎𝑘 does not

impact our previous belief �̂�(𝑠𝑘) to write Pr(𝑠𝑘|𝑜1:𝑘, 𝑎0:𝑘−1, 𝑎𝑘) = Pr(𝑠𝑘|𝑜1:𝑘, 𝑎0:𝑘−1).

Next, suppose that the agent also collects observation 𝑜𝑘+1 after executing 𝑎𝑘. The

measurement update, or just update, step uses (3.4) and Bayes’ rule to incorporate

𝑜𝑘+1 into �̄�(𝑠𝑘+1) and generate �̂�(𝑠𝑘+1) as follows:

�̂�(𝑠𝑘+1) = Pr(𝑠𝑘+1|𝑜1:𝑘+1, 𝑎0:𝑘) =
1

𝜂
Pr(𝑜𝑘+1|𝑠𝑘+1, 𝑜1:𝑘, 𝑎0:𝑘) Pr(𝑠𝑘+1|𝑜1:𝑘, 𝑎0:𝑘), (3.8)

=
1

𝜂
Pr(𝑜𝑘+1|𝑠𝑘+1)�̄�(𝑠𝑘+1), (3.9)

=
1

𝜂
𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�(𝑠𝑘+1), (3.10)

2The models are said to be Markovian because the probability distributions for next states and
observations are fully specified through the knowledge of the current state.

74

where (3.8) is Bayes’ rule; (3.9) is obtained from (3.8) due to the Markov property of

(3.4); and the normalization constant 𝜂 is given by

𝜂 = Pr(𝑜𝑘+1|𝑜1:𝑘, 𝑎0:𝑘) =
∑︁
𝑠𝑘+1

𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�(𝑠𝑘+1). (3.11)

Therefore, given an initial belief �̂�0 representing our initial uncertainty about the

state of the Plant, (3.7) and (3.10) can be repeatedly applied to propagate belief

states forward in a process sometimes called filtering.

With a clear understanding of how action and sensor information is continuously

used to refine an agent’s belief as it executes a plan, the next section introduces the

concept of execution risk, a dynamic measure of mission safety that sits at the core

of CC-POMDP’s and RAO*.

3.2.2 Computing mission risk dynamically

Following [Ono and Williams, 2008,Ono et al., 2012b,Ono et al., 2012a], we define

risk event as a sequence 𝑠0:𝑘 = 𝑠0, 𝑠1, . . . , 𝑠𝑘 of Plant states violating one or more

constraints in a set 𝐶 ∈ 2𝒞, where 𝒞 is the set of all conditional plan constraints.

Moreover, let 𝑐𝑣 : 𝒮 × 2𝒞 → {0, 1} be a constraint violation indicator such that

𝑐𝑣(𝑠, 𝐶) = 1 if, and only if, 𝑠 violates constraints in 𝐶 ∈ 2𝒞. By restricting 𝑐𝑣 to be an

indicator function, we implicitly assume that states contain all necessary information

for the deterministic evaluation of constraint satisfaction.

Before we proceed, it is helpful to make a couple of remarks. First, we make

explicit use of the word conditional when referring to constraints to highlight the fact

that we allow constraints in a risk-bounded conditional plan to depend on the plan

execution itself, something particularly useful for risk-bounded missions with sensing

actions specified in cRMPL (Chapter 4). For a grounded example, please refer to

Figures 1-13, 1-14 and 1-15 from Section 1.4, in which we show temporal networks

where constraint activation - active constraints are those that must be satisfied by

the conditional plan - depends on real-time sensor observations.

Second, it is important to note that we make no assumption about constraint

75

violations producing observable outcomes, such as causing plan execution to halt,

as it is required in the cost-based handling of chance constraints in C-POMDP’s

[Undurti and How, 2010, Poupart et al., 2015]. As we further explain in Section

3.3, assuming that constraint violations cause plan execution to terminate imposes

modeling limitations that can lead to plan conservatism and overconfident behavior

by the autonomous agent.

Last, even though we adopt the same risk semantics of [Ono and Williams,

2008,Ono et al., 2012b,Ono et al., 2012a], we should point out that their mathemat-

ical programming-based approach to risk-bounded unconditional planning resorts to

a static allocation of risk to different segments of the mission, while our HFS-based

approach for generating risk-bounded conditional plans leverages a dynamic risk al-

location strategy developed in the following and later used by RAO*.

Back to the goal of developing a dynamic measure of risk for conditional plans,

let 𝑏𝑘 be a belief state as defined in Section 3.2.1, and let Sa𝑘(𝐶) (for “safe at time

𝑘”) be a Bernoulli random variable denoting whether the system has not violated any

constraints in 𝐶 at time 𝑘. Following the previous semantics for risk event, we define

the execution risk of a policy 𝜋 measured from the belief 𝑏𝑘 as

er(𝑏𝑘, 𝐶|𝜋) = 1− Pr

(︃
ℎ⋀︁

𝑖=𝑘

𝑆𝑎𝑖(𝐶)

⃒⃒⃒⃒
⃒ 𝑏𝑘, 𝜋

)︃
, (3.12)

where ℎ is the potentially unknown planning horizon. Since the particular set of

constraints 𝐶 is not important, we omit the dependence of 𝑆𝑎𝑖 on 𝐶 in the following

for notational convenience.

The probability term in (3.12) can be written as

Pr

(︃
ℎ⋀︁

𝑖=𝑘

𝑆𝑎𝑖

⃒⃒⃒⃒
⃒ 𝑏𝑘, 𝜋

)︃
= Pr

(︃
ℎ⋀︁

𝑖=𝑘+1

𝑆𝑎𝑖

⃒⃒⃒⃒
⃒𝑆𝑎𝑘, 𝑏𝑘, 𝜋

)︃
Pr(𝑆𝑎𝑘|𝑏𝑘, 𝜋), (3.13)

where Pr(𝑆𝑎𝑘|𝑏𝑘, 𝜋) is the probability of the system not being in a constraint-violating

76

state at the 𝑘-th time step. Since 𝑏𝑘 is given, Pr(𝑆𝑎𝑘|𝑏𝑘, 𝜋) can be computed as

Pr(𝑆𝑎𝑘|𝑏𝑘, 𝜋) = 1− 𝑟𝑏(𝑏𝑘, 𝐶), (3.14)

where

𝑟𝑏(𝑏𝑘, 𝐶) =
∑︁
𝑠𝑘∈𝑆

𝑏(𝑠𝑘)𝑐𝑣(𝑠𝑘, 𝐶) (3.15)

is called the risk at 𝑏𝑘, as opposed to the execution risk at 𝑏𝑘 in (3.12). Note that

𝑐𝑣(𝑠𝑘, 𝐶) = 1 if, and only if, 𝑠𝑘 violates constraints in 𝐶.

Once again for notational convenience, we will use the shorthand notation 𝑟𝑏(𝑏𝑘)

and er(𝑏𝑘|𝜋) to refer to 𝑟𝑏(𝑏𝑘, 𝐶) and er(𝑏𝑘, 𝐶|𝜋). With these simplifications, the first

probability term on the RHS of (3.13) can be written as

Pr

(︃
ℎ⋀︁

𝑖=𝑘+1

𝑆𝑎𝑖

⃒⃒⃒⃒
⃒𝑆𝑎𝑘, 𝑏𝑘, 𝜋

)︃
=
∑︁
𝑏𝑘+1

Pr

(︃
ℎ⋀︁

𝑖=𝑘+1

𝑆𝑎𝑖

⃒⃒⃒⃒
⃒ 𝑏𝑘+1, 𝑆𝑎𝑘, 𝑏𝑘, 𝜋

)︃
Pr(𝑏𝑘+1|𝑆𝑎𝑘, 𝑏𝑘, 𝜋).

(3.16)

The summation in (3.16) is over posterior belief states at time 𝑘 + 1, which are

dependent on the current action 𝑎𝑘 = 𝜋(𝑏𝑘) and some corresponding observation

𝑜𝑘+1. Therefore, we have Pr(𝑏𝑘+1|𝑆𝑎𝑘, 𝑏𝑘, 𝜋) = Pr(𝑜𝑘+1|𝑆𝑎𝑘, 𝜋(𝑏𝑘), 𝑏𝑘). However, un-

like (3.10) and (3.11), the conditioning on 𝑆𝑎𝑘 in (3.16) means that its quantities,

including the next belief states 𝑏𝑘+1, are computed under the assumption that the

system is in a safe state at time 𝑘.

In order to compute Pr(𝑜𝑘+1|𝑆𝑎𝑘, 𝑎𝑘, 𝑏𝑘), it is useful to define safe prior belief

�̄�sa(𝑠𝑘+1|𝑎𝑘) = Pr(𝑠𝑘+1|𝑆𝑎𝑘, 𝑎𝑘, 𝑏𝑘) =

∑︁
𝑠𝑘:𝑐𝑣(𝑠𝑘,𝐶)=0

𝑇 (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1)𝑏(𝑠𝑘)

1− 𝑟𝑏(𝑏𝑘)
, (3.17)

which constructs a prior belief state at time 𝑘 + 1 according to 𝑇 , the stochastic

state transition function, by only considering the transitions from states 𝑠𝑘 such that

𝑐𝑣(𝑠𝑘, 𝐶) = 0 (do not violate constraints) and normalizing the belief by the probability

77

mass of safe states at time 𝑘. Note, however, that this does not imply 𝑟𝑏(�̄�
sa
𝑘+1) = 0,

since safe states 𝑠𝑘 at time 𝑘 can potentially transition to unsafe states 𝑠𝑘+1 at time

𝑘 + 1 according to 𝑇 . With (3.17), we can define

Prsa(𝑜𝑘+1|𝑎𝑘, 𝑏𝑘) = Pr(𝑜𝑘+1|𝑆𝑎𝑘, 𝑎𝑘, 𝑏𝑘)

=
∑︁
𝑠𝑘+1

Pr(𝑜𝑘+1|𝑠𝑘+1, 𝑆𝑎𝑘, 𝑎𝑘, 𝑏𝑘) Pr(𝑠𝑘+1|𝑆𝑎𝑘, 𝑎𝑘, 𝑏𝑘),

=
∑︁
𝑠𝑘+1

𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�
sa(𝑠𝑘+1|𝑎𝑘), (3.18)

which is the distribution of observations at time 𝑘 + 1 assuming that the system was

in a non-violating state at time 𝑘.

Since the belief state 𝑏𝑘+1 in Pr(𝑏𝑘+1|𝑆𝑎𝑘, 𝑏𝑘, 𝜋) = Pr(𝑜𝑘+1|𝑆𝑎𝑘, 𝜋(𝑏𝑘), 𝑏𝑘) is the

same one appearing in Pr
(︁⋀︀ℎ

𝑖=𝑘+1 𝑆𝑎𝑖

⃒⃒⃒
𝑏𝑘+1, 𝑆𝑎𝑘, 𝑏𝑘, 𝜋

)︁
on the RHS in (3.16), we

conclude that it corresponds to the safe posterior belief

�̂�sa(𝑠𝑘+1) = Pr(𝑠𝑘+1|𝑜𝑘+1, 𝑆𝑎𝑘, 𝑎𝑘, 𝑏𝑘),

∝ Pr(𝑜𝑘+1|𝑠𝑘+1, 𝑆𝑎𝑘, 𝑎𝑘, 𝑏𝑘) Pr(𝑠𝑘+1|𝑆𝑎𝑘, 𝑎𝑘, 𝑏𝑘),

∝ 𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�
sa(𝑠𝑘+1|𝑎𝑘), (3.19)

where the normalization constant is (3.18). Therefore, from (3.12), we can write

Pr

(︃
ℎ⋀︁

𝑖=𝑘+1

𝑆𝑎𝑖

⃒⃒⃒⃒
⃒ 𝑏𝑘+1, 𝑆𝑎𝑘, 𝑏𝑘, 𝜋

)︃
= (1− er(𝑏sa𝑘+1|𝜋)), (3.20)

where 𝑏sa𝑘+1 = �̂�sa𝑘+1. Combining the previous equations, we get

er(𝑏𝑘|𝜋) = 1− Pr

(︃
ℎ⋀︁

𝑖=𝑘

𝑆𝑎𝑖

⃒⃒⃒⃒
⃒ 𝑏𝑘, 𝜋

)︃
,

= 1− Pr

(︃
ℎ⋀︁

𝑖=𝑘+1

𝑆𝑎𝑖

⃒⃒⃒⃒
⃒𝑆𝑎𝑘, 𝑏𝑘, 𝜋

)︃
Pr(𝑆𝑎𝑘|𝑏𝑘, 𝜋),

= 1− (1− 𝑟𝑏(𝑏𝑘))
∑︁
𝑏sa𝑘+1

Pr

(︃
ℎ⋀︁

𝑖=𝑘+1

𝑆𝑎𝑖

⃒⃒⃒⃒
⃒ 𝑏sa𝑘+1, 𝑆𝑎𝑘, 𝑏𝑘, 𝜋

)︃
Prsa(𝑜𝑘+1|𝑎𝑘, 𝑏𝑘),

78

= 1− (1− 𝑟𝑏(𝑏𝑘))
∑︁
𝑏sa𝑘+1

(1− er(𝑏sa𝑘+1|𝜋))Prsa(𝑜𝑘+1|𝜋(𝑏𝑘), 𝑏𝑘),

= 1− (1− 𝑟𝑏(𝑏𝑘))

⎛⎝1−
∑︁
𝑏sa𝑘+1

Prsa(𝑜𝑘+1|𝜋(𝑏𝑘), 𝑏𝑘)er(𝑏sa𝑘+1|𝜋)

⎞⎠ ,

leading to

er(𝑏𝑘|𝜋) = 𝑟𝑏(𝑏𝑘)− (1− 𝑟𝑏(𝑏𝑘))
∑︁
𝑏sa𝑘+1

Prsa(𝑜𝑘+1|𝜋(𝑏𝑘), 𝑏𝑘)er(𝑏sa𝑘+1|𝜋), (3.21)

which is key to CC-POMDP’s and RAO*. If 𝑏𝑘 is terminal, (3.21) simplifies to

er(𝑏𝑘|𝜋) = 𝑟𝑏(𝑏𝑘). Prior to the formal definition of CC-POMDP’s in the next section,

it is worthwhile to make a couple of comments regarding (3.21).

Figure 3-2: Simple graphical example of how safe belief states and observation proba-
bilities are computed. Black circles represent belief states, and squares with probabil-
ities shown next to them are belief state particles. Arrows emanating from particles
represent stochastic transitions triggered by action 𝜋(𝑏𝑘) at the belief state 𝑏𝑘. Parti-
cles shown in red are those whose states 𝑠 violate constraints, i.e., 𝑐𝑣(𝑠, 𝐶) = 1, while
white particles are safe. For this example, assume that the observation 𝑜𝑘+1 shown in
blue is generated with probability 1 by the particles next to it, and with probability
0 everywhere else.

First, note that the dependency on the potentially unknown planning horizon ℎ

79

disappeared in (3.21).

Second, by requiring knowledge of er(𝑏sa𝑘+1|𝜋) for the computation of er(𝑏𝑘|𝜋),

(3.21) could be interpreted as a “Bellman backup” [Bellman, 1956] for risk. However,

unlike the Bellman backup equation for plan utility in Section 3.4.2, which requires

(3.11) in its averaging term, the execution risk in (3.21) uses the safe observation

distribution in (3.18), and propagates forward the safe posterior belief in (3.19). In

order to facilitate the understanding of how safe beliefs and observation distributions

are computed, Figure 3-2 shows a simple graphical example. In this figure, particles

composing the safe prior belief from (3.17) are surrounded by the orange line (all

generated by the safe particle in 𝑏𝑘). According to (3.11), the probability of the

belief state on the right generating the blue observation 𝑜𝑘+1 is Pr(𝑜𝑘+1|𝜋(𝑏𝑘), 𝑏𝑘) =

0.75−0.25𝑝 (particles circled by the green ellipse), while the probability for the same

observation according to the safe distribution (3.18) is Prsa(𝑜𝑘+1|𝜋(𝑏𝑘), 𝑏𝑘) = 0.75

(particles circled by the purple ellipse).

Third, note that (3.21) requires RAO* to keep track of both �̂�𝑘+1, the posterior

belief from (3.10) used for expected value computations, and �̂�sa𝑘+1, the safe posterior

belief from (3.19) used for execution risk propagation.

3.2.3 Chance-constrained POMDP’s

Combining the probabilistic state transition and observation model from Section 3.2.1

with the concept of execution risk from the previous section, we are ready to extend

Section 1.3 and formally define CC-POMDP’s in Definition 3.1.

Definition 3.1 (Chance-Constrained POMDP). A CC-POMDP is a tuple 𝐻 =

⟨𝒮,𝒜,𝒪, 𝑇, 𝑂,𝑅, 𝑏0, 𝒞, 𝑐𝑣,∆⟩, where

∙ 𝒮, 𝒜, and 𝒪 are, respectively, discrete sets of planning states, actions, and

observations;

∙ 𝑇 : 𝒮 ×𝒜× 𝒮 → [0, 1] is a stochastic state transition function such that

𝑇 (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1) = Pr(𝑠𝑘+1|𝑠𝑘, 𝑎𝑘);

80

∙ 𝑂 : 𝒮 ×𝒪 → [0, 1] is a stochastic observation function such that

𝑂(𝑠𝑘, 𝑜𝑘) = Pr(𝑜𝑘|𝑠𝑘);

∙ 𝑅 : 𝒮 ×𝒜 → R is a reward function;

∙ 𝑏0 is the initial belief state;

∙ 𝒞 is a set of conditional constraints defined over 𝒮;

∙ 𝑐𝑣 = [𝑐1𝑣, . . . , 𝑐
𝑞
𝑣] is a vector of constraint violation indicators 𝑐𝑖𝑣 : 𝒮 × 2𝒞 →

{0, 1}, 𝑖 = 1, 2, . . . , 𝑞, such that 𝑐𝑣(𝑠, 𝐶
𝑖) = 1 if, and only if, 𝑠 violates con-

straints in a subset 𝐶𝑖 of 𝒞;

∙ ∆ = [∆1, . . . ,∆𝑞] is a vector of 𝑞 execution risk bounds used to define 𝑞 chance

constraints

er(𝑏𝑘, 𝐶
𝑖|𝜋) ≤ ∆𝑖, 𝑖 = 1, 2, . . . , 𝑞, 𝑘 ≥ 0. (3.22)

A solution to a CC-POMDP is an optimal policy (or plan) 𝜋* : ℬ → 𝒜 mapping

belief states in ℬ to actions in 𝒜 such that

𝜋* = arg max
𝜋

E

[︃
ℎ∑︁

𝑡=0

𝑅(𝑠𝑡, 𝑎𝑡)
⃒⃒⃒
𝜋

]︃
(3.23)

and (3.22) holds.

Chance constraints in [Blackmore, 2007, Ono and Williams, 2008, Undurti and

How, 2010, Ono et al., 2012b, Ono et al., 2012a, Poupart et al., 2015] are used to

bound the probability of constraint violations over complete executions of 𝜋*. In the

execution risk notation of (3.22), that corresponds to chance constraints

er(𝑏0, 𝐶
𝑖|𝜋) ≤ ∆𝑖, 𝐶𝑖 ∈ 2𝒞, 𝑖 = 1, 2, . . . , 𝑞, (3.24)

81

which limit the execution risk from the initial belief state. However, enforcing (3.24)

might entail unanticipated (although correct) “daredevil” behavior by the agent in

the presence of unlikely observations, which might go against the safety expectations

of the mission designer. Therefore, in the next section, we present alternatives forms

of chance constraints in execution risk notation that are guaranteed to entail safer

autonomous behavior than (3.24), while also offering a perspective on how the static

risk allocation of [Ono and Williams, 2008,Ono et al., 2012b,Ono et al., 2012a] relates

to (3.21).

3.2.4 Enforcing safe behavior at all times

The chance constraints in (3.24) ensure that the probability of constraint violation is

bounded over complete executions of the policy. However, that does not mean that

the agent will exhibit the same sensitivity to risk at all execution steps. In fact, as

shown in Section 3.4.1, unlikely policy branches can be allowed risks close or equal to

1 if that will help improve the objective, giving rise to a “daredevil” attitude. Since

this might not be the desired risk-aware behavior, a straightforward way of achieving

higher levels of safety is to depart from the chance constraints in (3.24) and, instead,

impose a set of chance constraints of the form

er(𝑏𝑘, 𝐶
𝑖|𝜋) ≤ ∆𝑖,∀𝑖, 𝑘, s.t. 𝑏𝑘 is nonterminal. (3.25)

Intuitively, (3.25) tells the autonomous agent to “remain safe at all times”, whereas

the message conveyed by (3.24) is “stay safe overall”. It should be clear that (3.25)

implies (3.24), so (3.25) necessarily generates safer policies than (3.24), but also more

conservative in terms of utility. Another possibility is to follow [Ono et al., 2012b]

and impose

ℎ∑︁
𝑘=0

𝑟𝑏(𝑏𝑘, 𝐶
𝑖) ≤ ∆𝑖, ∀𝑖, (3.26)

which is a sufficient condition for (3.24) based on Boole’s inequality. One can show

82

that (3.26)⇒(3.25), so enforcing (3.26) will lead to policies that are at least as con-

servative as (3.25).

3.3 Relation to constrained POMDP’s

Alternative approaches for chance-constrained POMDP planning have been presented

in [Undurti and How, 2010,Poupart et al., 2015], where the authors investigate con-

strained POMDP’s (C-POMDP’s). They argue that chance constraints can be mod-

eled within the C-POMDP framework by assigning unit costs to states violating

constraints, 0 to others, and performing calculations as usual.

(a) Incorrect execution risks computed
using unit costs.

(b) Correct execution risks computed ac-
cording to (3.21).

Figure 3-3: Modeling chance constraints via unit costs may yield incorrect results
when constraint-violating states (dashed outline) are not terminal. Numbers within
states are constraint violation probabilities. Numbers over arrows are probabilities
for a non-deterministic action.

There are two main shortcomings associated with the use of unit costs to deal

with chance constraints. First, it only yields correct measures of execution risk in the

particular case where constraint violations cause policy execution to terminate. If that

is not the case, incorrect probability values can be attained, as shown in the simple

example in Figure 3-3. Second, assuming that constraint violations cause execution

to cease has a strong impact on belief state computations, as shown in Figure 3-4.

The key insight here is that, by assuming that constraint violations cause execution

to halt, it provides the system with an invaluable observation: at each non-terminal

belief state, the risk 𝑟𝑏(𝑏𝑘, 𝐶) in (3.14) must be 0. The reason for that is simple:

constraint violation⇒ termination⇔ execution⇒ no violation. (3.27)

83

Figure 3-4 illustrates the impact of (3.27) on belief states: an autonomous agent,

starting from an initial belief state without uncertainty (it contains a single particle),

executes a probabilistic operator leading to six possible future states according to

(3.3). From these six, one of them, whose probability according to (3.7) is 𝑝𝑐, is

marked red to symbolize that it violates plan constraints. Hence, according to (3.14),

𝑟𝑏(�̄�1) = 𝑝𝑐. Even if the agent is devoid of any sensors, the assumption that constraint

violations cause execution to halt creates a “virtual” binary sensor shown in Figure

3-4 outputting “Alive!” or “Dead!”. According to (3.11) and (3.27), “Alive!” and

“Dead!” are generated with probabilities 1− 𝑝𝑐 and 𝑝𝑐, respectively, and give rise to

different posterior belief states �̂�1. Since (3.27) requires constraint-violating states to

generate “Dead!” with probability 1, the belief update step in (3.10) rules out the

possibility of any particle being in a constraint violating state upon receiving “Alive!”,

thus generating the belief state �̂�1 at the top, for which 𝑟𝑏(�̂�1) = 0. Through a similar

reasoning, the belief update step with observation “Dead!” generates the posterior �̂�1

at the bottom, which is terminal and has 𝑟𝑏(�̂�1) = 1.

Figure 3-4: Impact on belief states of assuming terminal constraint violations, with
squares representing belief state particles. White squares represent particles for which
𝑐𝑣 indicates no constraint violation, while red squares denote particles on constraint-
violating paths.

Assuming that constraint violations are terminal is reasonable when they are

84

destructive, e.g., when the agent is irrecoverably damaged after falling into a crater

or flying through an obstacle, or forever lost after running out of power. Nevertheless,

it is rather limiting in terms of the expressiveness of risk-aware models, and may have

negative impacts on plan performance in situations where constraint violations are

“benign” or truly unobservable. As an example of “benign” violations, consider the

power supply restoration application referred to in Chapter 1 and further analyzed in

Section 3.5. In this domain, chance constraints can be used to limit the probability of

reconnecting networks faults to generators and causing further blackouts and stress

across the network. As undesirable at it may be, reconnecting faults to generators,

however, does not necessarily destroy the network. In fact, it might be the only way to

“probe” the system in order to significantly reduce the uncertainty about the location

of a fault, which in turn allows for a larger amount of power to be restored to the

consumers. Therefore, as confirmed by the results in Section 3.5, this is a situation

in which assuming terminal constraint violations leads to conservatism.

Related to the previous point about non-terminal constraint violations in CC-

POMDP models, it is important to stress that, apart from having an impact on the

execution risk of a conditional plan, no special treatment is required for the handling

of plan execution after one or more constraints are violated. In fact, any changes in

behavior that one wishes to trigger upon plan constraint violations must be directly

encoded as features in the CC-POMDP model, such as modifications to the objective

function or the actions available to the autonomous agent. For instance, in the power

supply restoration domain from the previous paragraph, belief states before and after

constraint violations (generating further blackouts) are treated in the exact same way,

while the planetary rover domains in Sections 3.5 and 7.3.1 assume that obstacle

collisions are terminal, and enforce this property by restricting the set of available

actions to the autonomous agent upon collision to be the empty set.

Regarding the dangers of assuming terminal constraint violations in situations

where they are unobservable, consider the example of a Mars rover that must limit the

probability of motor overheating as it executes traversals, for that causes components

to degrade faster. In addition, assume that the temperature sensor for one of the

85

wheels has already incurred significant damage and can no longer properly detect

overheating. Through the process illustrated in Figure 3-4, the assumption in (3.27)

causes the autonomous agent to essentially ignore the possibility of motor overheating

in that wheel, leading to overconfident behavior. Handling of chance constraints in

CC-POMDP’s using (3.21) does not suffer from either of these shortcomings.

3.4 Solving CC-POMDP’s through RAO*

In this section, we introduce the Risk-bounded AO* algorithm (RAO*) for construct-

ing risk-bounded policies for CC-POMDP’s. RAO* is based on heuristic forward

search in the space of belief states. The motivation for this is simple and shown in

Figure 3-5: given an initial belief state and limited resources (including time), the

belief states that are reachable from an initial belief 𝑏0 are usually a small fraction of

the complete set of beliefs ℬ.

Figure 3-5: Relationship between spaces explored by heuristic forward search.

Similar to AO* in fully observable domains, RAO* explores its search space from

an initial belief 𝑏0 by incrementally constructing a hypergraph 𝐺, called the explicit

hypergraph. As shown in Figure 3-6, nodes in 𝐺 contain posterior belief states -

both (3.10) and (3.19) -, and a hyperedge is a compact representation of the process

of taking an action and receiving several possible observations in and AND-OR tree

86

(Figure 3-7). Figure 3-8 shows the hypergraph representation of the AND-OR tree

segment in Figure 3-7.

Figure 3-6: Hypergraph node containing a belief state.

Figure 3-7: Segment of an AND-OR search tree.

3.4.1 Propagating risk bounds forward

As previously mentioned in Section 3.2.2, the direction of execution risk computation

in (3.21) is “backwards”, i.e., execution risk propagation happens from child to parent

nodes on the search hypergraph constructed by RAO*. However, since we propose to

87

Figure 3-8: Hypergraph representation of an AND-OR tree.

compute CC-POMDP policies by means of heuristic forward search, one should seek

ways to propagate estimates of (3.21) forward so as to be able to quickly detect that

the current best policy is too risky. For that, let 0 ≤ ∆𝑘 ≤ 1 be a bound for which

er(𝑏𝑘|𝜋) ≤ ∆𝑘 must be enforced. Also, let 𝑜′𝑘+1 be the observation associated with

child 𝑏′𝑘+1 of 𝑏𝑘 and with probability Prsa(𝑜′𝑘+1|𝜋(𝑏𝑘), 𝑏𝑘) ̸= 0. From (3.21) and the

condition er(𝑏𝑘|𝜋) ≤ ∆𝑘, we get

er(𝑏sa𝑘+1
′|𝜋) ≤

⎛⎝∆𝑘 − 𝑟𝑏(𝑏𝑘)

1− 𝑟𝑏(𝑏𝑘)
−

∑︁
𝑜𝑘+1 ̸=𝑜′𝑘+1

Prsa(𝑜𝑘+1|𝜋(𝑏𝑘), 𝑏𝑘)er(𝑏sa𝑘+1|𝜋)

⎞⎠
Prsa(𝑜′𝑘+1|𝜋(𝑏𝑘), 𝑏𝑘)

. (3.28)

The existence of (3.28) requires 𝑟𝑏(𝑏𝑘) < 1 and Prsa(𝑜′𝑘+1|𝜋(𝑏𝑘), 𝑏𝑘) ̸= 0 whenever

Pr(𝑜′𝑘+1|𝜋(𝑏𝑘), 𝑏𝑘) ̸= 0. Lemma 3.1 shows that these conditions are equivalent.

Lemma 3.1. One observes Prsa(𝑜𝑘+1|𝜋(𝑏𝑘), 𝑏𝑘) = 0 and Pr(𝑜𝑘+1|𝜋(𝑏𝑘), 𝑏𝑘) ̸= 0 if, and

only if, 𝑟𝑏(𝑏𝑘) = 1.

Proof :

⇐ : if 𝑟𝑏(𝑏𝑘) = 1, we conclude from (3.14) that 𝑐𝑣(𝑠𝑘, 𝐶) = 1,∀𝑠𝑘. Hence, all elements

in (3.17) and, consequently, (3.18) will have probability 0.

88

⇒ : from Bayes’ rule, we have

Pr(𝑆𝑎𝑘|𝑜𝑘+1, 𝑎𝑘, 𝑏𝑘)=
Prsa(𝑜𝑘+1|𝑎𝑘, 𝑏𝑘)(1− 𝑟𝑏(𝑏𝑘))

Pr(𝑜𝑘+1|𝑎𝑘, 𝑏𝑘)
= 0

Hence, we conclude that Pr(¬𝑆𝑎𝑘|𝑜𝑘+1, 𝑎𝑘, 𝑏𝑘) = 1, i.e., the system is guaranteed

to be in a constraint-violating state at time 𝑘, yielding 𝑟𝑏(𝑏𝑘) = 1.�

The execution risk of nodes whose parents have 𝑟𝑏(𝑏𝑘) = 1 is irrelevant, as shown

by (3.21). Therefore, it only makes sense to propagate risk bounds in cases where

𝑟𝑏(𝑏𝑘) < 1.

One difficulty associated with (3.28) is that it depends on the execution risk of all

siblings of 𝑏′𝑘+1, which cannot be computed exactly until terminal nodes are reached.

Therefore, one must approximate (3.28) in order to render it computable during

forward search.

We can easily define a necessary condition for feasibility of a chance constraint

at a search node by means of an admissible execution risk heuristic ℎer(𝑏
sa
𝑘+1|𝜋) ≤

er(𝑏sa𝑘+1|𝜋). An admissible estimate ℎer(𝑏
sa
𝑘+1|𝜋) of er(𝑏sa𝑘+1|𝜋) can be constructed from

a state heuristic ℎer(𝑠
sa
𝑘+1|𝜋) by taking the average

ℎer(𝑏
sa
𝑘+1|𝜋) =

∑︁
𝑠𝑘+1

𝑏sa(𝑠𝑘+1)ℎer(𝑠𝑘+1|𝜋). (3.29)

Combining ℎer(𝑏
sa
𝑘+1|𝜋) and (3.28) provides us with a necessary condition

er(𝑏sa𝑘+1
′|𝜋) ≤ ∆′

𝑘+1 =

⎛⎝∆𝑘 − 𝑟𝑏(𝑏𝑘)

1− 𝑟𝑏(𝑏𝑘)
−

∑︁
𝑜𝑘+1 ̸=𝑜′𝑘+1

Prsa(𝑜𝑘+1|𝜋(𝑏𝑘), 𝑏𝑘)ℎer(𝑏
sa
𝑘+1|𝜋)

⎞⎠
Prsa(𝑜′𝑘+1|𝜋(𝑏𝑘), 𝑏𝑘)

.

(3.30)

Since ℎer(𝑏
sa
𝑘+1|𝜋) computes a lower bound on the execution risk, we conclude

that (3.30) gives an upper bound for the true execution risk bound in (3.28). The

simplest possible heuristic is ℎer(𝑏
sa
𝑘+1|𝜋) = 0, which assumes that it is absolutely safe

to continue executing policy 𝜋 beyond 𝑏𝑘. Moreover, from the non-negativity of the

89

terms in (3.21), we see that another possible choice of a lower bound is ℎer(𝑏
sa
𝑘+1|𝜋) =

𝑟𝑏(𝑏
sa
𝑘+1), which is still myopic, but guaranteed to be an improvement over the previous

zero risk heuristic, for it incorporates additional information about the risk of failure

at that belief state. All these bounds can be compute forward, starting with ∆0 = ∆.

Figure 3-9 uses different colors to show how the terms of (3.30) relate to the portion

of the hypergraph constructed by RAO* associated with executing action 𝑎𝑘 = 𝜋(𝑏𝑘)

at belief 𝑏𝑘.

Figure 3-9: Visual relationship between (3.30) and the portion of RAO*’s search
hypergraph associated with executing action 𝑎𝑘 = 𝜋(𝑏𝑘) at belief 𝑏𝑘.

This section’s discussion of execution risk propagation has focused on the partic-

ular case of a single chance constraint. However, as seen in Definition 3.1 (Section

3.2.3), a CC-POMDP may contain multiple chance constraints er(𝑏𝑘, 𝐶
𝑖|𝜋) ≤ ∆𝑖, 𝑖 =

1, 2, . . . , 𝑞, 𝑘 ≥ 0, bounding the probability of violating different subsets of constraints

𝐶𝑖 ∈ 2𝒞 during policy execution. Propagating multiple chance constraints forward

is a simple extension of the procedure used for a single chance constraint: for each

subset of constraints 𝐶𝑖 and its corresponding execution risk bound ∆𝑖, compute the

risk term 𝑟𝑖𝑏 in (3.15) using the corresponding constraint violation function 𝑐𝑖𝑣. More-

over, use 𝑐𝑖𝑣 and equations (3.17), (3.18), and (3.19) to compute 𝑏sa,𝑖𝑘+1 and Prsa,𝑖 in

(3.30). Finally, for each subset of constraints 𝐶𝑖, define a corresponding execution

risk heuristic ℎ𝑖
er . An RAO* policy that violates any of the execution risk bounds

given by (3.30) for each constraint subset 𝐶𝑖 is invalid and should be immediately

pruned.

90

3.4.2 Algorithm

Each node in the hypergraph 𝐺 constructed by RAO* (Algorithm 3.1) is associated

with a 𝑄 value

𝑄(𝑏𝑘, 𝑎𝑘)=
∑︁
𝑠𝑘

𝑅(𝑠𝑘, 𝑎𝑘)𝑏(𝑠𝑘)+
∑︁
𝑜𝑘+1

Pr(𝑜𝑘+1|𝑎𝑘, 𝑏𝑘)𝑄*(𝑏𝑘+1) (3.31)

representing the expected, cumulative reward of taking action 𝑎𝑘 at some belief state

𝑏𝑘. The first term corresponds to the expected current reward, while the second term

is the expected reward obtained by following the optimal deterministic policy 𝜋*, i.e.,

𝑄*(𝑏𝑘+1) = 𝑄(𝑏𝑘+1, 𝜋
*(𝑏𝑘+1)). Similar to (3.29), an admissible estimate ℎ𝑄(𝑏𝑘+1) of

𝑄*(𝑏𝑘+1) can be constructed from a state heuristic ℎ𝑄(𝑠𝑘+1) by taking the average

ℎ𝑄(𝑏𝑘+1) =
∑︁
𝑠𝑘+1

𝑏(𝑠𝑘+1)ℎ𝑄(𝑠𝑘+1). (3.32)

Given ℎ𝑄(𝑏𝑘+1), we select actions for the current estimate �̂� of 𝜋* according to

�̂�(𝑏𝑘) = arg max
𝑎𝑘

�̂�(𝑏𝑘, 𝑎𝑘), (3.33)

where

�̂�(𝑏𝑘, 𝑎𝑘)=
∑︁
𝑠𝑘

𝑅(𝑠𝑘, 𝑎𝑘)𝑏(𝑠𝑘)+
∑︁
𝑜𝑘+1

Pr(𝑜𝑘+1|𝑎𝑘, 𝑏𝑘)ℎ𝑄(𝑏𝑘+1) (3.34)

is the same as (3.31) with 𝑄*(𝑏𝑘+1) replaced by ℎ𝑄(𝑏𝑘+1). The portion of 𝐺 corre-

sponding to the current estimate �̂� of 𝜋* is called the greedy graph, for it uses an

admissible heuristic estimate ℎ𝑄(𝑏𝑘, 𝑎𝑘) of 𝑄*(𝑏𝑘+1) to explore the most promising

areas of 𝐺 first.

The most important differences between AO* and RAO* lie in Algorithms 3.2 and

3.3. First, since RAO* deals with partially observable domains, node expansion in

Algorithm 3.2 involves full Bayesian prediction and update steps, as opposed to a

simple branching using the state transition function 𝑇 . In addition, RAO* leverages

91

Algorithm 3.1: RAO*

Input: CC-POMDP 𝐻, initial belief 𝑏0.
Output: Optimal policy 𝜋 mapping beliefs to actions.

1 Function RAO*(𝐻, 𝑏0)
2 Explicit graph 𝐺 and policy 𝜋 initially consist of 𝑏0.
3 while 𝜋 has some nonterminal leaf node do
4 𝑛,𝐺 ← expand-policy(𝐺, 𝜋)
5 𝜋 ← update-policy(𝑛,𝐺, 𝜋)

6 return 𝜋.

Algorithm 3.2: expand-policy
Input: Explicit graph 𝐺, policy 𝜋.
Output: Expanded explicit 𝐺′, expanded leaf node 𝑛.

1 Function expand-policy(𝐺, 𝜋)
2 𝐺′ ← 𝐺, 𝑛 ← choose-promising-leaf(𝐺, 𝜋)
3 for each action 𝑎 available at 𝑛 do
4 ch ← use (3.7), (3.10), (3.11) to expand children of (𝑛, 𝑎).
5 ∀𝑐 ∈ ch, use (3.14), (3.18), (3.21), and (3.31) with admissible heuristics

to estimate 𝑄* and 𝑒𝑟.
6 ∀𝑐 ∈ ch, use (3.30) to compute execution risk bounds
7 if no 𝑐 ∈ ch violates its risk bound then
8 𝐺′ ← add hyperedge [(𝑛, 𝑎)→ 𝑐ℎ]

9 if no action added to 𝑛 then
10 mark 𝑛 as terminal.

11 return 𝐺′, 𝑛.

the heuristic estimates of execution risk explained in Section 3.4.1 in order to perform

early pruning of actions that introduce child belief nodes that are guaranteed to violate

the chance constraint. The same process is also observed during policy update in

Algorithm 3.3, in which heuristic estimates of the execution risk are used to prevent

RAO* to keep choosing actions that are promising in terms of heuristic value, but

can be proven to violate the chance constraint at an early stage.

The search process explained in Algorithms 3.1, 3.2, and 3.3 can be summarized

in three steps:

1. Solution expansion: takes a subset (which could be all) of the nonterminal

nodes in the policy graph 𝑔 and expands them. A node is expanded by con-

92

Algorithm 3.3: update-policy
Input: Expanded 𝑛, explicit graph 𝐺, policy 𝜋.
Output: Updated policy 𝜋′.

1 Function update-policy(𝑛,𝐺, 𝜋)
2 𝑍 ← set containing 𝑛 and its ancestors reachable by 𝜋.
3 while 𝑍 ̸= ∅ do
4 𝑛← remove(𝑍) node 𝑛 with no descendant in 𝑍.
5 while there are actions to be chosen at 𝑛 do
6 𝑎← next best action at 𝑛 according to (3.33) satisfying execution

risk bound.
7 Propagate execution risk bound of 𝑛 to the children of the

hyperedge (𝑛, 𝑎)
8 if no children violates its exec. risk bound then
9 𝜋(𝑛)← 𝑎; break

10 if no action was selected at 𝑛 then
11 mark 𝑛 as terminal

structing hyperedges associated with the actions available at that node, and

using heuristics to estimate both value and execution risk of the child nodes

connected to these hyperedges;

2. Value/risk update: propagate the heuristic estimates of value and execution

risk from newly-expanded nodes “up” the explicit graph 𝐺;

3. Policy update: use the updated estimates of value and execution risk in 𝐺 to

update the policy graph 𝑔.

Termination of this three-step process is attained when the policy graph 𝑔 has

no more nonterminal nodes to be expanded, in which case 𝑔 is the optimal, chance-

constrained, deterministic policy that solves the CC-POMDP.

When constructing the explicit graph 𝐺 incrementally, an important subproblem

in RAO* is how to handle duplicate nodes. If one forces all newly-expanded nodes in

𝐺 to be treated as unique, 𝐺 devolves into a hypertree, i.e., a tree with hyperdedges,

instead of remaining as a directed, acyclic hypergraph. Turning 𝐺 into a hypertree

does not affect RAO*’s soundness and completeness, and eliminates the overhead

involved in checking if a newly-created search node is already part of 𝐺. However,

93

treating instances of the same node as separate entities may cause RAO* to perform

repeated computations, as it is forced to expand the same hypertree spanning from

different instances of the same node.

Although interesting from a theoretical standpoint, choosing to treat 𝐺 as a hy-

pergraph or a hypertree can be of little to no relevance in practice, since many CC-

POMDP planning domains, especially those involving state uncertainty and partial

observability, will naturally cause 𝐺 to become a hypertree even if one spends the ef-

fort to check if newly-expanded nodes have already been added to 𝐺. This is because,

in order for two nodes to be deemed the same, it must be the case that

∙ they share the beliefs �̂�𝑘+1 and �̂�sa𝑘+1 computed, respectively, with (3.10) and

(3.19);

∙ they have the same execution risk bound, which is in turn a function of a node’s

siblings according to a hyperedge.

An exception to this rule are fully observable CC-POMDP planning domains,

where the task of comparing belief states is simplified by the fact that all beliefs

contain a single particle with probability 1, in which case beliefs can be compared by

just comparing if their single states are the same. However, outside this particular

case, the hashing operations that are usually involved in testing if a node is already

part of𝐺 almost never detect duplications, and their overhead can be easily eliminated

by forcing 𝐺 to be a hypertree.

Seeking to provided a clearer understanding of RAO*’s inner workings, the next

section presents a few iterations of the algorithm on a simple grounded example.

3.4.3 Grounded example

For the sake of focusing our attention on the process of incremental construction of

the explicit graph 𝐺 and the policy graph 𝑔 by RAO*, this example directly provides

numbers for hyperedge probabilities and heuristic estimates of value and risk, whose

computation is the topic of previous sections of this chapter. Moreover, this example

94

uses negative reward values to represent a CC-POMDP instance in which the goal is

to minimize cost. Finally, Figure 3-10 shows the graphical representation of different

elements involved in RAO*’s search for a policy in this particular grounded example.

Figure 3-10: From left to right: node in 𝑔, the greedy graph; node in 𝐺, the explicit
graph, but not in 𝑔; node with 𝑟𝑏 = 1 (guaranteed to violate constraints); color used
to represent heuristic estimates. In opposition to nodes with red outlines, we assume
in this particular example that nodes with black outlines have 𝑟𝑏 = 0.

Let Figure 3-11 represent the initial state of RAO*’s search for a CC-POMDP

policy. It consists of the node representing the initial belief state 𝑏0 in Definition 3.1,

along with the set of open (nonterminal) policy nodes, and the initial state of the

policy graph 𝑔. Since the search has not yet started, the only open node is 𝑏0 itself,

and the policy 𝑔 makes no optimal operator assignment to 𝑏0. Figure 3-11 also shows

that a chance constraint er(𝑏0, 𝐶|𝜋) ≤ ∆ = 5% is imposed on this search problem,

where 𝐶 is some given set of state constraints.

Figure 3-11: Initial state of the search for a CC-POMDP policy featuring a chance
constraint er(𝑏0, 𝐶|𝜋) ≤ ∆ = 5%.

Following the algorithm from the previous section, the first step in RAO* is to

expand a nonterminal node from Figure 3-11. Since the only open node is the one

containing 𝑏0, it is selected for expansion, and the result of this expansion is shown

in Figure 3-12.

In this figure, two hyperedges emanate from the initial belief state 𝑏0: action 𝑎1 is

associated with the red hyperedge on the left, while action 𝑎2 is associated with the

orange hyperedge on the right. The numbers inside the newly-expanded child nodes

are their heuristic value estimates ℎ𝑄. For the heuristic execution risk estimates

given by ℎ𝑒𝑟, we assume them to be the simple admissible heuristic ℎ𝑒𝑟 = 𝑟𝑏. Since all

95

Figure 3-12: State of the search after expanding the initial belief state and propagating
execution risk bounds forward.

newly-expanded child nodes have black outlines, we conclude from Figure 3-10 that

all nodes have 𝑟𝑏 = 0. The last step in the expansion step of RAO* is to propagate

execution risk bounds forward according to (3.30). Taking the node with heuristic

value estimate of −10 in Figure 3-12 as an example, its execution risk bound of 8.3%

is obtained as follows:

∆′
1 =

⎛⎝∆0−𝑟𝑏(𝑏0)
1−𝑟𝑏(𝑏0)

−
∑︁
𝑜1 ̸=𝑜′1

Prsa(𝑜1|𝜋(𝑏0), 𝑏0)ℎer(𝑏
sa
1 |𝜋)

⎞⎠
Prsa(𝑜′1|𝜋(𝑏0), 𝑏0)

,

=

(︂
0.05− 0

1− 0
− 0.4× 0

)︂
0.6

= 8.3%.

With the solution expansion step concluded, RAO* proceeds to the value/risk

update step. According to Figure 3-12, we have

𝑄(𝑏0, 𝑎1) = −1 + (−10× 0.7− 11× 0.3) = −11.3,

𝑄(𝑏0, 𝑎2) = −2 + (−10× 0.6− 9× 0.4) = −11.6,

and the fact that 𝑒𝑟(𝑏0, 𝑎1) = 𝑒𝑟(𝑏0, 𝑎2) = 0 < 5% shows that neither 𝑎1, nor 𝑎2,

can be pruned at this point on the grounds of being too risky. Since the goal is to

minimize cost (or, equivalently, maximize the cumulative sum of negative rewards),

action 𝑎1 is marked as the most promising at node 𝑏0.

The last step in the iteration is to update the policy graph 𝑔 in light of the newly-

96

expanded nodes and their value and risk estimates. Since the most promising action

to be taken at 𝑏0 according to Figure 3-12 is 𝑎1 and it does not cause the execution

risk bound at 𝑏0 to be violated, the left portion of 𝐺 is selected as the new best

estimate of 𝑔, as shown in Figure 3-13.

Figure 3-13: Outcome of updating the policy graph based on the numbers shown in
Figure 3-12. The highlighted portion of the explicit graph 𝐺 corresponds to the best
available estimate of the optimal policy graph 𝑔.

With the previous iteration concluded, we are back to the solution expansion

phase. According to Figure 3-13, either 𝑏11, 𝑏
2
1, or even both could be selected for

expansion. In this example, we arbitrarily choose to just expand 𝑏21, and the result is

shown in Figure 3-14

Figure 3-14: Result of expanding node 𝑏21 in Figure 3-13. Notice the child node with
red outline and 𝑟𝑏 = 1, which causes the left hyperedge of 𝑏21 to be pruned on the
grounds of being too risky.

Similar to Figure 3-12, heuristic estimates of value and risk are computed during

97

the node expansion step in Figure 3-14. Different from Figure 3-12, however, notice

the node with red outline symbolizing a belief state such that 𝑟𝑏 = 1. Despite this

difference, forward propagation of execution risk bounds according to (3.30) proceeds

as usual. Focusing our attention on the left hyperedge associated with action 𝑎1, the

left child receives the execution risk bound

∆′
2 =

(︂
0.166− 0

1− 0
− 0.8× 1

)︂
0.2

= −317%,

while the right child is assigned the execution risk bound

∆′
2 =

(︂
0.166− 0

1− 0
− 0.2× 0

)︂
0.8

= 20.8%.

Satisfying the negative execution risk bound in Figure 3-14 is clearly impossible,

for execution risks are probabilities and, therefore, must remain within [0, 1]. Since

satisfying the bounds computed by (3.30) is a necessary condition for chance con-

straint feasibility, the fact that one of the children violates their bounds is sufficient

grounds for pruning 𝑎1 at node 𝑏21, yielding the situation shown in Figure 3-15. Note

that the child with ∆′
2 = 20.8% is also in violation of the execution risk bound, since

its admissible execution risk heuristic is ℎ𝑒𝑟 = 𝑟𝑏 = 100% > 20.8%.

With a single hyperedge left at node 𝑏21, the value/risk update step becomes

𝑄(𝑏21, 𝑎2) = −2 + (−13× 0.5− 14× 0.5) = −15.5,

𝑄(𝑏0, 𝑎1) = −1 + (−10× 0.7− 15.5× 0.3) = −12.65,

𝑄(𝑏0, 𝑎2) = −2 + (−10× 0.6− 9× 0.4) = −11.6,

and 𝑒𝑟(𝑏21, 𝑎2) = 0 < 16.6%, 𝑒𝑟(𝑏0, 𝑎1) = 𝑒𝑟(𝑏0, 𝑎2) = 0 < 5%. Since it is now 𝑎2 the

action that looks most promising at 𝑏0, the portion of 𝐺 selected as the new best

estimate of 𝑔 is the one shown in Figure 3-16. This process is repeated until there

are no more open nodes in 𝑔 to be expanded, in which case RAO* returns 𝑔 as the

98

Figure 3-15: Result of pruning the search graph in Figure 3-14 due to violations of
execution risk bounds.

optimal mapping from belief states to actions.

Figure 3-16: Estimate of the best policy 𝑔 after two full iterations of RAO* on this
simple example.

Before we conclude, it is worthwhile to mention that, had the constraint violation

in Figure 3-14 happened on a hyperedge branch with probability less than 16.6%,

action 𝑎1 would not have been pruned at node 𝑏21.

99

3.4.4 Properties

The proofs of soundness, completeness, and optimality for RAO* are given in Lemma

3.2 and Theorem 3.1.

Lemma 3.2. Risk-based pruning of actions in Algorithms 3.2 (line 6) and 3.3 (line

7) is sound.

Proof : The RHS of (3.28) is the true execution risk bound for er(𝑏sa𝑘+1
′|𝜋). The ex-

ecution risk bound on the RHS of (3.30) is an upper bound for the bound in (3.28),

since we replace er(𝑏sa𝑘+1|𝜋) for the siblings of 𝑏sa𝑘+1
′ by admissible estimates (lower

bounds) ℎer(𝑏
sa
𝑘+1|𝜋). In the aforementioned pruning steps, we compare ℎer(𝑏

sa
𝑘+1

′|𝜋),

a lower bound on the true value er(𝑏sa𝑘+1
′|𝜋), to the upper bound (3.30). Verifying

ℎer(𝑏
sa
𝑘+1

′|𝜋) > (3.30) is sufficient to establish er(𝑏sa𝑘+1
′|𝜋) > (3.28), i.e., action 𝑎 cur-

rently under consideration is guaranteed to violate the chance constraint. �

Theorem 3.1. RAO* is complete and produces the optimal deterministic, finite-

horizon policies meeting the chance constraints.

Proof : a CC-POMDP, as described in Definition 3.1, has a finite number of policy

branches, and Lemma 3.2 shows that RAO* only prunes policy branches that are

guaranteed not to be part of any chance-constrained solution. Therefore, if no chance-

constrained policy exists, RAO* will eventually return an empty policy.

Concerning the optimality of RAO* with respect to the utility function, it follows

from the admissibility of ℎ𝑄(𝑏𝑘, 𝑎𝑘) in (3.33) and the optimality guarantee of AO*. �

The computational complexity of RAO* (Algorithm 3.1) is strongly dependent

on the quality of ℎ𝑄 and ℎer , the value and execution risk heuristics, the amount of

pruning of the policy graph caused by the risk bounds ∆, and the specific parameters

of the CC-POMDP given as input. At the same time, most of the effort in Algorithm

3.1 is spent expanding the explicit search graph 𝐺 in line 4, while the policy update

step in line 5 represents a small overhead on top of each expansion. Therefore,

100

seeking to provide an approximate characterization of the worst case computational

complexity of RAO*, here we focus on the largest possible size of the explicit graph

𝐺 as a function of the model, and the complexity of performing belief state updates

during the process of expanding 𝐺.

Keeping in mind the hypergraph segment shown in Figure 3-8, let |𝒮|, |𝒜|, and

|𝒪| denote, respectively, the sizes of the discrete state, action, and observation spaces

of the CC-POMDP given as input to RAO*. Moreover, let ℎ be the finite execution

horizon of the policy generated by RAO*, measured as the maximum depth (distance

from root) of the nodes in 𝐺. For each graph node in 𝐺, at most |𝒜| hyperedges

representing available actions can emanate from it, each one with at most |𝒪| edges

representing particular observations. Therefore, for each expanded node, there are at

most |𝒜||𝒪| new children, and a maximum of

(|𝒜||𝒪|)ℎ (3.35)

nodes in 𝐺 for a planning horizon ℎ.

Moreover, since RAO* operates over belief states, each newly-expanded child re-

quires belief states to be propagated as described in Section 3.2.1. The largest size

of a belief state in 𝐺 is |𝒮|, and the belief prediction step in (3.7) is 𝑂(|𝒮|2). This

computational cost, however, is shared among all children of the same hyperedge,

i.e., each child can be seen as incurring a belief prediction cost of 𝑂
(︁

|𝒮|2
|𝒪|

)︁
. Next, the

belief state update in (3.10) has a cost of 𝑂(|𝒮|) for each child, yielding a total belief

state cost of

𝑂

(︂
|𝒮|2

|𝒪|
+ |𝒮|

)︂
(3.36)

per child node. By multiplying (3.35) and (3.36), we get

𝑂
(︀
|𝒮|2|𝒜|ℎ|𝒪|ℎ−1 + |𝒮||𝒜|ℎ|𝒪|ℎ

)︀
(3.37)

as the worst case computational complexity for RAO*, as approximated by the com-

101

putational cost of expanding 𝐺.

3.5 Experiments

This section provides empirical evidence of the usefulness and general applicability

of CC-POMDP’s as a modeling tool for risk-sensitive applications, and shows how

RAO* performs when computing risk-bounded policies in two challenging domains

of practical interest: automated planning for science agents (SA) [Benazera et al.,

2005b]; and power supply restoration (PSR) [Thiébaux and Cordier, 2001]. All models

and RAO* were implemented in Python and ran on an Intel Core i7-2630QM CPU

with 8GB of RAM.

Our SA domain is based on the planetary rover scenario described in [Benazera

et al., 2005b]. Starting from some initial position in a map with obstacles, the sci-

ence agent may visit four different sites on the map, each of which could contain new

discoveries with probability based on a prior belief. If the agent visits a location that

contains new discoveries, we assume that it will find it with high probability. The

agent’s position is uncertain, and position uncertainty is unbounded, hence there is

always a non-zero risk of collision when the agent is traveling between locations. The

agent is required to finish its mission at a relay station, where it can communicate

with an orbiting satellite and transmit its findings. Since the relay satellite periodi-

cally moves below the horizon, there is a limited time window for the agent to gather

as much information as possible and arrive at the relay station in order to commu-

nicate with the satellite. Moreover, we assume the duration of each traversal to be

uncontrollable, but bounded. In this domain, we use a single chance constraint to

ensure that the event “arrives at the relay location on time” happens with probability

at least 1−∆. The SA domain has size |𝒮| = 6144; |𝒜| = 34, |𝒪| = 10.

In the PSR domain [Thiébaux and Cordier, 2001], the objective is to reconfigure a

faulty power network by switching lines on or off so as to resupply as many customers

as possible. One of the safety constraints is to keep faults isolated at all times, to avoid

endangering people and enlarging the set of areas left without power. However, fault

102

locations are hidden, and more information cannot be obtained without taking the risk

of resupplying a fault. Therefore, the chance constraint is used to limit the probability

of connecting power generators to faulty buses. Our experiments focused on the semi-

rural network from [Thiébaux and Cordier, 2001], which was significantly beyond the

reach of [Bonet and Thiébaux, 2003] even for single faults. In our experiments, there

were always circuit breakers at each generator, plus different numbers of additional

circuit breakers depending on the experiment. Observations correspond to circuit

breakers being open or closed, and actions to opening and closing switches. The PSR

domain is strongly combinatorial, with |𝒮| = 261; |𝒜| = 68, |𝒪| = 32.

We evaluated the performance of RAO* in both domains under various condi-

tions, and the results are summarized in Tables 3.1 (higher utility is better) and 3.2

(lower cost is better). The runtime for RAO* is always displayed in the Time col-

umn; Nodes is the number of hypergraph nodes expanded during search, each one of

them containing a belief state with one or more particles; and States is the number of

evaluated belief state particles. It is worthwhile to mention that constraint violations

in PSR do not cause execution to terminate, and the same is true for scheduling vio-

lations in SA. The only type of terminal constraint violation are collisions in SA, and

RAO* makes proper use of this extra bit of information to update its beliefs. There-

fore, PSR and SA are examples of risk-sensitive domains which can be appropriately

modeled as CC-POMDP’s, but not as C-POMDP’s with unit costs. The heuristics

used were straightforward: for the execution risk, we used the admissible heuristic

ℎ𝑒𝑟(𝑏𝑘|𝜋) = 𝑟𝑏(𝑏𝑘) in both domains. For 𝑄 values, the heuristic for each state in PSR

consisted in the final penalty incurred if only its faulty nodes were not resupplied,

while in SA it was the sum of the utilities of all non-visited discoveries.

As expected, both tables show that increasing the maximum amount of risk ∆

allowed during execution can only improve the policy’s objective. The improvement

is not monotonic, though. The impact of the chance constraint on the objective is

discontinuous on ∆ when only deterministic policies are considered, since one cannot

randomly select between two actions in order to achieve a continuous interpolation

between risk levels. Being able to compute increasingly better approximations of a

103

policy’s execution risk, combined with forward propagation of risk bounds, also allow

RAO* to converge faster by quickly pruning candidate policies that are guaranteed

to violate the chance constraint. This can be clearly observed in Table 3.2 when we

move from ∆ = 0.5 to ∆ = 1.0 (no chance constraint).

Another important aspect is the impact of sensor information on the performance

of RAO*. Adding more sources of sensing information increases the branching on

the search hypergraph used by RAO*, so one could expect performance to degrade.

However, that is not necessarily the case, as shown by the left and right numbers in

the cells of Table 3.2. By adding more sensors to the power network, RAO* can more

quickly reduce the size of its belief states, therefore leading to a reduced number of

states evaluated during search. Another benefit of reduced belief states is that RAO*

can more effectively reroute energy in the network within the given risk bound, leading

to lower execution costs.

Finally, we wanted to investigate how well a C-POMDP approach would perform

in these domains relative to a CC-POMDP. Following the literature, we made the

additional assumption that execution halts at all constraint violations, and assigned

unit terminal costs to those search nodes. Results on two example instances of PSR

and SA domains were the following: I) in SA, C-POMDP and CC-POMDP both

attained an utility of 29.454; II) in PSR, C-POMDP reached a final cost of 53.330,

while CC-POMDP attained 36.509. The chance constraints were always identical

for C-POMDP and CC-POMDP. First, one should notice that both models had the

same performance in the SA domain, which is in agreement with the claim that they

coincide in the particular case were all constraint violations are terminal. The same,

however, clearly does not hold in the PSR domain, where the C-POMDP model had

significantly worse performance than its corresponding CC-POMDP with the exact

same parameters. In cost-based C-POMDP approaches, assuming that constraint

violations are terminal greatly restricts the space of potential solution policies in

domains with non-destructive constraint violations, leading to conservatism. A CC-

POMDP formulation, on the other hand, can potentially attain significantly better

performance while offering the same safety guarantee.

104

Window[s] ∆ Time[s] Nodes States Utility
20 0.05 1.30 1 32 0.000
30 0.01 1.32 1 32 0.000
30 0.05 49.35 83 578 29.168
40 0.002 9.92 15 164 21.958
40 0.01 44.86 75 551 29.433
40 0.05 38.79 65 443 29.433
100 0.002 95.23 127 1220 24.970
100 0.01 184.80 161 1247 29.454
100 0.05 174.90 151 1151 29.454

Table 3.1: SA results for various time windows and risk levels. The Window column
refers to the time window for the SA agent to gather information, not a runtime limit
for RAO*.

∆ Time[s] Nodes States Cost
0 0.025/0.013 1.57/1.29 5.86/2.71 45.0/30.0
.5 0.059/0.014 3.43/1.29 10.71/2.71 44.18/30.0
1 2.256/0.165 69.3/11.14 260.4/23.43 30.54/22.89
0 0.078/0.043 2.0/1.67 18.0/8.3 84.0/63.0
.5 0.157/0.014 3.0/1.29 27.0/2.71 84.0/30.0
1 32.78/0.28 248.7/5.67 1340/32.33 77.12/57.03
0 1.122/0.093 7.0/2.0 189.0/12.0 126.0/94.50
.5 0.613/0.26 4.5/4.5 121.5/34.5 126.0/94.50
1 123.9/51.36 481.5/480 8590.5/2648 117.6/80.89

Table 3.2: PSR results for various numbers of faults (#) and risk levels. Top: avg.
of 7 single faults. Middle: avg. of 3 double faults. Bottom: avg. of 2 triple faults.
Left (right) numbers correspond to 12 (16) network sensors.

3.6 Conclusions

This chapter formally introduces CC-POMDP’s and their associated dynamic mea-

sure of execution risk. It also presents RAO*, an HFS-based algorithm for solving

CC-POMDP’s that not only incorporates execution risk in its computations, but

also propagates it forward in order to perform early pruning of overly risky policy

branches. The experiments in this chapter provide experimental evidence of two im-

portant facts: first, that CC-POMDP’s are effective in addressing shortcomings in

previous cost-based handlings of chance constraints; and second, that RAO* is able

to solve challenging risk-sensitive planning problems of practical interest and size by

combining insights of AO* with forward propagation of risk upper bounds.

105

With CC-POMDP’s and RAO* as two fundamental building blocks of CLARK,

the next chapter introduces cRMPL, a programming language that can serve as a

higher level, more abstract option for the specification of risk-aware planning problems

by mission operators. After motivating the usefulness of the language and presenting

its syntax, we show how CC-POMDP’s and RAO* play a key role in the problem

of extracting optimal, chance-constrained execution policies from a cRMPL program

specification.

106

Chapter 4

Programming risk-aware missions

with cRMPL

“A programming language is low level when its programs require

attention to the irrelevant.”

Alan Perlis.

The previous chapter introduces CC-POMDP’s as a means to describe risk-sensitive

domains of planning under uncertainty. Simply put, a CC-POMDP establishes which

actions are available for an autonomous agent to choose from; the “value” associated

with their execution; and the observations that the agent can collect from its sensors

as it executes its policy dynamically. Concomitantly, safe behavior corresponds to the

agent’s state remaining within feasibility regions defined by state constraints, which

may as well include temporal constraints restricting the scheduling of plan actions.

Related to this thesis’ goal of generating risk-bounded plans for agents that make

decisions based on sensor observations, it is important that mission operators be given

a tool for specifying such risk-aware mission at a high level of abstraction, as if by

means of a programming language. For that purpose, this chapter introduces the

Chance-constrained Reactive Model-based Programming Language (cRMPL), and

its relationship with CC-POMDP models from Chapter 3. Our cRMPL extends

the RMPL variant from [Effinger, 2012], itself a variant of previous versions of RMPL

107

[Ingham et al., 2001,Williams et al., 2001,Williams and Ingham, 2002,Williams et al.,

2003,Ingham, 2003], by adding support to probabilistic sensing actions and the ability

to impose chance constraints over any cRMPL (sub)expression. By doing so, cRMPL

allows the high-level specification of control programs for autonomous agents that

must operate under uncertainty and bounded risk.

4.1 Introduction

As all previous variants of RMPL [Ingham et al., 2001,Williams et al., 2001,Williams

and Ingham, 2002,Williams et al., 2003, Ingham, 2003,Effinger, 2012], a key feature

of cRMPL is that it is particularly useful when mission operators desire to exert tight

control over the decisions available to an autonomous agent and how it reacts to

its sensors, while offloading the burden of lower level plan dispatching to a program

executive. Similar to DTGolog [Boutilier et al., 2000], a cRMPL program could

be seen as “advice” from an expert mission operator that constraints the space of

decisions and sensor observations that should be taken into account by a decision-

theoretic executive for that program. In doing so, we implicitly assume that the

mission operator is capable of providing an accurate approximation of the solution

to a complex conditional planning problem in the form of a cRMPL program, but is

unwilling to commit to specific decisions in the plan due to the difficulty of reasoning

about the underlying constraints.

As in the original RMPL, mission specifications in cRMPL offer flexibility in the

choice of action sequences used to reach goals, which are exploited during execution

to achieve robustness. In cRMPL, like traditional reactive programs, time-evolved be-

havior can be specified using standard concurrent programming constructs, including

parallel and sequential execution; conditional execution; iteration; contingencies (if-

like statements); and timed execution. Programs in cRMPL can also specify temporal

bounds in time-critical missions.

Unlike traditional languages and previous versions of RMPL, cRMPL can bound

the risk of execution failure through the incorporation of chance constraints. In timed

108

cRMPL programs, chance constraints can, among other uses, specify upper bounds

on the probability of violating temporal constraints within an episode, which are

explained in Section 4.4.1. Similar to previous versions of RMPL, cRMPL improves

robustness by including choice constructs that can either represent decisions (also

referred to as controllable choices) between functionally-equivalent procedures, which

the program executive can assign at runtime in order to adapt to the execution

at hand; or potentially noisy sensor observations (also referred to as uncontrollable

choices) that the agent collects during execution, such as the presence of an object

in the scene or the last action failing to accomplish its intended goals.

An important concept presented in this chapter is the framing of cRMPL exe-

cution as a CC-POMDP, and the use of RAO* for incremental, heuristically-guided

generation of optimal execution policies for cRMPL programs. This strategy is in

contrast with previous approaches to decision-theoretic RMPL execution [Kim et al.,

2001, Conrad and Williams, 2011, Effinger, 2012, Levine and Williams, 2014], which

require an exponentially large unraveling of all possible execution traces for the pro-

gram before starting the search for an optimal execution policy. Also related to the

framing of cRMPL execution as a CC-POMDP, it allows us to depart from the time

discretization approach in [Effinger, 2012] and, similar to state-of-the-art temporal

planners [Coles et al., 2009,Coles et al., 2012,Cimatti et al., 2015,Wang, 2015], de-

termine the existence of a feasible schedule by reasoning over temporal constraint

networks featuring continuous time.

This chapter starts by motivating the need for risk-bounded model-based pro-

gramming in Section 4.2, where we use cRMPL to specify a simple risk-bounded

Mars survey that must be completed under time pressure by an autonomous rover.

Next, Section 4.3 presents a short review of the most important design desiderata of

cRMPL, followed by a description of episodes in Section 4.4.1, the fundamental build-

ing blocks in our implementation. Next, Section 4.4.2 presents the different types of

constraints that can imposed on cRMPL episodes, and Section 4.4.3 shows how these

episodes can be composed together in order to form larger, hierarchical programs.

The execution semantics of cRMPL in terms of a mapping to CC-POMDP’s is given

109

in Section 4.5, followed by concluding remarks in Section 4.6.

4.2 Motivation: programming high level missions

Figure 4-1 depicts a planetary exploration scenario on the MobileSim [Adept MobileR-

obots, 2005] simulator, with names of interesting sites overlaid on the map. Spirit, an

intrepid rover, must navigate around terrain obstacles in order to visit several of these

sites, while also making sure to arrive at the “relay” location in time to communicate

with an orbiting satellite.

Figure 4-1: Mars rover scenario where a robotic scout must explore different regions of
the map before driving back to a relay location and communicating with an orbiting
satellite.

After conferencing with the team of scientists with interest in exploring this region,

the mission operator wants to communicate the following to the rover:

“From your current location, initiate the mission by traveling to the ‘min-

erals’ location, followed by a traversal to ‘funny rock’. At that point, decide

whether to visit a potential alien lair, where choosing to visit ‘alien lair’

110

is preferred over not visiting it. If you decide to visit ‘alien lair’, go to

‘relay’ next. Otherwise, go directly to ‘relay’. Each traversal should have

a risk of collision no greater than 1%. The mission should be completed

in no more than 1000 seconds.”

The fact that this mission description is written as a short English paragraph sug-

gests that it communicates goals, constraints, and preferences at a level of abstraction

natural for human interaction, except for maybe the portion about bounded risk of

collision. However, even the latter could be intuitively understood by someone famil-

iar with vehicle dynamics: “do not travel too fast and in close proximity to obstacles”.

Nevertheless, while convenient for human specification and understanding, there are

a number of fundamental mission aspects that have not been specified by the para-

graph: how should the rover navigate its environment in order to limit the risk of

collision? How should it dispatch activities, particularly when traversals exhibit ran-

dom variations in their durations? How can it decide whether to visit “alien lair” or

not? Are 1000 seconds sufficient time? All of these are crucial details for the success-

ful execution of the mission, but they require careful, and often laborious, reasoning

over models, goals, and mission constraints. Instead of forcing mission operators to go

through the arduous and error-prone process of eliciting all of these details, cRMPL,

inheriting the model-based programming paradigm of RMPL, allows this burden to

be transferred to the program executive (the CLARK executive in Figure 1-10), while

also adding support to risk-bounded execution.

The cRMPL control program corresponding to the English description of the rover

mission is shown in Figure 4-2. Since this thesis’ implementation of cRMPL is done

as an extension of Python1, the cRMPL program is an instance of the RMPyL class.

The meaning of the sequence and decide constructs should be evident from their

names: sequence imposes the constraint that its arguments must be executed one

after the other, while decide allows the program executive to nondeterministically

choose different program execution threads, while potentially assigning different re-

1More specifically, CPython, the standard implementation of the Python interpreter done in the
C programming language.

111

Figure 4-2: Simple rover control program expressed in cRMPL.

wards to each one of them. The command at the bottom of Figure 4-2 is syntactic

sugar to impose a temporal constraint restricting the temporal execution of the pro-

gram to 1000 seconds. Those and many other cRMPL constructs are explained in

detail throughout this chapter.

The go_to operator in Figure 4-2 represents risk-bounded traversals with proba-

bilistic durations, an example of cRMPL’s ability to specify chance-constrained pro-

gram execution. Its encoding within cRMPL leverages pSulu [Ono and Williams,

2008,Blackmore et al., 2011,Ono et al., 2012b,Ono et al., 2012a,Ono et al., 2013], a

chance-constrained path planner, and is explained in detail in Section 7.1.4. However,

for the sake of providing an intuitive understanding of the encoding, consider the fic-

titious traversal shown in Figure 4-3. When pSulu plans a trajectory between two

distant locations on the map, it determines a set of intermediate waypoints along the

way, shown as little black circles in Figure 4-3. Since these intermediate waypoints

are close to each other and connected by collision-free segments, the rover is capable

of dispatching waypoint-following tasks that seek to move it from one waypoint to

another on a straight line, while avoiding small rocks and other minor terrain fea-

tures. Therefore, waypoint-following are directly executable activities (also referred

112

Figure 4-3: Example route between two arbitrary locations A and B on a map. The
intermediate dots connecting path segments are intermediate waypoints that the robot
should visit in its traversal in order to maintain a safe distance from obstacles.

to as primitive) for the rover, whose temporal durations are a function of the distance

between waypoints and the rover’s physical limitations. Since a traversal from A to B

consists on the sequential execution of these waypoint-following primitives, the whole

traversal is represented as a sequence of waypoint-following activities.

Figure 4-4 shows the result of the CLARK executive dispatching the cRMPL

program in Figure 4-2, which is connected to MobileSim through the Enterprise

architecture [Burke et al., 2014,Timmons et al., 2015], as explained in Section 7.1.3.

Since there is enough time and a higher reward is associated with the execution thread

that visits “alien lair”, Spirit chooses to visit that site.

4.3 Design desiderata for cRMPL

According to [Williams and Ingham, 2002], a model-based program is comprised of

two components. The first is a control program, which uses standard programming

constructs to codify specifications of desired system behavior. In addition, to execute

113

Figure 4-4: Result of the CLARK executive dispatching the cRMPL program in
Figure 4-2.

the control program, the execution kernel (e.g., the CLARK executive in Figure 1-

10) needs a model of the underlying system it must control. Hence, the second

component is a Plant model that includes nominal behavior and common failure

modes. In this thesis, the first component corresponds to cRMPL control programs,

whose syntax and execution semantics are explained in this chapter. The second

component, the Plant model, is implicitly defined by the constraint-checking operators

in a CC-POMDP (Chapter 3).

The first two important features of cRMPL are its ability to generate risk-bounded

control policies, improving upon the conservatism of previous risk-minimizing ap-

proaches [Effinger, 2012]; and the incorporation of probabilistic sensing actions into

the program execution semantics, therefore allowing for a principled handling of belief

states.

The third important feature of the cRMPL version developed in this thesis is re-

lated to its ease of use within current robotics frameworks, e.g., the Robot Operating

System (ROS) [Quigley et al., 2009], a key capability for modern agent programming

114

languages [Ziafati et al., 2012]. Recent efforts to integrate the original standalone

version of RMPL into robotic applications led the core features of the language

to be made available through extensions of existing general-purpose programming

languages, such as Common Lisp and Python. In particular, this thesis developed

RMPyL, as we refer to our Python-based implementation of the cRMPL constructs.

Our choice for Python was not fortuitous: first, as pointed out in [Millman and

Aivazis, 2011], Python and its scientific tools [Jones et al., 01] have arguably become

a de facto standard for computation-driven scientific research, with popular libraries

for matrix manipulation [van der Walt et al., 2011], mathematical and constraint

programming [Hart et al., 2012, Hebrard et al., 2010], machine learning [Pedregosa

et al., 2011], among many others; second, it is one of the standard programming

languages used in ROS; third, the popularity of Python and its simple2 integration

with high-performance C/C++ code makes it particularly well-suited for interacting

with external constraint solvers used to assess risk in CC-POMDP models.

4.4 Syntax

This section explains in detail the different elements of the cRMPL syntax shown in

the Extended Backus-Naur Form (EBNF) grammar of Figure 4-5.

4.4.1 Episodes

The core building block of cRMPL is the episode (see Definition 4.2), a pictorial

example of which is shown in Figure 4-6. Intuitively, an episode marks a period

of time during which an activity must be performed while observing zero or more

constraints over relevant system variables, generally referred to as state. Special

attention is given to two particular types of constraints: temporal constraints place

limitations on the relationships between temporal events, while chance constraints

place limits on the probability of violating constraints within an episode. Episode

2For virtually seamless integration, see [Behnel et al., 2011].

115

⟨Episode⟩ ::= ⟨Primitive episode⟩ | ⟨Composite episode⟩

⟨Primitive episode⟩ ::= Episode(action=⟨Action⟩,duration=⟨Duration dict.⟩)

⟨Composite Episode⟩ ::= ⟨Sequence episode⟩ | ⟨Parallel episode⟩ | ⟨Choice episode⟩

⟨Sequence episode⟩ ::= sequence(⟨Episode⟩{,⟨Episode⟩})

⟨Parallel episode⟩ ::= parallel(⟨Episode⟩{,⟨Episode⟩})

⟨Choice episode⟩ ::= choose(⟨Choice⟩,⟨Episode⟩{,⟨Episode⟩})

⟨Choice⟩ ::= Choice(domain=⟨Discrete dom.⟩,ctype=⟨Choice Type⟩)

⟨Choice Type⟩ ::= "controllable" | "set-bounded" | "probabilistic"

⟨Action⟩ ::= String describing the action to be executed

⟨Duration dict.⟩ ::= Dictionary of duration properties.

⟨Constraint⟩ ::= ⟨Temporal const.⟩ | ⟨Chance const.⟩ | ⟨State const.⟩

⟨Temporal const.⟩ ::=
TemporalConstraint(start=⟨Event⟩, end=⟨Event⟩,
ctype=⟨Temp. type⟩)

⟨Temp. type⟩ ::=
"controllable" | "uncontrollable_bounded" | "uncon-
trollable_probabilistic"

⟨Event⟩ ::= Event()

⟨Chance const.⟩ ::=
ChanceConstraint(scope={⟨Constraint⟩},
risk=⟨Probability⟩)

⟨Probability⟩ ::= Probability value between 0 and 1.

⟨State const.⟩ ::= ⟨Assignment const.⟩ | ⟨Linear const.⟩

⟨Assignment const.⟩ ::=
AssignmentStateConstraint(scope={⟨State
var.⟩}, values=⟨Domain⟩)

⟨Linear const.⟩ ::=
LinearStateConstraint(scope={⟨State var.⟩},
expr=⟨Linear expression⟩)

⟨State var.⟩ ::= StateVariable(domain=⟨Domain⟩)

⟨Domain⟩ ::= ⟨Discrete dom.⟩ | ⟨Continuous dom.⟩

⟨Discrete dom.⟩ ::= Discrete list of symbols.

⟨Continuous dom.⟩ ::= Continuous range of values.

⟨Linear expression⟩ ::= Coefficients and relationship of a linear expression.

Figure 4-5: Extended Backus-Naur Form (EBNF) grammar for cRMPL.

116

constraints that are not temporal or chance constraints are generally referred to as

state constraints.

(a) Graphical depiction.

(b) Representation in cRMPL.

Figure 4-6: Episode specifying that an unmanned aerial vehicle (UAV) should scan
an area for a period between 1 and 10 time units, while making sure that it maintains
itself in a healthy state through the state constraint Healthy=True. If uav-scan can
be directly executed by the UAV, this would be a primitive episode. Otherwise, if
uav-scan requires a combination of more fundamental episodes, then this episode
would be composite.

Akin to mainstream programming languages and following the original principles

in RMPL, an important concept related to episodes in cRMPL is their hierarchical

composition, the topic of Section 4.4.3. Hierarchy is a fundamental tool to be able

to describe complex behavior in terms of well-defined combinations of increasingly

simpler functionality, up to the level that can be directly understood by the underlying

hardware executing the activities. For instance, consider the process through which

a print-like statement in the programming language of your choice is repeatedly

refined into combinations of more basic, lower level commands that eventually cause

the pixels on the screen to display a message such as “Hello, world!”. If the activity

specified for an episode can be directly executed by the system under control, we call

the episode primitive. Alternatively, if the activity to be performed within an episode

consists of a combination of other episodes, we call the episode composite.

Definition 4.2 (Episode). An episode is a tuple 𝐸 = ⟨𝑒𝑛, 𝑡𝑠, 𝑡𝑒, 𝒞, 𝐴⟩, where

∙ 𝑒𝑛: Boolean variable that is true if, and only if, the episode is enabled for

execution;

∙ 𝑡𝑠, 𝑡𝑒: respectively, temporal events marking the start and end of 𝐸, such that

𝑡𝑠, 𝑡𝑒 ∈ R+, 𝑡𝑠 ≤ 𝑡𝑒;

117

∙ 𝒞: set of constraints that should hold during the period [𝑡𝑠, 𝑡𝑒] provided that

the episode is enabled. It is partitioned into temporal constraints 𝒞𝑡, chance

constraints 𝒞𝑐, and state constraints 𝒞𝑠;

∙ 𝐴: activity to be performed during the period [𝑡𝑠, 𝑡𝑒] while observing 𝒞 provided

that the episode is enabled. For primitive episodes, 𝐴 is a function that can

be directly executed by the underlying system. For composite episodes, 𝐴 is a

function that governs the enabling of 𝐸’s components.

4.4.2 Episode constraints

True to the spirit of previous RMPL variants and the agent programming languages

that inspired them, cRMPL seeks to control autonomous agents by a temporal succes-

sion of constraints that specify how the (hidden) state of the Plant should evolve across

time, rather than describing the steps to achieve such evolution as in general-purpose

programming languages. Moreover, by allowing the specification of chance constraints

that bound the probability of constraint violations within episodes, cRMPL departs

from the conservatism of risk-minimal execution strategies by accepting the possi-

bility that state and environmental uncertainty, including model imperfections, may

cause execution to deviate from its “nominal” path. In this section, we present the

different types of constraints that cRMPL can currently impose on episodes, such as

the one shown in Figure 4-6.

Temporal constraints

Three basic types of simple temporal constraints are supported in cRMPL: Sim-

ple Temporal Constraints (STC’s) [Dechter et al., 1991]; STCs with Uncertainty

(STCU’s) [Vidal and Ghallab, 1996,Vidal, 1999]; and Probabilistic STCs (PSTC’s)

[Tsamardinos, 2002,Fang et al., 2014,Wang and Williams, 2015a,Yu et al., 2015]. A

temporal network allowing any combination of such simple temporal constraints is

called a Probabilistic Simple Temporal Network with Uncertainty (PSTNU) [Santana

et al., 2016c]. Disjunctive and conditional temporal networks can be represented as

118

combinations of these different types of simple temporal constraints with the choice

operators from Section 4.4.3. Example of such networks are Conditional Temporal

Plans (CTPs) [Tsamardinos et al., 2003]; Temporal Plan Networks with Uncertainty

(TPNU’s) [Effinger et al., 2009,Effinger, 2012]; Disjunctive Temporal Problems with

Uncertainty (DTPU) [Venable et al., 2010]; Conditional Simple Temporal Network

with Uncertainty (CSTNU) [Hunsberger et al., 2012]; and the Probabilistic Temporal

Plan Networks (PTPN’s) [Levine and Williams, 2014,Santana and Williams, 2014].

An STC over two temporal events 𝑒1 and 𝑒2 is a tuple ⟨𝑒1, 𝑒2, 𝑙, 𝑢⟩ representing the

constraint 𝑙 ≤ 𝑒2− 𝑒1 ≤ 𝑢, 𝑙 ≤ 𝑢, 𝑙, 𝑢 ∈ R∪ {−∞,∞}. An STC simply places metric

limits on the temporal distance between two arbitrary temporal events, regardless of

how their temporal assignments, also called a schedule, is chosen.

An STCU resembles an STC and is given by a tuple ⟨𝑒1, 𝑒2, 𝑙, 𝑢⟩, 𝑙 ≤ 𝑢, 𝑙, 𝑢 ∈ R>0.

However, instead of simply imposing limits on the temporal distance between two

arbitrary events, and STCU expresses the relationship 𝑒2 = 𝑒1 + 𝑑, 𝑙 ≤ 𝑑 ≤ 𝑢, where

𝑑 is a set-bounded, non-deterministic, non-negative duration whose value is chosen

by an external agent, usually referred to as the “environment” or “Nature”. Therefore,

different from an STC, an STCU imposes the additional constraint that 𝑒2 must be a

contingent (or uncontrollable) event: its schedule will be chosen by the environment

during execution so that 𝑒2 − 𝑒1 ∈ [𝑙, 𝑢], but its specific value cannot be determined

beforehand.

Similar to an STCU, a PSTC is a tuple ⟨𝑒1, 𝑒2, 𝑑⟩ defining the relationship 𝑒2 =

𝑒1+𝑑, where 𝑑 is also assumed to be a non-deterministic duration whose value is chosen

by the environment. Nevertheless, different from an STCU, a PSTC incorporates

information about the relative frequency of different values of 𝑑 in the form of a

known probability distribution with positive support.

A detailed presentation of all these types of temporal constraints, along with an

efficient algorithm for risk-aware scheduling, are given in Chapter 5.

119

State constraints

Let 𝑋 be a vector of state variables, which can be either discrete state variables over

finite domains; or numerical state variables over continuous ranges of values. For

those types of state variables, two types of constraints are available:

∙ general linear constraints of the form 𝐴𝑋𝑛 Q 𝑏, where 𝐴, 𝑏 are constant matrices

of appropriate dimensions and 𝑋𝑛 is the subset of 𝑋 composed of numerical

state variables;

∙ and assignment constraints 𝑋 = 𝑐, where 𝑐 is a vector of constants.

Inspired by PDDL2.1 [Fox and Long, 2003], it is possible to specify more precisely

when such state constraints must hold within an episode:

∙ at start: state constraints that must hold by the time the start event of an

episode is executed;

∙ at end: same as at start, but for the end event of an episode;

∙ during: state constraints that must hold during the whole period between the

start and end events, but not necessarily at the extrema;

∙ overall: state constraints that must hold at all previously-mentioned periods.

Chance constraints

The ability to impose chance constraints on episodes is one of the most important

features of cRMPL. In essence, a chance constraint provides a bound ∆ on the proba-

bility of a set of constraints 𝒞𝑐 ⊆ 𝒞 from an episode 𝐸 being violated during execution.

Therefore, a chance constraint is a tuple ⟨𝒞𝑐,∆⟩.

4.4.3 Composing episodes in cRMPL

Following previous work on RMPL [Kim et al., 2001,Effinger, 2012], cRMPL subrou-

tines can be hierarchically combined using three fundamental operators: sequence,

120

parallel, and choose. The choose operator can be further subdivided into control-

lable choices, which can be assigned by the agent; and uncontrollable choices, which

are assigned by Nature and can only be observed by the agent at runtime. These

fundamental operators, in turn, can be combined to generate more complex behavior,

such as iteration and exception-handling.

The outcome of applying the sequence, parallel, or choose operators to a list

𝐿𝐸 of two or more episodes will be a composite episode 𝐸𝑐𝑜𝑚𝑝 with components

Components(𝐸𝑐𝑜𝑚𝑝) = 𝐿𝐸. As in Figure 4-6, the activity associated with an episode

is graphically represented as a red box.

Sequence composition

In a sequence composition of episodes 𝐸𝑠𝑒𝑞, component episodes are executed one

after the other, as enforced by the [0,∞] STC’s shown in Figure 4-7 and belonging

to 𝒞𝑡(𝐸𝑠𝑒𝑞). In cRMPL, a list of episodes can be composed in sequence through the

operator sequence.

Figure 4-7: Composite episode generated by the sequence operator, which enforces
sequential temporal execution by means of [0,∞] STC’s.

The activity function 𝐴 of a sequence episode is such that

𝑒𝑛(𝐸𝑠𝑒𝑞)⇔ 𝑒𝑛(𝐸𝑖),∀𝐸𝑖 ∈ Components(𝐸𝑠𝑒𝑞). (4.1)

In other words, enabling a sequential composite episode 𝐸𝑠𝑒𝑞 is equivalent to en-

abling all of its components episodes. Notice that the STC’s in Figure 4-7, which

must be satisfied whenever 𝑒𝑛(𝐸𝑠𝑒𝑞) holds, make sure that the components of 𝐸𝑠𝑒𝑞

are dispatched in the correct order.

121

Parallel composition

In the parallel composition of episodes 𝐸𝑝𝑎𝑟 from Figure 4-8, component episodes

can be scheduled to be executed at the same time. In cRMPL, a list of episodes can

be composed in parallel through the operator parallel.

Figure 4-8: Composite episode generated by the parallel operator. Different from
sequence, component episodes in a parallel composition can be scheduled to happen
at the same time.

The activity function 𝐴 of a parallel episode is given by (4.1) with 𝐸𝑠𝑒𝑞 replaced

by 𝐸𝑝𝑎𝑟.

Choice composition

A choose composition is similar to parallel in terms of structure, but only one of

the branches is ever executed. Therefore, constraints from only one of the options

must be enforced by the program. Moreover, the start event 𝑡𝑠 of a choose episode

will always be a ⟨Choice⟩ element, as defined by the grammar in Figure 4-5.

Choices are pictorially represented as double circles, as shown in Figure 4-9.

Choices are either controllable (assigned by the control program) or uncontrollable

(assigned by Nature). Uncontrollable choices can be either set-bounded, when there

is no probability distribution associated with the different outcomes; or probabilistic,

when such a probability distribution is available. Since controllable choices are often

used to represent decisions by the program executive, while uncontrollable choices usu-

ally represent sensor readings and other types of environmental observations, cRMPL

122

Figure 4-9: Composite episodes generated by two instances of the choose operator.
The composite episode on the left corresponds to a controllable choice (decision) 𝑢𝑑,
while the one on the right corresponds to an uncontrollable choice (observation) 𝑢𝑜.

also incorporates syntactic-sugar constructs decide and observe to represent, re-

spectively, controllable and uncontrollable choices.

Different from sequence and parallel compositions, where enabling the outer

composite episode entails the enabling of all of its components, only a single compo-

nent of a choose composition 𝐸𝑐ℎ𝑜 will ever be enabled. This “branch selection” is

represented as an assignment to a discrete ⟨Choice⟩ element associated with 𝐸𝑐ℎ𝑜’s

start event 𝑡𝑠. Let 𝑢 denote this choice element and let {𝑣1, 𝑣2, . . . , 𝑣𝑛} be its dis-

crete domain. Also, let 𝐸𝑖 be the component episode associated with the assignment

𝑢 = 𝑣𝑖. The activity function 𝐴 of a choose episode is given by

𝑒𝑛(𝐸𝑐ℎ𝑜) ∧ 𝑢 = 𝑣𝑖 ⇔ 𝑒𝑛(𝐸𝑖), ∀𝐸𝑖 ∈ Components(𝐸𝑐ℎ𝑜). (4.2)

Iteration composition

Different flavors of iteration are implemented in cRMPL on top of the sequence and

choose operators. These are

while(𝑇𝑒𝑠𝑡,𝐸𝑙) = observe(𝑇𝑒𝑠𝑡,

sequence(𝐸𝑙,while(𝑇𝑒𝑠𝑡,𝐸𝑙)),

Episode(action=None)), (4.3)

123

for(𝑛,𝐸𝑙) = observe(𝑛 > 0,

sequence(𝐸𝑙,for(𝑛− 1,𝐸𝑙)),

Episode(action=None)), (4.4)

loop(𝐷,𝐸𝑙) = decide(𝐷,

sequence(𝐸𝑙,loop(𝐷,𝐸𝑙)),

Episode(action=None)). (4.5)

In (4.3)-(4.5), 𝐸𝑙 is an episode executed on each loop of the iteration and Episode(

action = None)) is a primitive episode that executes no operation (no-op). A while

iteration takes a Boolean uncontrollable choice 𝑇𝑒𝑠𝑡 and will keep executing the

iteration until 𝑇𝑒𝑠𝑡 evaluates to False, as it is usual in most programming languages.

Similarly, a for iteration is based on a Boolean uncontrollable choice that executes

𝐸𝑙 exactly 𝑛 times. Finally, and different from the previous two, a loop iteration

allows the control program to pick whether to execute another iteration based on a

controllable choice 𝐷, which could, for example, assign a reward for every time the

loop is executed.

4.5 Execution semantics

This section defines the execution semantics of cRMPL programs in terms of CC-

POMDP models, and shows how RAO* can be used to generate optimal, chance-

constrained execution policies for cRMPL programs that must terminate in finite

time. The key idea behind our approach is to construct a CC-POMDP model that

simulates valid executions of the cRMPL program, and use RAO* to incrementally

unravel the program’s hierarchical structure, make optimal assignments to control-

lable choice nodes, and ensure that episode constraints activated during program

unraveling are jointly feasible with high probability.

In order to establish a parallel with previous work on RMPL [Williams and In-

124

gham, 2002,Williams et al., 2003, Effinger, 2012] and define the semantics of valid

executions of cRMPL programs, Section 4.5.1 starts by showing the relationship be-

tween cRMPL constructs, Hierarchical Constraint Automata (HCA), and Probabilis-

tic Temporal Plan Networks (PTPN’s). Next, Section 4.5.2 develops the CC-POMDP

model that simulates valid executions of cRMPL programs, and shows how RAO* can

generate optimal executions for these cRMPL programs by solving its CC-POMDP

simulation using heuristic forward search.

4.5.1 Valid executions of a cRMPL program

Before presenting the details involved in the formal definition of valid cRMPL program

executions, it is worthwhile to develop an intuitive understanding of the concept by

making a parallel with existing general-purpose programming languages.

From a conceptual standpoint, valid executions of cRMPL programs are not very

different from valid executions of programs written in any common programming

language. First, any valid execution of a cRMPL program must start at its outermost

“main” episode, which is at the top of the hierarchical composition of episodes that

form the cRMPL program. This is directly analogous to the “main” function used

as the entry point for programming languages such as C/C++ and Java, from which

all other subprocedures are invoked. Second, the hierarchy of composite episodes in

cRMPL must be recursively unraveled until they can be completely expressed in terms

of primitive episodes, since these represent activities that can be directly executed by

the underlying system that the cRMPL program is trying to control. In traditional

programming languages such as C++, this would correspond to the compiler crawling

the structure of function calls in the program to make sure that they can be eventually

expressed as low-level instructions that the underlying processor can execute. Third,

episodes in a cRMPL program must be dispatched according to the temporal and

branching structure defined by its episode composition constructs, much in the same

way that a program in C++ must strictly adhere to the execution flow imposed by

language constructs such as if-else, as well as the ordering in which instructions

appear in the program. Finally, a valid execution of a cRMPL program terminates at

125

a state where there are no more composite episodes to be unraveled, and all episode

constraints activated during the unraveling of the program are jointly feasible with

high probability. For a traditional programming language, that would correspond to

reaching the end of the “main” function without any uncaught exceptions.

pRMPL [Effinger, 2012] cRMPL HCA

primitive(dur)
Episode(action=primitive,

duration=dur)

sequence{𝐴1, 𝐴2, . . .} sequence(𝐴1, 𝐴2, . . .)

parallel{𝐴1, 𝐴2, . . .} parallel(𝐴1, 𝐴2, . . .)

[l,u](name){𝐴1} 𝐴1.duration=[l,u]

if(obsv){𝐴1}else{𝐴2} observe(obsv,𝐴1,𝐴2)

choose{𝐴1, 𝐴2, . . .} decide(𝑢1,𝐴1,𝐴2,. . .)

Table 4.1: Relationship between the pRMPL variant of [Effinger, 2012], cRMPL, and
HCA [Williams et al., 2003].

Hierarchical Constraint Automata (HCA) have been used to define the execution

semantics of previous variants of RMPL [Williams et al., 2003]. Therefore, seeking to

place this thesis’ cRMPL within the context of prior work on the RMPL language, we

begin this section by introducing HCA in Definition 4.3, and a parallel between HCA,

pRMPL [Effinger, 2012] - on which cRMPL is based -, and cRMPL constructs in Ta-

ble 4.1. By presenting Definition 4.3 and Table 4.1, our goal is twofold: first, we seek

126

to indicate that HCA and cRMPL episodes (Definition 4.2) are closely-related con-

cepts, since both are hierarchical representations of conditional constraint networks

that become active the moment an HCA location is marked, or a cRMPL episode is

enabled; and second, we wish to draw a parallel between valid executions of cRMPL

programs, which are defined in terms of the unraveling of cRMPL episodes, and valid

executions of RMPL programs in [Williams et al., 2003], which are defined in terms of

valid executions of an HCA. A possible mapping between an HCA 𝐻 and an episode

𝐸 is given below:

∙ Constraints: 𝐺 and 𝑀 , respectively the goal and maintenance constraints of 𝐻,

can be combined to form the constraints 𝒞 of episode 𝐸;

∙ State variables: the state variables 𝒱 of HCA 𝐻 can be obtained from the scope

of constraints in 𝒞;

∙ Locations: Boolean HCA locations ℒ correspond to enabling variables 𝑒𝑛 in

episodes;

∙ Initial marking: the initial marking ℒ0 corresponds to the enabling of the

episode representing the complete cRMPL program;

∙ Transitions: the HCA transition function 𝑇 is implemented by the episode

activity functions explained in Section 4.4.3. Appropriate assignments to 𝑉 in

each 𝑇 (𝑙𝑖) can be represented as cRMPL Boolean choices enabled by 𝑙𝑖.

Definition 4.3 (Hierarchical Constraint Automaton (HCA) [Williams et al., 2003]).

An HCA is a tuple ⟨ℒ,ℒ0,𝒱 , 𝐺,𝑀, 𝑇 ⟩ where

∙ ℒ: set of locations, partitioned into primitive locations ℒ𝑝 and composite loca-

tions ℒ𝑐. Each composite location denotes a hierarchical constraint automaton;

∙ ℒ0 ⊆ ℒ: set of start locations (also called the initial marking);

∙ 𝒱: set of plant state variables, with each 𝑣𝑖 ∈ 𝒱 ranging over a finite domain

𝒟[𝑣𝑖]. 𝒞[𝒱] denotes the set of all finite domain constraints over 𝒱;

127

∙ 𝐺 : ℒ𝑝 → 𝒞[𝒱]: function that associates with each location 𝑙𝑖𝑝 ∈ ℒ𝑝 a finite

domain constraint 𝐺(𝑙𝑖𝑝) that the plant progresses towards whenever 𝑙
𝑖
𝑝 is marked.

𝐺(𝑙𝑖𝑝) is called the goal constraint of 𝑙𝑖𝑝. Goal constraints 𝐺(𝑙𝑖𝑝) may be thought

of as “set points”, representing a set of states that the plant must evolve towards

when 𝑙𝑖𝑝 is marked;

∙ 𝑀 : ℒ → 𝒞[𝒱]: function that associates with each location 𝑙𝑖 ∈ ℒ a finite domain

constraint 𝑀(𝑙𝑖) that must hold at the current instant for 𝑙𝑖 to be marked. 𝑀(𝑙𝑖)

is called the maintenance constraint of 𝑙𝑖. Maintenance constraints 𝑀(𝑙𝑖) may

be viewed as representing monitored constraints that must be maintained in order

for execution to progress towards achieving any goal constraints specified within

𝑙𝑖;

∙ 𝑇 : ℒ×𝒞[𝒱]→ 2ℒ: function that associates with each location 𝑙𝑖 ∈ ℒ a transition

function 𝑇 (𝑙𝑖). Each 𝑇 (𝑙𝑖) : 𝒞[𝒱]→ 2ℒ specifies a set of locations to be marked

at time 𝑡 + 1, given appropriate assignments to 𝑉 at time 𝑡.

As explained in [Williams et al., 2003], HCA are used to symbolize the different

execution stages of an RMPL program by a control sequencer, and how transitions

between different execution states occur. A state in the execution of an HCA is called

a marking, and denotes all marked HCA locations. Starting at the initial marking

ℒ0, the control sequencer creates a set consisting of each marked location whose

maintenance constraint is satisfied by the current Plant state3. Next, it conjoins all

goal constraints of this set to produce a configuration goal, towards which the Plant

state must be driven by the mode reconfiguration module. After the latter executes

a single command that makes progress towards achieving the goal constraints, the

control sequencer receives an update of the Plant state, which is used by the HCA to

advance to a new marking. This is achieved by taking all enabled transitions from

marked primitive locations whose goal constraints are achieved or whose maintenance

constraints have been violated, and from marked composite locations that no longer

3In [Williams et al., 2003], the current Plant state is replaced by its maximum a posteriori (MAP)
estimate in the presence of uncertainty.

128

contain any marked subautomata. This cycle repeats until an empty marking is

achieved, at which point program execution is deemed completed.

A similar process defined in terms of the unraveling of cRMPL episodes is used in

Definition 4.4 to describe the properties of valid executions of cRMPL programs.

Definition 4.4 (Valid execution of a cRMPL program). A valid execution of a

cRMPL program must have the following properties:

1. It must enable the episode at the top of the episode composition hierarchy;

2. It must unravel all enabled episodes;

3. Unraveling sequence and parallel composite episodes enables all of its com-

ponent episodes and constraints;

4. Unraveling controllable choice episodes only enables a single choice branch cor-

responding to the choice assignment (decision);

5. Unraveling uncontrollable choice episodes enables all choice branches (obser-

vation);

6. It ends when there are no more episodes to unravel, and the conditional con-

straints enabled by the program execution are jointly feasible with high probabil-

ity.

Representing plan constraints by means of hierarchical compositions of cRMPL

episodes is a useful tool from a modeling standpoint, for it allows the programmer to

design the mission at a high level of abstraction while relying on the program executive

to reason about lower level actions that drive the Plant towards the fulfillment of

these constraints. However, as first introduced in [Kim et al., 2001] and explained in

Definition 4.4, executing a cRMPL program requires the unraveling of this hierarchical

program structure in order to expose its essential elements: controllable choices, which

represent decisions that the program executive must make at runtime; uncontrollable

choices, which model runtime observations that may affect the way the program is

129

executed (à la the ubiquitous if-then-else construct); primitive activities, which

are the ones that the can be directly executed to control the Plant; and conditional

constraints, which stem from the enabling of their container episodes by means of

sequences of assignments to choice variables, as defined in (4.2). As first mentioned

in Section 1.4, we refer to this unraveling of cRMPL programs as a Probabilistic

Temporal Plan Network (PTPN) [Levine and Williams, 2014,Santana and Williams,

2014], an extension of previous TPN’s and TPNU’s [Kim et al., 2001,Walcott, 2004,

Effinger et al., 2009] (Table 4.2). Definition 4.5 presents a labeled representation

of PTPN’s based on [Tsamardinos et al., 2003, Santana and Williams, 2014], so as

to provide a smoother transition into the next section, where we show that RAO*

can compute optimal, chance-constrained execution policies for cRMPL programs by

framing cRMPL execution as a CC-POMDP instance.

Definition 4.5 (Probabilistic Temporal Plan Network (PTPN)). A PTPN is a tuple

𝑃 = ⟨ℒ,𝒟,𝒰 , ℰ𝑝, 𝒞, 𝑅,𝑂⟩, where

∙ 𝒟: set of labeled controllable choices (decisions) with finite, discrete domains;

∙ 𝒰 : set of labeled uncontrollable choices (observations) ranging over a finite,

discrete universe;

∙ ℒ: set of Boolean labels (also referred to as guard conditions) of the form

𝐿 = 𝑎1 ∧ 𝑎2 ∧ . . . ∧ 𝑎𝑛, (4.6)

where 𝑎𝑖 is an assignment 𝑐𝑖 = 𝑣, 𝑣 ∈ Domain(𝑐𝑖), 𝑐𝑖 ∈ (𝒟 ∪ 𝒰). We use the

notation 𝐿⇒ 𝑒 to denote that 𝐿 enables an element 𝑒;

∙ ℰ𝑝: set of labeled primitive episodes;

∙ 𝒞: set of labeled episode constraints;

∙ 𝑅 : 𝒟 → R: function mapping decisions to numerical rewards;

∙ 𝑂 : 2𝒰 → [0, 1]: joint probability distribution of uncontrollable choices.

130

cRMPL PTPN

Episode(action=primitive,

duration=dur)

sequence(𝐴1, 𝐴2, . . .)

parallel(𝐴1, 𝐴2, . . .)

𝐴1.duration=[l,u]

observe(obsv,𝐴1,𝐴2)

decide(𝑢1,𝐴1,𝐴2,. . .)

Table 4.2: Relationship between cRMPL and PTPN constructs.

Intuitively, a PTPN is a graph representation of possible executions of a cRMPL

program, with labels denoting “choice paths” (regardless of whether they are con-

trollable or not) that cause episodes 𝐸 to be enabled. For instance, in Figure 4-

10, let 𝑇𝑟𝑎𝑛𝑠𝑝 ∈ {Bike,Car,Stay} be the controllable choice that selects a type of

transportation and 𝐶𝑟𝑎𝑠ℎ ∈ {True,False} be the uncontrollable choice that governs

131

Figure 4-10: PTPN example (repeated from Figure 1-12 on page 43).

whether there will be an accident if one chooses to drive to work. In this case, the

label for the episode with activity “(stay)” is 𝑇𝑟𝑎𝑛𝑠𝑝 = Stay, while the episode with

activity “(cab-ride)” has label 𝑇𝑟𝑎𝑛𝑠𝑝 = Car∧𝐶𝑟𝑎𝑠ℎ = True. With that said, let 𝐸𝑐

be a component of a composite episode 𝐸𝑝 and 𝑢𝑝 be a ⟨Choice⟩ element. From (4.1)

and (4.2), we have

𝐿(𝐸𝑐) =

⎧⎪⎨⎪⎩𝐿(𝐸𝑝), for sequence or parallel composition,

𝐿(𝐸𝑝) ∧ (𝑢𝑝 = 𝑣), for choose and 𝐸𝑐 associated with 𝑢𝑝 = 𝑣.
(4.7)

The termination condition 𝐿(𝐸𝑝𝑟𝑜𝑔) = True for the episode representing the complete

cRMPL program allows episode labels to be recursively computed by (4.7).

The apparent simplicity of PTPN’s may deceive the reader into not noticing the

world of intractability that they hide, given that their size grows exponentially with

the number of choices. In complex applications where the cRMPL program executive

must reason over a space of hundreds, thousands, or potentially even an infinite4

4A PTPN with an infinite number of choices could be generated by an iteration operator from
Section 4.4.3.

132

number of choices, there might not even be enough space and time to finish writing

the PTPN before we start analyzing it. This is the reason why previous methods that

require a fully unraveled PTPN as input [Conrad and Williams, 2011, Santana and

Williams, 2014, Levine and Williams, 2014] tend to not scale well even for modest

size problems. Seeking to address this problem, the next section presents a mapping

from cRMPL execution to CC-POMDP that allows RAO* to exploit the hierarchical

structure of cRMPL programs and focus its unraveling on program traces that look

promising, as guided by RAO*’s heuristics.

4.5.2 Execution of cRMPL programs as CC-POMDP

In previous approaches to decision-theoretic5 RMPL execution [Kim et al., 2001,Effin-

ger, 2012,Levine and Williams, 2014,Santana and Williams, 2014], explicit represen-

tations of all possible program execution states, e.g., a PTPN-like structure [Kim

et al., 2001,Levine and Williams, 2014,Santana and Williams, 2014] or the complete

state space of an MDP with discretized activity durations [Effinger, 2012], are used

to compute optimal, or just feasible, program execution policies. However, as pointed

out in Sections 2.2 and 4.5.1, the exponential growth in the size of these explicit

representations as a function of the number of choices in the program limits the com-

plexity of the problems that can be effectively solved in practice. In order to see that,

consider the simple decision-making scenario described in the following, along with

its cRMPL6 description in Figure 4-11:

“Peter and his friends went to an amusement park on a beautiful summer

weekend, and he is set on riding the roller coasters as many times as

possible. However, he has only two hours left, and every round through

the queue takes between 45 minutes to an hour. What should Peter do?”

5Decision-theoretic programming languages are those that contain controllable choice (decision)
constructs that can be assigned by the program executive.

6In case the reader is wondering, the lambda function is needed to make sure that roller coaster-
riding episodes in the loop are represented as distinct instances.

133

Figure 4-11: Roller coaster-riding scenario described in cRMPL.

This problem is so simple that it can be solved by inspection: two roller coaster

rides would take between 90 and 120 minutes to complete, while three rides would

take at least 135 minutes. Therefore, given the 120 minute time limit, the optimal

policy for Peter is to ride the roller coaster twice and leave. However, it could not

be solved by first unraveling the cRMPL in Figure 4-11 into a PTPN, for the PTPN

would be infinite. This anecdotal example serves as motivation for our approach to

generate optimal, chance-constrained execution policies for cRMPL programs: frame

valid cRMPL execution as a CC-POMDP and solve it using RAO*’s heuristic forward

search strategy.

Figure 4-12 shows the unraveling of the cRMPL program in Figure 4-11 using

our strategy. The advantage of doing so is to allow the hierarchical structure of

cRMPL to be incrementally unraveled by RAO*, as it is guided by the utility of the

controllable choices assigned so far and a heuristic estimate of the utility-to-go. In

order to understand the unraveling steps depicted in Figure 4-12, it is worthwhile to

recall from (4.5) that loop is implemented in cRMPL as a choice between a sequence

of an iteration episode followed by another loop, or halting the loop. For the program

in Figure 4-11, after unraveling the loop twice (assigning “RUN” to loop choices), the

probabilistic scheduler from Chapter 5 indicates to RAO* that riding the roller coaster

a third time violates the overall temporal constraint of being done in 120 minutes,

causing RAO* to stop the iteration (assigning “STOP” to the third loop choice from

the top) and halt the unraveling process (last operator at the second to last state from

the bottom). Notice that, as expected, RAO* assigns a value of 2 to this execution, as

indicated by the value field at the top initial state. Our mapping from valid, optimal

134

Figure 4-12: Incremental unraveling of the cRMPL program from Figure 4-11. Tem-
poral consistency is checked by PARIS, the probabilistic scheduling algorithm de-
scribed in Chapter 5.

cRMPL execution to CC-POMDP is formally explained in Definition 4.6.

Definition 4.6 (cRMPL execution as CC-POMDP). The following CC-POMDP is

used to compute chance-constrained, optimal executions of a cRMPL program 𝑝𝑔.

∙ 𝒞: universe of all possible labeled constraints in 𝑝𝑔;

135

∙ 𝒮: states 𝑠 ∈ 𝒮 are tuples 𝑠 = ⟨𝑒𝑛, 𝑑𝑒, 𝑐𝑠⟩, where 𝑒𝑛 is a list of enabled

episodes that must be unraveled; 𝑑𝑒 is a list of assignments to controllable choices

(decisions); and 𝑐𝑠 ⊆ 𝒞 is a reference to a global constraint store, which records

labeled constraints that have been enabled during the search process;

∙ 𝑏0: deterministic belief state with initial state 𝑠0 = ⟨[𝑒𝑝𝑔],∅,Constraints(𝑒𝑝𝑔)⟩,

where 𝑒𝑝𝑔 is the top, “main” episode in 𝑝𝑔’s hierarchy, and Constraints(𝑒𝑝𝑔) is

the set of labeled constraints of 𝑒𝑝𝑔 . Notice that, since 𝑒𝑝𝑔 must be enabled in any

valid execution of 𝑝𝑔, the constraints in the set Constraints(𝑒𝑝𝑔) must necessarily

have empty labels, i.e., they are always enabled;

∙ 𝒪, 𝑂: the model is fully observable, so these are respectively 𝒮 and the identity

function;

∙ 𝒜: there are four available actions:

– Assign (𝑎=(𝐷) = 𝑣): assigns a value 𝑣 to a controllable choice episode

(decision) 𝐷;

– Observe (𝑎𝑜(𝑂)): observes an uncontrollable choice episode (observation)

𝑂;

– Expand (𝑎𝑢(𝐸)): unravels an episode 𝐸;

– Halt (𝑎ℎ): halts execution.

∙ 𝑇 : there are four types of transitions:

– 𝑇 (𝑠1, 𝑎=(𝐷) = 𝑣, 𝑠2) = 1.0 is a deterministic transition, where the en-

abled list 𝑒𝑛 in 𝑠2 is the same as in 𝑠1, except that the controllable choice

episode 𝐷 is replaced by its internal component episode associated with the

assignment 𝐷 = 𝑣; the decisions 𝑑𝑒 for 𝑠2 are the same as in 𝑠1, plus the

assignment 𝐷 = 𝑣; and the labeled constraints from the controllable choice

episode 𝐷 are added to the global constraint store 𝑐𝑠;

– 𝑇 (𝑠1, 𝑎𝑜(𝑂), 𝑠2(𝑜)) = 𝑝 is a stochastic transition with probability 𝑝 corre-

sponding to the observation 𝑂 = 𝑜; the enabled list 𝑒𝑛 in 𝑠2(𝑜) is the same

136

as in 𝑠1, except that the uncontrollable choice episode 𝑂 is replaced by its

internal component episode associated with the observation 𝑂 = 𝑜; the de-

cisions 𝑑𝑒 for 𝑠2(𝑜) are the same as in 𝑠1; and the labeled constraints from

the uncontrollable choice episode 𝑂 are added to the global constraint store

𝑐𝑠;

– 𝑇 (𝑠1, 𝑎𝑢(𝐸), 𝑠2) = 1.0 is a deterministic transition, where the enabled list

𝑒𝑛 in 𝑠2 is the same as in 𝑠1, except that 𝐸 is replaced by its components

if it is a sequence or parallel episode, or nothing if it is a primitive

episode; the decisions 𝑑𝑒 for 𝑠2 are the same as in 𝑠1; and the labeled

constraints from the episode 𝐸 are added to the global constraint store 𝑐𝑠;

– 𝑇 (𝑠1, 𝑎ℎ, 𝑠𝑐𝑣) = 𝑝𝑐𝑣 is a stochastic transition, where 𝑠1 must be a state with

an empty enabled list 𝑒𝑛; and 𝑠𝑐𝑣 is a terminal state with an empty enabled

list and the same list of decisions 𝑑𝑒 as 𝑠1. In this transition, nothing is

added to the global constraint store 𝑐𝑠. The state 𝑠𝑐𝑣 represents the exe-

cution of the cRMPL program ending in a state that violates constraints,

and the probability 𝑝𝑐𝑣 of this event happening depends on the semantic

interpretation of 𝐶(𝑠1) ⊆ 𝑐𝑠, the subset of labeled constraints in the con-

straint store that is consistent with the decisions 𝑑𝑒 in 𝑠1. For instance,

if 𝐶(𝑠1) forms a Probabilistic Simple Temporal Network with Uncertainty

(PSTNU), the PARIS algorithm in Chapter 5 can check if a strong schedule

for 𝐶(𝑠1) exists for different levels of scheduling risk, and the probability

𝑝𝑐𝑣 would correspond to the scheduling risk bound returned by PARIS. On

the other hand, if the temporal constraints in 𝐶(𝑠1) are dependent on as-

signments to both uncontrollable and controllable choices, the extension of

PARIS to PTPN scheduling in Chapter 6 can be used to check if 𝐶(𝑠1) is

strongly consistent, and again the probability 𝑝𝑐𝑣 would correspond to the

scheduling risk bound. The remaining transition probability is associated

with 𝑇 (𝑠1, 𝑎ℎ, 𝑠𝑠𝑎) = 1 − 𝑝𝑐𝑣, where 𝑠𝑠𝑎 is identical to 𝑠𝑐𝑣, except for the

fact that it marks that the program ends in a state that does not violate

constraints.

137

∙ 𝑅(𝑠, 𝑎=(𝐷) = 𝑣) = 𝑟, where 𝑟 is the utility value associated with 𝑎=(𝐷) = 𝑣,

and 0 otherwise;

∙ 𝑐𝑣: in this model, we have 𝑐𝑣(𝑠𝑐𝑣, ·) = 1 for the terminal state 𝑠𝑐𝑣 representing

constraint violations, and 𝑐𝑣 = 0 everywhere else.

∙ ∆: vector of execution risk bounds for the violation of 𝐶(𝑠) ⊆ 𝑐𝑠.

In the CC-POMDP model explained in Definition 4.6, it is important to point

out that, even though the constraint violation function 𝑐𝑣 only returns 1 at terminal

execution states, that does not mean that RAO* can only assess (or estimate) the

execution risk arising from temporal uncertainty (or any other type of constraint

involved in the cRMPL program) at the very end of its policy expansion. As seen

in Chapter 3, RAO* leverages an admissible (lower bound) heuristic estimate of the

execution risk ℎ𝑒𝑟(𝑠) at non-terminal states 𝑠 in the hopes of performing early pruning

of policy nodes that are guaranteed to violate chance constraints. For instance, in

the case where 𝐶(𝑠) ⊆ 𝑐𝑠, the subset of labeled constraints in the constraint store

that is consistent with the decisions 𝑑𝑒 in 𝑠, form a PSTNU, an admissible estimate

ℎ𝑒𝑟(𝑠) is given by the minimum risk formulation of PARIS (see Section 5.4).

Next, Lemma 4.3 shows that the CC-POMDP model in Definition 4.6 simulates

valid executions of its corresponding cRMPL program.

Lemma 4.3. The CC-POMDP in Definition 4.6 simulates valid executions of its

corresponding cRMPL program.

Proof : We show this property by verifying that program executions simulated by the

CC-POMDP in Definition 4.6 satisfy all properties in Definition 4.4.

As required by properties 1 and 2 of valid executions of cRMPL programs, the

execution simulated by the CC-POMDP in Definition 4.6 starts at the “main” pro-

gram episode, proceeding until all episodes have been unraveled into their primitive

components and the latter have been all taken out of the list enabled episodes. Prop-

erties 3, 4, and 5 are implemented, respectively, by the state transition function 𝑇

138

with the expansion (𝑎𝑢), assignment (𝑎=), and observation (𝑠𝑜) actions. Finally, prop-

erty 6 is enforced by the halting action 𝑎ℎ and the constraint violation functions 𝑐𝑣. �

With the result from Lemma 4.3, Lemma 4.4 shows that RAO* can be used to

generate optimal execution policies for the class of cRMPL programs that this thesis

focuses on.

Lemma 4.4. RAO* can compute optimal, chance-constrained, deterministic, valid

execution policies for cRMPL programs with finite-duration activities that must even-

tually terminate.

Proof : Lemma 4.3 shows that valid executions of a cRMPL program can be simulated

as a CC-POMDP. For cRMPL programs representing temporal planning problems

that must eventually terminate and with finite-duration primitive actions, there is a

finite (although potentially unknown) execution horizon ℎ = ⌈𝑡max/𝑑min⌉, where 𝑡max

is the maximum continuous temporal plan length, and 𝑑min is the shortest primitive

episode duration. Therefore, an optimal, chance-constrained, deterministic, and valid

execution policy for the cRMPL program can be obtained by formulating its execu-

tion as CC-POMDP shown in Definition 4.6, and computing an execution policy that

terminates within a finite number of steps with RAO*. �

Seeking to provide an intuitive understanding of how the CC-POMDP in Defini-

tion 4.6 is used to generate optimal, chance-constrained, valid executions of cRMPL

programs, the next section provides further details on the coupling between RAO*

and PARIS used to compute the execution policy in Figure 4-12.

Walk-through of the roller coaster example

The recursive nature of the roller coaster example from the beginning of Section 4.5.2

is illustrated in Figure 4-13, which shows a fully unraveled PTPN for the cRMPL

program in Figure 4-11 when the number of loop iterations is limited to be no more

than 5. By developing the mapping from cRMPL execution to CC-POMDP in Def-

139

Figure 4-13: Fully unraveled PTPN for the cRMPL program in Figure 4-11 when the
number of loop iterations is limited to be no more than 5.

inition 4.6, and using RAO* to incrementally compute optimal, valid executions of

a cRMPL program such as the one shown in Figure 4-12, our goal is to avoid the

inherent intractability of previous approaches to RMPL execution, which operate on

140

explicit representations of all possible executions of the program, such as the PTPN

in Figure 4-13.

Figure 4-14: Elements of the constraint store at 𝑏0, the initial (deterministic) belief
state for the execution of the cRMPL program in Figure 4-11.

The unraveling of the cRMPL program in Figure 4-11 starts at the initial belief

state 𝑏0 from Definition 4.6, where the outermost loop episode is enabled, no assign-

ments to controllable choices have been made, and the constraint store contains the

two temporal constraints shown in Figure 4-14 (a thorough presentation of temporal

constraints and scheduling under uncertainty is given in Chapter 5, along with the

PARIS algorithm). In this figure, the double circle represents the decision of whether

to run the loop or not, as defined in (4.5), and the circle to the right is the tempo-

ral event representing the end of program execution. The simple temporal constraint

[0,∞] is automatically added by cRMPL and means that the time of the first decision

about running the loop must not come after the end of the program. The additional

[0, 120] comes from the user requirement in Figure 4-11 that limits program execution

to take no more than 120 minutes (or any other unit of time being used in the pro-

gram). These two constraints are exactly the elements returned by Constraints(𝑒𝑝𝑔)

in Definition 4.6. Since the cRMPL program in Figure 4-11 specifies no execution

risk bound for temporal consistency, a bound 𝑒𝑟(𝑏0|𝜋) ≤ ∆ = 0 (no scheduling risk)

is automatically assumed. Since the root node in Figure 4-12 is not terminal, the

minimum risk formulation of PARIS from Section 5.4 is used to compute a lower

bound on the scheduling risk for the program. Since the temporal constraints shown

in Figure 4-14 are trivially satisfiable, PARIS returns a lower bound of 0, which is

consistent with ∆ = 0, and the unraveling proceeds.

Figure 4-15 shows the constraints 𝐶(𝑠1𝑟) ⊆ 𝑐𝑠 at the unraveling state 𝑠1𝑟 after

the first (ride) primitive is unraveled and taken off the list of enabled episodes.

In this figure, we see that several additional temporal constraints and events have

been inserted between the events marking the first loop decision (double circle on

141

Figure 4-15: Temporal constraints tested for consistency with PARIS after the first
(ride) primitive is unraveled.

Figure 4-16: Temporal constraints tested for consistency with PARIS after the second
(ride) primitive is unraveled.

the bottom left) and the end of the program (circle on the bottom right), which are

still connected by the [0, 120] simple temporal constraint. At this intermediate, non-

terminal state, the minimum risk formulation of PARIS is again used to estimate a

lower bound on the probability of program execution violating temporal requirements

and, since the constraints in Figure 4-15 are guaranteed to be jointly feasible, it

returns a lower bound of 0 (the program is guaranteed to be temporally feasible

so far). A similar situation is depicted in Figure 4-16, which shows the constraints

𝐶(𝑠2𝑟) ⊆ 𝑐𝑠 at the unraveling state 𝑠2𝑟 after the second (ride) primitive is unraveled

and taken off the list of enabled episodes. At this point, RAO* is required to assign a

value (“RUN” or “STOP”) to the loop decision variable shown as the rightmost double

circle in Figure 4-16.

Since assigning “RUN” to loop decisions is preferred over “STOP” (Peter is trying

to ride the roller coaster as many times as possible), RAO* first considers the most

promising option of running the loop a third time, thus entailing the constraints

𝐶(𝑠3𝑟) ⊆ 𝑐𝑠 shown in Figure 4-17. Since this is a non-terminal state, minimum risk

PARIS is once again used to estimate a lower bound on the scheduling risk for this

142

Figure 4-17: Temporal constraints tested for consistency with PARIS after the third
(ride) primitive is unraveled. Unlike the previous cases, here PARIS returns that
no strongly consistent schedule exists.

program. However, unlike the previous cases, the temporal constraints in Figure

4-17 are guaranteed not to be jointly feasible, i.e., PARIS returns a scheduling risk

lower bound of 100%. Even though the specificities of the algorithm are only given

in Chapter 5, the intuitive understanding of why that is the case is the same one

given at the beginning of Section 4.5.2: since no probability distribution is specified

for the uncontrollable duration [45, 60] of each roller coaster ride, PARIS resorts to

an analysis of the extrema of this interval and concludes that, even if every roller

coaster ride takes its minimum duration of 45 minutes, this would still be in violation

of the overall time window of 120 minutes to complete the execution of the program.

Since an execution risk lower bound of 100% is certainly in violation of the chance

constraint ∆ = 0, RAO* is able to prune this policy branch that executes the loop

three times even before reaching terminal belief states, thus providing evidence of the

importance of estimating the execution risk of partial CC-POMDP policies as the

search for a solution unfolds.

Figure 4-18: Temporal constraints tested for consistency at the halting state in the
RAO* policy shown in Figure 4-12. It corresponds to two runs of the loop, followed
by the decision to stop the iteration. As required by valid cRMPL executions in
Definition 4.4, these constraints are jointly feasible with high probability (100%, in
this example).

143

After pruning the policy branch that runs the roller coaster loop three times, the

remaining most promising option is to assign “STOP” to the third loop decision, in

which case the decision episode is replaced by a no-op activity with controllable [0,∞]

duration marking the end of the iteration, as shown in Figure 4-18. Since this is a

state with no more enabled episodes to unravel, a halting action 𝑎ℎ is generated by

the CC-POMDP model in Definition 4.6, and the probability of constraint violation

𝑝𝑐𝑣 is obtained by running minimum risk PARIS on the temporal constraints shown

in Figure 4-18. Since these temporal constraints are guaranteed to be jointly feasi-

ble, PARIS returns a probability 𝑝𝑐𝑣 = 0, which means that the cRMPL execution

transitions to a terminal state that is guaranteed to fulfill its temporal requirements,

therefore satisfying the chance constraint 𝑒𝑟(𝑏0|𝜋) ≤ 0. The total utility for this

program is 2, corresponding to the two roller coaster rides, and the execution risk

measuring the probability of violating temporal constraints is 0. This is exactly the

result shown in Figure 4-12.

4.6 Conclusions

This chapter introduces cRMPL, a programming language for autonomous systems

that is innovative in its support to chance-constrained planning, and that allows

risk-aware missions to be specified at a high level of abstraction. As all previous

variants of RMPL [Ingham et al., 2001,Williams et al., 2001,Williams and Ingham,

2002,Williams et al., 2003,Ingham, 2003,Effinger, 2012], cRMPL is particularly useful

in situations where mission operators desire to exert tight control over the decisions

available to an autonomous agent and how it reacts to its sensors, while offloading

the burden of lower level plan dispatching to a program executive.

In addition to supporting chance constraints, another important concept presented

in this chapter is the framing of cRMPL execution as a CC-POMDP that simulates the

process of stepping through program states. Since RAO* in Chapter 3 is an algorithm

that allows solutions to a CC-POMDP to be incrementally constructed, our approach

to the generation of optimal execution policies for cRMPL programs in Section 4.5.2 is

144

in contrast to [Kim et al., 2001,Conrad and Williams, 2011,Effinger, 2012,Levine and

Williams, 2014], which require a complete, exponentially large unraveling of a PTPN

representing all traces of a cRMPL prior to the selection of an optimal execution

policy.

Also related to the framing of cRMPL execution as a CC-POMDP, it allows us to

depart from the time discretization approach in [Effinger, 2012] and, similar to state-

of-the-art temporal planners [Coles et al., 2009,Coles et al., 2012,Cimatti et al., 2015,

Wang, 2015], determine the existence of a feasible schedule by reasoning over temporal

constraint networks featuring continuous time. In fact, the last statement is valid for

any CC-POMDP model featuring temporal constraints, not only those resulting from

executing cRMPL programs. There are, however, three important observations to

be made about the scheduling of cRMPL programs: first, it must support a rich

combination of different types of controllable and uncontrollable temporal constraint

representations, as described in Section 4.4.2; second, determining the existence of a

schedule must be done quickly, for RAO* performs several constraint feasibility checks

as it constructs a policy; and third, the scheduling of events may be conditional on

probabilistic observations collected during plan execution. The first and second points

are addressed in Chapter 5, while the third point is the topic of Chapter 6.

145

146

Chapter 5

Risk-sensitive unconditional

scheduling under uncertainty

“Tempus fugit.”

Virgil.

This thesis’ title reads “Dynamic Execution of Temporal Plans with Sensing Ac-

tions and Bounded Risk”. In its development of CC-POMDP’s and RAO*, Chapter

3 focuses on “Dynamic Execution of Plans with Sensing Actions and Bounded Risk”

without paying particular attention to any specific type of constraints, but justifying

our decision to focus on finite horizon policies as being motivated by agents that must

execute plans under time pressure. Next, cRMPL in Chapter 4 gives mission operators

the ability to specify risk-bounded planning problems with any mix of controllable

(STN-like), set-bounded (STNU-like), and probabilistic (PSTN-like) temporal con-

straints, whose impact on the mission schedule might depend on real-time sensor

observations.

In this chapter and the next, our goal is to insert the temporal aspect into poli-

cies generated by CLARK, by providing novel and efficient algorithms that can check

the feasibility of a (conditional) temporal network featuring duration uncertainty. In-

spired by risk-sensitive robust scheduling for planetary rovers, this chapter introduces

the Probabilistic Simple Temporal Network with Uncertainty (PSTNU), a temporal

147

constraint formalism that unifies the set-bounded and probabilistic temporal uncer-

tainty models from the STNU and PSTN literature, and describes PARIS, a novel

sound and provably polynomial-time algorithm for risk-sensitive strong scheduling of

PSTNU’s.

Due to its linear encoding of typical temporal uncertainty models, PARIS is shown

to outperform the current fastest algorithm for risk-sensitive strong PSTN schedul-

ing by nearly four orders of magnitude in some instances of a popular probabilistic

scheduling dataset [Fang et al., 2014], often reducing the time to verify schedule fea-

sibility from hours to fractions of a second. The speed at which PARIS can verify

the existence of a strong schedule for a PSTNU is key for this thesis’ practical use,

for it allows CLARK to generate risk-bounded temporal plans featuring duration

uncertainty within reasonable amounts of time.

5.1 Introduction

Endowing autonomous agents with a keen sensitivity to temporal uncertainty is key

in enabling them to reliably complete time-critical missions in the real-world. This

requirement has been the subject of recent research initiatives to incorporate duration

uncertainty into temporal planning frameworks [Beaudry et al., 2010,Cimatti et al.,

2015,Micheli et al., 2015]. A dominant effort has been to extend the set-bounded

uncertainty model from Simple Temporal Networks with Uncertainty (STNU’s) [Vi-

dal, 1999] to a probabilistic setting, in which the risk of violating deadlines and other

temporal requirements can be quantified [Tsamardinos, 2002,Fang et al., 2014,Wang

and Williams, 2015a].

Three essential questions about Probabilistic Simple Temporal Networks (PSTN’s)

have been previously addressed. Tsamardinos in [Tsamardinos, 2002] showed that a

risk-minimizing schedule of a PSTN could be derived analytically based on the proba-

bility density function (p.d.f) for the different stochastic durations. In his derivation,

he reduced the PSTN to an STNU with variable bounds, and effectively solved for the

bounds that would guarantee strong controllability. This reduction was further de-

148

veloped in the context of chance constraints, where one seeks a schedule whose risk of

violating temporal requirements is guaranteed to be bound by a user-defined thresh-

old. Operating in a general nonlinear optimization setting, Fang et al. [Fang et al.,

2014] applied the STNU strong controllability reductions from [Vidal, 1999] to propose

Picard, a chance-constrained strong scheduler for PSTN’s capable of optimizing any

schedule-related objective function. Wang and Williams [Wang and Williams, 2015a],

on the other hand, present Rubato, an efficient algorithm for verifying the existence of

strong chance-constrained schedules that leverages a conflict-directed generate-and-

test architecture to propose candidate STNU’s that meet the chance constraints and

discover temporal conflicts.

Although the aforementioned previous work introduces effective methods for deal-

ing with temporal uncertainty and scheduling risk, two main challenges remain. First,

neither STNU’s, nor PSTN’s, accurately capture the varying levels of knowledge that

a mission operator might have about the sources of temporal uncertainty that can

have an impact on a mission. While set-bounded uncertainty in STNU’s fails to rep-

resent frequency models for random quantities captured by probability distributions,

the fully probabilistic models in a PSTN assumes a potentially unreasonable level of

understanding of the natural phenomena that give rise to uncertain temporal behav-

ior. Therefore, a first contribution of this chapter is to unify STNU and PSTN models

by introducing Probabilistic Simple Temporal Networks with Uncertainty (PSTNU’s).

Our second and most important contribution is related to the complexity of scal-

ing current probabilistic scheduling methods, especially if one has in mind the goal of

running such algorithms on embedded robotic hardware, where on-board computa-

tion and energy is scarce. While the state of the art to date employs general-purpose

nonlinear solvers to implement probabilistic scheduling methods, this chapter intro-

duces the Polynomial-time Algorithm for RIsk-aware Scheduling (PARIS), a new

and provably polynomial-time algorithm for strong scheduling of PSTNU’s. Inspired

by linear approximation techniques used to reduce the complexity of AC power flow

analysis [Coffrin and Van Hentenryck, 2014], PARIS leverages a fully linear encoding

of the risk-aware probabilistic scheduling problem that allows it to drastically reduce

149

(a) Probabilistic Simple Temporal Network with Uncertainty (PSTNU).

𝑒0=0 𝑒1=0 𝑒2=132.35
𝑒3=142.35 𝑒4=157.35 𝑒5=187.35

𝑒6=0 𝑒7=246.64 𝑒8=256.64
𝑒9=271.64 𝑒10=301.64 𝑒11=495.75
𝑒12=505.75 𝑒13=520.75 𝑒14=550.75

𝑒15=650 𝑒16=680 𝑒17=680
𝑒18=700

(b) Activity schedule computed by the Polynomial-time Algorithm for RIsk-aware Schedul-
ing (PARIS).

Figure 5-1: Rover coordination under temporal uncertainty. (a) Scenario representa-
tion as PSTNU. (b) Strong activity schedule for the PSTNU in (a) with scheduling
risk bound of 6.7% (i.e., all temporal requirements met with probability of at least
93.3%).

runtime and memory requirements. Empirical evaluation on a probabilistic schedul-

ing dataset first introduced in [Fang et al., 2014] shows a several-order-of-magnitude

improvement over the current fastest algorithm for PSTN scheduling, while our new

planetary rover-inspired PSTNU dataset indicates that PARIS is, indeed, amenable

for deployment on embedded hardware.

5.1.1 Motivation: planetary rover coordination

Future planetary exploration missions will require an increased level of coordination

between multiple spacecrafts under temporal uncertainty. Figure 5-1 depicts a plan-

etary exploration scenario illustrating important requirements for such missions: two

150

autonomous rovers, Spirit and Opportunity, should explore three sites on a region of

Mars (gully, slope streak, and rock outcrop). After exploring all sites, both rovers

must travel to a relay site and transmit their findings to an orbiting satellite within

a limited time window.

There are several complicating temporal factors. First, traversal times between

locations are uncertain. However, rover mobility has been extensively studied, both

from experience on Mars and in simulated environments. Therefore, these times can

be modeled probabilistically based on the distance between sites and terrain features.

Second, the science-gathering activities at each site have uncertain durations. Due

to lack of real and simulated data, there are no uncertainty models to aid in the

prediction of how long these activities will last, but lower and upper bounds are built

into the rover firmware to prevent deadlocks. Finally, at the relay site, there is an

absolute time window in which the satellite is in field-of-view. Seeking to maximize

throughput, both rovers should transmit at approximately the same time, but their

transmissions should not overlap.

Due to power and communication limitations, the rovers cannot coordinate during

plan execution. Therefore, one needs to precompute a schedule that satisfies all

temporal requirements, while being robust to the uncertainty in activity durations. In

other words, this is a strong temporal planning problem, which the authors of [Micheli

et al., 2015] note is applicable to many safety-critical autonomous missions. The

work [Cimatti et al., 2015] approaches strong temporal planning by replacing the STN

scheduler in COLIN [Coles et al., 2012] with an STNU strong controllability solver.

In our scenario, we would like a risk-aware strong controllability solver that handles

both probabilistic and set-bounded uncertain durations, which could be incorporated

into a planner in a similar manner.

5.2 Background & PSTNU’s

Motivated by the aforementioned rover coordination scenario, our risk-aware schedul-

ing methods operate on Probabilistic Simple Temporal Networks with Uncertainty

151

(PSTNU’s), a novel temporal modeling formalism unifying features from Simple

Temporal Networks (STN’s) [Dechter et al., 1991], Simple Temporal Networks with

Uncertainty (STNU’s) [Vidal, 1999], and Probabilistic Simple Temporal Networks

(PSTN’s) [Tsamardinos, 2002]. For the sake of completeness, we briefly review these

concepts. Figure 5-2 shows the different elements in a PSTNU.

Figure 5-2: Elements of a PSTNU, where [𝑙, 𝑢] is a given interval and 𝑓 is a known
probability density function (pdf). From left to right: controllable event; contingent
(uncontrollable) event; Simple Temporal Constraint (STC); STC with Uncertainty
(STCU); Probabilistic STC (PSTC).

An STN (Definition 5.7) can model scheduling problems where the agent has

control over the temporal assignments (a.k.a. the schedule) to all events. Possible

assignments are restricted by simple temporal constraints (STC’s), which limit the

distance between the timing of two events. If there exists at least one schedule fulfilling

all STC’s, we say that the STN is consistent. Otherwise, it is inconsistent.

Definition 5.7 (STN [Dechter et al., 1991]). An STN is a tuple ⟨ℰ𝑐, 𝒞𝑟⟩, where

- ℰ𝑐 : set of controllable temporal events, all of which must be assigned by the

scheduler;

- 𝒞𝑟 : set of requirement STC’s of the form 𝑙 ≤ 𝑒2 − 𝑒1 ≤ 𝑢, 𝑙, 𝑢 ∈ R ∪ {−∞,∞},

where 𝑒1, 𝑒2 ∈ ℰ𝑐.

An STN is capable of modeling externally-imposed temporal requirements (e.g.,

“return to base in less than 30 minutes”) and durations of agent-controlled activities

(e.g., “hibernate for 1 hour”), but is unable to model activities with uncertain dura-

tions (e.g., “drill a 2 cm hole in a rock” or “travel between two sites”). An STNU

(Definition 5.8) addresses this limitation by extending STN’s with contingent (also

called uncontrollable) constraints and events. In an STNU, a contingent constraint is

represented as an STC with uncertainty (STCU), which allows the difference between

152

two temporal events to be specified as non-deterministic, but bounded by a known

interval [𝑙, 𝑢].

Depending on how much information about contingent durations is made avail-

able to the scheduler during execution, different levels of controllability for STNU’s

are defined in [Vidal, 1999]: weak controllability assumes all values of contingent

durations to be known to the scheduler before it has to make any decisions; strong

controllability assumes that no such information is ever available to the scheduler; and

dynamic controllability assumes that the scheduler can only use information about

past contingent durations when making future scheduling decisions.

Definition 5.8 (STNU [Vidal, 1999]). An STNU is a tuple ⟨ℰ𝑐, ℰ𝑢, 𝒞𝑟, 𝒞𝑢⟩ that extends

STN’s by adding:

- ℰ𝑢 : set of contingent temporal events, which are assigned by an uncontrollable

external agent (“Nature”);

- 𝒞𝑢 : set of contingent simple temporal constraints with uncertainty (STCU’s) of

the form

𝑒2 = 𝑒1 + 𝑑, 𝑙 ≤ 𝑑 ≤ 𝑢, 𝑙, 𝑢 ∈ R>0, (5.1)

where 𝑑 is an interval-bounded, non-deterministic duration; 𝑒1 ∈ ℰ𝑐 ∪ ℰ𝑢; and

𝑒2 ∈ ℰ𝑢.

- 𝒞𝑟 : same as in Definition 5.7, but we allow 𝑒1, 𝑒2 ∈ ℰ𝑐 ∪ ℰ𝑢.

Modeling contingent durations using STCU’s is rather restrictive, for they do not

incorporate information about the relative frequency of the different values for 𝑑 in

(5.1). For instance, they cannot model the statement “the rover requires 20 minutes

to complete the traversal on average, with a standard deviation of 5 minutes”. To ad-

dress this need, a PSTN (Definition 5.9) allows contingent durations to be represented

as random variables with known probability distributions. The notions of controlla-

bility for STNU’s can be readily transferred to PSTN’s. Moreover, controllability for

153

PSTN’s have been further extended with a notion of scheduling risk [Tsamardinos,

2002,Fang et al., 2014,Wang and Williams, 2015a].

Definition 5.9 (PSTN [Tsamardinos, 2002]). Similar to STNU’s, a PSTN is a tuple

⟨ℰ𝑐, ℰ𝑢, 𝒞𝑟, 𝒞𝑢⟩, where 𝒞𝑢 contains probabilistic simple temporal constraints (PSTC’s).

A PSTC is also of the form 𝑒2 = 𝑒1 + 𝑑, with the additional assumption that 𝑑 is

a continuous random variable following a known probability distribution with positive

support.

While STNU’s ignore extra knowledge that one might have about temporal uncer-

tainty, PSTN’s can err on the side of requiring too much knowledge to be available. As

exemplified in Section 5.1.1, probabilistic models may not be known for every source

of uncertainty affecting a mission. In most practical applications, these models are

obtained through statistical analysis of experimental data, and “guessing” a model in

the absence of data can lead to unquantifiable levels of mission risk. A PSTNU (Def-

inition 5.10) addresses these issues by simply allowing the uncertainty models from

STNU’s and PSTN’s to co-exist, so that mission operators can leverage probabilistic

models for temporal uncertainty if, and only if, there is evidence to support them.

Definition 5.10 (PSTNU). Same as a PSTN, but 𝒞𝑢 may contain any combination

of STCU’s and PSTC’s.

5.3 Problem formulation

Following [Vidal, 1999], given two sets of events 𝐴 ⊆ ℰ𝑐 and 𝐵 ⊆ ℰ𝑢, we denote

a control sequence by 𝛿 : 𝐴 → R and a situation by 𝜔 : 𝐵 → R. Intuitively, 𝛿

represents a partial assignment to controllable events in a PSTNU, while 𝜔 is a partial

assignment to contingent events made by Nature. If 𝛿 and 𝜔 assign values to every

controllable and contingent event in a PSTNU, we call them complete control sequence

and situation. Consider now the set of control sequences 𝒮 = {𝛿 |𝛿 : 𝐴 ⊆ ℰ𝑐 → R} and

the set of situations𝒪 = {𝜔 |𝜔 : 𝐵 ⊆ ℰ𝑢 → R}. A scheduling policy 𝜋 : 𝒮×𝒪×ℰ𝑐 → R

defines a strategy to schedule controllable events based on an adopted control sequence

154

and the resulting situation. Due to uncertain durations, there might be a non-zero

probability of a scheduling policy 𝜋 violating requirement constraints in a PSTNU,

giving rise to the notion of scheduling risk (Definition 5.11).

Definition 5.11 (Scheduling risk). Let 𝜋 be a scheduling policy for a PSTNU 𝑁 ,

and 𝐶 ⊆ 𝒞𝑟. The scheduling risk for the pair ⟨𝜋,𝐶⟩ maps each schedule generated by

𝜋 to the probability that the schedule violates one or more constraints in 𝐶.

One should notice that Definition 5.11 considers violations of subsets of 𝒞𝑟, the

requirement constraints, but not 𝒞𝑢. This is because contingent durations violating

their corresponding STCU or PSTC are instances of modeling errors, a source of

uncertainty outside the scope of PSTNU’s.1 For that reason, we henceforth assume

that all contingent durations take place according to their modeled behavior in a

PSTNU.

5.3.1 Computing strong schedules

Following [Tsamardinos, 2002,Fang et al., 2014,Wang and Williams, 2015a,Cimatti

et al., 2015,Micheli et al., 2015], we focus our attention on strong controllability in

Definition 5.12.

Definition 5.12 (Strongly controllable PSTNU). A PSTNU 𝑁 is strongly control-

lable (SC) if, and only if, there exists a complete control sequence 𝛿 such that, for all

complete situations 𝜔, all requirement constraints 𝒞𝑟 in 𝑁 are satisfied.

Consistent with strong controllability for STNU’s and PSTN’s, a PSTNU 𝑁 is

strongly controllable if one can compute a complete assignment to controllable events

regardless of the contingent duration values during execution, and still be guaranteed

to fulfill all requirement constraints in 𝑁 . We shall call such a schedule a strong policy

𝜋𝑠. Vidal [Vidal, 1999] introduces rules for checking strong controllability of STNU’s

for the particular case where 𝑒1 ∈ ℰ𝑐 in (5.1), which were later applied to PSTN’s

in [Fang et al., 2014]. In support of the scheduling risk discussion in Section 5.3.2

1Considering modeling errors can be useful, should one want to model uncertainty about the
uncertainty models themselves.

155

and our polynomial-time scheduling algorithm in Section 5.4, we now derive linear

programming-based necessary and sufficient conditions for PSTNU strong controlla-

bility for the general case where 𝑒1 in (5.1) can be controllable or contingent. For

that, let 𝑒2 − 𝑒1 ≤ 𝑢, 𝑒2 − 𝑒1 ≥ 𝑙, represent a generic requirement constraint 𝑐𝑟 in a

PSTNU 𝑁 , where 𝑒1 and 𝑒2 can be either controllable or contingent events. A strong

policy 𝜋𝑠 assigns values to elements of ℰ𝑐, therefore rendering the satisfaction of 𝑐𝑟 a

function only of the contingent durations. Let Ω be the set of all possible complete

situations, and Ω𝑖 be the subset of a complete situation affecting event 𝑒𝑖 (directly or

indirectly). From Definition 5.12, a PSTNU 𝑁 is strongly controllable if, and only if,

∀𝑐𝑟 ∈ 𝒞𝑟,max
Ω

(𝑒2 − 𝑒1) ≤ 𝑢, min
Ω

(𝑒2 − 𝑒1) ≥ 𝑙, (5.2)

where 𝑒1 and 𝑒2 are taken from 𝑐𝑟. To compute (5.2), use (5.1) to write

𝑒1 = 𝑒𝑐1 +
∑︁
Ω1

𝑑𝑖, 𝑒2 = 𝑒𝑐2 +
∑︁
Ω2

𝑑𝑖, (5.3)

where 𝑒𝑐𝑖 ∈ ℰ𝑐 is a controllable event fixed by the strong schedule, and Ω𝑖 is the

“contingent path” of 𝑒𝑖 (for controllable 𝑒𝑖, Ω𝑖 = ∅ and 𝑒𝑖 = 𝑒𝑐𝑖). In the difference

𝑒2 − 𝑒1, common contingent durations 𝑑𝑖 cancel out, leaving

max
Ω

(𝑒2−𝑒1) = 𝑒𝑐2−𝑒𝑐1+
∑︁
Ω2∖Ω1

max(𝑑𝑖)−
∑︁
Ω1∖Ω2

min(𝑑𝑖),

min
Ω

(𝑒2−𝑒1) = 𝑒𝑐2−𝑒𝑐1+
∑︁
Ω2∖Ω1

min(𝑑𝑖)−
∑︁
Ω1∖Ω2

max(𝑑𝑖). (5.4)

5.3.2 Computing scheduling risk

For unbounded distributions such as Gaussians, or even bounded distributions on

wide intervals, we would expect (5.2) to almost never hold for non-trivial require-

ments. However, as was previously done in the context of PSTN’s [Tsamardinos,

2002, Fang et al., 2014,Wang and Williams, 2015a], one might be able to “restore”

strong controllability to a PSTNU by “squeezing” probabilistic durations, therefore

156

incurring non-zero amounts of scheduling risk (Definition 5.13).

Definition 5.13 (Scheduling risk for strong policies). For a PSTNU 𝑁 , let 𝐶 ⊆ 𝒞𝑟.

Also, let [𝑙𝑖, 𝑢𝑖] be an externally-imposed bounding interval for the 𝑖-th contingent

duration 𝑑𝑖 in 𝒞𝑢, so that (5.2) holds for every requirement constraint in 𝐶 for a

particular strong policy 𝜋𝑠. We define the scheduling risk 𝑆𝑅(𝜋𝑠, 𝐶) of 𝜋𝑠 with respect

to 𝐶 as

𝑆𝑅(𝜋𝑠, 𝐶) = 1− Pr

⎛⎝|𝒞𝑢|⋀︁
𝑖=1

𝑑𝑖 ∈ [𝑙𝑖, 𝑢𝑖]

⎞⎠ . (5.5)

The joint distribution in (5.5) can be difficult to compute, or even completely

unknown. In the next section, we present a scheduling algorithm that can not only

minimize a guaranteed upper bound on (5.5), but also optimize other objectives while

ensuring a chance constraint 𝑆𝑅(𝜋𝑠, 𝐶) ≤ 𝜃 for a given 𝜃 ∈ [0, 1].

5.4 Polynomial-time, risk-aware scheduling

We now introduce PARIS, an algorithm leveraging a linear program (LP) formulation

to extract (or determine the nonexistence of) risk-sensitive strong scheduling policies

for PSTNU’s. Different from the nonlinear approaches of [Tsamardinos, 2002, Fang

et al., 2014,Wang and Williams, 2015a], PARIS’ linear formulation allows it to achieve

not only dramatic speedups compared to the state of the art in risk-sensitive strong

scheduling, but also, to the best of our knowledge, be the first scheduler guaranteed

to run in polynomial time.

5.4.1 Assumptions and walk-through

PARIS assumes that all events 𝑒 ∈ ℰ𝑢 in a PSTNU are the endpoints of exactly

one element of 𝒞𝑢. If an event 𝑒′ ∈ ℰ𝑢 is not associated with an uncontrollable

duration, we make this event the endpoint of an STCU [0,∞) starting at the time

reference (𝑡 = 0). Also, if 𝑒′ ∈ ℰ𝑢 is the endpoint of two distinct elements of 𝒞𝑢,

157

we deem this a modeling error. This is because contingent constraints correspond

to random continuous durations, and having them share an endpoint is equivalent to

forcing random durations to be consistent with each other. Loops involving contingent

durations are another modeling error: contingent durations are constrained to be

positive, so a loop represents the inconsistent case of an event happening before

itself.

Algorithm 5.1: The PARIS algorithm.

Input: PSTNU 𝑁
Output: Strong policy 𝜋𝑠 and scheduling risk bound Λ𝑆𝑅.

1 Function PARIS(𝑁)

2 Obj ← 0,Cts ← ∅
3 for 𝑐𝑟 ∈ 𝒞𝑟 do
4 𝑒1, 𝑒2 ← StartOf(𝑐𝑟), EndOf(𝑐𝑟)
5 𝑑1, 𝑑2 ← CtgPath(𝑁, 𝑒1), CtgPath(𝑁, 𝑒2)
6 𝑑𝑓𝑚𝑛, 𝑑𝑓𝑚𝑥 ← DiffMinMax(𝑁, 𝑑2, 𝑑1)
7 Cts ← Cts ∪ (𝑑𝑓𝑚𝑛 ≥ Lb(𝑐𝑟), 𝑑𝑓𝑚𝑥 ≤ Ub(𝑐𝑟))

8 for 𝑐𝑢 ∈ 𝒞𝑢 do
9 Obj ← Obj + SqueezeRisk(𝑐𝑢)

10 Cts ← Cts ∪ SqueezeCtrs(𝑐𝑢)

11 sol ← Minimize 𝑂𝑏𝑗 s.t. Cts
12 𝜋𝑠 ← ControllableEventValues(𝑠𝑜𝑙)
13 Λ𝑆𝑅 ← Objective(𝑠𝑜𝑙)
14 return 𝜋𝑠,Λ𝑆𝑅

Algorithm 5.2: Event’s contingent path.

Input: PSTNU 𝑁 , event 𝑒.
Output: List of duration variables 𝑑𝑣.

1 Function CtgPath(𝑁, 𝑒)
2 𝑑𝑣 ← ∅
3 while 𝑒 ∈ ℰ𝑢 do
4 𝑐𝑢 ← CtgDurationByEnd(𝑁, 𝑒)
5 if 𝑐𝑢 ∈ 𝑑𝑣 then
6 return ERROR

7 else
8 𝑑𝑣, 𝑒← 𝑑𝑣 ∪ 𝑐𝑢, StartOf(𝑐𝑢)

9 return 𝑑𝑣 ∪ 𝑒

158

Algorithm 5.3: Minimum and maximum in (5.2).

Input: PSTNU 𝑁 , duration variables 𝑑𝑣1 and 𝑑𝑣2 as in (5.3).
Output: Minimum and maximum in (5.2)

1 Function DiffMinMax(𝑁, 𝑑𝑣2, 𝑑𝑣1)
2 𝑚𝑥1 ← 𝑚𝑥2 ← 𝑚𝑛1 ← 𝑚𝑛2 ← 0
3 for 𝑖 = 0, 1 do
4 for (𝑐𝑢 ∈ 𝑑𝑣(𝑖+1))&&(𝑐𝑢 /∈ 𝑑𝑣(2−𝑖)) do
5 𝑚𝑛(𝑖+1) ← 𝑚𝑛(𝑖+1) + CtgLb(𝑐𝑢)
6 𝑚𝑥(𝑖+1) ← 𝑚𝑥(𝑖+1) + CtgUb(𝑐𝑢)

7 𝑑𝑓𝑚𝑛 ← Last(𝑑𝑣2)− Last(𝑑𝑣1) + 𝑚𝑛2 −𝑚𝑥1

8 𝑑𝑓𝑚𝑥 ← Last(𝑑𝑣2)− Last(𝑑𝑣1) + 𝑚𝑥2 −𝑚𝑛1

9 return 𝑑𝑓𝑚𝑛, 𝑑𝑓𝑚𝑥

The pseudo-code for PARIS is shown in Algorithm 5.1. For each requirement con-

straint in the PSTNU, line 5 uses Algorithm 5.2 to extract the set of events involved

in (5.3) (contingent loops are detected in line 5 of Algorithm 5.2). The maximums and

minimums in (5.4) are computed in line 6 by Algorithm 5.3, which are used in line 7 to

enforce the necessary and sufficient conditions for strong controllability in (5.2). The

functions CtgLb and CtgUb in Algorithm 5.3 return, respectively, externally-imposed

lower and upper bounds for contingent constraints in terms of “squeezing variables”,

which are also used by function SqueezeRisk in Algorithm 5.1 (line 9) to compute a

linear upper bound on (5.5). Line 11 of Algorithm 5.1 solves an LP to determine a

risk-bounded strong scheduling policy 𝜋𝑠, and both 𝜋𝑠 and an upper bound Λ𝑆𝑅 for

(5.5) are returned. One should notice that Algorithm 5.2 will always return sequences

ending in a controllable event (the 𝑒𝑐𝑖 terms in (5.3)), which are returned by Last in

lines 7 and 8 of Algorithm 5.3. Details on how these quantities are computed are

given next.

5.4.2 A linear scheduling risk bound

Here we present the risk bound used as the objective in Algorithm 5.1 (line 9), allowing

us to determine, from all available options, the strong scheduling policy 𝜋𝑠 minimizing

this bound. Section 5.4.5 shows how PARIS can be extended to handle other types of

159

linear objectives as well.

In order to obtain a linear risk objective, we apply Boole’s inequality to (5.5) and

obtain the upper bound

Λ𝑆𝑅(𝜋𝑠, 𝐶) =

|𝒞𝑢|∑︁
𝑖=1

Φ𝑖(𝑙𝑖) + (1− Φ𝑖(𝑢𝑖)) ≥ 𝑆𝑅(𝜋𝑠, 𝐶), (5.6)

where Φ𝑖 is the cumulative density function (cdf) associated with 𝑑𝑖. Notice that (5.6)

holds regardless of whether contingent durations are independent or not, since it is

obtained from Boole’s inequality. As it stands, (5.6) is a combination of potentially

nonlinear functions. Hence, we now develop efficient linear approximations of Φ(𝑙𝑖)

and 1− Φ(𝑢𝑖) for several common models of contingent durations.

5.4.3 The risk of “squeezing” contingent durations

The [𝑙𝑖, 𝑢𝑖] bounds in (5.6) are externally imposed on contingent durations to cause

(5.2) (strong controllability) to hold. If [𝑙, 𝑢] are the true bounds of a contingent

duration, we see that imposing 𝑙𝑖 > 𝑙 (squeeze lower bound) causes Φ(𝑙𝑖) > 0 in

(5.6). Analogously, choosing 𝑢𝑖 < 𝑢 yields (1 − Φ(𝑢𝑖)) > 0. Therefore, squeezing

contingent duration bounds causes (5.6) to grow. In the following, we show how we

can quantify this risk as linear combinations of “squeezing variables” for common

types of contingent durations.

Uniform durations

Let cu ∈ 𝒞𝑢 be a PSTC representing a random uniform duration 𝑑 ∼ 𝑈(𝑙, 𝑢). Also,

let 𝑠𝑙 and 𝑠𝑢 be, respectively, the amount by which one squeezes 𝑑’s lower and upper

bounds. In this case, we have

CtgLb(𝑐𝑢) = 𝑙 + 𝑠𝑙, CtgUb(𝑐𝑢) = 𝑢− 𝑠𝑢,

SqueezeRisk(𝑐𝑢) =
𝑠𝑙

𝑢− 𝑙
+

𝑠𝑢
𝑢− 𝑙

,

SqueezeCtrs(𝑐𝑢) = 𝑠𝑙, 𝑠𝑢 ∈ [0, 𝑢−𝑙], 𝑠𝑙+𝑠𝑢 ≤ 𝑢−𝑙. (5.7)

160

The terms Φ(𝑙𝑖) and (1−Φ(𝑢𝑖)) from (5.6) correspond, respectively, to the first and

second terms of SqueezeRisk(𝑐𝑢) in (5.7). Fortunately, these are already linear func-

tions of the squeeze variables for uniform distributions, so no approximations are

required.

Set-bounded durations

Since PSTN’s were first introduced, STCU’s have sometimes been treated as a par-

ticular type of PSTC, such as in [Tsamardinos, 2002]. Unfortunately, with respect to

scheduling risk, the latter might not be true. In order to see this, let cu ∈ 𝒞𝑢 be an

STCU with bounds [𝑙, 𝑢]. For any nonzero amount of squeezing 𝑠𝑙 of its lower bound,

the true probability distribution of cu could concentrate all probability mass in the

interval [𝑙, 𝑙+𝑠/2], and an analogous statement holds for the upper bound. This, in

turn, would cause (5.6) to become a trivial bound Λ𝑆𝑅 ≥ 1. Therefore, if (5.6) is to

be a guaranteed non-trivial scheduling risk upper bound, one must constrain STCU

squeezing to be zero, yielding the risk model

CtgLb(𝑐𝑢) = 𝑙, CtgUb(𝑐𝑢) = 𝑢,

SqueezeRisk(𝑐𝑢)=0, SqueezeCtrs(𝑐𝑢)=∅. (5.8)

When 𝒞𝑢 in a PSTNU only contains STCU’s, (5.8) turns PARIS into a strong con-

trollability checker for STNU’s extending that of [Vidal, 1999] to the case where start

events of contingent durations are not necessarily controllable.

Gaussians and other unimodal contingent durations

A key distinction between PARIS and previous methods lies in its linear handling of

common unimodal distributions for contingent durations, Gaussians being arguably

the most common example. Instead of resorting to a nonlinear solver, here we develop

piecewise-linear upper bounds (see Figure 5-3) for the risk terms in (5.6) involving Φ.

Moreover, we exploit the fact that the pdf’s of such distributions are monotonic on

either side of the mode to derive piecewise-linear approximations of the cdf without

161

integer variables, therefore yielding a purely linear formulation.

Figure 5-3: Piecewise-constant approximation of a Gaussian pdf allowing Φ(𝑙𝑖) and
(1−Φ(𝑢𝑖)) in (5.6) to be upper bounded by a piecewise-linear function. The 𝑝𝑖’s are
given partition points.

Let 𝑓(𝑥) be the pdf of a unimodal distribution, and let 𝑝0 be its mode. Also,

let p={𝑝−𝑚, . . . , 𝑝−1, 𝑝0, 𝑝1, . . . , 𝑝𝑛} be a partition around 𝑝0 with 𝑚 segments to the

left of the mode and 𝑛 segments to the right (see Figure 5-3). For 𝑙𝑖 ∈ [𝑝𝑗, 𝑝𝑗+1],

−𝑚 ≤ 𝑗 ≤ −1, one can write

Φ(𝑙𝑖)≤

(︃
Φ(𝑝−𝑚)+

𝑗−1∑︁
𝑘=−𝑚

𝑓(𝑝𝑘+1)(𝑝𝑘+1−𝑝𝑘)

)︃
+ 𝑓(𝑝𝑗+1)(𝑙𝑖 − 𝑝𝑗) (5.9)

Similarly, for 𝑢𝑖 ∈ [𝑝𝑗−1, 𝑝𝑗], 1 ≤ 𝑗 ≤ 𝑛, we have

1−Φ(𝑢𝑖) ≤

(︃
1− Φ(𝑝𝑛)+

𝑛−1∑︁
𝑘=𝑗

𝑓(𝑝𝑘)(𝑝𝑘+1−𝑝𝑘)

)︃
+ 𝑓(𝑝𝑗)(𝑝𝑗 − 𝑢𝑖). (5.10)

The terms within parentheses in (5.9)-(5.10) are constants, as are all 𝑝𝑖’s. Hence,

these are, respectively, piecewise-linear upper bounds for Φ(𝑙𝑖) and 1−Φ(𝑢𝑖). Seeking

to incorporate (5.9)-(5.10) into (5.6), let 𝑠𝑖∈[0, 𝑝𝑖+1−𝑝𝑖] be the amount of squeezing

in the interval [𝑝𝑖, 𝑝𝑖+1], −𝑚 ≤ 𝑖 ≤ 𝑛 − 1. The squeezing risk model for unimodal

162

distributions is given by

CtgLb(𝑐𝑢)=𝑝−𝑚+
−1∑︁

𝑖=−𝑚

𝑠𝑖, CtgUb(𝑐𝑢)=𝑝𝑛−
𝑛−1∑︁
𝑖=0

𝑠𝑖,

SqueezeRisk(𝑐𝑢)=Φ(𝑝−𝑚) + (1− Φ(𝑝𝑛))

+
−1∑︁

𝑖=−𝑚

𝑓(𝑝𝑖+1)𝑠𝑖+
𝑛−1∑︁
𝑗=0

𝑓(𝑝𝑗)𝑠𝑖,

SqueezeCtrs(𝑐𝑢)=𝑠𝑖 ∈ [0, 𝑝𝑖+1−𝑝𝑖],−𝑚≤𝑖≤𝑛−1, (5.11)

The 𝑠𝑖 in (5.11) must consistently implement the piecewise-linear behavior from (5.9)-

(5.10), i.e., for 𝑖<0, one must have 𝑠𝑖−1<𝑝𝑖−𝑝𝑖−1⇒𝑠𝑖=0; and, for 𝑖 > 0, 𝑠𝑖<𝑝𝑖+1−𝑝𝑖 ⇒

𝑠𝑖−1=0. In general, these rules would have to be enforced through binary variables

representing the “activation” of piecewise-linear segments. However, since I) 𝑠𝑖’s in

(5.11) only affect duration bounds through their sum; II) the coefficients of the 𝑠𝑖 in

SqueezeRisk are monotonic on either side of the mode; and III) PARIS minimizes

(5.6), an optimal solution found by Algorithm 5.1 must necessarily fulfill the afore-

mentioned rules, therefore correctly “squeezing” the distribution. Hence, no binary

variables are needed !

5.4.4 Improving piecewise approximations

The previous section does not discuss how the partition p should be chosen. In

principle, the specific 𝑝𝑖’s should not matter, as long as the “box” between 𝑝𝑖−1 and 𝑝𝑖

is chosen so that it always overestimates the pdf (and, thus, the area under the curve).

However, Figure 5-3 shows that these boxes can yield a rather crude approximation

of the cdf, depending on where partition points are placed. Therefore, given a fixed

number of partitions, we now focus on choosing p so that it approximates the cdf

well. For that, let

𝑔(p)=
−1∑︁

𝑖=−𝑚

(𝑝𝑖+1−𝑝𝑖)𝑓(𝑝𝑖+1)+
𝑛−1∑︁
𝑗=0

(𝑝𝑗+1−𝑝𝑗)𝑓(𝑝𝑗) (5.12)

163

be the total area of the piecewise approximation. Since (5.12) is an upper bound, one

might seek to

minimize
p

𝑔(p) subject to 𝑝𝑖+1≥𝑝𝑖,∀𝑖, 𝑝−𝑚, 𝑝0, 𝑝𝑛fixed. (5.13)

The objective in (5.13) is not linear or convex in general (e.g., it is neither for Gaus-

sians). Due to the inequalities, one could resort to SUMT [Fiacco and McCormick,

1964], a.k.a. barrier methods, to solve a sequence of unconstrained minimization prob-

lems that provide increasingly better estimates of a local solution to (5.13). However,

these intermediate steps are costly and, as pointed out in [Boyd and Vandenberghe,

2004], computing them exactly is not necessary. Therefore, seeking to keep computa-

tional requirements manageable, we resort to a simpler approach based on gradient

descent. Starting with p0=p0, we compute

p𝑡+1 = 𝑄

(︂
p𝑡 − 𝜇∇𝑔

⃒⃒⃒
p=p𝑡

)︂
(5.14)

until ‖∇𝑔(p𝑡)‖≈0 or a maximum number of iterations is reached. In (5.14), the

components of ∇𝑔 are

𝜕𝑔

𝜕𝑝𝑘
=𝑓 ′(𝑝𝑘)(𝑝𝑘−𝑝𝑘−1)+𝑓(𝑝𝑘)−𝑓(𝑝𝑘+1),−𝑚<𝑘<0,

𝜕𝑔

𝜕𝑝𝑘
=𝑓 ′(𝑝𝑘)(𝑝𝑘+1 − 𝑝𝑘)+𝑓(𝑝𝑘−1)−𝑓(𝑝𝑘), 0≤𝑘<𝑛, (5.15)

and 0 for 𝑘∈{−𝑚, 0, 𝑛}; 𝜇 is a positive constant; and 𝑄(·) is a projection ensuring

(5.14) remains in the feasible region of (5.13). In our implementation, 𝑄(·) is the

identity if its argument is feasible, and otherwise outputs a random feasible perturba-

tion around p𝑡. Thus, at any 𝑡, (5.14) is feasible and, for small enough 𝜇, will improve

the upper bound (5.12) at every iteration. For a Gaussian 𝑁(𝜇, 𝜎2), we have

𝑓(𝑥) =
1√
2𝜋𝜎

𝑒

(︃
−1

2

(︂
𝑥− 𝜇
𝜎

)︂2
)︃
, 𝑓 ′(𝑥) = 𝑓(𝑥)

(︂
𝜇− 𝑥

𝜎2

)︂
. (5.16)

164

5.4.5 From minimum risk to other linear objectives

The description of PARIS in Algorithm 5.1 computes 𝜋𝑠 minimizing the scheduling

risk bound (5.6). However, as pointed out in [Fang et al., 2014,Wang and Williams,

2015a], there might be situations where other types of linear objectives (e.g., the

schedule’s makespan) might be preferred over minimizing risk. Thus, let

minimize
x

ℎ(x) subject to 𝐶𝑡𝑠(x) (5.17)

be the target problem, where ℎ(x) is the desired objective (e.g., the makespan) for

PARIS; x is the vector of problem variables (schedule of controllable events, squeez-

ing variables, etc.); and 𝐶𝑡𝑠 are the same as in line 11 of Algorithm 5.1, plus any

additional (linear) constraints required by ℎ(x). In this section, we analyze two risk-

motivated settings for solving (5.17): I) a chance-constrained setting, in which we

solve (5.17) without caring for the actual value of the scheduling risk 𝑆𝑅(x), as long

as one can ensure that it is bounded by a user-specified tolerable risk level 𝜃; and II)

a tight risk gap setting, in which we would like to solve (5.17) while ensuring that our

estimate of 𝑆𝑅(x) is as good as possible.

Chance-constrained

In the chance-constrained setting, (5.17) must be solved while ensuring 𝑆𝑅(x) ≤ 𝜃

for a given 𝜃 ∈ [0, 1]. Following Section 5.4.2, we achieve 𝑆𝑅(x) ≤ 𝜃 through the

sufficient condition

Λ𝑆𝑅(x) ≤ 𝜃, (5.18)

which should be added as an element of 𝐶𝑡𝑠(x) in (5.17). It is worthwhile to notice

that (5.18) is sufficient to enforce 𝑆𝑅(x) ≤ 𝜃 even in the absence of binary values to

ensure that the “squeezings” in (5.11) are performed correctly. The reasons are the

same as presented in Section 5.4.3: squeeze variables have monotonic coefficients and

can only affect bounds through their sums, so a bound Λ′
𝑆𝑅(x) resulting from “po-

tentially incorrectly squeezed” distributions can only overestimate the bound Λ𝑆𝑅(x)

165

generated by the same amount of squeezing, but performed in the correct order.

Therefore, since Λ′
𝑆𝑅(x) ≤ 𝜃 is sufficient for (5.18), a solution of (5.17) is guaranteed

to be chance constrained no matter how the squeezings are performed.

Tight risk gap

Assume now that, in addition to solving (5.17), we require that the scheduling risk

bound given by (5.6) is tight. This is useful, for instance, when no knowledge about

the joint distribution of durations is available, so that (5.5) cannot be computed even

if all bounds [𝑙𝑖, 𝑢𝑖] for the contingent durations are given. In this case, (5.6) becomes

our best estimate of the scheduling risk for the mission, and we would like to make it

as good as possible.

A natural way of achieving this goal would be to introduce binary variables in

(5.17), so that the piecewise-linear approximations in Section 5.4.3 are correctly im-

plemented. However, that would turn (5.17) into a significantly harder problem to

solve, since it would become a Mixed-Integer LP (MILP). Therefore, we propose to

replace (5.17) by the surrogate

minimize
x

Λ𝑆𝑅(x) + 𝑀ℎ(x) subject to 𝐶𝑡𝑠(x), (5.19)

where Λ𝑆𝑅(x) is the risk bound (5.6) and 𝑀 is a finite positive constant. Unlike

(5.17), (5.19) does not require binary variables due to the introduction of Λ𝑆𝑅(x) in

the objective. On the other hand, (5.19) no longer optimizes our desired objective

ℎ(x). Despite the latter, we now show that 𝑀 can be chosen so that a solution to

(5.19) approximates that of (5.17) with arbitrary precision while requiring no integer

variables.

Let x* be the optimal solution found by (5.17), and let ℎ* = ℎ(x*) be the corre-

sponding minimal value of ℎ(·) over the convex region defined by 𝐶𝑡𝑠(x). Also, let

x′ be the solution found by (5.19) over the same convex region, with corresponding

desired objective ℎ(x′) = ℎ* + ∆ℎ. The ∆ℎ term is the objective degradation, and

must be such that ∆ℎ ≥ 0, given that ℎ* is the minimum of ℎ(·) over 𝐶𝑡𝑠(x). Any

166

such degradation in ℎ(x) must be a result of a corresponding decrease ∆Λ𝑆𝑅(x) of

the risk bound, and the minimality of (5.19) implies ∆Λ𝑆𝑅(x) + 𝑀∆ℎ ≤ 0. The last

step is to notice that the risk bound improvement is such that −∆Λ𝑆𝑅(x) ≤ |𝒞𝑢|,

which is the difference between the maximum (Λ𝑆𝑅 = |𝒞𝑢|) and minimum (Λ𝑆𝑅 = 0)

values of Λ𝑆𝑅 in (5.6). Therefore, we arrive at the degradation bound

∆ℎ ≤ |𝒞𝑢|
𝑀

. (5.20)

For instance, if ℎ(x) is the schedule’s makespan measured in seconds and one chooses

𝑀 = 1000|𝒞𝑢|, (5.20) guarantees that the fully linear surrogate (5.19) approximates

the true minimal makespan ℎ* with millisecond precision. Also, nothing prevents us

from imposing (5.18) on (5.19) to enforce 𝑆𝑅(x) ≤ 𝜃. In Section 5.5, this will be

referred to as the tight, chance-constrained (TCC) setting.

5.4.6 Algorithm properties

This section presents soundness, completeness, and complexity properties for the

different formulations of PARIS.

Lemma 5.5. PARIS is sound.

Proof : PARIS enforces (5.4), which are necessary and sufficient for strong controlla-

bility. Therefore, any schedule found must be a strong scheduling policy. �

Lemma 5.6. PARIS runs in polynomial time.

Proof : the loops in lines 3 and 8 of Algorithm 5.1 run a polynomial number of itera-

tions, and both Algorithms 5.2 and 5.3 run in polynomial time. Also, the scheduling

risk models in (5.7), (5.8), and (5.11) create a polynomially-large number of variables

and constraints relative to the number of contingent durations, and Karmarkar [Kar-

markar, 1984] showed that the LP in line 11 of Algorithm 5.1 can be solved in polyno-

mial time. Finally, the cap on the number of iterations for the partition optimization

step (5.14) introduces a maximum overhead that grows linearly with the number of

contingent durations. �

167

Lemma 5.7. PARIS is complete when contingent durations are restricted to STCU’s

or uniform PSTC’s.

Proof : the squeezing models (5.7) and (5.8) consider the whole range of possible

externally-imposed upper and lower bounds for contingent durations. Therefore, if

there are squeezings for which a strong policy exists, PARIS will find it. Otherwise,

it will return no solution. �

Lemma 5.8. The squeezing model (5.11) for unimodal PSTC’s renders PARIS in-

complete.

Proof : the model (5.11) will fail to return strong schedules requiring upper and lower

bounds to be squeezed beyond the extrema of the interval, or not containing the

mode. �

Lemma 5.9. Chance-constrained PARIS is sound, but incomplete.

Proof : Soundness of (5.18) follows from 𝑆𝑅(x) ≤ Λ𝑆𝑅(x) ≤ 𝜃. Incompleteness follows

from the fact that enforcing (5.18) to ensure 𝑆𝑅(x) ≤ 𝜃 may discard valid solutions

when 𝜃 is placed in the gap between the minimum of Λ𝑆𝑅(x) and the true value of

𝑆𝑅(x). �

5.5 Experiments

The CAR-SHARING and ROVERS datasets available at

http://mers.csail.mit.edu/datasets/scheduling,

along with several other examples, where used in the empirical evaluation of PARIS.

The CAR-SHARING dataset, first made available in [Fang et al., 2014] and later

used in [Wang and Williams, 2015a], served the purpose of evaluating PARIS against

the state of the art in PSTN scheduling. Experiments from [Wang and Williams,

2015a] on this dataset show that Rubato’s conflict-directed, chance-constrained strong

controllability checker for PSTN’s outperforms the approach in [Tsamardinos, 2002]

168

http://mers.csail.mit.edu/datasets/scheduling

and the Picard system presented in [Fang et al., 2014] by nearly an order of magnitude.

Therefore, here we compare Rubato’s performance relative to that of PARIS on CAR-

SHARING. Rubato is implemented in Common Lisp and uses Ipopt [Wächter and

Biegler, 2006] as the nonlinear solver, while PARIS is implemented in Python and

uses Gurobi 6.0.4.

The ROVERS dataset consists of 4380 randomly-generated PSTNU instances

modeling planetary rover coordination scenarios similar to the one depicted in Figure

5-1a. ROVERS instances feature the coordination between two to ten rovers, which

have to complete between one to ten sequential exploration tasks (drive, drill, collect,

and process) in parallel before reconvening at a relay location and transmitting their

data to a satellite within a given visibility window. ROVERS contains all combina-

tions of uncontrollable temporal durations discussed in this chapter and, to the best

of the author’s knowledge, cannot be handled by existing scheduling algorithms.

Our first test consisted of running the risk-bound minimization version of PARIS

explained in Algorithm 5.1 against Rubato on CAR-SHARING, with results shown in

Figures 5-4a and 5-4b (vertical axes in log scale). Out of 1800 instances, PARIS found

strong policies for 186 in Figure 5-4a (same number as in [Fang et al., 2014]), while

Rubato found 142. Unsurprisingly, we see that strong schedules tend to exist for

networks with fewer uncontrollable durations. PARIS handled Gaussian durations

using 8 equally-spaced partitions (length equal to 𝜎) on either side of the mean.

Notice that Figures 5-4a and 5-4b shows PARIS outperforming Rubato by about 1

or 2 orders of magnitude in most test instances, and up to three or four orders in

some of the most difficult problems. Also, while PARIS computes the strong policy,

Rubato solves the strictly easier problem of checking if one such policy exists.

For the 186 instances for which PARIS found a strong policy, our next test on

CAR-SHARING evaluated how the partition optimization procedure from Section

5.4.4 impacts the gap between the risk bound in (5.6) and the true scheduling risk

in (5.5). Since (5.5) is hard to compute in general, we assume, for this particular

experiment only, that all contingent durations were independent, in which case (5.5)

169

becomes

𝑆𝑅(𝜋𝑠, 𝐶) = 1−
|𝒞𝑢|∏︁
𝑖=1

Pr(𝑑𝑖 ∈ [𝑙𝑖, 𝑢𝑖]). (5.21)

Gradient descent was allowed a maximum of 12, 000 iterations with gradient norm

tolerance 10−3 and fixed 𝜇 = 0.03. Figure 5-4d shows the elapsed time as a function of

the number of uncontrollable duration, while Figure 5-4c shows the risk gap between

(5.6) and (5.21) for different instances with and without partition optimization. Par-

tition optimization caused the risk gap to improve on all instances, with an average

gap improvement of 4.8% (absolute value, not relative). Also, the linear trend in Fig-

ure 5-4d confirms that partition optimization does not affect PARIS’ polynomial-time

complexity.

Our last test on CAR-SHARING evaluated the effectiveness of PARIS in optimiz-

ing general linear objectives, as explained in Section 5.4.5. For this test, the schedule

makespan was used as the desired objective in (5.19), with a chance constraint 𝜃=30%

imposed through (5.18). It was compared against the risk-bound minimization version

in Algorithm 5.1, and the results are shown in Figures 5-4e and 5-4f. As expected,

using (5.19) with makespan as the desired objective improved the makespan for all

test instances, with an average reduction of 8.5 seconds. Also, Figure 5-4f shows that

both formulations have similar runtimes.

On the ROVERS dataset, from a total of 4380 PSTNU instances, PARIS found

strong policies for 2840 of them. From those, 911 had probabilistic durations squeezed

to a single value, i.e., even though a strong policy exists, it is almost guaranteed to fail.

Different from CAR-SHARING, Figures 5-5a and 5-5b show that there are instances

of ROVERS featuring both strong policies and a large number of uncontrollable du-

rations. Moreover, we observe from these figures the small amount of time required

by PARIS to solve instances with and without strong policies, reinforcing the claim

that PARIS is suitable for hardware with computational and energy constraints. Fi-

nally, the same conclusions from CAR-SHARING regarding partition optimization

and makespan optimization hold on ROVERS. For instance, as shown in Figure 5-5c,

makespan optimization with a chance constraint 𝜃=20% improved the makespan for

170

all problem instances, with an average reduction of 37.36 seconds.

5.6 Conclusions

This chapter introduces PSTNU’s, a formalism subsuming STNU’s and PSTN’s, and

PARIS, a polynomial-time and sound algorithm for risk-sensitive strong scheduling

of PSTNU’s that outperforms the current fastest equivalent algorithm for PSTN’s

by several orders of magnitude. Due to its significantly reduced computational re-

quirements, PARIS endows CLARK with a keen sensitivity to scheduling risk for

temporal plans with duration uncertainty. However, PARIS is limited to uncondi-

tional scheduling problems, i.e., those for which the constraints that compose the

temporal network do not depend on real-time observations. Since this thesis’ goal is

to generate risk-bounded conditional temporal plans, the next chapter extends PARIS

to strong scheduling of Probabilistic Temporal Plan Networks (PTPN’s) containing

probabilistic observations.

171

(a) Strong policy was found.

(b) Strong policy was not found.

(c) Risk gap with (blue) and without (red) partition optimization.

172

(d) Elapsed time for 5-4c.

(e) Min. risk (blue) and min. makespan.

(f) Elapsed time for 5-4e.

Figure 5-4: Performance of Rubato and PARIS on CAR-SHARING dataset.

173

(a) Strong policy was found.

(b) Strong policy was not found.

(c) Min. risk (blue) and min. makespan.

Figure 5-5: Performance of PARIS on ROVERS dataset.

174

Chapter 6

Risk-sensitive scheduling of PTPN’s

“There cannot be a crisis next week. My schedule is already full.”

Henry A. Kissinger.

The PARIS algorithm in Chapter 5 allows a PSTNU, a temporal network with

a mix of set-bounded and various types of probabilistic temporal durations, to be

efficiently tested for the existence of a strong schedule. However, PSTNU’s can only

be used for unconditional scheduling problems, i.e., situations in which all temporal

constraints affecting a schedule are known beforehand and with complete certainty.

Since this thesis is concerned with risk-bounded conditional temporal plans, Chapter

4 introduces Probabilistic Temporal Plan Networks (PTPN’s), a graph-based repre-

sentation of a conditional temporal network that can extend PSTNU’s by allowing

temporal constraints to be conditional on controllable (agent decisions) and uncon-

trollable (real-time observations) choice variables.

When CLARK is given a temporal CC-POMDP model or a cRMPL program to

execute, the temporal constraints in RAO*’s policy estimate will often - unless the

planning problem is unconditional - form a particular type of PTPN where there are

only probabilistic uncontrollable choices representing real-time observations. In order

to verify the temporal feasibility of this particular type of PTPN, this chapter extends

the notions of strong scheduling for PSTNU’s from Chapter 5 to strong consistency of

PTPN’s featuring probabilistic observations and uncontrollable temporal durations.

175

6.1 Introduction

There has been significant effort in the scientific community to help answer the ques-

tion of whether a feasible schedule exists in the presence of uncontrollable contingen-

cies in a temporal network. Among the most important contributions, [Tsamardinos

et al., 2003,Effinger et al., 2009,Venable et al., 2010,Hunsberger et al., 2012,Combi

et al., 2013,Cimatti et al., 2014,Cimatti et al., 2016b,Cimatti et al., 2016a] extend

the notions of strong, dynamic, and weak controllability (also referred as consistency)

originally used in the context of temporal uncertainty [Vidal and Ghallab, 1996,Vi-

dal, 1999,Morris et al., 2001,Morris and Muscettola, 2005,Morris, 2006,Hunsberger,

2009,Hunsberger, 2010,Hunsberger, 2013,Hunsberger, 2014,Morris, 2014] to uncon-

trollable contingencies. They also present tests that guarantee the existence of feasi-

ble solutions under different levels of information about the uncertainty in the plan.

These consistency tests, however, all have the caveat of representing uncertainty as

set-bounded quantities, i.e., as intervals of values with no associated probability distri-

bution. In other to guarantee feasibility in all possible scenarios, consistency-checking

algorithms based on set-bounded uncertainty end up performing a worst-case anal-

ysis. When considering situations where uncertainty causes small plan deviations

around otherwise “nominal” values, these set-bounded consistency criteria work well

and output robust, albeit conservative, schedules. Nevertheless, they have difficulties

handling problem instances where uncertainty can potentially lead to infeasible sce-

narios, often returning that no robust scheduling policy exists. This is most certainly

undesirable, since reasonable amounts of risk can usually be tolerated for the sake of

not having the autonomous agent sit idly due to its absolute “fear” of the worst.

Given a description of a contingent temporal plan in the form of a PTPN, this

chapter improves upon the previously mentioned results on conditional scheduling

by extending the notions of weak and strong plan consistency to a risk-bounded set-

ting, and providing efficient algorithms for determining (or refuting) them. Weak

and strong consistency are useful concepts when planning missions for agents whose

embedded hardware has very limited computation and telecommunication power,

176

making it hard for them to come up with solutions “on the fly” or for remote opera-

tors to intervene in a timely fashion. Chance-constrained weak consistency (CCWC)

is a useful concept for missions where agents operate in static or slow changing

environments after an initial scouting mission aimed at reducing plan uncertainty.

Chance-constrained strong consistency (CCSC), on the other hand, removes the need

for a scouting mission and tries to determine the existence of a solution that, with

probability greater than some threshold, will succeed irrespective of the outcomes

of uncertainty in the plan. Strong consistency is clearly more conservative, but it

is appealing to mission managers because strongly consistent policies require little

to no onboard sensing and decision making, greatly reducing the agents’ complexity

and costs. They also reduce or completely eliminate the need to coordinate between

multiple agents. Finally, the robustness of a strongly consistent policy makes it easier

to check by human operators before it is approved for upload to the remote agent.

The PTPN representation of contingent temporal plans from Chapter 4 is similar

to Temporal Plan Networks with Uncertainty (TPNU’s) [Effinger et al., 2009,Effin-

ger, 2012], Conditional Temporal Plans (CTPs) [Tsamardinos et al., 2003], Disjunctive

Temporal Problems with Uncertainty (DTPU’s) [Venable et al., 2010], and the Con-

ditional Simple Temporal Network with Uncertainty (CSTNU) [Hunsberger et al.,

2012], but extends them in two important ways. First, PTPN’s support probabilis-

tic choice nodes, as opposed to a purely set-bounded uncertainty representation in

DTPU’s and CTP’s. Second, PTPN’s can contain any combination of PSTNU-like

temporal constraints, i.e., set-bounded, as well as different types of probabilistic tem-

poral durations. In this thesis, PTPN’s arise both as representations of cRMPL exe-

cution traces, and as the conditional temporal constraints in temporal CC-POMDP

models.

The algorithms in this chapter reason quantitatively about the probability of dif-

ferent random scenarios and explore the space of feasible solutions efficiently while

bounding the risk of failure of a conditional schedule below a user-defined admissi-

ble threshold. While state-of-the-art methods in the conditional and stochastic CSP

literature rely on a combination of chronological (depth-first) search and inference in

177

the space of contingencies in order to quickly find satisficing solutions [Fargier et al.,

1995,Fargier et al., 1996,Stergiou and Koubarakis, 2000,Gelle and Sabin, 2006,Tarim

et al., 2006], in this chapter we introduce a “diagnostic” approach based on Conflict-

Directed 𝐴* (CDA*) [Williams and Ragno, 2007]. By continuously learning subsets of

conflicting constraints and generalizing them to a potentially much larger set of patho-

logical scenarios, our algorithms can effectively explore the space of robust schedules

in best-first order of risk while ensuring that it is within the user-specified bound. For

the problem of extracting a strongly consistent policy from a contingent plan descrip-

tion, our numerical results showed significant gains in scalability for our approach.

This chapter is organized as follows. Section 6.2 revisits the simple PTPN schedul-

ing example presented in Section 1.4 to motivate our methods, followed by a formal

definition of the notions of chance-constrained consistency in Section 6.3. Next, Sec-

tion 6.4 presents algorithms for determining chance-constrained weak and strong con-

sistency of PTPN’s. The numerical results in Section 6.5 indicate that our framing of

the problem of determining CCSC outperforms the current practice of using chrono-

logical search, followed by our final conclusions in Section 6.6.

6.2 Approach in a nutshell

Here we motivate the usefulness of chance-constrained consistency by revisiting the

simple commute example from Section 1.4, whose PTPN is shown in Figure 6-1. In

this example, we start at home and our goal is to be at work for a meeting in at

most 30 minutes. Circles represent temporal events, and temporal constraints are

represented by arcs connecting temporal events. For simplicity, we assume that we

are given only three possible choices in this PTPN: we can either ride a bike to work,

drive a car, or stay home and telecommute. The rewards (𝑅 values) model preferences

associated with each one of the options. Uncontrollable choices are depicted in Figure

6-1 by double circles with dashed lines. These are random, discrete events that affect

our plan and whose probability model is also given in Figure 6-1.

In this example, the uncontrollable choices model what might “go wrong” during

178

Figure 6-1: A PTPN for a simple plan to get to work (repeated from Figure 1-12 on
page 43).

plan execution and the impact of these unexpected events on the overall duration of

the plan. For example, if we decide to ride a bike to work (the most preferred option),

there is the possibility that we might slip and fall. This event has a minor effect on the

duration of the ride, but would force us to change clothes at our workplace because

we cannot spend the day in a dirty suit. Since we only have 30 minutes before the

meeting starts, the uncontrollable event of slipping would cause the overall plan to

be infeasible. A similar situation happens if we choose to drive our car and happen

to be involved in an accident.

By ignoring probabilities and using a consistency checker for the PTPN in Figure

6-1 based on a set-bounded representation of uncertainty, we would realize that the

PTPN is guaranteed to be consistent. Unfortunately, unless we had a way of telling

ahead of time whether we would slip from the bike or be in a car accident, the plan

would be to always choose the least preferred option of staying at home. This is

because, for the choice of riding a bike or driving to work, there are uncontrollable

scenarios that cause the plan to fail, causing the set-bounded consistency checker

179

to fall back to the safe, albeit undesirable, choice of staying at home. Since this

may seem to disagrees with common sense, since people try to achieve their goals

while acknowledging the uncontrollable nature of their environment, in the following

we show how a chance-constrained approach would produce a plan that agrees with

what we would expect a “reasonable” agent to do.

Let us consider the case where we accept that our plan might fail, as long as the

risk ∆ is no more than 2%. Given that riding a bike is the option with the highest

reward, our algorithm would deem bike ridding the most promising and would start

by checking if choosing to ride a bike meets the chance constraint ∆ ≤ 2%. If

there existed a feasible activity schedule satisfying the temporal constraints for both

values of Slip, we could pick this schedule and our risk of failure would be zero,

which is clearly less than our risk bound. However, our algorithm concludes that the

scenario Slip = True is inconsistent with the overall temporal constraint of arriving

at the meeting in less than 30 minutes, so there must exist a nonzero risk of failure

in this case. According to the model in Figure 6-1, the probability of slipping is

Pr(Slip) = 5.1%, so riding a bike does not meet the chance constraint ∆ ≤ 2%. The

next best option is riding a car, where now we are subject to the uncontrollable event

of being in a car accident. Following a similar analysis, we conclude that the risk

of our plan being infeasible in this case is Pr(Accident) = 1.3%, which meets the

chance constraint. Therefore, our algorithm would advise to drive to work within the

temporal bounds shown in Figure 6-1 for the case where no accident happens. It is

worthwhile to notice that choosing ∆ < 1.3 would have made staying at home the

only feasible alternative. Hence, as in the set bounded approach, a chance constraint

may still be too conservative to allow for a feasible solution. Moreover, if the overall

temporal constraint of 30 minutes in Figure 6-1 were relaxed to 35 minutes, our

algorithm would have been capable of finding a risk free scheduling policy for its first

choice of riding a bike. This is because, in this case, there would exist a feasible

schedule satisfying all temporal constraints on the upper side of the PTPN, i.e.,

temporal constraints activated by both Slip = True and Slip = False.

Within CLARK, the conditional temporal constraints generated by RAO*’s policy

180

estimates form a PTPN containing only probabilistic uncontrollable choices, which

must be tested for chance-constrained temporal consistency. Since testing feasibility

of a chance constraint is a fundamental task, in which estimating risk is costly, our

approach frames risk estimation for a PTPN as a process of enumerating the most

likely sets of scenarios that incur and do not incur risk (called conflicts and ker-

nels, respectively). We observe that this can be formulated as a symptom-directed,

“diagnostic” process, allowing us to leverage an efficient, conflict-directed best-first

enumeration algorithm, Conflict-Directed 𝐴* (CDA*) [Williams and Ragno, 2007], to

generate kernels and conflicts, and hence feasible and infeasible scenarios.

6.3 Problem statement

This section extends the “risk-averse” notions of weak and strong consistency from

[Vidal and Ghallab, 1996,Tsamardinos et al., 2003,Effinger et al., 2009] to a setting

where solutions involving some level of risk are accepted. As previously mentioned,

allowing plans to contain reasonable levels of risk is usually required for systems

operating under uncertainty. If no risk is allowed, a robust scheduling strategy will

hardly ever exist.

The combination of assignments to controllable and uncontrollable choices in a

PTPN defines “paths” that go through temporal constraints that must be satisfied by

the schedule. These paths are encoded in the PTPN by the activation of labels, also

referred to as guard conditions, of PTPN elements. This motivates our definition of

controllable and uncontrollable scenarios.

Definition 6.14 (Controllable (Uncontrollable) scenario). A controllable (uncontrol-

lable) scenario CS ∈ CS (US ∈ US) corresponds to a full assignment 𝐷 = 𝑑 (𝑈 = 𝑢)

to the controllable (uncontrollable) choices in the PTPN.

Intuitively, a chance-constrained weakly consistent PTPN is one that, for every

possible uncontrollable scenario within a set US′, there exists at least one controllable

scenario CS so that a feasible schedule exists. Therefore, given knowledge about

181

which uncontrollable scenario is true, we can always choose CS such that a schedule

exists. In our chance-constrained formulation, we guarantee that the risk of the true

uncontrollable scenario being outside of the feasible set US′ is less or equal to ∆.

Strong consistency, on the other hand, requires that at least one controllable scenario

CS exists such that there exists at least one common schedule satisfying the temporal

constraints generated by all uncontrollable scenarios US ∈ US′. Once again, our

chance-constrained formulation guarantees that our strongly consistent schedule will

be feasible with probability at least 1−∆. While weak consistency requires complete

prior knowledge of the true uncontrollable scenario prior to choosing CS , strong

consistency requires none: we could just “close our eyes” and pick a schedule while

completely disregarding the uncontrollable scenario being unfolded.

Let TC ← Ac(𝑃𝑇𝑃𝑁,𝐶𝑆, 𝑈𝑆) be a function that returns all active (i.e., with

labels evaluating to True) temporal constraints in a PTPN given controllable and

uncontrollable scenarios CS and US . Also, let sched ← Sol(TC) be an algorithm

(such as PARIS in Chapter 5) that is able to test for the existence of a schedule sched

for TC , where the absence of a schedule is denoted by sched = ∅. We are now ready

to define the notions of chance-constrained weak and strong consistency.

Definition 6.15 (Chance-constrained weak consistency (CCWC)). A PTPN is said

to be CCWC with risk ∆ iff there exists a set of uncontrollable scenarios US′⊆US,

where Pr(US′)>1−∆, such that ∀US ∈ US′, there exists a controllable scenario CS

such that Sol(Ac(PTPN ,CS ,US)) ̸= ∅.

Definition 6.16 (Chance-constrained strong consistency (CCSC)). A PTPN is said

to be CCSC with risk ∆ iff there exists a controllable scenario CS and a set of un-

controllable scenarios US′⊆US, where Pr(US′)>1−∆, such that

⋂︁
USi∈US′

Sol(Ac(PTPN ,CS ,USi)) ̸= ∅.

Definitions 6.15 and 6.16 become equivalent to the standard definitions of weak

and strong consistency if we choose ∆ = 0, i.e., no risk. Moreover, they formally

182

define the concepts of weak and strong chance-constrained consistency in terms of a

subset of uncontrollable scenarios US′ ⊆ US with appropriate probability and feasible

assignments to the controllable choices in the plan. Determining those assignments

is the topic of the subsequent sections.

6.4 Chance-constrained consistency of PTPN’s

The conditional nature of temporal constraints on a PTPN, which might be acti-

vated by different combinations of assignments to controllable and uncontrollable

choices, makes the evaluation of chance constraints challenging: chance-constrained

weak consistency with risk ∆ requires the enumeration of enough uncontrollable sce-

narios admitting a schedule to cover a probability mass of at least 1 − ∆, while

chance-constrained strong consistency demands that fixed controllable choices yield

a feasible schedule with at least that same probability.

Evaluating the feasibility of the chance constraint is a key step for risk-bounded

conditional scheduling, specially for chance-constrained strong consistency. In fact,

one important contribution of our approach is the framing of chance constraint evalua-

tion for strongly consistent plans as a discrete “diagnostic” process, where “symptoms”

correspond to inconsistencies in temporal constraints and “diagnoses” are pathological

uncontrollable scenarios. Recalling our example in Section 6.2, the pathological sce-

narios for an overall temporal constraint of 30 minutes were Slip = True if we chose to

ride a bike to work, or Accident = True if we chose to drive a car. Evaluating chance

constraints is performed differently in weak and strong consistency, as detailed in the

following. Throughout the algorithms in this section, the function NextBest(cnfs) is

implemented using CDA* in order to enumerate candidate solutions in best-first order

while taking previously discovered conflicts 𝑐𝑛𝑓𝑠 into account. A detailed discussion

of how to perform this enumeration can be found in [Williams and Ragno, 2007].

Definition 4.5 in Section 4.5.1 introduces a labeled constraint representation of

PTPN’s that makes explicit the connection between each temporal constraint and

the choices that activate it. In the following, Section 6.4.1 presents an algorithm for

183

checking chance-constrained weak consistency of a PTPN, followed by our formulation

of chance-constrained strong consistency, a more useful concept within CLARK, as a

“diagnosis” problem solved by CDA* in Section 6.4.2.

6.4.1 Chance-constrained weak consistency

Determining weak consistency is special in the sense that we are allowed to assume

that the true uncontrollable scenario will be revealed to the agent before it has to

make any decisions. This is what happens, for example, when we use a smart phone to

determine the state of traffic before committing to a specific route to some destination.

By doing so, we implicitly assume that the state of the roads will not change during

the trip. Since the agent knows which uncontrollable scenario is the true one, the

problem is no longer stochastic and the agent can pick the best possible assignment

to the controllable choices in terms of reward for that specific uncontrollable scenario.

This is exactly the process that Algorithm 6.1 reproduces.

For each possible uncontrollable scenario (US), Algorithm 6.1 searches for assign-

ments to the controllable choices (candCS) that maximize reward while yielding a

feasible set of constraints. If it is able to find it, it adds US to the set of consistent

scenarios (Line 12) and marks CS as the optimal assignment to controllable choices

given US (Line 13). However, if the search algorithm runs out of candidate assign-

ments to controllable choices, it marks US as being inconsistent (Line 7). If the

probability of inconsistent scenarios ever violates the overall chance constraint ∆, we

are guaranteed that the plan is not weakly consistent within the given risk bound.

Similarly, if the probability of consistent scenarios surpasses 1−∆, we can return the

optimal mapping from uncontrollable to controllable scenarios. It is worthwhile to

notice that uncontrollable scenarios are always disjoint, so computing probabilities in

Lines 8 and 14 consists of just adding together the probability for each scenario.

Revealing all uncertainty associated with a plan might be as hard and costly as

the plan itself, so determining CCWC might be of limited use in some cases. In

situations where the cost of sensing and coordination between agents is considerable,

it might be better to extract a policy from the plan description that is robust to a

184

Algorithm 6.1: Chance-constrained weak consistency.
Input: PTPN 𝑁 , risk threshold ∆.
Output: Mapping 𝑈𝑡𝑜𝐶 from uncontrollable to controllable scenarios.

1 Function CCWC(𝑁,∆)

2 UtoC←∅, conUS←∅, incUS ← ∅
3 for US ∈ US do
4 cConf ← ∅, nextUS←False
5 while not nextUS do
6 if (candCS ← NextBest(cConf))==∅ then
7 incUS ← incUS ∪ US , nextUS←True
8 if Pr(𝑖𝑛𝑐𝑈𝑆)>∆ then
9 return FAIL

10 else
11 if Ac(PTPN , candCS ,US) is consistent then
12 conUS←conUS∪US , nextUS←True
13 UtoC [US]← candCS
14 if Pr(conUS)≥1−∆ then
15 return UtoC

16 else
17 cConf←LearnConflict(cConf , candCS)

18 return UtoC

large enough fraction of the uncertainty in the plan. This is the topic of the next

section.

6.4.2 Chance-constrained strong consistency

Differently from weak consistency, which considers the feasibility of each uncontrol-

lable scenario separately, Definition 6.16 for strong consistency connects all uncontrol-

lable scenarios US ⊆ US′ together by requiring that they share a common schedule.

Thus, evaluating the chance constraint for a strongly consistent policy becomes a

challenging and key subproblem, since we now have to consider how different subsets

of constraints become active and interact across many possible different realizations

of the uncontrollable choices. In weak consistency, the given uncontrollable scenario

clearly revealed which temporal constraints dependent on uncontrollable choices could

185

be active in the plan. In the case of strong consistency, the subset of temporal con-

straints that must be satisfied to meet the chance constraint is not known a priori,

and finding it is computationally difficult.

Recall that, within CLARK, the conditional temporal constraints forming a PTPN

in RAO*’s policy estimate have all controllable choices assigned their (heuristically

estimated) optimal values, and let this assignment to controllable choices be denoted

by 𝐶𝑆. In this case, the labeled constraints in the PTPN can be split into three

mutually exclusive groups, defined in terms of the probability of activation of their

labels:

- Necessarily Active (NA): all constraints such that Pr(𝐿𝑖|𝐶𝑆)=1, which includes

empty labels (an empty label is always active). This is the set of all labels 𝐿𝑖

made True by CS ;

- Necessarily Inactive (NI): all constraints such that Pr(𝐿𝑖|𝐶𝑆)=0. This is the

set of all labels 𝐿𝑖 made False by CS . These constraints are all inactive and do

not influence plan feasibility.

- Potentially Active (PA): remaining constraints, for which 0<Pr(𝐿𝑖|𝐶𝑆)<1.

This is the set of all labels 𝐿𝑖 containing assignments to uncontrollable choices

that have not been made False by CS .

Figure 6-2: Partition of the constraints induced by an assignment to the controllable
choices.

This split of the labeled constraints is schematically depicted on the left side of

Figure 6-2. Given this partition, the subsequent evaluation of the chance constraint

can be graphically represented by the right side of Figure 6-2. In this figure, our

186

algorithm is trying to find a subset of the temporal constraints in NA ∪ PA that is

consistent and has probability greater than 1−∆ of containing the true set of active

constraints for any possible uncontrollable scenario. If it succeeds, the strongly con-

sistent schedule for the PTPN can be computed by form the conjunction of temporal

constraints contained in this subset. The chance constraint becomes important in

this computation, for it allows temporal infeasibility to be resolved by dropping con-

straints activated by uncontrollable choices. This is done at the expense of increasing

the risk of the resulting schedule being inconsistent. The larger the admissible risk

bound ∆, the more constraints can be dropped. It is easy to see that this subset of

constraints must always cover all of NA in order for a strongly consistent schedule to

exist. Also, no effort should be spent trying to cover any portion of NI.

It is usually the case that infeasibility with respect to the constraints in NA∪PA

only manifests itself in a handful of scenarios that activate constraints that are hard

to satisfy. Hence, one key contribution from this chapter is to frame the evaluation

of the chance constraint as a diagnostic process. The key insight behind the use

of a conflict-directed method is to be able to quickly isolate temporal constraints

causing infeasibility and evaluate whether they incur a significant amount of risk.

The numerical results in Section 6.5 show that our conflict-directed approach is able

to detect violation of the chance constraint ∆ more efficiently than prior art based

on chronological search methods.

We frame the problem of finding a subset of PA that allows the chance constraint

to be satisfied as the following Optimal Satisfiability (OpSAT) [Williams and Ragno,

2007] problem:

1. Decision variables: Binary 𝐵𝑖∈{True, False} for each labeled constraints in

PA;

2. Objective function: min Pr(𝐿𝐵=False), where 𝐿𝐵=False is the set of all labels

of constraints such that 𝐵𝑖=False;

3. Constraints: Pr(𝐿𝐵=False)≤∆ and 𝐶𝐵=True ∧ NA is consistent, where 𝐶𝐵=True

is the set of all constraints such that 𝐵𝑖=True.

187

The Boolean variable 𝐵𝑖 represents whether the labeled constraints 𝐿𝑖⇒𝐶𝑖 in the

constraint region PA is covered or not. In this formulation, a schedule extracted from

a consistent set of temporal constraints 𝐶𝐵=True∧NA has risk given by

Pr(𝐿𝐵=False) = Pr

(︃ ⋃︁
𝑖:𝐵𝑖=False

𝐿𝑖

)︃
. (6.1)

The probability (6.1) is computed using the Inclusion-Exclusion principle. How-

ever, since we are only concerned about the risk being below ∆, it is possible to

compute simpler upper and lower bounds for Pr(𝐿𝐵=False) using the Bonferroni in-

equalities [Comtet, 1974], as shown in Algorithm 6.2. A particular case of the Bon-

ferroni inequalities is the upper bound Pr(𝐿𝐵=False) ≤
∑︀

𝑖:𝐵𝑖=False Pr(𝐿𝑖), known as

Boole’s inequality.

Algorithm 6.2: Sequential probability approximations.
Input: Set of labels 𝐿𝐵=False, prob. model 𝑃 , risk threshold ∆.
Output: Whether Pr(𝐿𝐵=False) is below, above, or is equal to ∆.

1 Function Bonferroni(𝐿𝐵=False, 𝑃,∆)

2 bound ← 0
3 for 𝑖 = 1 to |𝐿𝐵=False| do
4 [𝑒1, . . . , 𝑒𝑚]← All subsets of 𝐿𝐵=False with 𝑖 elements.
5 probInc ←

∑︀𝑚
𝑖=1 Pr(𝑒𝑖)

6 if 𝑖 is odd then
7 bound ← bound + probInc
8 if bound < ∆ then
9 return BELOW

10 else
11 bound ← bound − probInc
12 if bound > ∆ then
13 return ABOVE

14 return EQUAL

The worst case performance of Algorithm 6.2 is equivalent to computing (6.1) and

comparing it with ∆. The procedure for determining CCSC of PTPN’s in Algorithm

6.3 is explained below.

Lines 2,3 : partitions constraints as described in this section. If NA is inconsistent,

188

terminates with failure;

Lines 5-7 : creates an OpSAT instance for risk minimization as described in this

section. Risk bounds are computed with Algorithm 6.2. If the chance constraint

is violated, terminates with failure;

Lines 9-12 : if the chance constraint is satisfied with a consistent PSTNU, returns

the PSTNU from which the strongly consistent schedule can be extracted. Oth-

erwise, learns a new conflict in terms of infeasible constraints.

Algorithm 6.3: Chance-constrained strong consistency.
Input: PTPN 𝑁 , controllable scenario CS , risk threshold ∆.
Output: Feasible PSTNU.

1 Function CCSC(𝑁,𝐶𝑆,∆)

2 {NA,NI ,PA}←Partition(CS ,N)
3 if NA is inconsistent then
4 return FAIL

5 bConf← ∅
6 while (candB ← NextBest(bConf))̸=∅ do
7 if Pr(𝐿𝐵=False(𝑐𝑎𝑛𝑑𝐵)) > ∆ then
8 return FAIL

9 if CB=True(𝑐𝑎𝑛𝑑𝐵) ∧ NA is consistent then
10 return 𝐶𝐵=True(𝑐𝑎𝑛𝑑𝐵) ∧ NA

11 else
12 𝑏𝐶𝑜𝑛𝑓 ← 𝐿𝑒𝑎𝑟𝑛𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑏𝐶𝑜𝑛𝑓, 𝑐𝑎𝑛𝑑𝐵)

13 return FAIL

6.5 Numerical chance constraint evaluation

The results in this section concern Algorithm 6.3, which is used within CLARK

to establish if PTPN’s are strongly consistent. Figure 6-3 compares the relative

average performance of our conflict-directed approach versus the current practice

using chronological search (CS) when evaluating the chance constraint for strongly

consistent policies on a set of randomly generated PTPN’s. Conflict-directed methods

189

have the additional overhead of learning conflicts whenever infeasibility is detected,

so it was not clear whether they would perform better when trying to evaluate the

chance constraint.

When dealing with hand-written examples, searching for a CCSC policy using CS

or CDA* yielded the same performance. For small instances, there is no practical

value on learning conflicts, since CS is able to explore all solutions in a matter of

milliseconds. Thus, no useful conclusions could be drawn. Therefore, we randomly

generated labeled temporal constraints conditioned on controllable and uncontrollable

choices with moderately-sized domains (about 10 elements each). Probability models

were also randomly generated. Simple temporal constraints were created between

random pairs of nodes with varying bounds. The goal was to either find a CCSC

schedule or return that no solution existed. Our implementation of CDA* searches

for a strongly consistent policy as explained in Section 6.4.2, while CS tries to find a

feasible STN by relaxing temporal constraints in best-first order of risk.

A problem with𝑁 conditional constraints induces a search space of size 2𝑁 possible

solutions. Both algorithms were run until the first candidate satisfying the risk bound

∆ was found or no more solutions were available. Whenever more than one solution

existed, CDA* returned the one incurring minimum risk. For relatively small plans

with no more than 10 conditional constraints, we see that CS and CDA* showed very

similar performances. However, if one increases the size of the problem by a few more

constraints, we see a strong exponential growth in the time required by CS to either

find a solution or return that no solution exists. Our approach using CDA*, on the

other hand, kept its performance virtually unchanged. Despite the exponential trend

in Figure 6-4 for CDA*, we see that it happens at a much smaller rate than for CS.

It is worthwhile to mention that CS was able to find feasible schedules quickly

when the “hard” temporal constraints causing infeasibility had low probabilities as-

signed to them. In this cases, it was easy to restore feasibility by relaxing these

low probability constraints while meeting the chance constraint. It ran into trou-

bles, however, whenever temporal constraints causing infeasibility were assigned high

probabilities. In these cases, CS preferred to explore numerous lower risk alternatives

190

Figure 6-3: Average time to solution for CDA* versus CS.

Figure 6-4: Average time complexity growth for CDA*.

191

before realizing that the source of infeasibility had high probability and, therefore,

violated the chance constraint. In these situations, the conflict extraction overhead

paid off by quickly revealing the problematic constraints with high probabilities and

determining that the chance constraint was infeasible.

6.6 Conclusions

In support of this thesis’ goal of generating risk-bounded conditional temporal plans,

this chapter extends the results for unconditional scheduling under uncertainty in

Chapter 5 to risk-aware scheduling of PTPN’s. It also introduces chance-constrained

weak and strong consistency, two novel types of risk-aware consistency guarantees

for PTPN’s. For the efficient determination of chance-constrained strong consistency,

we present a “diagnostic” approach based on CDA* [Williams and Ragno, 2007] that

identifies sets of conflicting temporal constraints that can be safely ignored in order

to restore temporal consistency.

With the risk-aware conditional scheduling methods developed in this chapter, we

have all the necessary tools to construct CLARK, a chance-constrained conditional

temporal planner for agents that must operate under uncertainty. This is the topic

of the next chapter.

192

Chapter 7

Integrated CLARK experiments

“In theory, there is no difference between theory and practice. In

practice, there is.”

Probably Jan L. A. van de Snepscheut

Previous chapters are concerned with the individual components of CLARK, first

described in Section 1.4, and how these components relate and compare to the state

of the art in their specific fields. In contrast, this chapter pursues a holistic view of

CLARK by first revisiting its internal structure in greater detail, and showing how it

is integrated within Enterprise [Burke et al., 2014,Timmons et al., 2015], a system

integration architecture for closed-loop control of autonomous systems. Next, we

explain the process through which pSulu [Ono and Williams, 2008,Blackmore et al.,

2011,Ono et al., 2012b,Ono et al., 2012a,Ono et al., 2013], a chance-constrained path

planner, is incorporated within CLARK as a constraint checker for planning problems

featuring uncertain continuous dynamics and collision constraints. Finally, we present

CLARK achieving its goal of generating risk-bounded conditional plans over rich sets

of mission constraints in two application domains that can greatly benefit from risk-

aware autonomy: collaborative human-robot manufacturing and data retrieval agents.

193

7.1 The CLARK system

As first mentioned in Section 1.4, the Conditional Planning for Autonomy with Risk

(CLARK) system is a combination of the different tools developed in this thesis for the

generation of chance-constrained, conditional temporal plans for autonomous agents

operating under uncertainty. In this section, we provide a detailed description of its

different elements, as depicted by the block diagram in Figure 7-1.

Figure 7-1: Block diagram of the different elements composing CLARK. Inputs are
shown to the left of CLARK’s core (surrounded by the dotted line), while outputs
are shown to the right (repeated from Figure 1-9 on page 39).

Even though this may be clear from CLARK’s block diagram, it is worthwhile

to mention that CLARK and RAO* (Chapter 3) are not interchangeable concepts,

and should not be confused with each other. The RAO* algorithm is a component of

CLARK that generates risk-bounded conditional policies from a CC-POMDP descrip-

tion, which could be replaced by any other algorithm that served the same purpose

(possible improvements of RAO* are discussed in Chapter 8 and Appendix A). At

the same time, the term CLARK is used to refer to the ensemble shown in Figure

7-1, which combines RAO*, risk-aware constraint checkers, and translators for inputs

and outputs.

7.1.1 Inputs

As shown at the bottom left corner of Figure 7-1, the input model to CLARK’s

core is always a CC-POMDP, which can either be directly supplied to the system,

194

or generated from some other type of user-provided input. In this section, we detail

how CC-POMDP models can be directly specified to CLARK, or generated as an

extension to an existing PDDL [McDermott et al., 1998,Fox and Long, 2003,Fox and

Long, 2006,Hoffmann and Edelkamp, 2005,Gerevini and Long, 2005] definition. For

the mapping between cRMPL execution to CC-POMDP shown in Figure 7-1, please

refer to Section 4.5.2.

CC-POMDP

A CC-POMDP input to CLARK is essentially a software entity implementing Defi-

nition 3.1, plus a few other helper functions. In the following, let 𝑠 ∈ 𝒮 be a full state

assignment; 𝑎 ∈ 𝒜 be an action description; 𝑜 ∈ 𝒪 be an observation symbol; and

𝐶 ∈ 2𝒞 be a set of constraints, where 𝒮,𝒜,𝒪, 𝒞 are as in Definition 3.1.

In order to facilitate understanding, we ground the different functions composing

a CC-POMDP input to CLARK on the example shown in Figure 7-2. The functions

in a CC-POMDP model are as follows:

∙ actions(s): returns a set 𝐴 ∈ 2𝒜 of applicable actions in state 𝑠. In Figure

7-2, the set 𝐴 at the robot’s position is 𝐴 = {up, down, left, right}, each el-

ement depicted by an arrow. At the top left corner square, the set would be

𝐴 = {down,right}, while at the goal position 𝐺, 𝐴 = ∅. A state s such that

actions(s)=∅ is a terminal state.

∙ state_transitions(s,a): corresponds to the stochastic state transition func-

tion 𝑇 : 𝒮 × 𝒜 × 𝒮 → [0, 1]. Given a state 𝑠 and an action 𝑎, returns a set of

tuples (𝑠next , 𝑝), where 𝑠next ∈ 𝒪 is a possible next state from 𝑠 and 𝑝 ∈ [0, 1] is

the probability of transitioning from 𝑠 to 𝑠next . On the bottom right quadrant

of Figure 7-2, we see a graphical representation of the state transition function

for a robot that, when told to move in one direction, may also stay put or slip

to the sides. In the particular example in Figure 7-2, we have

state_transitions(𝑠green,right) =

{(𝑠red , 0.8), (𝑠green , 0.1), (𝑠blue , 0.05), (𝑠yellow , 0.05)}.

195

Figure 7-2: Simple scenario that can be modeled as a CC-POMDP: a robot with
unreliable movements and noisy position sensors that must move around a grid to
get to its goal 𝐺. Execution should be carried with bounded risk of colliding against
obstacles (black squares).

Note that the probabilities in the set generated by state_transitions must

always sum to one, since they represent a probability distribution over next

states.

∙ observations(s): corresponds to the stochastic observation function 𝑂 : 𝒮 ×

𝒪 → [0, 1]. Given a state 𝑠, returns a set of tuples (𝑜, 𝑝), where 𝑜 ∈ 𝒪 is a

possible observation symbol at 𝑠 and 𝑝 ∈ [0, 1] is the probability of observing 𝑜

at 𝑠. On the bottom left quadrant of Figure 7-2, we see a graphical depiction of a

noisy sensor that returns the current position on the grid with high probability,

or one of the adjacent cells with uniformly low probability. In this particular

196

example, let 𝑠red be the red square on the bottom left quadrant. In this case,

we have

observations(𝑠red) = {(𝑜𝑠red , 0.76)} ∪ {(𝑜𝑠adj , 0.03)|𝑠adj is adjacent to 𝑠red}.

Note that, as with state_transitions, the probabilities in the set generated

by observations must always sum to one, since they represent a probability

distribution over observation symbols.

∙ value(s,a): plays the role of the reward function 𝑅 : 𝒮×𝒜 → R, returning the

value of executing action a at state s. We use the term value, instead of reward,

because our implementation allows value(s,a) to output either rewards, which

are maximized, or costs, which are minimized. In Figure 7-2, the numbers next

to arrows represent the cost of moving in either direction. Therefore, for Figure

7-2, we have

value(𝑠,𝑎) = 1,∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜.

∙ heuristic(s): this function returns the admissible state value heuristic ℎ𝑄(𝑠)

used to compute the admissible belief value heuristic

ℎ𝑄(𝑏𝑘+1) =
∑︁
𝑠𝑘+1

𝑏(𝑠𝑘+1)ℎ𝑄(𝑠𝑘+1), (3.32)

which in turn is used in the heuristic value-to-go estimate

�̂�(𝑏𝑘, 𝑎𝑘)=
∑︁
𝑠𝑘

𝑅(𝑠𝑘, 𝑎𝑘)𝑏(𝑠𝑘)+
∑︁
𝑜𝑘+1

Pr(𝑜𝑘+1|𝑎𝑘, 𝑏𝑘)ℎ𝑄(𝑏𝑘+1). (3.34)

In Figure 7-2, since the robot may slide diagonally when moving, a possible

admissible state heuristic could be the Chebyshev distance between 𝑠 and 𝐺,

i.e.,

ℎ𝑄(𝑠) = max(|𝑥𝐺 − 𝑥𝑠|, |𝑦𝐺 − 𝑥𝑦|), (7.1)

197

where (𝑥𝑠, 𝑦𝑠) and (𝑥𝐺, 𝑦𝐺) are, respectively, the horizontal and vertical coordi-

nates of a grid state 𝑠 and the goal cell 𝐺.

∙ state_risk(s): for each set of constraints 𝐶, this function returns 1 if state

s violates 𝐶. Therefore, it plays the role of the constraint violation function

𝑐𝑣(𝑠𝑘, 𝐶) in

𝑟𝑏(𝑏𝑘, 𝐶) =
∑︁
𝑠𝑘∈𝑆

𝑏(𝑠𝑘)𝑐𝑣(𝑠𝑘, 𝐶). (3.15)

Running into one of the obstacle cells is an example of constraint violation in

Figure 7-2.

∙ execution_risk_heuristic(s): this function returns the admissible state exe-

cution risk heuristic ℎer(𝑠𝑘+1|𝜋) used to compute the admissible belief execution

risk heuristic

ℎer(𝑏𝑘+1|𝜋) =
∑︁
𝑠𝑘+1

𝑏(𝑠𝑘+1)ℎer(𝑠𝑘+1|𝜋). (3.29)

In the lack of a better admissible estimate, one can always choose

execution_risk_heuristic(s) = state_risk(s).

Note that the state_risk(s) and execution_risk_heuristic(s) functions in a

CC-POMDP input encapsulate all constraint theory-dependent quantities necessary

to the evaluation of mission risk, causing the higher level planning in CLARK to be

performed in a theory-agnostic setting. This property is useful later in this chapter,

when CLARK is used to generate solutions for planning domains involving risk-aware

path planning and scheduling.

PDDL

As mentioned in Chapter 2, PDDL [McDermott et al., 1998] and its enhancements

[Fox and Long, 2003,Fox and Long, 2006,Hoffmann and Edelkamp, 2005,Gerevini and

198

Long, 2005] have become standard languages for the definition of planning domains,

with most current planners implementing either all language features, or subsets

useful for specific purposes. Therefore, adding support to PDDL is an important step

towards CLARK’s use as a standalone risk-aware planning tool. To the best of our

knowledge, however, there is currently no PDDL variant that supports all modeling

features for which CLARK is designed, such as probabilistic temporal uncertainty,

sensing actions, and chance-constrained planning. At the same time, this section

does not seek to provide a complete encoding of all PDDL features into CC-POMDP,

which is beyond the scope of this thesis. Instead, here we restrict ourselves to a

mapping from PDDL domains with durative actions [Fox and Long, 2003] to CC-

POMDP that retains the convenient plan operator semantics defined in PDDL, while

also adding support, among other things, to probabilistic scheduling and chance-

constrained planning.

The key idea behind the conversion from durative PDDL domains to CC-POMDP

is to map durative PDDL actions to primitive cRMPL episodes (Section 4.4.1) by

leveraging the constraints defined in Section 4.4.2. The steps involved in this conver-

sion are listed in the following.

1. A grounded durative PDDL action 𝑎𝑑 becomes a primitive cRMPL episode 𝑒𝑎

with suitable duration and action;

2. Each predicate in 𝑎𝑑 becomes a Boolean cRMPL state variable;

3. Preconditions and effects in 𝑎𝑑 become cRMPL assignment constraints;

4. Preconditions are added as at start state constraints in 𝑒𝑎, while effects are

added as at end state constraints;

Figure 7-3 shows an example of a durative action encoded in PDDL2.1, and Figure

7-4 shows one particular grounding1 of Figure 7-3: a traversal action from location l1

to location l2 by a rover rov that takes 20 units of time on average, with standard

1Grounded PDDL actions have all their parameters, which start with “?”, assigned constant
values.

199

(: durat ive−ac t i on move
: parameters (? s e l f − rover ? l o c1 − l o c a t i o n ? l o c2 − l o c a t i o n)

: durat ion (= ? durat ion (t raver sa l_t ime ? l o c1 ? l o c2))
: cond i t i on

(and
(at s t a r t (at ? s e l f ? l o c1))
(at s t a r t (i d l e ? s e l f))

)
: e f f e c t

(and
(at end (not (at ? s e l f ? l o c1)))
(at end (at ? s e l f ? l o c2))))

Figure 7-3: Durative action in PDDL2.1 representing a traversal between two loca-
tions by a rover.

deviation of
√

2.5 units of time. The episode resulting from running the code in Figure

7-4 is shown in Figure 7-5. Even though the encoding in Figure 7-4 is quite verbose,

it exactly corresponds to the aforementioned conversion steps and can be efficiently

automated, since cRMPL is an extension of Python.

One important advantage of using cRMPL episodes to encode durative PDDL

actions is that one can make use of cRMPL’s support to probabilistic durations and

chance constraints to represent actions with uncontrollable durations, and which must

be executed under bounded risk. This extended expressiveness of cRMPL is also used

in Section 7.1.4, in which we show how risk-bounded path planning can be incorpo-

rated into CLARK by representing map traversals as chance-constrained cRMPL

episodes.

With this mapping from durative PDDL actions to cRMPL episodes, the final

step is to define a CC-POMDP model that operates with these episodes. For that,

let pred(𝑠) be the set of true Boolean predicates in state 𝑠; constr(𝑠), the set of

constraints in 𝑠; and event(𝑠), the temporal event associated with 𝑠. Following the

notation from the previous section, the CC-POMDP model is defined as follows.

∙ actions(s): returns a set 𝐴 ∈ 2𝒜 of applicable episodes in state 𝑠. An episode

200

Figure 7-4: Grounded version of the durative action from Figure 7-3 written in
cRMPL. Unlike PDDL, the cRMPL version supports probabilistic uncontrollable du-
rations.

is applicable in 𝑠 if its preconditions encoded as at start constraints are con-

tained within pred(𝑠).

∙ state_transitions(s,a): in case of deterministic transitions, returns a sin-

gleton {(𝑠′, 1.0)}, where pred(𝑠′) is obtained by adding and removing, respec-

tively, the positive (true predicates) and negative (false predicates) effects of 𝑎;

constr(𝑠′) contains all elements from constr(𝑠), plus the duration of 𝑎 (which

may be probabilistic) and a [0,∞] simple temporal constraint from event(𝑠) to

the start event of 𝑎; and event(𝑠′) is the end event of 𝑎. Probabilistic transitions

are defined in a similar way, with the extra step that constraints in constr(𝑠′)

have an assignment to a probabilistic choice added to their labels (see Definition

201

Figure 7-5: Depiction of the episode generated by the cRMPL code in Figure 7-4.

4.5).

∙ observations(s): for fully observable PDDL models, this function returns a

unique identifier for 𝑠. If one wishes to model a partially observable extension

to the PDDL model, this function can be suitably defined to meet modeling

needs.

∙ value(s,a) and heuristic(s): dependent on the particular problem being

modeled.

∙ state_risk(s) and execution_risk_heuristic(s): as with the previous two

functions, these are dependent on the particular constraints used in the model.

In this chapter, we are mostly concerned with probabilistic temporal constraints

and collision constraints for path planning.

7.1.2 Outputs

The solution to the input CC-POMDP given to CLARK is an optimal conditional

policy that entails a consistent conditional constraint system with high probability.

Then, as shown in Figure 7-1, this policy can be converted into an output cRMPL

program, which can later be used as an optimal subroutine within a hierarchical

composition of cRMPL programs. This section explains how this conversion process

takes place.

A cRMPL program can serve as both input and output to CLARK. There are,

however, significant distinctions in structure and semantics between input and output

cRMPL programs. When given as input, cRMPL programs are meant to represent

high-level constraints, including goals, that the Plant must satisfy during execution,

along with expert “advice” from the cRMPL programmer to the program executive

202

in the form of flexible choice among subprocedures. Therefore, input cRMPL pro-

grams are supposed to represent families of potential solutions to the temporal control

problem represented by the cRMPL program, which the program executive explores

while reasoning about the feasibility of state and temporal constraints. On the other

hand, output cRMPL programs, which are derived from the CC-POMDP policy 𝜋

computed by RAO*, represent a commitment to one specific risk-bounded, optimal

candidate within this family of potential solutions. Therefore, even though output

cRMPL programs can still have uncontrollable choices representing runtime observa-

tions that condition program execution, they no longer contain controllable choices,

since these are assigned their optimal values by RAO*. Algorithm 7.1 shows the

pseudocode used to convert RAO* policies into output cRMPL programs.

Algorithm 7.1: Conversion from CC-POMDP policies to cRMPL programs.
Input: CC-POMDP policy 𝜋, hypergraph 𝐺 from which 𝜋 was obtained.
Output: cRMPL program 𝑝 representing the policy.

1 Function PolicyTocRMPL(𝐺, 𝜋)
2 𝑝← RMPyL(RecursiveConvert(𝐺, 𝜋, Root(𝐺)))
3 return 𝑝

4 Function RecursiveConvert(𝐺, 𝜋, 𝑛)
5 if 𝑛 is terminal then
6 return Episode(action=None)

7 else
8 𝑒𝑝← Episode(action=𝜋(𝑛))
9 ℎ𝑒 = Hyperedge(𝐺, 𝑛, 𝜋(𝑛))

10 𝑜𝑏𝑠← Choice(domain=Values(ℎ𝑒), ctype=′′𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐′′)
11 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛← Successors(he)

12 𝑐ℎ𝑖𝑙𝑑𝐸𝑝𝑠← ∅
13 for 𝑐 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do
14 𝑐ℎ𝑖𝑙𝑑𝐸𝑝𝑠← 𝑐ℎ𝑖𝑙𝑑𝐸𝑝𝑠 ∪ RecursiveConvert(𝐺, 𝜋, 𝑐)

15 return sequence(𝑒𝑝, observe(𝑜𝑏𝑠, 𝑐ℎ𝑖𝑙𝑑𝐸𝑝𝑠))

Finally, the cRMPL program generated by Algorithm 7.1 can be converted into

a PTPN (Section 4.5.1) by translating its content according to the XML schema

shown in Appendix C. An example of a PTPN generated from a CC-POMDP policy

computed by CLARK can be seen in Figure 7-6.

203

Figure 7-6: Example of a PTPN obtained from a CC-POMDP policy.

7.1.3 Execution on Enterprise

As pointed out in Section 1.4, the execution of PTPN’s generated by CLARK, e.g.,

Figure 7-6, is performed by the Pike dispatcher [Levine and Williams, 2014], and we

refer to the combination of CLARK and Pike as the CLARK executive (Figure 7-7).

CLARK generates a PTPN for which it can guarantee that a feasible schedule

204

Figure 7-7: The CLARK executive, a combination of CLARK and Pike used in closed-
loop control applications. The conditional temporal policy generated by CLARK is
sent to Pike in the form of a PTPN, which Pikes then takes care of dispatching through
the physical hardware interface while performing execution monitoring. (repeated
from Figure 1-10 on page 41).

exists with high probability, and forwards it to Pike. However, instead of providing a

PTPN containing a fixed schedule, CLARK improves the executive’s ability to adapt

to disturbances by giving Pike the flexibility to pick times for the temporal events as

execution unfolds. In addition to scheduling temporal events in real time, Pike offers

an additional line of defense against external disturbances by constantly monitoring

plan execution: should Pike detect a disturbance that will cause its current plan to

fail, it immediately triggers a replanning signal to CLARK using the current state of

the system as the initial belief. This ability is exercised in the first half of Section 7.3,

where the CLARK executive’s reactive robustness through replanning is assessed in

the context of a science retrieval mission for a planetary rover acting under temporal

uncertainty and time pressure.

In order to perform its activity-dispatching and execution-monitoring duties, Pike

relies on the hybrid state estimator in Figure 7-7 to collect sensor readings (camera

images, inertial navigation data, point clouds from SLS sensors, etc.) and convert

them into discrete logical predicates that Pike uses to monitor execution, such as

“the circuit component is on the table” and “the rover is at the relay location”. In

support of the hybrid state estimator, this thesis developed a novel robust data fusion

205

algorithm that is capable of handling measurements from faulty sensors [Santana

et al., 2014, Santana et al., 2016a]; and a data-driven algorithm capable of learning

expressive hybrid dynamical models that can aid in state uncertainty mitigation when

synthesizing CC-POMDP policies [Santana et al., 2015]. We refer the reader to these

references and [Timmons, 2013, Lane, 2016] for further details, and to the video at

https://www.youtube.com/watch?v=Fz1s5jAgEew for a hardware demonstration.

Figure 7-8: CLARK executive as part of Enterprise. The diagram is a courtesy of
Catharine McGhan and Tiago Vaquero.

Conditional plans generated by CLARK are executed in simulation or on real

hardware through the Enterprise [Burke et al., 2014, Timmons et al., 2015] archi-

tecture shown in Figure 7-8, which combines the CLARK executive with the hybrid

206

https://www.youtube.com/watch?v=Fz1s5jAgEew

state estimator from Figure 7-7 and a distributed hardware interface shown as Robot’s

Activity Manager in Figure 7-8. Enterprise was used for all experiments described in

this chapter.

7.1.4 Chance-constrained path planning

The ability to perform path planning for a mobile robot with uncertain dynamics

and moving around obstacles is crucial in many robotics domains, including several

demonstrations involving CLARK. Moreover, as in the field of Task And Motion

Planning [Lozano-Pérez and Kaelbling, 2014,Srivastava et al., 2014,Toussaint, 2015,

Fernández-González et al., 2015,Lin et al., 2016], path planning for a robot may not

be a goal in itself, but instead a secondary optimization or feasibility check done

in support of higher level mission goals, such as performing a manufacturing task

involving the assembly of several components, or collecting information at different

locations around a map. Finally, for robots whose pose and dynamics are uncertain,

it may be the case that motion planning can only be realistically performed within

non-zero risk of collision. In this section, we explain how pSulu [Ono and Williams,

2008,Blackmore et al., 2011,Ono et al., 2012b,Ono et al., 2012a,Ono et al., 2013], a

chance-constrained path planner for robots with uncertain dynamics, is used within

CLARK’s CC-POMDP models to handle generation of conditional plans for Plants

with continuous dynamics and collision constraints.

The purpose of incorporating pSulu within CLARK can be pictorially understood

from Figure 7-9. There, a robot with uncertain pose and dynamics moving on a plane

must travel from its initial position (marked “0” at the bottom left corner of the map)

to a goal location (marked “10” at the upper middle half) while avoiding collisions

with different obstacles, which are shown as gray polygons. However, since the robot’s

uncertain pose is represented by Gaussian random variables, there is always a non-

zero probability that its true pose might be in collision with one of the obstacles. For

that reason, pSulu operates on a risk-bounded path planning framework that, given

a risk bound ∆ for a traversal, treats ∆ as a “resource” that gets distributed amongst

207

Figure 7-9: A chance-constrained traversal generated by pSulu for a robot with linear
dynamics and Gaussian noise. The 3𝜎 ellipses are shown in red.

𝑛 trajectory segments such that

𝑛∑︁
𝑘=0

𝑟col(𝑘) ≤ ∆, (7.2)

where 𝑟col(𝑘) is the probability of colliding at the 𝑘-th segment. Equation (7.2) is

essentially the same as (3.26) in Section 3.2.4, where we treat different forms of chance

constraints that can be imposed on CC-POMDP models.

Within CLARK, we use the pSulu implementation described in [Blackmore et al.,

2011,Arantes et al., 2016b]. Letting 𝑥𝑘 and 𝑢𝑘 denote, respectively, the pose (position

and velocity) and continuous control input at time step 𝑘 for a robot moving on a

208

plane, the inputs to pSulu are given by:

∙ the mean 𝑥0 and covariance matrix 𝑃0 for a Gaussian random variable 𝑁(𝑥0, 𝑃0)

representing pose uncertainty at the start of the path;

∙ the goal pose 𝑥𝑔;

∙ a linear, time-invariant (LTI) dynamical model with Gaussian disturbances

𝑥𝑘+1 = Φ𝑥𝑘 + Γ𝑢𝑘 + 𝑤𝑘, 𝑤𝑘 ∼ 𝑁(0, 𝑄), (7.3)

where Φ, Γ, and 𝑄 are known matrices;

∙ the number 𝑛 of trajectory segments;

∙ a piecewise linear cost function representing fuel consumption, traveled distance,

or any other suitable objective;

∙ a bound ∆ on the risk of collision over the complete trajectory;

∙ collision-avoidance constraints represented as disjunctions of linear constraints

for polygonal obstacles on a map (e.g., the obstacles shown in Figure 7-9).

The process through which pSulu is incorporated within CLARK is depicted in

Figure 7-10. Given two arbitrary locations of interest 𝐴 and 𝐵 on a map with ob-

stacles (e.g., the robot’s current position and an interesting site for data collection),

pSulu is used to determine the existence of a trajectory with bounded risk of col-

lision in the continuous, as opposed to grid-based, space of poses (the method for

choosing these risk bounds is explained later in this section). If such a trajectory

exists, it is returned as a list of 𝑛 collision-free trajectory segments. For each one of

these segments, the duration predictor estimates a nondeterministic duration model

for that traversal, depicted in Figure 7-10 as hand-drawn densities for Gaussian and

uniform durations. In our implementation, the duration predictor can return any of

the uncontrollable duration models presented in Chapter 5: when simulated or real

traversal data is available, the duration predictor uses probabilistic models learned

209

Figure 7-10: Process of converting traversals generated by pSulu into chance-
constrained cRMPL episodes.

Figure 7-11: First two waypoint episodes for the traversal in Figure 7-9.

from data or specified by experts; when data is not available, the duration predic-

tor returns set-bounded (STNU-like) duration models. The start and end poses of

the segment, combined with the uncontrollable duration generated by the duration

predictor, are combined to form a waypoint cRMPL episode, which are composed

using cRMPL’s sequence operator to generate a chance-constrained (with chance

constraint ∆) composite episode representing the whole traversal. Figure 7-11 shows

the first two waypoint episodes for the traversal in Figure 7-9. In our demonstrations,

waypoint episodes are dispatched by Enterprise’s hardware interface using an imple-

mentation of RRT* [Karaman et al., 2011] to avoid smaller scale obstacles that are

not taken into account in the map given to pSulu.

The last aspect of pSulu’s integration within CLARK is how risk bounds 0 <

∆ < 0.5 are chosen2. Figures 7-12 and 7-13 show how the quality of a path, as mea-

2The mathematical model in pSulu restricts the risk bound to be 0 < Δ < 0.5 for convexity

210

Figure 7-12: Solution quality as a function of the chance constraint ∆ for traver-
sals between the two locations in Figure 7-9. The ProOFFull model contains the
complete set of constraints for collision avoidance in pSulu, while ProOFCSA is an
approximation of ProOFFull that can be computed faster.

sured by pSulu’s objective function, varies as a function of ∆ for the two locations

shown in Figure 7-9. In these figures, the labels ProOFFull and ProOFCSA denote

different mathematical models used in the implementation of pSulu: ProOFFull con-

tains the complete set of collision avoidance constraints described in [Arantes et al.,

2016b], while ProOFCSA is a faster, but approximate, model based on the customized

approach in [Blackmore et al., 2011].

The non-convex nature of the path planning problem around obstacles causes

the quality of pSulu’s solution to change discontinuously with ∆, as highlighted in

Figure 7-13. This can be intuitively understood by noticing that, despite the fact that

path planning is performed on a continuous space in Figure 7-9, there are discrete

reasons.

211

Figure 7-13: A closer look at the low risk portion of Figure 7-12.

“families” of very similar trajectories going around specific sides of the polygonal

obstacles. Therefore, for small values of the risk bound ∆, pSulu is forced to take

a low quality path that tries to stay as far away as possible from obstacles, while a

higher value of ∆ allows pSulu to improve the trajectory by taking “shortcuts” that

cut through the map. We also notice from Figures 7-12 and 7-13 that, far away from

these discontinuities, the quality of the objective remains virtually unchanged, thus

forming plateaus.

Since CLARK’s CC-POMDP models can only handle discrete actions, we approx-

imate the range of possible values of ∆ for traversals between pairs of map sites by

discrete bounds ∆1, . . . ,∆𝑚, where ∆𝑖 is taken at the left extremum (lower risk) of

the 𝑖-th plateau of the objective versus ∆ curve, where a plateau is defined as a range

of values of ∆ for which the variation of the objective is less than some user-specified

threshold. For a given map and site locations, our experiments performed this dis-

212

cretization as a preprocessing step for the construction of CC-POMDP models.

7.2 Collaborative manufacturing

Collaborative human-robot manufacturing is a tremendous source of inspiration for

this thesis. As motivated at the beginning of Chapter 1, modern manufacturing envi-

ronments are steadily moving away from a complete separation between humans and

robots, towards scenarios where there is synergistic and dynamic collaboration be-

tween them. On the one hand, such integration has great potential to boost productiv-

ity by leveraging the highly complementary skills of joint human-robot teams [Kaipa

et al., 2015]. On the other hand, it raises significant concerns related to safety and

reliability: from a human’s perspective, robots must be trustworthy partners that

act safely and effectively in an environment that may be constantly changing; from

a robot’s perspective, humans are somewhat unpredictable entities that can serve as

great sources of help and also disturbances, requiring constant adaptation and strong

reliance on sensor information.

The collaborative manufacturing test bed where CLARK was tested is shown

in Figure 7-14. It consists of a Baxter robot from Rethink RoboticsTM working in

tandem with a human partner to complete a mock electronic component assembly

(ECA) task, henceforth referred to as the ECA scenario (Figure 7-14b). The goal in

the ECA scenario is to correctly place and solder up to four electronic components,

represented by small cubes of different colors, on the flat acrylic “circuit board” sitting

at the center of the table. In order to solder a component at its correct location on

the circuit board, it is required that either the human or the Baxter use the cleaner

(elongated yellow box) to get rid of any contaminants at that location. Once a location

is clean, the corresponding component can be placed and soldered, with the additional

requirement that the soldering iron be used by the human. Electronic components

are assumed to start at the component bins on the left side of Figure 7-14b, while the

soldering iron and the cleaner start on the right side. The black-and-white tags seen

in Figure 7-14a are used for real-time 3D object tracking using off-the-shelf webcams,

213

(a) Picture of the ECA scenario with
elements not at their designated po-
sitions.

(b) Diagram of the ECA scenario showing the desig-
nated positions for different elements.

Figure 7-14: Baxter and pieces of a mock electronic component assembly task con-
stituting the ECA scenario for collaborative manufacturing demonstrations. Small
boxes represent electronic components; the elongated yellow box is a circuit board
cleaner; and the elongated green box is a soldering iron.

which look down towards the table. The 3D object pose estimates generated by

the camera system, combined with the sensor information coming from the Baxter,

are given as inputs to LCARS [Lane, 2016], a hybrid estimator of discrete Boolean

predicates (e.g., “block on table” and “hand holding blue block”) used by Pike to

monitor plan execution (see Figure 7-7).

Despite the simplicity of the task being performed in the ECA scenario, the at-

tempt to model all different ways in which the human and the environment can

interfere with the task, combined with the requirement that the task be executed

under time pressure and temporal uncertainty, makes it challenging for CLARK to

compute risk-bounded conditional temporal plans. Therefore, in this section, we

explore the use of cRMPL programs as expert human guidance for the generation

214

of risk-bounded conditional temporal plans in collaborative manufacturing domains.

For that purpose, we start by focusing on the collaborative pick-and-place portion

of the ECA scenario shown in Figure 7-15, in which the Baxter has to constantly

adapt to its human coworker while trying to move the components from the left side

of the table to their desired locations on the circuit board. We choose to start our

analysis by focusing on this subset because it is simple to be written in cRMPL, but

the complexity of the solution still grows exponentially with the number of blocks.

Figure 7-15: Simple collaborative pick-and-place task between the Baxter and a hu-
man coworker.

The cRMPL control program for the situation in Figure 7-15 is shown in Figure

7-16. It depends on calls to subprocedures shown in Figures 7-17 and 7-18, which

also generate cRMPL episodes as their outputs. The English interpretation of the

program in Figure 7-16 is the following:

“Start by asking the human whether they would like to start executing the

task. If they say no, the task is finished. Otherwise, observe the environ-

ment and determine whether the human has made any modifications to it.

If yes, record the modification. If not, choose a block to move to its goal

215

Figure 7-16: Top level function defining the cRMPL control program for the collab-
orative pick-and-place task.

Figure 7-17: Recursive function modeling the process of the Baxter observing whether
the human modified the environment, choosing the next block to move, and repeating
the process until no more blocks are left.

position that has not been moved yet. Repeat this process until there are

no more blocks to move.”

216

Figure 7-18: The say activity is primitive for the Baxter, and causes the string passed
as an argument to be read by a text-to-speech module. The pick_and_place_block
activity, on the other hand, is represented by a composite sequence episode composed
of the primitive activities pick and place.

The video at http://mers.csail.mit.edu/video-files/AFOSR/baxter_crmpl_

explained.mp4 shows the aforementioned example being dispatched in real time on

physical hardware by the CLARK executive for the particular case in which just the

red and green blocks must be moved to their appropriate locations. An intuition for

understanding how the cRMPL program in Figure 7-16 is dispatched is to consider

the execution policy as a sequence of if statements representing the conditions in the

program. However, the cRMPL program also causes the CLARK executive to rea-

son over timing constraints, otherwise difficult to capture with conventional control

structures such as if statements.

Blocks Activities Events Decisions Observations CD UD
1 8 22 1 2 29 2
2 33 88 5 6 117 12
3 198 522 31 32 695 78
4 1583 4164 249 250 5545 632

Table 7.1: Number of elements involved in the scheduling of the collaborative pick-
and-place task as a function of the number of blocks. Decisions are controllable
choices; observations are probabilistic uncontrollable choices; CD are controllable
durations represented as simple temporal constraints; and UD are uncontrollable
probabilistic durations.

Table 7.1 shows the number of elements involved in the scheduling of the collabo-

rative pick-and-place task as a function of the number of blocks being manipulated.

217

http://mers.csail.mit.edu/video-files/AFOSR/baxter_crmpl_explained.mp4
http://mers.csail.mit.edu/video-files/AFOSR/baxter_crmpl_explained.mp4
http://mers.csail.mit.edu/video-files/AFOSR/baxter_crmpl_explained.mp4
http://mers.csail.mit.edu/video-files/AFOSR/baxter_crmpl_explained.mp4

These numbers are obtained by unraveling the cRMPL program in Figure 7-16 into

a PTPN (see Appendix C), and counting the relevant elements. Figure 7-19 shows

the outcome of this unraveling for the case where there are two blocks.

Figure 7-19: PTPN for the collaborative pick-and-place task featuring two blocks.

218

As indicated by the presence of observation nodes in Table 7.1, execution policies

for the cRMPL program in Figure 7-16 are instances of conditional temporal plans,

precisely the type of problem that CLARK is designed to generate. Therefore, our

first goal was to assess the effectiveness of CLARK’s mapping from cRMPL execution

to CC-POMDP (Section 4.5.2), combined with the probabilistic scheduling algorithms

described in Chapters 5 and 6, relative to the state of the art.

If given a PTPN with controllable and uncontrollable choices and asked to “compile

it”, the Pike dispatcher [Levine and Williams, 2014] (the same used as part of the

CLARK executive in Figure 7-7) leverages the efficient constraint-labeling scheme

introduced by Drake [Conrad et al., 2009,Conrad, 2010,Conrad and Williams, 2011]

in order to determine the existence of a feasible schedule. Due to implementation

details, Pike is limited to verifying the temporal consistency of PTPN’s containing

only controllable temporal durations. Furthermore, if given a PTPN with controllable

choices, Pike will try to verify the temporal feasibility of all possible assignments to

them. This is in contrast with CLARK’s CC-POMDP strategy, which halts the

search for an execution policy the moment it can verify that its current candidate is

optimal and temporally feasible within risk bounds. Therefore, in order to perform

a fair comparison with Pike, we wrote a version of the cRMPL program in Figure

7-16 without the robot’s decision of which block to manipulate (it is forced to pick

the first one in alphabetical order), and with uncontrollable durations converted into

controllable ones. For this simplified cRMPL program, the unraveling into a PTPN

generates the numbers shown in Table 7.2.

Blocks Activities Events Observations Constraints
1 8 20 2 27
2 24 58 5 81
3 94 224 18 317
4 466 1106 87 1571

Table 7.2: Number of elements in the PTPN’s given to Pike, which contain no deci-
sions (controllable choices) and only simple temporal constraints (controllable dura-
tions). Refer to the numbers in Table 7.1 for a comparison of relative complexity.

The results for our first test comparing CLARK’s CC-POMDP compilation strat-

219

Blocks CLARK Pike

1
CD UD CD UD
0.03 s 0.03 s 0.50 s NA

2
CD UD CD UD
0.20 s 0.30 s 0.50 s NA

3
CD UD CD UD
2.97 s 3.04 s TO NA

4
CD UD CD UD

414.14 s 418.63 s TO NA

Table 7.3: Performance comparison between CLARK and Pike in the collaborative
pick-and-place scenario. The complexity of the scheduling problems for CLARK and
Pike are described, respectively, in Tables 7.1 and 7.2. The CD columns are used for
cRMPL programs containing only controllable durations, while UD columns are for
programs containing both controllable and uncontrollable (probabilistic) durations.
We use NA to denote that Pike cannot handle uncontrollable durations, and TO
to represent a compilation timeout (ran beyond 1 hour without returning a result).
Numbers are averages over ten runs.

egy with Pike’s constraint labeling are summarized in Table 7.3, with the complexity

of the scheduling problems for CLARK and Pike described, respectively, in Tables

7.1 and 7.2. In these tests, the total execution time was not constrained, so a feasible

schedule always existed. Pike verified the temporal consistency of its input PTPN

using Drake’s labeled All Pairs Shortest Path algorithm, while CLARK leveraged

the mapping from cRMPL execution to CC-POMDP from Section 4.5.2, and the

algorithms for strong scheduling under uncertainty described in Chapters 5 and 6.

Note that, while the PTPN’s given to Pike had no decisions, CLARK had to incre-

mentally unravel the cRMPL program in Figure 7-16, assigning controllable choices

and branching on uncontrollable ones, while using the aforementioned probabilistic

scheduling algorithms to check for temporal consistency along the way.

The results for 1 and 2 blocks in Table 7.3 indicate that, as expected, CLARK

and Pike have comparable performance for conditional temporal plans involving a

small number of constraints and choices (the higher number for Pike is explained

by a small communication overhead caused by ROS before returning a solution).

However, in the transition from 2 to 3 blocks, where the complexity of the problem

increases significantly for both CLARK and Pike, we see that CLARK only takes a

220

few seconds to find a conditional temporal plan with a feasible schedule, while Pike

times out at 1 hour without returning a solution. The increase in complexity is even

more dramatic for CLARK in the transition from 3 to 4 blocks, where the runtime

increases by two orders of magnitude. Note, however, that this is consistent with the

exponential behavior observed in Chapter 6 for strong conditional scheduling, which

CLARK has to repeat many times as it incrementally constructs the execution policy

for the cRMPL program.

In Table 7.3, the inclusion of probabilistic durations does not seem to have a

significant impact on search performance, as indicated by the CD and UD columns

under CLARK. This observation is consistent with two important facts: first, the

PARIS algorithm in Chapter 5 leverages linear programming and an efficient com-

mercial solver to handle both probabilistic and fully controllable scheduling; second,

the lack of a temporal constraint limiting execution duration allows feasible schedules

for probabilistic temporal networks to be found without the need for “squeezings”.

Figure 7-20 shows the impact of time windows on CLARK’s performance: for overly

constrained temporal problems (narrow time window), it is easy to determine the

infeasibility of the schedule. As the time window widens and causes the scheduling

risk to drop, we observe an increase in the search effort, but it tends to stabilize as

the problem becomes temporally unconstrained (wide time window).

It is worthwhile to draw a parallel between these results and the performance

of Murphy [Effinger, 2012], a pRMPL executive that greatly inspired this thesis.

Unlike CLARK, which is currently restricted to the generation of strong risk-bounded

schedules by leveraging the probabilistic scheduling algorithms from Chapters 5 and

6, Murphy is able to generate dynamic schedules for pRMPL programs by pursuing

a time discretization strategy, in which continuous time is represented by discrete

increments ∆𝑡, which are then directly embedded into the discrete state space of an

MDP.

Due to this time discretization requirement, the complexity of the MDP solved

by Murphy grows exponentially as the scheduling resolution is increased, i.e., ∆𝑡 is

shrunk. For the Wounded Soldier Example in [Effinger, 2012], a scenario modeled

221

(a) Scheduling risk. (b) Elapsed time.

Figure 7-20: Scheduling risk and time to compute a temporally feasible execution of
the collaborative pick-and-place task with 3 blocks, as a function of the width of the
time window.

with a pRMPL program featuring 5 activities, 2 observations, and 1 decision, the

search for an execution policy could take several minutes up to hours for resolutions

∆𝑡 less than 10 seconds. CLARK, on the other hand, can compute execution poli-

cies for cRMPL programs containing thousands of activities and hundreds of choices

(see Tables 7.1 and 7.3) through a combination of RAO*’s heuristic forward search

and performing probabilistic scheduling by reasoning over continuous-time temporal

networks. Even though this is not exactly a fair comparison, given that the dynamic

schedules generated by Murphy are harder to compute than the risk-bounded strong

schedules currently supported by CLARK, the improved scalability of the results in

Table 7.3 suggests that CLARK’s approach of representing scheduling problems as

networks of temporal constraints over continuous time, and leveraging efficient con-

straint checkers to test for the existence of a feasible schedule, has greater potential

of being able to scale to the complexity of real-world problems. In an effort to extend

CLARK to the generation of dynamic schedules leveraging a continuous time repre-

sentation, we sought to incorporate the state-of-the-art dynamic scheduling algorithm

for CSTNU’s described in [Cimatti et al., 2016a]. In a private communication with

one of the authors of the aforementioned work on April 9𝑡ℎ, 2016, we were told that

“for performance reasons, in the next release the maximum number of conditions [con-

222

ditions are observations] in each CSTNU will be limited to 26”. Even though 26 is

about one order of magnitude less conditions than CLARK can currently handle for

conditional temporal plans with strong schedules, it seems a significant improvement

over the size of the conditional temporal problems that can be handled through tem-

poral discretization in a reasonable amount of time. Unfortunately, we did not have

enough time to complete the integration of the algorithm in [Cimatti et al., 2016a] or

a probabilistic extension thereof within CLARK, but suggest it as key future work in

Section 8.2.

7.3 Data retrieval missions

In addition to collaborative human-robot manufacturing, data retrieval missions are

another application domain that can greatly benefit from risk-aware autonomy. For

instance, autonomous agents can be employed to explore interesting sites currently

out of reach for humans, such as Earth’s deep ocean waters and regions beneath

its polar ice caps; visit other celestial bodies in our solar system; and automate the

process of collecting information on the environments that surround us, such as urban

traffic and farm crops. In this context, this section discusses how CLARK was used

as part of the Resilient Space Systems (RSS) project between JPL, Caltech, WHOI,

and MIT, and how CLARK’s risk-aware temporal planning capabilities enabled the

achievement of RSS’ midyear review goals last spring. To the best of our knowledge,

CLARK is the first planner capable of handling the RSS demonstration scenario,

which requires joint handling of probabilistic scheduling constraints and path planning

with uncertain dynamics.

In close connection with this thesis’ goal, the RSS project aims at developing au-

tonomous agents that can reason quantitatively about uncertainty and mission risk,

and incorporate notions of safety to their decision-making while dynamically execut-

ing tasks in partially known, and potentially hazardous, environments. Towards this

goal, the technology demonstration that took place as part of RSS’ midyear review on

April 2016 incorporated the CLARK executive and Enterprise (Figure 7-8) as part of

223

the Resilient Spacecraft Executive (RSE) architecture [McGhan et al., 2015,McGhan

and Murray, 2015] diagrammatically shown in Figure 7-21.

Figure 7-21: Resilient Spacecraft Executive (RSE) architecture. In the RSS demon-
stration, the role of the risk-aware deliberative layer was performed by the CLARK
executive within Enterprise (Figure 7-8). The diagram is a courtesy of Catharine
McGhan and Tiago Vaquero.

In Figure 7-21, the deliberative layer consists of “deliberative” reasoning behavior

used to make decisions and perform risk-aware plan execution. In this demonstration,

the role of the deliberative layer is played by the CLARK executive within Enterprise

(Figure 7-8). At a more concrete level of abstraction, the habitual layer consists

of “habitual” behaviors that are performed by rote once learned through repetition,

such as trajectory planning. Finally, and further down the abstraction hierarchy,

the reflexive layer consists of “reflexive” low-level behaviors, such as leveraging PID

224

controllers to align a Mars rover to trajectory segments computed by the habitual

layer, while making sure not to bump against previously unseen obstacles. The left

side of Figure 7-21 shows the state measurement block, where raw sensor data is

processed, and which includes analysis and learning capabilities. In the remainder of

this section, we focus on CLARK as part of the deliberative layer.

Figure 7-22: Snapshot of the RSS demonstration environment.

A snapshot of the demonstration environment running in the Gazebo simula-

tor [Koenig and Howard, 2004] is shown in Figure 7-22, and a video of the demonstra-

tion can be found at http://mers.csail.mit.edu/video-files/rss/Resilient_

Space_Systems_Midyear_Review_April_5th_2016.mp4. In a map with obstacles

containing five locations of interest (1 through 5), a Mars rover is tasked with taking

pictures at locations 2, 3, and 5, as well as collecting rock samples from two out

of three potential collection sites at locations 2, 4, and 5. The rover is equipped

with two cameras: mastcam is a high resolution camera specifically designed to take

panoramic pictures, while hazcam is a lower resolution camera whose purpose is to

perform visual detection of unanticipated obstacles on the rover’s path. However,

if mastcam is unavailable, we allow hazcam to be used to take pictures of map lo-

cations due to the lack of a better option. Upon completion of its data collection,

225

http://mers.csail.mit.edu/video-files/rss/Resilient_Space_Systems_Midyear_Review_April_5th_2016.mp4
http://mers.csail.mit.edu/video-files/rss/Resilient_Space_Systems_Midyear_Review_April_5th_2016.mp4
http://mers.csail.mit.edu/video-files/rss/Resilient_Space_Systems_Midyear_Review_April_5th_2016.mp4
http://mers.csail.mit.edu/video-files/rss/Resilient_Space_Systems_Midyear_Review_April_5th_2016.mp4

the rover is required to drive to either location 2 or location 4 in order to relay its

information to an orbiting satellite, which is visible from these locations within a

limited time window [50, 2200] measured in seconds from the start of the mission.

There are six types of durative actions available to the rover, which are summarized

in Table 7.4: (I) perform a traversal between two locations; (II) activate a camera,

which gets automatically deactivated after use; (III) use an active camera to take

a picture; (IV) survey an area, which confirms or refutes the presence of a desired

rock sample; (V) collect a rock that has been detected by a survey operation; and

(VI) transmit a request (picture or rock sample analysis) to the satellite, which can

only be done during the period of time in which the satellite is visible. Appendix D

contains the PDDL model used in this demonstration, which was augmented with the

uncontrollable temporal durations in Table 7.4 according to the procedure described

in Section 7.1.1.

In addition to CLARK, tBurton [Wang and Williams, 2015b,Wang, 2015], POPF

[Coles et al., 2010], and OPTIC [Benton et al., 2012] were considered as temporal

planning options. Except for CLARK, the most important limiting factor for the

other planners was their inability to handle uncontrollable temporal durations. Since

COLIN and OPTIC are capable of handling planning with continuous resources, we

considered following [Ono et al., 2012a] and modeling risk as a “resource” consumed

by different actions, but the nonlinear nature of the “squeezings” of probabilistic

temporal constraints precluded this option. Even the temporal planner in [Cimatti

et al., 2015], which adapts COLIN [Coles et al., 2009, Coles et al., 2012] to handle

strong scheduling with STNU constraints, could not be used, due to its inability to

handle risk-aware scheduling.

Since the RSS scenario had been originally designed with unconditional temporal

planners in mind, one of its goals was to demonstrate reactive robustness through

replanning. On the one hand, unlike Sections 3.5 and 7.2, this demonstration re-

quirement has the downside of not exercising CLARK’s ability to achieve robustness

through conditional probabilistic planning, which allows an agent’s current decisions

to be influenced by anticipated future execution scenarios (e.g., picking up an um-

226

Action Duration type Representation
Take picture with mastcam set-bounded u[5,20]
Take picture with hazcam set-bounded u[5,20]

Collect rock sample set-bounded u[10,50]
Survey location set-bounded u[10,50]
Turn mastcam on uniform U(5,20)
Turn hazcam on uniform U(5,20)
Transmit data uniform U(10,30)
Move 𝑙1 ↔ 𝑙2 Gaussian N(270,100)
Move 𝑙1 ↔ 𝑙3 Gaussian N(220,100)
Move 𝑙1 ↔ 𝑙4 Gaussian N(220,100)
Move 𝑙1 ↔ 𝑙5 Gaussian N(270,100)
Move 𝑙2 ↔ 𝑙3 Gaussian N(250,100)
Move 𝑙2 ↔ 𝑙4 Gaussian N(230,100)
Move 𝑙2 ↔ 𝑙5 Gaussian N(270,100)
Move 𝑙3 ↔ 𝑙4 Gaussian N(240,100)
Move 𝑙3 ↔ 𝑙5 Gaussian N(290,100)
Move 𝑙4 ↔ 𝑙5 Gaussian N(237,100)

Table 7.4: Duration models used in the RSS demonstration. Set-bounded dura-
tions 𝑢[𝑎, 𝑏] are those found in STNU’s and represent random variables that take
values within the interval [𝑎, 𝑏] with unknown probability distribution. Similar to set-
bounded durations, a uniform duration 𝑈(𝑎, 𝑏) also takes values in the interval [𝑎, 𝑏],
but with known density (𝑏− 𝑎)−1 anywhere within the interval. Finally, a Gaussian
duration 𝑁(𝜇, 𝜎2) has mean 𝜇 and variance 𝜎2.

brella if there is a possibility of rain later in the day). On the other hand, by requiring

replanning at reactive timescales, the RSS scenario fostered, and empirically demon-

strated, CLARK’s ability to quickly generate emergency contingency temporal plans,

which often take the form of unconditional sequences of actions that seek to protect

the agent and its environment from harm [Arantes et al., 2015,Arantes et al., 2016a].

As first mentioned in Section 1.4 and reinforced in Section 7.1.3, being able to monitor

execution and react to failure conditions not anticipated by the CC-POMDP model is

key to enhancing the CLARK executive’s robustness to external disturbances. This is

because planning models, CC-POMDP and otherwise, are always incomplete approx-

imations of reality, thus requiring plan executives for risk-aware autonomous agents

to necessarily be ready to handle unmodeled contingencies. Moreover, even restricted

to unconditional temporal planning, the RSS scenario still could not be handled by

227

existing temporal planners, due to its requirement of risk-aware scheduling in the

presence of set-bounded and probabilistic uncontrollable durations. In Section 7.3.1,

we extend the model used in the RSS demonstration to handle the risk from path

planning collisions.

(a) First stage: nominal temporal plan. (b) Second stage: mastcam fault.

(c) Third stage: rock-not-found fault.

Figure 7-23: Different stage of the RSS demonstration available at the aforementioned
video link. The “nominal temporal plan” shown in 7-23a is the same one depicted
on the bottom right quadrant of Figure 7-22. The figures are a courtesy of Tiago
Vaquero and Catharine McGhan.

Figure 7-23 depicts three important stages in the RSS demonstration video referred

228

to earlier in this section. First, during the “nominal plan” stage in Figure 7-23a,

CLARK decides to visit locations 3, 2, and 5 in this order; collect rock samples at

5 and 2; and transmit its data to the satellite at location 2. However, the moment

the rover arrives at location 3, a mastcam fault is manually injected into the system,

preventing the rover from being able to take a picture at that location and causing

Pike to trigger replanning within the CLARK executive (Figures 7-7 and 7-8). Taking

into account the elapsed time since the beginning of execution, the time windows for

communication with the satellite are updated, and CLARK generates a new plan from

the rover’s current state that uses hazcam as a replacement for mastcam (Figure 7-

23b), while preserving all the other plan actions (but not their schedule). Once the

rover arrives at location 5, a fault related to the survey failing to detect the rock

sample is injected into the system, causing Pike to trigger replanning once again. A

graphical representation of the new plan generated by CLARK is shown in Figure

7-23c, in which the rover chooses to collect the rock sample at location 4, and to

transmit data at both locations 2 and 4.

Start time Activity
0.0 : (move rover1 l1 l3)

270.0 : (turnon_mastcam rover1 l3)
290.0 : (take_pictures_mastcam rover1 l3 pic_req1)
310.0 : (move rover1 l3 l5)
650.0 : (turnon_mastcam rover1 l5)
670.0 : (take_pictures_mastcam rover1 l5 pic_req3)
690.0 : (survey_location rover1 l5)
740.0 : (collect_rock_sample rover1 l5 rock_req1)
790.0 : (move rover1 l5 l2)
1110.0 : (transmit_data rover1 l2 rock_req1)
1140.0 : (turnon_mastcam rover1 l2)
1160.0 : (take_pictures_mastcam rover1 l2 pic_req2)
1180.0 : (transmit_data rover1 l2 pic_req2)
1210.0 : (transmit_data rover1 l2 pic_req1)
1240.0 : (transmit_data rover1 l2 pic_req3)
1270.0 : (survey_location rover1 l2)
1320.0 : (collect_rock_sample rover1 l2 rock_req2)
1370.0 : (transmit_data rover1 l2 rock_req2)

Table 7.5: Possible schedule for the risk-aware “nominal” temporal plan generated by
CLARK for the RSS demonstration scenario.

229

Figure 7-24: PTPN generated by CLARK and sent to Pike for the simple case where
only a picture at location 3 is needed. The actual scheduling of activities is performed
by Pike in real time as it dispatches the plan.

Figure 7-24 shows what the PTPN that CLARK sends to Pike looks like for the

simple case where only a picture at location 3 is needed3. Instead of generating a

fixed schedule for the plan, which is standard practice for temporal planners handling

controllable temporal durations, the PTPN in Figure 7-24 gives Pike the flexibility

to dispatch the plan in real time, thus improving the CLARK executive’s robustness

3A PTPN for the complete scenario cannot legibly fit on the page.

230

to temporal disturbances. Table 7.5 shows one possible schedule for the actions in

the risk-aware “nominal” temporal plan generated by CLARK for the complete RSS

demonstration scenario.

The durative actions in CLARK’s CC-POMDP are constructed from the PDDL

model in Appendix D and Table 7.4 by following the procedure in Section 7.1.1. States

in RAO*’s search graph contain references to the temporal constraints entailed by the

current policy, i.e., the uncontrollable durations of all actions that are currently part

of the policy, plus the time window constraints associated with the transmit actions.

Combined with the strong scheduling constraints (5.2) (page 156), these form the set

𝒞 of constraints in the CC-POMDP. The PARIS scheduler from Chapter 5 serves as

both the execution risk heuristic for RAO* and the constraint violation function 𝑐𝑣 in

the CC-POMDP: for intermediate search states, it computes an admissible estimate

of the scheduling risk bound byminimizing it over the current set of entailed temporal

constraints. At terminal search states, it computes this risk bound for the final set of

temporal constraints in the policy and returns it as the effective mission scheduling

risk, which then gets propagated by RAO*’s backup operations up to the root node

of the policy. A chance constraint er(𝑏0, 𝐶|𝜋) ≤ ∆ = 0.1% is used to limit the

scheduling risk over the complete execution, and the goal in the CC-POMDP is to

minimize the number of plan actions.

Since repeated evaluations of probabilistic temporal consistency is a costly op-

eration, we implemented an approach similar to [Ivankovic et al., 2014] and guided

RAO*’s search by computing sets of “helpful actions” and minimum length relaxed

(non-temporal) plans using a SAT-based subplanner inspired by SatPlan [Kautz and

Selman, 2006]. We chose a SAT-based encoding of the relaxed planning problem be-

cause it allowed easy generation of the set of all helpful actions at a state: after each

call to the SAT-based subplanner, we recorded the first action in the plan and added

the negation of its Boolean variable to the planning clauses, repeating this process

until the subplanner returned no solution. States stemming from helpful actions at

their parents were given preference in RAO*’s expansion, while other were labeled for

“delayed” expansion.

231

Goal combinations PL TTS [s] ER MR-MS [s] CC-MS [s]
𝑔1 5.00 0.19 1.15E-06 630.00 608.35
𝑔2 4.00 0.11 5.73E-07 390.00 378.05
𝑔3 5.00 0.18 1.15E-06 710.00 688.35
𝑔4 4.00 0.12 5.73E-07 400.00 388.05
𝑔5 4.00 0.13 5.73E-07 400.00 388.05

𝑔1, 𝑔2 8.00 0.40 1.15E-06 710.00 688.35
𝑔1, 𝑔3 9.00 0.65 1.72E-06 1070.00 1038.66
𝑔1, 𝑔4 8.00 0.41 1.15E-06 760.00 738.35
𝑔1, 𝑔5 8.00 0.41 1.15E-06 760.00 738.35
𝑔2, 𝑔3 8.00 0.40 1.15E-06 780.00 758.35
𝑔2, 𝑔4 7.00 0.31 5.73E-07 520.00 508.05
𝑔2, 𝑔5 7.00 0.31 5.73E-07 520.00 508.05
𝑔3, 𝑔4 8.00 0.46 1.15E-06 840.00 818.35
𝑔3, 𝑔5 8.00 0.49 1.15E-06 840.00 818.35
𝑔4, 𝑔5 8.00 0.47 1.15E-06 810.00 788.35

𝑔1, 𝑔2, 𝑔3 12.00 1.06 1.72E-06 1140.00 1108.66
𝑔1, 𝑔2, 𝑔4 11.00 0.84 1.15E-06 840.00 818.35
𝑔1, 𝑔2, 𝑔5 11.00 0.81 1.15E-06 840.00 818.35
𝑔1, 𝑔3, 𝑔4 12.00 1.40 1.72E-06 1200.00 1168.66
𝑔1, 𝑔3, 𝑔5 12.00 1.36 1.72E-06 1200.00 1168.66
𝑔1, 𝑔4, 𝑔5 12.00 1.63 1.72E-06 1190.00 1158.66
𝑔2, 𝑔3, 𝑔4 11.00 0.93 1.15E-06 910.00 888.35
𝑔2, 𝑔3, 𝑔5 11.00 0.97 1.15E-06 910.00 888.35
𝑔2, 𝑔4, 𝑔5 11.00 2.21 1.15E-06 880.00 858.35
𝑔3, 𝑔4, 𝑔5 11.00 0.92 1.15E-06 970.00 948.35

𝑔1, 𝑔2, 𝑔3, 𝑔4 15.00 5.72 1.72E-06 1270.00 1238.66
𝑔1, 𝑔2, 𝑔3, 𝑔5 15.00 6.02 1.72E-06 1270.00 1238.66
𝑔1, 𝑔2, 𝑔4, 𝑔5 15.00 9.59 1.72E-06 1260.00 1228.66
𝑔1, 𝑔3, 𝑔4, 𝑔5 15.00 8.95 1.72E-06 1330.00 1298.66
𝑔2, 𝑔3, 𝑔4, 𝑔5 14.00 3.20 1.15E-06 1040.00 1018.35

𝑔1, 𝑔2, 𝑔3, 𝑔4, 𝑔5 18.00 28.39 1.72E-06 1400.00 1368.66

Table 7.6: CLARK’s performance on the RSS demonstration for different combi-
nations of goals. PL is the Plan Length (number of actions); TTS is the Time to
Solution, i.e., the amount of time to generate a temporal plan with a schedule that
meets the chance constraint; ER is RAO* execution risk, which corresponds to the
scheduling risk for these plans; MR-MS is the Minimum Risk Makespan, i.e., the
temporal span to the temporal plan when scheduling risk is minimized; and CC-MS
is the Chance-Constrained Makespan, where the risk bound ∆ = 0.1% is exploited to
reduce the total execution time.

Let the different goals in the RSS demonstration scenario be denoted by the fol-

lowing aliases:

232

∙ 𝑔1: (transmitted pic_req1);

∙ 𝑔2: (transmitted pic_req2);

∙ 𝑔3: (transmitted pic_req3);

∙ 𝑔4: (transmitted rock_req1);

∙ 𝑔5: (transmitted rock_req2).

With this notation, Table 7.6 shows CLARK’s performance on the RSS demonstration

scenario as a function of the combination of goals that must be achieved by the

mission. In all test cases, CLARK generated optimal (minimum number of actions)

temporal plans handling all the different types of uncontrollable durations in Table

7.4, and respecting the risk bound ∆ = 0.1%. In fact, as shown by the fourth column

in Table 7.6, the scheduling risk of the temporal plans are quite far away from the

aforementioned risk bound. Therefore, as a post-processing step, temporal plans

generated by CLARK with uncontrollable durations (e.g., Figure 7-24) and execution

risk ∆′ < ∆ were given back to PARIS so that it could minimize its makespan with a

chance constraint ∆−∆′ (see Section 5.4.5). In order words, we used the remaining

“risk budget” to optimize a secondary plan objective (plan makespan) that was not

part of the original objective in the CC-POMDP. The results of this optimization are

shown on the last column of Table 7.6, where we see that all plan makespans were

reduced.

Finally, the third column (time to solution) in Table 7.6 indicates that CLARK

achieved its goal of providing risk-aware temporal planning with expressive tempo-

ral uncertainty models within reactive time scales. This is certainly not a claim

that CLARK is at the same level of efficiency as specialized temporal planners for

PDDL2.2 and above, which would require a full translation from PDDL2.2 into the

CC-POMDP framework, and the incorporation of special optimizations for temporal

PDDL planning that neither RAO*, nor its available CC-POMDP models, currently

possess. At the same time, to the best of our knowledge, there are currently no tem-

poral planners capable of handling the probabilistic scheduling constraints required

233

by the RSS demonstration, and our results in Table 7.6 show that CLARK and its

CC-POMDP models attain good performance for scenarios of practical interest.

7.3.1 Extending RSS with risk-bounded path planning

The previous discussion of the RSS demonstration does not consider the risk stem-

ming from collisions with map obstacles, and how this risk of collision impacts the

rover’s choice of activities and schedule for a mission that must be carried under

bounded risk. Therefore, in this section, we extend the CC-POMDP model for the

RSS demonstration to handle risk-bounded path planning, as explained in Section

7.1.4.

The CC-POMDP model in this new experimental setting conserves all attributes

from the previous RSS demonstration, and incorporates the environment map (Figure

7-23) and vehicle dynamics. States in RAO*’s search graph now contain a mean 𝜇

and covariance matrix 𝑃 representing the Gaussian uncertainty about the rover’s true

position on the map, and pSulu is used to check the existence of a path between two

regions on the map that can be traversed with bounded risk of collision. Following

the procedure in Section 7.1.4, the move action in the PDDL model for the RSS

demonstration is split into two types of traversal activities: move-low is the low risk

version of the traversal, with a bound on the risk of collision of 0.01%, while move-high

tolerates a risk of collision of up to 0.04%. Since a higher risk of collision allows the

rover to pursue higher quality paths on the map, preference to move-high is given

over move-low, whenever mission risk permits. As in the previous demonstration,

a chance constraint er(𝑏0, 𝐶|𝜋) ≤ ∆ = 0.1% is used to bound the risk of the rover

colliding with obstacles or missing its communication window with the satellite.

An example of a conditional plan generated by CLARK in this new setting is

shown in Figure 7-25, where the only goals are to have pictures of locations 3 and 5

(𝑔1 and 𝑔3). Ellipses represent belief states in the conditional policies, and edges are

the probabilities of transitioning between belief states. Since this is a fully observable

model, each belief state contains a single particle with probability 1 (thus the reason

why Entropy is 0 in all of them). In each belief state, fields R, ER, and ERB are,

234

Figure 7-25: CLARK policy for the RSS scenario with picture requests at locations 3
and 5, and two types of move actions with bounded risk of collision: move-low (risk
bound of 0.01%) and move-high (risk bound of 0.04%).

235

respectively, the immediate risk 𝑟𝑏(𝑏𝑘), the execution risk er(𝑏𝑘|𝜋), and the execution

risk bound ∆𝑘 at that belief state. The optimal activity at each belief state is shown

as Op (for Operator), and the value of executing this activity at the belief state is

shown as OpValue (in this case, the value is a cost).

Starting with the risk bound er(𝑏0, 𝐶|𝜋) ≤ ∆ = 0.1% at the root belief, it gets

“consumed” by the path planning and scheduling risks according to (3.28) (page 88).

However, the scheduling risk is so small compared to the collision risk that only the

latter is reflected within the finite precision of the ERB fields in Figure 7-25. Note

that move-high is used for the first two traversals, but it gets pruned by RAO* due

to its excessive risk in the low risk traversal from location 3 to location 2.

(a) Time to solution. (b) Chance-constrained makespan.

Figure 7-26: Comparison between RSS scenarios with (label Collision) and with-
out (label No collision) collision handling. The order of goal combinations on the
horizontal axes follows the first column of Table 7.6.

The same set of goal combinations from Table 7.6 were evaluated in this new set-

ting of the RSS demonstration, and comparative results between the two settings of

the RSS demonstration are shown as plots in Figure 7-26. With these experiments,

our goal was to assess whether the inclusion of path planning constraints would have

a significant impact on CLARK’s performance, and whether the extra risk from col-

lisions would affect activity scheduling.

Since pSulu is not an algorithm developed in the context of this thesis, the times

in Figure 7-26a do not take into account the preprocessing step that computes the

236

existence of routes between pairs of locations on the map at different levels of risk,

which are used by CLARK as a lookup table. However, Figure 7-26a does take into

account the overhead generated by the duplication of move actions, and the added

complexity of RAO* constructing policies with probabilistic branching. From the

observation of the two curves in Figure 7-26a, we conclude that the more expressive

CC-POMDP planning model that takes path planning risk into account did not incur

significant overhead, except on the last example. The reason behind the latter is

that our SAT-based subplanner for helpful actions incorporates no information about

risk, therefore causing RAO* to backtrack a few times on the grounds of chance

constraint infeasibility. Nevertheless, despite the added complexity, CLARK is still

able to compute a feasible risk-bounded temporal plan in less than a minute for the

complete RSS scenario taking collision risk into account.

Our last experiments concerning the impact of collision risk on activity scheduling

are shown in Figure 7-26b and confirm our expectations: since the chance constraint

er(𝑏0, 𝐶|𝜋) ≤ ∆ = 0.1% is being used to bound the probability of joint scheduling

and path planning constraints, a higher risk “consumption” by collision constraints

leaves less room for improvement of the mission schedule, as indicated by the Collision

curve always being above No collision in Figure 7-26b.

7.4 Conclusions

This chapter revisits the CLARK system first introduced in Section 1.4, and builds

upon concepts presented in previous chapters to provide a detailed, holistic view of

the different components of CLARK’s architecture (Figure 7-1), the CLARK exec-

utive (Figure 7-7), and the integration of the latter within Enterprise (Figure 7-8).

Moreover, Sections 7.2 and 7.3 present experimental results in application domains

where CLARK receives inputs, respectively, as cRMPL programs and augmented

PDDL models, thus complementing the experimental results from Chapter 3, where

inputs to CLARK are given directly as CC-POMDP’s. Therefore, with this chapter,

this thesis addresses all forms of inputs and outputs shown in Figure 7-1.

237

In view of the results presented so far, the next chapter summarizes this thesis’

main contributions, and briefly discusses some of the many potential avenues of future

research that could stem from this work.

238

Chapter 8

Conclusions

“None of my inventions came by accident. I see a worthwhile need to be

met and I make trial after trial until it comes. What it boils down to is

one per cent inspiration and ninety-nine per cent perspiration.”

Thomas A. Edison, 1929.

The first half of 2016 brought with it two sharply distinct moments for the interac-

tion between artificial intelligence and humankind. While the world1 watched in awe

as AlphaGo [Silver et al., 2016] convincingly beat Lee Sedol, considered one of the

best Go players of all time, in a historic five-game match akin to Deep Blue’s [Camp-

bell et al., 2002] victory over World Chess Champion Garry Kasparov in 1997, it also

witnessed the first fatal accident ruled as being caused by a self-driving vehicle [Vla-

sic and Boudette, 2016]. As we move towards a reality where autonomous agents are

increasingly put in charge of high-stakes mission that often include the protection of

human life, matters of safe and trustworthy autonomy come into the spotlight. It is

within this context that this thesis places its contributions.

8.1 Summary of contributions

In this thesis, we argued that trusting autonomous agents with safety-critical tasks

requires them to develop a keen sensitivity to risk and to incorporate uncertainty
1Or, at least, the more computationally-inclined portion of it.

239

into their decision-making. Towards this goal, we proposed that autonomous agents

must be able to execute risk-bounded conditional plans while operating under time

pressure and other types of constraints. By being conditional, the policy allows the

agent’s choice of activity to depend on its current belief about the true state of

the world. Moreover, ensuring safety through bounds on mission risk allows such

conditional plans to move away from the conservatism of risk-minimizing approaches,

while keeping the autonomous agent strictly within acceptable safety levels.

As a formalism for conditional risk-bounded planning under uncertainty, this the-

sis proposed Chance-Constrained Partially Observable Markov Decision Processes

(CC-POMDP’s) in Chapter 3. The key feature of CC-POMDP’s is a novel dynamic

measure of mission safety in terms of execution risk, which addresses shortcomings

in the literature related to the treatment of risks as unit costs or a “resource” that is

monotonically spent throughout execution. In order to solve CC-POMDP’s, we in-

troduced Risk-bounded AO* (RAO*) in Chapter 3, an HFS-based algorithm that

searches for solutions to a CC-POMDP by leveraging admissible utility and risk

heuristics to simultaneously guide the search and perform early pruning of overly-

risky policy branches.

In an effort to facilitate the specification of risk-bounded behavior by human

modelers, this thesis also presented the Chance-constrained Reactive Model-based

Programming Language (cRMPL) in Chapter 4, a novel variant of RMPL [Williams

et al., 2003, Ingham, 2003, Effinger, 2012] that incorporates chance constraints as

part of its syntax. By defining the execution semantics of cRMPL in terms of CC-

POMDP’s and using RAO* to compute optimal, risk-bounded execution policies,

we were able to exploit the language’s hierarchical structure and steer away from

the intractability of previous approaches that required the explicit unraveling of all

possible execution traces. From a software engineering standpoint, our choice to

implement cRMPL as an extension of Python made it easy to integrate cRMPL

within the popular Robot Operating System (ROS) [Quigley et al., 2009] framework

for robotics applications, a key capability for modern agent programming languages

[Ziafati et al., 2012].

240

Influenced by Planning Modulo Theories (PMT) [Gregory et al., 2012], semantic

attachment [Dornhege et al., 2012], and [Ivankovic et al., 2014], which promote a syn-

ergistic combination of state-of-the-art methods for symbolic planning and constraint

satisfaction, Chapter 5 developed PARIS, the current fastest algorithm for risk-aware

scheduling of Probabilistic Simple Temporal Networks with Uncertainty (PSTNU’s),

a temporal reasoning formalism that subsumes both PSTN’s and STNU’s. In Chap-

ter 6, PARIS is used in the development of the first risk-aware conditional scheduling

algorithm for Probabilistic Temporal Plan Networks (PTPN’s) featuring PSTNU con-

straints.

The different tools and algorithms developed in the context of this thesis were

combined to form the Constrained Planning for Autonomy with Risk (CLARK) sys-

tem, a risk-aware conditional planning system that can generate chance-constrained,

dynamic temporal plans for autonomous agents that must operate under uncertainty.

In addition to experimental results involving the different components of CLARK in

Chapters 3, 5, and 6, several demonstrations in Chapter 7 empirically showed that

CLARK achieves this thesis’ goal of generating safe, conditional plans over rich sets

of mission constraints, while working in tandem with other building blocks of resilient

autonomous systems.

8.2 Future work

Extend RAO* to compute infinite horizon, risk-bounded policies

The temporal nature of the applications that this thesis is concerned about, in which

autonomous agents must complete their tasks under time pressure and temporal un-

certainty, was the motivation behind our focus on finite horizon policies in this thesis’

development of RAO*. However, the modeling power of CC-POMDP’s extends much

beyond risk-aware temporal applications. In situations where an agent’s actions in

the environment are not bound by any particular deadline, infinite horizon policies

may be desired as an approximation of time-independent behavior.

241

An important matter concerns the execution risk recursion

er(𝑏𝑘|𝜋) = 𝑟𝑏(𝑏𝑘) + (1− 𝑟𝑏(𝑏𝑘))
∑︁
𝑜𝑘+1

Prsa(𝑜𝑘+1|𝜋(𝑏𝑘), 𝑏𝑘)er(𝑏sa𝑘+1|𝜋) (3.21)

from Chapter 3 as the horizon ℎ → ∞. Since (3.21) can be interpreted as a dis-

counted Bellman backup equation with finite costs 𝑟𝑏(𝑏𝑘) ∈ [0, 1] and discount factor

(1− 𝑟𝑏(𝑏𝑘)) ∈ [0, 1], we conclude that er(𝑏𝑘|𝜋) converges to a point within [0, 1] even

as 𝑘 → ∞. However, it is very easy to think of situations in which er(𝑏𝑘|𝜋) → 1 as

𝑘 →∞, which means that no risk-bounded policies from belief 𝑏 exist. For instance,

think of a robot moving down a hallway that, at each step, may collide with the walls

with probability 𝑝. In this case, er(𝑏𝑘|𝜋) = 1 − (1 − 𝑝)(ℎ−𝑘), which tends to 1 as

ℎ → ∞ for all values of 𝑘. This may a trivial example, but it raises two important

questions: under which conditions can one impose non-trivial bounds 0 ≤ ∆ < 1 on

(3.21) and still be able to compute a chance-constrained policy? Can this be deter-

mined without having to exhaust the search space? We conjecture that such questions

could potentially be answered efficiently by extending the notion of a Strongly Con-

nected Component (SCC) [Tarjan, 1972] to a “Strongly Safe Connected Component”

(SSaCC), and modifying Topological Value Iteration (TVI) [Dai et al., 2011] to com-

pute (3.21) within these SSaCC’s. These computations could be incorporated into an

LAO*-like [Hansen and Zilberstein, 2001] algorithm to produce RLAO*2.

Handle partially-enumerated beliefs and observations, and sampling

This is the topic of Appendix A, in which we investigate possible ways of extending

RAO*’s risk-aware search to planning domains that are intractably large to be fully

enumerated, while retaining strict safety guarantees. The idea is that large groups

of unlikely particles in a belief state, as well as unlikely observation branches on the

policy search graph, could be appropriately lumped, respectively, into “macro” parti-

cles and observations, whose expansion would be delayed to the future. Generating

these sets of unlikely particles and observations could either be achieved through effi-

2Or some other more suitably-named algorithm.

242

cient best-first enumeration algorithms [Timmons, 2013], or through sampling, as in

(L)RTDP [Barto et al., 1995,Bonet and Geffner, 2003]. In the latter case, Hoeffding’s

inequality [Hoeffding, 1963] could provide a guaranteed bound on the probability of

the empirical mean falling far from the true expected value.

Support risk-aware, conditional and unconditional dynamic scheduling

In order to perform risk-aware scheduling under temporal uncertainty, this thesis

presented PARIS (Chapter 5) and its extension to conditional scheduling (Chapter 6).

However, both of these perform strong scheduling, i.e., they determine precomputed

schedules for controllable temporal events that are guaranteed to be feasible with high

probability, regardless of the particular outcomes of uncertainty (both observations

and uncontrollable durations) in the plan. Therefore, even though temporal plans

generated by CLARK are dynamic in terms of action selection (the choice of action

depends on the current belief state), their schedules are static.

Unfortunately, to the best of our knowledge, there are currently no conditional

or unconditional risk-aware dynamic scheduling algorithms that can incorporate in-

formation about probabilistic observations and temporal durations. As mentioned in

Chapter 2, there are several approaches to dynamic scheduling of STNU’s [Morris

et al., 2001,Morris and Muscettola, 2005,Morris, 2006,Hunsberger, 2009,Hunsberger,

2010, Hunsberger, 2013, Hunsberger, 2014, Morris, 2014], and some very recent at-

tempts at extending the STNU paradigm to conditional scheduling [Combi et al.,

2013, Cimatti et al., 2014, Cimatti et al., 2016b, Cimatti et al., 2016a], where both

temporal durations and uncontrollable choices have set-bounded, non-probabilistic

uncertainty. However, unlike existing strong schedulers for PSTN’s and PSTNU’s

[Tsamardinos, 2002, Fang et al., 2014, Wang and Williams, 2015a, Santana et al.,

2016c], none of these dynamic schedulers incorporate any notion of scheduling risk

arising from probabilistic durations and real-time observations.

243

Risk-aware, conflict-directed search

It is known that conflict-directed search methods [Stallman and Sussman, 1977,

De Kleer and Williams, 1987,De Kleer et al., 1992,Williams and Ragno, 2007] pro-

vide superior performance in large, constrained search spaces when compared with

chronological backtracking, as seen in Chapter 6. However, since the constraint vi-

olation function 𝑐𝑣 in CC-POMDP’s (Definition 3.1) does not output any conflicts,

RAO*’s mechanism for revising overly risky partial policies is not conflict-directed.

Inspired by Conflict-Directed 𝐴* [Williams and Ragno, 2007] (CDA*), a potentially

worthwhile extension of the results in this thesis would be to develop risk-aware con-

flict extraction methods that could be used to propose the unimaginatively-named

CD-RAO*. Examples of such risk-aware conflict extraction methods are developed

in [Wang, 2013,Wang and Williams, 2015a] in the context of strong scheduling for

PSTN’s.

Extend the range of input languages to CLARK

The current interface to CLARK is written mostly in Python, thus facilitating its in-

tegration within ROS-based robotic applications and software systems that leverage

Python’s extensive set of scientific programming libraries. There is also a Common

Lisp version, which is intended to be integrated with an ongoing implementation of

cRMPL as an extension of Common Lisp. However, to improve CLARK’s usage as a

standalone chance-constrained conditional planner, it would be helpful to implement

interfaces that could generate language-agnostic CC-POMDP descriptions from ex-

isting probabilistic planning languages, such as PPDDL [Younes and Littman, 2004],

RDDL [Sanner, 2010], and PomdpX [APPL, 2014], among others. Another option

would be to extend cRMPL and its future improvements to be able to specify CC-

POMDP models directly.

244

Hardware deployment combined with model learning

All components of CLARK are model-based, i.e., they operate on the assumption

that their input models, including probability distributions, are precise abstractions

of the real world. Moreover, all experiments involving CLARK so far have consid-

ered CC-POMDP models with probabilistic transition and observation models that

do not depend on the continuous state of the Plant. However, in support of this

thesis, we have shown that the incorporation of continuous state information into

discrete probabilistic models can be beneficial, and provide in [Santana et al., 2015] a

data-driven algorithm for the unsupervised learning of Probabilistic Hybrid Automata

(PHA) models. Therefore, in order to allow CLARK to control systems whose dy-

namical models change as they age, it would be interesting to combine the algorithm

in [Santana et al., 2015] to the CLARK executive architecture shown in Figure 1-10.

245

246

Appendix A

Extending RAO* to

partially-enumerated beliefs and

policies

In this appendix, we address challenges related to the handling of larges belief states

and policy branching in Chapter 3. More specifically, we are concerned with the

computation of

�̄�(𝑠𝑘+1) =
∑︁
𝑠𝑘

𝑇 (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1)�̂�(𝑠𝑘), (A.1)

�̂�(𝑠𝑘+1) =
1

𝜂
𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�(𝑠𝑘+1), (A.2)

Pr(𝑜𝑘+1|𝑜1:𝑘, 𝑎0:𝑘) =
∑︁
𝑠𝑘+1

𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�(𝑠𝑘+1), (A.3)

in situations in which the size of belief spaces and the number of observations at

nodes render exact computations intractable. Our goal here is to understand how

approximations of (A.1)-(A.3) can impact execution risk and policy optimality.

247

A.1 Partial enumeration of belief states

Henceforth, let the term particle denote a state-probability with nonzero probability.

The set of all particles at some belief state 𝑏𝑘 will be denoted by 𝐴𝑝(𝑏𝑘) = {𝑠𝑘 :

𝑏(𝑠𝑘) ̸= 0}.

Due to the potential sheer size of 𝒮, the number of elements in 𝐴𝑝(𝑏𝑘) might be

intractably large to enumerate. Hence, our proposed approach to attain scalability is

to focus our attention on a subset of particles concentrating most of the probability in

𝐴𝑝(𝑏𝑘). Let us call this subset of particles concentrating most of the probability the

Enumerated Particles (EP) set, denoted by 𝐸𝑝(𝑏𝑘). The remaining particles compos-

ing the belief state are called Lumped Particles (LP) and denoted by 𝐿𝑝(𝑏𝑘). We say

that the remaining particles are “lumped” because they are not explicitly enumerated

by the algorithm. Instead, they are lumped together into meta particles representing

sets of unenumerated particles (“clouds” in Figure A-1). A visual depiction of these

sets can be found in Figure A-1, in which belief states correspond to layers on the

tree. Squares on a belief layer correspond to particles in 𝐸𝑝, while the set of cloud

nodes represent the lumped particles in 𝐿𝑝. A belief state featuring a non-empty 𝐿𝑝

is called a partially-enumerated belief state (PEBS).

Figure A-1: Example PEBS. Squares on the tree represent enumerated particles with
non-zero probabilities; clouds represent unenumerated (lumped) particles; and layers
represent belief states.

The intuition behind 𝐸𝑝 and 𝐿𝑝 is very simple. If we were to deal with the

complete belief states in our search for a policy, the computational load would quickly

248

become intractable as the number of particles grows quickly in (A.1)-(A.2). Hence,

in order to be able to compute a chance-constrained policy, we will choose to only

consider a subset of true belief states, namely 𝐸𝑝, and ignore the particles in 𝐿𝑝.

Ignoring particles is clearly something “risky” to do, but it is feasible due to the

leeway provided by chance constraints. Hence, as long as we can show that the risk

of ignoring particles meets our chance constraints, the policy is still guaranteed to be

safe. Another consequence of ignoring particles is the potential loss of optimality, as

measured by the objective function that the policy is trying to optimize.

For the moment, let us assume that there exists an algorithm, such as Bones

[Timmons, 2013], capable of computing 𝐸𝑝(𝑏𝑘) for some particular belief state 𝑏𝑘. It

is worthwhile to stress an important fact that might not be obvious at first glance:

given a belief state 𝑏𝑘, we might have the same state 𝑠𝑘 represented in both the

enumerated and the lumped particle sets. In other words, we can always write

𝑏(𝑠𝑘) = 𝑏𝑒(𝑠𝑘) + 𝑏𝑙(𝑠𝑘), (A.4)

where 𝑏(𝑠𝑘) is the true probability (if we could perfectly compute as probabilities) of

state 𝑠𝑘 in belief state 𝑏𝑘; 𝑏𝑒(𝑠𝑘) is our estimate of 𝑏(𝑠𝑘); and 𝑏𝑙(𝑠𝑘) is the non-negative

error in our estimate, which corresponds to the probability sum of all cloud particles

containing 𝑠𝑘. The source of the error term 𝑏𝑙(𝑠𝑘) is made evident in Section A.1.1.

Finally, given that probabilities in a belief state must always sum to 1, it is easy

to see that

Pr(𝐿𝑝(𝑏𝑘)) = 1− Pr(𝐸𝑝(𝑏𝑘)) = 1−
∑︁

𝑠𝑘∈𝐸𝑝(𝑏𝑘)

𝑏𝑒(𝑠𝑘). (A.5)

Hence, even if we just propagate the particles in 𝐸𝑝(𝑏𝑘), we can still recover the total

probability within 𝐿𝑝(𝑏𝑘) from (A.5).

249

A.1.1 Predicting PEBS’s

We start by considering the problem of propagating PEBS’s forward according to the

state transition model. From (A.1), we get

�̄�(𝑠𝑘+1|𝑎𝑘) =
∑︁

𝑠𝑘∈𝐴𝑝(�̂�𝑘)

𝑇 (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1)�̂�(𝑠𝑘),

=
∑︁

𝑠𝑘∈𝐸𝑝(�̂�𝑘)

𝑇 (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1)�̂�𝑒(𝑠𝑘) +
∑︁

𝑠𝑘∈𝐿𝑝(�̂�𝑘)

𝑇 (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1)�̂�𝑙(𝑠𝑘),

= �̄�𝑒(𝑠𝑘+1|𝑎𝑘) + �̄�𝑙(𝑠𝑘+1|𝑎𝑘), (A.6)

where the summation in (A.6) was split between the enumerated and lumped portion

of the belief of each state 𝑠𝑘. The term

�̄�𝑒(𝑠𝑘+1|𝑎𝑘) =
∑︁

𝑠𝑘∈𝐸𝑝(�̂�𝑘)

𝑇 (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1)�̂�𝑒(𝑠𝑘), (A.7)

which is obtained through forward propagation of 𝐸𝑝(�̂�𝑘) according to the state tran-

sition model, can be computed as usual. The other term corresponds to �̄�𝑙(𝑠𝑘+1|𝑎𝑘)

and cannot be computed exactly. This is due to the fact that we neither have access

to individual particles within 𝐿𝑝(�̂�𝑘), nor we have an exact value for the error �̂�𝑙(𝑠𝑘).

For a given 𝑠𝑘+1, there is no guarantee that there exists no 𝑠𝑘 within cloud nodes

in �̂�𝑘 for which 𝑇 (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1) ̸= 0. In simpler words, there might be some potential

parents of 𝑠𝑘+1 “lost” in the cloud nodes and whose probabilities are not being taken

into account when computing �̄�𝑒(𝑠𝑘+1|𝑎𝑘) in (A.6). Hence, �̄�𝑒(𝑠𝑘+1|𝑎𝑘) will always

be an underestimate (lower bound) of the true probability �̄�(𝑠𝑘+1|𝑎𝑘), given that the

error term �̄�𝑙(𝑠𝑘+1|𝑎𝑘) is clearly non-negative.

One simple, but important, consequence of (A.6) is that the probability mass

within the set of enumerated particles will always tend to decrease as a result of the

prediction step. This can be easily seen from

Pr(𝐸𝑝(�̂�𝑘)) =
∑︁

𝑠𝑘∈𝐸𝑝(�̂�𝑘)

�̂�𝑒(𝑠𝑘) ≥
∑︁

𝑠𝑘∈𝐸𝑝(�̂�𝑘)

𝑇 (𝑠𝑘, 𝑎𝑘, 𝑠𝑘+1)�̂�𝑒(𝑠𝑘) = Pr(𝐸𝑝(�̄�𝑘+1)). (A.8)

250

Thus, we conclude from (A.5) and (A.8) that Pr(𝐿𝑝(�̄�𝑘+1)) will never decrease when

compared to Pr(𝐿𝑝(�̂�𝑘)).

Risk bounds for predicted PEBS’s

We now consider the impact of the underestimates in (A.6) on how we measure risk

using

𝑟𝑏(𝑏𝑘, 𝐶) =
∑︁
𝑠𝑘∈𝑆

𝑏(𝑠𝑘)𝑐𝑣(𝑠𝑘, 𝐶). (A.9)

Using the notation from this section, we can rewrite (A.9) as

𝑟𝑏(�̄�𝑘+1) =
∑︁

𝑠𝑘+1∈𝐴𝑝(�̄�𝑘+1)

�̄�(𝑠𝑘+1)𝑐𝑣(𝑠𝑘+1) =
∑︁

𝑠𝑘+1∈𝐴𝑝(�̄�𝑘+1)

(�̄�𝑒(𝑠𝑘+1) + �̄�𝑙(𝑠𝑘+1))𝑐𝑣(𝑠𝑘+1)

(A.10)

Similar to (A.6), we can only compute the probabilities �̄�(𝑠𝑘+1) up to some error.

Hence, we must find ways to approximate (A.10) so as to get, at least, upper and lower

bounds on the risk of a PEBS. For now, let us settle for the simple solution found

by replacing 𝑐𝑣(·) for the terms multiplying �̄�𝑙(𝑠𝑘+1) by a constant, state-independent

probability of violating hard plan constraints. Let 𝑐 be such a constant. Under this

assumption, we can rewrite (A.10) as

𝑟𝑏(�̄�𝑘+1) =
∑︁

𝑠𝑘+1∈𝐸𝑝(�̄�𝑘+1)

�̄�𝑒(𝑠𝑘+1)𝑐𝑣(𝑠𝑘+1) + 𝑐

⎛⎝ ∑︁
𝑠𝑘+1∈𝐿𝑝(�̄�𝑘+1)

�̄�𝑙(𝑠𝑘+1)

⎞⎠ , (A.11)

where the probability term within parentheses is exactly

Pr(𝐿𝑝(�̄�𝑘+1)) = 1−
∑︁

𝑠𝑘+1∈𝐸𝑝(�̄�𝑘+1)

�̄�𝑒(𝑠𝑘+1).

Let 𝑐max
𝑣 and 𝑐min

𝑣 be, respectively, state-independent maximal and minimal prob-

251

abilities of violating constraints in a given domain. In this case, we get the bounds

𝑟𝑢𝑝𝑏 (�̄�𝑘+1) =
∑︁

𝑠𝑘+1∈𝐸𝑝(�̄�𝑘+1)

�̄�𝑒(𝑠𝑘+1)𝑐𝑣(𝑠𝑘+1) + 𝑐max
𝑣 Pr(𝐿𝑝(�̄�𝑘+1)), (A.12)

𝑟𝑙𝑜𝑏 (�̄�𝑘+1) =
∑︁

𝑠𝑘+1∈𝐸𝑝(�̄�𝑘+1)

�̄�𝑒(𝑠𝑘+1)𝑐𝑣(𝑠𝑘+1) + 𝑐min
𝑣 Pr(𝐿𝑝(�̄�𝑘+1)), (A.13)

where 𝑟𝑢𝑝𝑏 (�̄�𝑘+1) and 𝑟𝑙𝑜𝑏 (�̄�𝑘+1) are upper and lower bounds, respectively, for 𝑟𝑏(�̄�𝑘+1).

The simplest choices for these bounds are 𝑐max
𝑣 = 1 and 𝑐min

𝑣 = 0, which should hold

regardless of the planning domain.

A.1.2 Updating partially-enumerated beliefs

The previous section analyzes how a partially-enumerated belief state impacts (A.1)

and its corresponding measures of risk. In this section, we focus on determining how

(A.2) is affected by partial enumeration of both predicted belief states and observa-

tions.

Once again, we will focus on computing updated beliefs for particles in 𝐸𝑝(�̂�𝑘+1)

and leave the probability of 𝐿𝑝(�̂�𝑘+1) to (A.5). From (A.2) and (A.6), we get

�̂�(𝑠𝑘+1|𝑎𝑘, 𝑜𝑘+1) ∝ 𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�𝑒(𝑠𝑘+1|𝑎𝑘) + 𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�𝑙(𝑠𝑘+1|𝑎𝑘), (A.14)

Different from (A.6), the probability in (A.14) can only be computed up to some

normalization factor 𝑧𝑘+1, called the partition function. In the case of (A.14), we

have 𝑧𝑘+1 = Pr(𝑜𝑘+1|𝑎1:𝑘, 𝑜1:𝑘). There are two import shortcomings related to (A.14).

First, the probability �̄�𝑙(𝑠𝑘+1|𝑎𝑘) is unknown, which prevents us from even computing

the true value of the right-hand side of (A.14). Second, even if we could compensate

for this error, it is not sufficient to only determine probability terms up to some

constant factor. This is because we are trying to offer hard guarantees on the risk of

execution, so we need to know exactly - or at least be able to bound - the probability

of different outcomes when executing a policy.

Given the unity sum constraint for probability distributions, we can use (A.14) to

252

write the partition function as

𝑧𝑘+1 =
∑︁

𝑠𝑘+1∈𝐴𝑝(�̄�𝑘+1)

𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�𝑒(𝑠𝑘+1|𝑎𝑘) + 𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�𝑙(𝑠𝑘+1|𝑎𝑘), (A.15)

which, once again, cannot be computed exactly due to the partial enumeration of

belief states. Let us assume, for the moment, that we have a way of computing

(A.15). Under this assumption, we can rewrite (A.14) as

�̂�(𝑠𝑘+1|𝑎𝑘, 𝑜𝑘+1) =
𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�𝑒(𝑠𝑘+1|𝑎𝑘)

𝑧𝑘+1

+
𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�𝑙(𝑠𝑘+1|𝑎𝑘)

𝑧𝑘+1

,

= �̂�𝑒(𝑠𝑘+1|𝑜𝑘+1, 𝑎𝑘) + �̂�𝑙(𝑠𝑘+1|𝑜𝑘+1, 𝑎𝑘), (A.16)

which looks a lot like (A.6). Simple bounds for (A.15) can be written as

𝑧𝑢𝑝𝑘+1 =
∑︁

𝑠𝑘+1∈𝐸𝑝(�̄�𝑘+1)

𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�𝑒(𝑠𝑘+1|𝑎𝑘) + Pr(𝑜𝑘+1)
max Pr(𝐿𝑝(�̄�𝑘+1)), (A.17)

𝑧𝑙𝑜𝑘+1 =
∑︁

𝑠𝑘+1∈𝐸𝑝(�̄�𝑘+1)

𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�𝑒(𝑠𝑘+1|𝑎𝑘) + Pr(𝑜𝑘+1)
min Pr(𝐿𝑝(�̄�𝑘+1)), (A.18)

where Pr(𝑜𝑘+1)
max and Pr(𝑜𝑘+1)

min are, respectively, upper and lower bounds1 for

the probability 𝑂(𝑠𝑘+1, 𝑜𝑘+1), ∀𝑠𝑘+1. Substituting (A.17)-(A.18) in (A.15) gives us,

respectively, upper and lower bounds for �̂�𝑒(𝑠𝑘+1|𝑜𝑘+1, 𝑎𝑘) equal to

�̂�𝑢𝑝𝑒 (𝑠𝑘+1|𝑜𝑘+1, 𝑎𝑘) =
𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�𝑒(𝑠𝑘+1|𝑎𝑘)

𝑧𝑙𝑜𝑘+1

, (A.19)

�̂�𝑙𝑜𝑒 (𝑠𝑘+1|𝑜𝑘+1, 𝑎𝑘) =
𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�𝑒(𝑠𝑘+1|𝑎𝑘)

𝑧𝑢𝑝𝑘+1

. (A.20)

Completing the recursion with Section A.1.1 requires �̂�𝑒(𝑠𝑘+1|𝑜𝑘+1, 𝑎𝑘) to be as-

signed values, which could in turn be used during the next iteration of (A.6). Due

to our inability to compute the partition function 𝑧𝑘+1 exactly, we have to settle for

the bounds (A.19) and (A.20) of the true �̂�𝑒(𝑠𝑘+1|𝑜𝑘+1, 𝑎𝑘). Thus, in order to remain

1For discrete observations, choosing Pr(𝑜𝑘+1)
max = 1 and Pr(𝑜𝑘+1)

min = 0 is always guaranteed
to be consistent.

253

consistent with (A.4) and make sure that we do not violate chance constraints, we

must make the approximation

�̂�𝑒(𝑠𝑘+1|𝑜𝑘+1, 𝑎𝑘)← �̂�𝑙𝑜𝑒 (𝑠𝑘+1|𝑜𝑘+1, 𝑎𝑘),∀𝑠𝑘+1 ∈ 𝐸𝑝(�̂�𝑘+1), (A.21)

which also assigns Pr(𝐿𝑝(�̂�𝑘+1)) ← Pr(𝐿𝑝(�̂�𝑘+1))
𝑢𝑝 by moving errors in the term

�̂�𝑙𝑜𝑒 (𝑠𝑘+1|𝑜𝑘+1, 𝑎𝑘) to the cloud particles in 𝐿𝑝(�̂�𝑘+1). The reasons behind the need

for a lower bound �̂�𝑒(𝑠𝑘+1|𝑜𝑘+1, 𝑎𝑘) are detailed in the following sections, where the

computation of utility and risk bounds require the availability of such lower bounds.

Risk bounds for updated PEBS’s

Following the same steps as before, we can write the risk 𝑟𝑏(�̂�𝑘+1) for the updated

belief state as

𝑟𝑏(�̂�𝑘+1) =
∑︁

𝑠𝑘+1∈𝐸𝑝(�̂�𝑘+1)

�̂�𝑒(𝑠𝑘+1)𝑐𝑣(𝑠𝑘+1) +

⎛⎝ ∑︁
𝑠𝑘+1∈𝐿𝑝(�̂�𝑘+1)

�̂�𝑙(𝑠𝑘+1)𝑐𝑣(𝑠𝑘+1)

⎞⎠ . (A.22)

Reality comes to tear our hopes and dreams the moment we realize that none

of the terms in (A.22) can be computed exactly. This is because updating PEBS

superimposes the intractability of (A.15) and the errors introduced by partial enu-

meration, which is itself due to the intractable size of 𝒮. Similar to Section A.1.1, we

now investigate ways to deal with these multiple approximations in order to still be

able to compute policies with hard guarantees on risk.

Let 𝑐max
𝑣 and 𝑐min

𝑣 be as defined in Section A.1.1. Similar to (A.12)-(A.13), we can

write the bounds

𝑟𝑏(�̂�𝑘+1) ≤ 𝑟𝑢𝑝𝑏 (�̂�𝑘+1) =
∑︁

𝑠𝑘+1∈𝐸𝑝(�̂�𝑘+1)

�̂�𝑒(𝑠𝑘+1)𝑐𝑣(𝑠𝑘+1) + 𝑐max
𝑣 Pr(𝐿𝑝(�̂�𝑘+1)), (A.23)

𝑟𝑏(�̂�𝑘+1) ≥ 𝑟𝑙𝑜𝑏 (�̂�𝑘+1) =
∑︁

𝑠𝑘+1∈𝐸𝑝(�̂�𝑘+1)

�̂�𝑒(𝑠𝑘+1)𝑐𝑣(𝑠𝑘+1) + 𝑐min
𝑣 Pr(𝐿𝑝(�̂�𝑘+1)). (A.24)

From the previous subsection, we know that updated belief states cannot be com-

254

puted exactly. Therefore, the probability terms in (A.23) and (A.24) must be replaced

by the bounds in (A.19) and (A.20). A simple differential analysis shows us that

𝜕(𝑟𝑢𝑝𝑏 (�̂�𝑘+1))

𝜕�̂�𝑒(𝑠𝑘+1)
= 𝑐𝑣(𝑠𝑘+1)− 𝑐max

𝑣 ≤ 0,
𝜕(𝑟𝑙𝑜𝑏 (�̂�𝑘+1))

𝜕�̂�𝑒(𝑠𝑘+1)
= 𝑐𝑣(𝑠𝑘+1)− 𝑐min

𝑣 ≥ 0. (A.25)

Hence, both an upper bound for (A.23) and a lower bound for (A.24) are attained

at a lower bound �̂�𝑙𝑜𝑒 (𝑠𝑘+1) of �̂�𝑒(𝑠𝑘+1). Using (A.20), we can compute an upper bound

for Pr(𝐿𝑝(�̂�𝑘+1)) as

Pr(𝐿𝑝(�̂�𝑘+1))
𝑢𝑝 = 1−

∑︁
𝑠𝑘+1∈𝐸𝑝(�̂�𝑘+1)

�̂�𝑙𝑜𝑒 (𝑠𝑘+1|𝑜𝑘+1, 𝑎𝑘), (A.26)

which can be substituted into (A.23)-(A.24) in order to give the computable bounds

𝑟𝑢𝑝𝑏 (�̂�𝑘+1) =
∑︁

𝑠𝑘+1∈𝐸𝑝(�̂�𝑘+1)

�̂�𝑙𝑜𝑒 (𝑠𝑘+1)𝑐𝑣(𝑠𝑘+1) + 𝑐max
𝑣 Pr(𝐿𝑝(�̂�𝑘+1))

𝑢𝑝, (A.27)

𝑟𝑙𝑜𝑏 (�̂�𝑘+1) =
∑︁

𝑠𝑘+1∈𝐸𝑝(�̂�𝑘+1)

�̂�𝑙𝑜𝑒 (𝑠𝑘+1)𝑐𝑣(𝑠𝑘+1) + 𝑐min
𝑣 Pr(𝐿𝑝(�̂�𝑘+1))

𝑢𝑝. (A.28)

A.1.3 Computing approximate execution risks

So far, we have only considered the impact that partial enumeration of particles in

a belief state has on the point-wise measure of risk 𝑟𝑏(𝑏𝑘). However, our discussion

about chance constraints in Chapter 3 showed that the execution risk

er(𝑏𝑘|𝜋) = 𝑟𝑏(𝑏𝑘) + (1− 𝑟𝑏(𝑏𝑘))
∑︁
𝑜𝑘+1

Prsa(𝑜𝑘+1|𝜋(𝑏𝑘), 𝑏𝑘)er(𝑏𝑘+1|𝜋) (A.29)

is more useful for imposing chance constraints on a conditional plan with sensing

actions.

This section addresses two challenges associated with the computation of (A.29),

namely: the errors caused by the partial enumeration of particles (cloud nodes in

Figure A-1); and the potentially intractable number of possible observations 𝑜𝑘+1,

creating the need to truncate their enumeration as well. We, then, analyze how these

255

approximations propagate into our estimates of the execution risk er(𝑏𝑘|𝜋). In the

following, we develop approximations for Pr(𝑜𝑘+1|𝑎𝑘), which can be readily extended

to Pr(𝑜𝑘+1|𝑎𝑘)sa by replacing predicted PEBS’s by safe predicted PEBS’s.

In our search for approximations for (A.29), we start by investigating the impact

that PEBS’s have on (A.3) by writing

Pr(𝑜𝑘+1|𝑎𝑘) =
∑︁

𝑠𝑘+1∈𝐴𝑝(�̄�𝑘+1)

𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�(𝑠𝑘+1|𝑎𝑘),

=
∑︁

𝑠𝑘+1∈𝐸𝑝(�̄�𝑘+1)

𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�𝑒(𝑠𝑘+1|𝑎𝑘)

+

⎛⎝ ∑︁
𝑠𝑘+1∈𝐿𝑝(�̄�𝑘+1)

𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�𝑙(𝑠𝑘+1|𝑎𝑘)

⎞⎠ . (A.30)

Similar to what has been seen before, individual belief values for the terms within

parentheses in (A.30) are not available due to the partial enumeration of belief states.

Therefore, our goal is to come up with upper and lower bounds for (A.30) that could

be subsequently used in approximating execution risks. Following the exact same

procedure as in (A.11)-(A.13), we get the bounds

Pr(𝑜𝑘+1|𝑎𝑘)𝑢𝑝=
∑︁

𝑠𝑘+1∈𝐸𝑝(�̄�𝑘+1)

𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�𝑒(𝑠𝑘+1|𝑎𝑘) + Pr(𝑜𝑘+1)
max Pr(𝐿𝑝(�̄�𝑘+1)),

(A.31)

Pr(𝑜𝑘+1|𝑎𝑘)𝑙𝑜=
∑︁

𝑠𝑘+1∈𝐸𝑝(�̄�𝑘+1)

𝑂(𝑠𝑘+1, 𝑜𝑘+1)�̄�𝑒(𝑠𝑘+1|𝑎𝑘) + Pr(𝑜𝑘+1)
min Pr(𝐿𝑝(�̄�𝑘+1)),

(A.32)

where Pr(𝑜𝑘+1)
max and Pr(𝑜𝑘+1)

min are, respectively, upper and lower bounds for the

probability 𝑂(𝑠𝑘+1, 𝑜𝑘+1), ∀𝑠𝑘+1; and Pr(𝑜𝑘+1|𝑎𝑘)𝑢𝑝 and Pr(𝑜𝑘+1|𝑎𝑘)𝑙𝑜 are, respectively,

upper and lower bounds for Pr(𝑜𝑘+1|𝑎𝑘). In the case of discrete observations, choosing

Pr(𝑜𝑘+1)
max = 1 and Pr(𝑜𝑘+1)

min = 0 is guaranteed to be consistent. This is the

simplest possible type of approximation for (A.30), but serves as a starting point for

approximating execution risks.

256

Previous sections provide upper and lower bounds for 𝑟𝑏(𝑏𝑘), while (A.31) and

(A.32) give us a way to bound Pr(𝑜𝑘+1|𝜋(𝑏𝑘)). In the following, we consider an

additional approximation of (A.29), namely the truncation of the sum over all children

of 𝑏𝑘, which helps reduce the branching factor at that node. In the same spirit of

𝐸𝑝(𝑏𝑘) and 𝐿𝑝(𝑏𝑘) from Section A.1, here we define 𝐸𝑜(𝑏𝑘) and 𝐿𝑜(𝑏𝑘), respectively,

as the enumerated and lumped sets of observations at the belief state 𝑏𝑘. Given these

sets, we can rewrite (A.29) as

er(𝑏𝑘|𝜋) =𝑟𝑏(𝑏𝑘) + (1− 𝑟𝑏(𝑏𝑘))ER𝑘,

ER𝑘 =

⎛⎝ ∑︁
𝑜𝑘+1∈𝐸𝑜(𝑏𝑘)

Pr(𝑜𝑘+1|𝜋(𝑏𝑘))saer(𝑏𝑘+1|𝜋)+

∑︁
𝑜′𝑘+1∈𝐿𝑜(𝑏𝑘)

Pr(𝑜′𝑘+1|𝜋(𝑏𝑘))saer(𝑏𝑘+1|𝜋)

⎞⎠ . (A.33)

From previous sections, we know that we can choose bounds 𝑟𝑢𝑝𝑏 (𝑏𝑘) and 𝑟𝑙𝑜𝑏 (𝑏𝑘)

for 𝑟𝑏(𝑏𝑘). The fact that 𝑟𝑏(𝑏𝑘) appears both positively and negatively in (A.33)

might make it harder to realize how bounds on 𝑟𝑏(𝑏𝑘) affect bounds on er(𝑏𝑘|𝜋). This

confusion is eliminated by looking at the differential

𝜕 (er(𝑏𝑘|𝜋))

𝜕 𝑟𝑏(𝑏𝑘)
= 1− ER𝑘 ≥ 0, (A.34)

where we must have 0 ≤ ER𝑘 ≤ 1 (it is the expected value of execution risks, which are

always within the interval [0, 1]). Hence, we conclude that er(𝑏𝑘|𝜋) is a non-decreasing

function of 𝑟𝑏(𝑏𝑘). In other words, choosing an overestimate (underestimate) of 𝑟𝑏(𝑏𝑘)

causes er(𝑏𝑘|𝜋) to be overestimated (underestimated) as well.

Next, we look into the problem of finding a suitable approximation for the true

value of ER𝑘 in (A.33). Similar to what we have done before, let

ermax = max
𝑏

er(𝑏|𝜋), ermin = min
𝑏

er(𝑏|𝜋), (A.35)

be, respectively, upper and lower bounds of er(𝑏𝑘+1|𝜋), ∀𝑏𝑘+1. With those definitions

257

at hand, we can write the bounds

ER𝑘 ≤
∑︁

𝑜𝑘+1∈𝐸𝑜(𝑏𝑘)

Pr(𝑜𝑘+1|𝜋(𝑏𝑘))saer(𝑏𝑘+1|𝜋) + ermax Pr(𝐿𝑜(𝑏𝑘)), (A.36)

ER𝑘 ≥
∑︁

𝑜𝑘+1∈𝐸𝑜(𝑏𝑘)

Pr(𝑜𝑘+1|𝜋(𝑏𝑘))saer(𝑏𝑘+1|𝜋) + ermin Pr(𝐿𝑜(𝑏𝑘)), (A.37)

which do not depend on the unknown terms of the second summation in (A.33).

As discussed in Chapter 3, the true value of er(𝑏𝑘+1|𝜋) can only be obtained once all

paths stemming from 𝑏𝑘+1 have been expanded to terminal nodes. Hence, during most

of the search process, we only have access to upper and lower estimates ℎ𝑢𝑝
𝑒𝑟 (𝑏𝑘+1|𝜋)

and ℎ𝑙𝑜
𝑒𝑟(𝑏𝑘+1|𝜋) of er(𝑏𝑘+1|𝜋). Incorporating these estimates into (A.36) and (A.37)

yields

ER𝑘 ≤
∑︁

𝑜𝑘+1∈𝐸𝑜(𝑏𝑘)

Pr(𝑜𝑘+1|𝜋(𝑏𝑘))saℎ𝑢𝑝
𝑒𝑟 (𝑏𝑘+1|𝜋) + ermax Pr(𝐿𝑜(𝑏𝑘)) = ER′

𝑘, (A.38)

ER𝑘 ≥
∑︁

𝑜𝑘+1∈𝐸𝑜(𝑏𝑘)

Pr(𝑜𝑘+1|𝜋(𝑏𝑘))saℎ𝑙𝑜
𝑒𝑟(𝑏𝑘+1|𝜋) + ermin Pr(𝐿𝑜(𝑏𝑘)) = ER′′

𝑘. (A.39)

We know from (A.30) that Pr(𝑜𝑘+1|𝜋(𝑏𝑘))sa cannot be computed exactly. Instead,

we must settle for upper and lower bounds, such as (A.31) and (A.32). From

Pr(𝐿𝑜(𝑏𝑘))sa = 1−
∑︁

𝑜𝑘+1∈𝐸𝑜(𝑏𝑘)

Pr(𝑜𝑘+1|𝜋(𝑏𝑘))sa ,

we see that these probability terms appear both positively and negatively in (A.38)-

(A.39). Hence, in order to decide which bound for Pr(𝑜𝑘+1|𝜋(𝑏𝑘))sa should be used,

we perform a simple analysis similar to (A.34). Differentiating (A.38) and (A.39)

with respect to Pr(𝑜𝑘+1|𝜋(𝑏𝑘))sa yields

𝜕ER′
𝑘

𝜕 Pr(𝑜𝑘+1|𝜋(𝑏𝑘))sa
= ℎ𝑢𝑝

𝑒𝑟 (𝑏𝑘+1|𝜋)− ermax ≤ 0,

𝜕ER′′
𝑘

𝜕 Pr(𝑜𝑘+1|𝜋(𝑏𝑘))sa
= ℎ𝑙𝑜

𝑒𝑟(𝑏𝑘+1|𝜋)− ermin ≥ 0. (A.40)

258

The inequalities in (A.40) show that (A.38) is a non-increasing function of the

probabilities Pr(𝑜𝑘+1|𝜋(𝑏𝑘))sa . Since we want to convert (A.38) into a guaranteed

upper bound of 𝐺𝑘, we must replace Pr(𝑜𝑘+1|𝜋(𝑏𝑘))sa by Pr(𝑜𝑘+1|𝜋(𝑏𝑘))sa,𝑙𝑜 in order

not to cause (A.38) to drop below its true value. A similar analysis shows that the

same substitution should be made in (A.39), since the previous inequalities show

that (A.39) is a non-decreasing function of Pr(𝑜𝑘+1|𝜋(𝑏𝑘))sa . Hence, we can write the

computable bounds

ER𝑘 ≤ ER𝑢𝑝
𝑘 =

∑︁
𝑜𝑘+1∈𝐸𝑜(𝑏𝑘)

Pr(𝑜𝑘+1|𝜋(𝑏𝑘))sa,𝑙𝑜ℎ𝑢𝑝
𝑒𝑟 (𝑏𝑘+1|𝜋) + ermax Pr(𝐿𝑜(𝑏𝑘))sa,𝑢𝑝,

(A.41)

ER𝑘 ≥ ER𝑙𝑜
𝑘 =

∑︁
𝑜𝑘+1∈𝐸𝑜(𝑏𝑘)

Pr(𝑜𝑘+1|𝜋(𝑏𝑘))sa,𝑙𝑜ℎ𝑙𝑜
𝑒𝑟(𝑏𝑘+1|𝜋) + ermin Pr(𝐿𝑜(𝑏𝑘))sa,𝑢𝑝,

(A.42)

where

Pr(𝐿𝑜(𝑏𝑘))sa,𝑢𝑝 = 1−
∑︁

𝑜𝑘+1∈𝐸𝑜(𝑏𝑘)

Pr(𝑜𝑘+1|𝜋(𝑏𝑘))sa,𝑙𝑜. (A.43)

Combining all the results in this section, we can derive upper and lower bounds

for the execution risk er(𝑏𝑘|𝜋) in the form

er𝑢𝑝(𝑏𝑘|𝜋) = 𝑟𝑢𝑝𝑏 (𝑏𝑘) + (1− 𝑟𝑢𝑝𝑏 (𝑏𝑘))ER𝑢𝑝
𝑘 , (A.44)

er 𝑙𝑜(𝑏𝑘|𝜋) = 𝑟𝑙𝑜𝑏 (𝑏𝑘) + (1− 𝑟𝑙𝑜𝑏 (𝑏𝑘))ER𝑙𝑜
𝑘 . (A.45)

It should be noticed that the analysis in (A.34) and (A.40) allowed the bounds

(A.41)-(A.45) to be (maybe only slightly) tighter than the ones obtained by mere

maximization and minimization of every term in the equations.

259

A.1.4 Approximate forward-propagation of execution risks

The RAO* algorithm in Chapter 3 propagates risk upper bounds forward for the early

detection of policy branches that are too risky to meet the chance constraints in the

plan. Since the pruning of a policy branch must be based on a sufficient condition for

infeasibility (or, conversely, a necessary condition for feasibility), we must provide an

upper bound for (3.28) based on the terms that we can compute using a PEBS. One

such upper bound can be computed as

er(𝑏′𝑘+1|𝜋)≤

⎛⎝∆̃𝑘 − 𝑟𝑏(𝑏𝑘)𝑙𝑜

1− 𝑟𝑏(𝑏𝑘)𝑙𝑜
−

∑︁
𝑜𝑘+1 ̸=𝑜′𝑘+1∈𝐸𝑜(𝑏𝑘)

Pr(𝑜𝑘+1|𝜋(𝑏𝑘))sa,𝑙𝑜er 𝑙𝑜(𝑏𝑘+1|𝜋)

⎞⎠
Pr(𝑜′𝑘+1|𝜋(𝑏𝑘))sa,𝑙𝑜

,

(A.46)

where 𝑟𝑏(𝑏𝑘)𝑙𝑜, Pr(𝑜𝑘+1|𝜋(𝑏𝑘))sa,𝑙𝑜, and er 𝑙𝑜(𝑏𝑘+1|𝜋) are computed according to (A.28),

(A.32), and (A.45), respectively. The reason for choosing 𝑟𝑏(𝑏𝑘)𝑙𝑜 in (A.46) is due to

the fact that

𝜕

𝜕𝑟

(︃
∆̃− 𝑟

1− 𝑟

)︃
=

∆̃− 1

(1− 𝑟)2
≤ 0,

which means that an upper bound for the first term within parentheses is attained

at a lower bound for 𝑟𝑏(𝑏𝑘).

A.1.5 Computing approximate utilities

Previous sections show how the approximation of belief states impacts our ability to

compute precise values for the execution risk (A.29). In this section, we look at the

very similar problem of how to compute the value

𝑄(𝑏𝑘, 𝑎𝑘) =
∑︁
𝑠𝑘

𝑅(𝑠𝑘, 𝑎𝑘)𝑏(𝑠𝑘) + 𝛾
∑︁
𝑜𝑘+1

Pr(𝑜𝑘+1|𝑎𝑘)𝑄(𝑏𝑘+1)
* (A.47)

260

of taking action 𝑎𝑘 at some belief state 𝑏𝑘, as defined by the CC-POMDP model in

Chapter 3. Given the current best estimate �̂�(𝑏𝑘, 𝑎𝑘) of the true value 𝑄(𝑏𝑘, 𝑎𝑘), we

select actions for the current estimate �̂� of the optimal policy 𝜋* according to

�̂�(𝑏𝑘) = arg max
𝑎𝑘

�̂�(𝑏𝑘, 𝑎𝑘),∀𝑘. (A.48)

Similar to previous sections, there are two main challenges involved in the com-

putation of (A.47) and (A.48):

∙ partial enumeration of belief state particles and observations prevent us from

being able to compute the expectations in (A.47) exactly;

∙ the optimal values 𝑄(𝑏𝑘+1)
* are not available and usually cannot be computed

forward (as opposed to goal-regression in dynamic programming).

We will address these two challenges leveraging the same strategy used for the

execution risk: we will use heuristic estimates of 𝑄(𝑏𝑘+1)
* in order to compute rea-

sonable predictions of the true value of (A.47); and we will use partially enumerated

belief state particles and observations to compute upper and lower bounds of (A.47)

so as to perform action selection in (A.48) by means of interval comparisons. Towards

this goal, let

q𝑎𝑘 =
∑︁
𝑠𝑘

𝑅(𝑠𝑘, 𝑎𝑘)𝑏(𝑠𝑘), (A.49)

EQ𝑎𝑘
=
∑︁
𝑜𝑘+1

Pr(𝑜𝑘+1|𝑎𝑘)𝑄(𝑏𝑘+1)
*. (A.50)

Upper and lower bounds for (A.49) can be obtained similarly to was was done for

risk in (A.12)-(A.13). Thus, we get

q𝑢𝑝𝑎𝑘 =
∑︁

𝑠𝑘∈𝐸𝑝(𝑏𝑘)

𝑏𝑒(𝑠𝑘)𝑅(𝑠𝑘, 𝑎𝑘) + 𝑅max Pr(𝐿𝑝(𝑏𝑘)), (A.51)

q 𝑙𝑜𝑎𝑘 =
∑︁

𝑠𝑘∈𝐸𝑝(𝑏𝑘)

𝑏𝑒(𝑠𝑘)𝑅(𝑠𝑘, 𝑎𝑘) + 𝑅min Pr(𝐿𝑝(𝑏𝑘)), (A.52)

261

where 𝑅max and 𝑅min are, respectively, maximal and minimal values for the reward

𝑅(𝑠𝑘, 𝑎𝑘), ∀𝑠𝑘. For (A.50), we can proceed analogously to (A.41)-(A.42) and obtain

EQ𝑢𝑝
𝑎𝑘

=
∑︁

𝑜𝑘+1∈𝐸𝑜(𝑏𝑘)

Pr(𝑜𝑘+1|𝑎𝑘)𝑙𝑜ℎ𝑢𝑝
𝑄*(𝑏𝑘+1) + 𝑄max Pr(𝐿𝑜(𝑏𝑘))𝑢𝑝, (A.53)

EQ 𝑙𝑜
𝑎𝑘

=
∑︁

𝑜𝑘+1∈𝐸𝑜(𝑏𝑘)

Pr(𝑜𝑘+1|𝑎𝑘)𝑙𝑜ℎ𝑙𝑜
𝑄*(𝑏𝑘+1) + 𝑄min Pr(𝐿𝑜(𝑏𝑘))𝑢𝑝, (A.54)

where Pr(𝑜𝑘+1|𝑎𝑘)𝑙𝑜 and Pr(𝐿𝑜(𝑏𝑘))𝑢𝑝 are computed according to (A.32) and (A.43),

respectively; ℎ𝑢𝑝
𝑄*(𝑏𝑘+1) and ℎ𝑙𝑜

𝑄*(𝑏𝑘+1) are, respectively, available upper and lower

bounds for 𝑄(𝑏𝑘+1)
*; and 𝑄max and 𝑄min are, respectively, maximal and minimal

values of 𝑄* for any 𝑏𝑘+1.

Bounds for (A.47) can be derived by combining the previous results in the obvious

way as

𝑄(𝑏𝑘, 𝑎𝑘)𝑢𝑝 = q𝑢𝑝𝑎𝑘 + 𝛾EQ𝑢𝑝
𝑎𝑘
, (A.55)

𝑄(𝑏𝑘, 𝑎𝑘)𝑙𝑜 = q 𝑙𝑜𝑎𝑘 + 𝛾EQ 𝑙𝑜
𝑎𝑘
. (A.56)

A.2 Trial-based bounds

Section A.1 focuses on partial enumeration of observations and belief state particles

as a means to achieve tractability. During our analysis, we saw how the uncertainty

introduced by these partial enumerations affected our ability to perform exact, re-

cursive estimation of belief states, risk, and utility. In the context of Section A.1, we

relied on the ability of some algorithm to be able to enumerate these particles “in a

good way”, i.e., quickly and concentrating most of the probability mass (ideally, in

best-first order of probability).

A similar approximate behavior can be achieved in a trial-based fashion [Barto

et al., 1995,Bertsekas and Tsitsiklis, ,Keller and Helmert, 2013]. Instead of relying

on some deterministic particle enumeration procedure, there is also the option of

performing stochastic simulations of the system, henceforth referred to as trials, and

262

estimate quantities of interest based on their different outcomes. If we were able to

generate samples from the true2 underlying probability distributions, we would expect

outcomes of higher probability trials to have greater impact on estimates.

Our approach for generating sample-based estimates with confidence bounds is to

use Hoeffding’s inequality [Hoeffding, 1963], which is stated in the following.

Theorem A.2 (Hoeffding’s inequality [Hoeffding, 1963]). If 𝑋1, 𝑋2, . . . , 𝑋𝑛 are in-

dependent samples of a random variable 𝑋 and 𝑎𝑖 ≤ 𝑋𝑖 ≤ 𝑏𝑖, 𝑖 = 1, 2, . . . , 𝑛, then for

𝑡 > 0,

Pr
(︀
𝑋 − 𝜇 ≥ 𝑡

)︀
≤ 𝑒

⎛⎝−
2𝑛2𝑡2∑︀𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2

⎞⎠
, (A.57)

where

𝑋 =
1

𝑛

𝑛∑︁
𝑖=1

𝑋𝑖, 𝜇 = 𝐸[𝑋].

Different from the Central Limit Theorem, which only provides guarantees on

the distribution of 𝑋 in the limit when 𝑛 → ∞, the result in (A.57) provides an

exponentially-decaying bound for the probability of the sample mean 𝑋 overestimat-

ing the true mean 𝜇 by more than 𝑡 for any value of 𝑛.

If we replace the random variable 𝑋 by −𝑋, we can use (A.57) to derive the

bound

Pr
(︀
−𝑋 + 𝜇 ≥ 𝑡

)︀
≤ 𝑒

⎛⎝−
2𝑛2𝑡2∑︀𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2

⎞⎠
, (A.58)

which limits the probability of 𝑋 underestimating 𝜇 by more than 𝑡. Finally, if we

combine (A.57) and (A.58), we can derive an interval bound

Pr
(︀
−𝑡𝑙 ≤ 𝑋 − 𝜇 ≤ 𝑡𝑢

)︀
≤ 𝑒

⎛⎝−
2𝑛2𝑡𝑢

2∑︀𝑛
𝑖=1(𝑏𝑖 − 𝑎𝑖)2

⎞⎠
+ 𝑒

⎛⎝−
2𝑛2𝑡𝑙

2∑︀𝑛
𝑖=1(𝑏𝑖 − 𝑎𝑖)2

⎞⎠
, (A.59)

2As assumed by our models.

263

which exploits the fact that 𝑋 cannot overestimate and underestimate 𝜇 at the same

time. Finally, if we are only interested in an interval of size 𝑡, we get

Pr
(︀
|𝑋 − 𝜇| ≥ 𝑡

)︀
≤ 2𝑒

⎛⎝−
2𝑛2𝑡2∑︀𝑛

𝑖=1(𝑏𝑖 − 𝑎𝑖)2

⎞⎠
. (A.60)

The purpose of using these inequalities is illustrated in Figure A-2. Let us assume

that we want to estimate the expected value 𝐸[𝑋] = 𝜇 of some quantity of interest

𝑋 for some belief state 𝑏𝑘 under a given policy 𝜋, e.g., utility or execution risk. If

we did not have the transition and observations models associated with POMDP’s,

we could still try to estimate these quantities by running multiple simulations of 𝜋

from 𝑏𝑘 and using sample means 𝑋 as estimates of the true values. However, how

many trials should we run in order to be confident that our upper and lower bounds,

indeed, contain the true 𝜇?

Figure A-2: Situation in which an interval of width 2𝑡 around the sample mean 𝑋
does not contain the true mean 𝜇.

A sufficient condition for ensuring that Pr
(︀
|𝑋 − 𝜇| ≥ 𝑡

)︀
≤ 𝛼, given 𝑡 and a con-

fidence level 𝛼, is to choose 𝑛 such that 𝛼 equals the upper bound in (A.60). Hence,

we get

𝑛 =
(𝑋max −𝑋min)2 ln

(︀
2
𝛼

)︀
2𝑡2

, (A.61)

where 𝑋max and 𝑋min are, respectively, the maximal and minimal values that 𝑋 can

assume during any given trial. In case the number of trials 𝑛 and the confidence level

𝛼 are fixed, a simple rearrangement of (A.61) allows us to compute the width 𝑡 as

𝑡 =

√︃
ln
(︀
2
𝛼

)︀
2

(𝑋max −𝑋min)√
𝑛

. (A.62)

264

It might also be useful to determine the “sensitivity” of our bound estimates with

respect to additional samples. This could be useful, for example, to determine which

portion of a policy to simulate, given finite computational resources. One can easily

derive an instantaneous sensitivity measure by taking the derivative of (A.62) with

respect to 𝑛, yielding

𝑑𝑡

𝑑𝑛
= −

√︃
ln
(︀
2
𝛼

)︀
2

(𝑋max −𝑋min)

2𝑛
√
𝑛

=
−𝑡
2𝑛

. (A.63)

A plot of (A.63) for different values of 𝑛 is shown in Figure A-3. It clearly confirms

the intuitive notion that, as more and more samples are drawn, their individual

impact on the quality of our bounds (namely, the magnitude of 𝑡) rapidly decreases.

Therefore, when using simulations to evaluate the utility and risk of different actions in

a policy, it makes sense that we try to distribute them evenly across different actions,

as opposed to focusing a lot of effort on making the bounds for one particular action

very precise.

Figure A-3: Sensitivity of 𝑡 with respect to 𝑛 for a constant term multiplying 1/(𝑛
√
𝑛)

equals to −1. The more negative the value, the better.

As mentioned before, the usefulness of (A.63) becomes apparent when we are

trying to choose between actions whose utility and risk estimates overlap, as shown

in Figure A-4. In these situations, there is no clear way to disambiguate between

the two, so we must perform additional simulations in order to tighten the intervals.

But if we have a limited simulation budget, how should we distribute it over the

265

different actions? According to (A.63), we should follow a greedy strategy and always

simulate the action which has been simulated the least, since it will cause the biggest

tightening of the overall intervals. This simple result was already expected, since the

sample independence assumption in (A.57) causes current trials to provide no further

information besides the results of the trials themselves.

Figure A-4: Ambiguity for selecting between actions 𝑎1 and 𝑎2, which generated,
respectively, the sample means 𝑋1 and 𝑋2.

266

Appendix B

A SAT model for power supply

restoration

Power restoration in a partially observable setting requires a planner to reason over a

belief space over the set of possible network states. In a simple instantiation with no

probability information, one could consider a model-based inference strategy leverag-

ing the power network’s connection diagram, a model of its various sensors, and their

readings in order to determine sets of possible or consistent states. Figure B-1 shows

one such power network. These are generated automatically from the MATPOWER

benchmarks [Zimmerman et al., 2011], where a switch node is added on each connec-

tion between buses and generators. Not only it allows connections between nodes to

be turned on and off, but it also makes it straightforward to model line faults the

same way as bus faults.

It is important to stress that the models in this section assume that no double-

feeding exists in the network. In other words, a line or bus is either receiving no power

or is connected to a single generator. Even though multiple-feeding is technically

possible, it creates difficulties for simulating fault sensors that depend on a fault

being downstream from a generator. For single-feeding, the direction of power flow

is obvious: it always comes from the direction connected to the generator. However,

when multiple generators feed a node, the direction of power flow becomes dependent

on the generation and transmission parameters.

267

(a) Small instance of a power network with fault sen-
sors.

(b) Legend for Figure B-1a.

Figure B-1: Small instance of a power network with fault sensors.

B.1 Modeling circuit-breakers

A circuit-breaker is a fault sensor that can be anchored to buses or line switches. It

works very similarly to a relay, in the sense that current is used to trigger a switch

that either closes or interrupts a circuit. A circuit-breaker is designed to prevent

propagation of current surges by triggering its switch open whenever current goes

beyond some predefined threshold. In the case of single-feeding, this restricts the

circuit-breaker to detecting faults that are downstream from the generator, where

downstream means that the generator and the fault should be on opposite sides of

the circuit-breaker.

This can be more clearly understood by observing Figure B-2, which shows the

electrical model of a feeder. Figure B-2b shows an electrically equivalent model of

Figure B-2a that facilitates the analysis of the current flowing through the circuit-

breaker. From Figure B-2b, we see that the current through the circuit-breaker only

depends on the equivalent admittance 𝑌down from the downstream buses. Therefore,

even if a fault creates a current spike in the generator by suddenly increasing 𝑌up , the

current flowing through the circuit-breaker will remain unaltered. With that said,

we are ready to develop our SAT model for circuit-breakers in a power network with

single-feeding.

268

(a) General load model. (b) Equivalent model.

Figure B-2: Electrical model of a feeder.

We model a circuit-breaker as a discrete variable with domain {open, closed , off }.

If a circuit-breaker is not receiving power, it remains off and provides no information

about the circuit that it is connected to. Let cb and 𝑡 stand for, respectively, a generic

circuit-breaker and time step. We define

Powered(cb, t)⇔ Closed(cb, t) ∧ ConnectedGenerator(cb, t)

¬Powered(cb, t)⇔ cb = off

Let 𝑡− and 𝑡+ be, respectively, the time steps immediately before and after the oc-

currence of an electrical fault. A circuit-breaker signals a downstream fault according

to the model

Powered(cb, t−)⇒ Open(cb, t+)⇒ FaultDownstream(cb, t−), (B.1)

where

FaultDownstream(cb, t−) ≡
⋁︁

𝑛∈DS(𝑐𝑏)

Fault(n). (B.2)

The set DS(𝑐𝑏) in (B.2) is the set of downstream nodes from the circuit breaker

in the direction of the power flow, as shown in Figure B-2b. For example, the set

of downstream nodes for the circuit-breakers anchored to switches 𝑠3_6 and 𝑠5_6

269

in Figure B-1a are, respectively, {𝑏5, 𝑏6} and {𝑏5}. The model in (B.1) assumes the

possibility that a circuit-breaker may malfunction and not react to a downstream

fault. However, if we are guaranteed that a circuit-breaker will always react to a

fault, the SAT model of the circuit-breaker becomes

Powered(cb, t−)⇒(Open(cb, t+)⇔FaultDownstream(cb, t−))

≡

(Open(cb, t+)⇒FaultDownstream(cb, t−)) ∧ (Closed(cb, t+)⇒¬FaultDownstream(cb, t−))

(B.3)

B.2 Simulating the network

1. Given state of the switches, start determining which faults are receiving power.

2. Propagate fault outward from the location of the faults.

(a) If the fault hits an open switch, stop expanding that branch (adds nothing

to the queue)

(b) If the fault hits a deterministic circuit-breaker, open it. Otherwise, flip a

coin and decide whether the switch should be opened or not.

(c) It’s necessary to determine if the fault is “downstream” from a generator

or not.

270

Appendix C

PTPN XML schema

This appendix contains the XML schema used to translate cRMPL programs into

PTPN’s, the input type to Pike. Main contributors to these schema, listed in alpha-

betical order by first name, are Andreas Hofmann, Andrew Wang, Brian Williams,

Cheng Fang, David Wang, Enrique Fernandez, Erez Karpas, Eric Timmons, James

Paterson, Pedro Santana, Peng Yu, Steven Levine, and Tiago Vaquero.

<?xml ve r s i on=" 1 .0 " encoding="UTF−8" standa lone="no"?>

<xs:schema

xmlns=" ht tp : //mers . c s a i l . mit . edu/tpn"

targetNamespace=" ht tp : //mers . c s a i l . mit . edu/tpn"

xmlns : t=" ht tp : //mers . c s a i l . mit . edu/tpn"

xmlns :xs=" ht tp : //www.w3 . org /2001/XMLSchema">

<x s : i n c l u d e schemaLocation="tpn−de f s . xsd"/>

<xs : e l ement name=" tpns " type=" tpns "/>

</xs:schema>

Listing C.1: Schema for a file containing multiple PTPN’s.

<?xml ve r s i on=" 1 .0 " encoding="UTF−8" standa lone="no"?>

<xs:schema

xmlns :xs=" ht tp : //www.w3 . org /2001/XMLSchema"

targetNamespace=" ht tp : //mers . c s a i l . mit . edu/tpn"

xmlns : t=" ht tp : //mers . c s a i l . mit . edu/tpn"

xmlns=" ht tp : //mers . c s a i l . mit . edu/tpn"

elementFormDefault=" q u a l i f i e d ">

<xs:s impleType name="TPN−f ea ture−type ">

<x s : r e s t r i c t i o n base=" x s : s t r i n g ">

271

<xs:enumerat ion value=" simple−temporal−c on s t r a i n t s "/>

<xs:enumerat ion value=" cont ingent−temporal−c on s t r a i n t s "/>

<xs:enumerat ion value=" simple−cont ingent−temporal−c on s t r a i n t s "/>

</ x s : r e s t r i c t i o n>

</xs:s impleType>

<xs:complexType name=" dec i s i on−var i ab l e−equa l s ">

<xs : sequence>

<xs : e l ement name=" va r i ab l e " type="xs:IDREF"/>

<xs : e l ement name="value " type=" x s : s t r i n g "/>

</ x s : sequence>

</xs:complexType>

<xs:complexType name=" state−var i ab l e−value−at ">

<xs : sequence>

<xs : e l ement name=" va r i ab l e " type="xs:IDREF"/>

<xs : e l ement name=" event " type="xs:IDREF"/>

</ x s : sequence>

</xs:complexType>

<xs:complexType name=" state−var i ab l e−guard−value ">

<x s : c h o i c e>

<xs : e l ement name=" constant " type=" x s : s t r i n g " />

<xs : e l ement name=" state−var i ab l e−at " type=" state−var i ab l e−value−at " />

</ x s : c h o i c e>

</xs:complexType>

<xs:complexType name=" state−var i ab l e−guard−boolean−expr ">

<xs : sequence>

<xs : e l ement name=" cond i t i on " type=" x s : s t r i n g "/>

<xs : e l ement name="value " type=" state−var i ab l e−guard−value " maxOccurs="unbounded"

minOccurs="1" />

</ x s : sequence>

</xs:complexType>

<xs:complexType name="guard− l i s t ">

<x s : sequence>

<xs : e l ement name="guard" type="guard" maxOccurs="unbounded" minOccurs="1"></

xs : e l ement>

</ x s : sequence>

</xs:complexType>

<xs:complexType name="guard">

<x s : c h o i c e>

<xs : e l ement name="boolean−constant " type=" xs :boo l ean "></ xs : e l ement>

272

<xs : e l ement name=" dec i s i on−var i ab l e−equa l s " type=" dec i s i on−var i ab l e−equa l s "/>

<xs : e l ement name=" state−var i ab l e−guard" type=" state−var i ab l e−guard−boolean−expr "/

>

<xs : e l ement name="and" type="guard− l i s t " />

<xs : e l ement name="or " type="guard− l i s t " />

<xs : e l ement name="not">

<xs:complexType>

<xs : sequence>

<xs : e l ement name="guard" type="guard"></ xs : e l ement>

</ x s : sequence>

</xs:complexType>

</ xs : e l ement>

</ x s : c h o i c e>

</xs:complexType>

<xs:complexType name=" var i ab l e−domain">

<x s : c h o i c e>

<xs : e l ement name=" f i n i t e −domain" type=" f i n i t e −var i ab l e−domain"></ xs : e l ement>

<xs : e l ement name=" continuous−domain" type=" continuous−var i ab l e−domain"></

xs : e l ement>

</ x s : c h o i c e>

</xs:complexType>

<xs:complexType name=" range ">

<xs : sequence>

<xs : e l ement name=" lower−bound" type=" xs :doub l e " maxOccurs="1" minOccurs="0"></

xs : e l ement>

<xs : e l ement name="upper−bound" type=" xs :doub l e " maxOccurs="1" minOccurs="0"></

xs : e l ement>

</ x s : sequence>

</xs:complexType>

<xs:complexType name=" continuous−var i ab l e−domain">

<xs : sequence>

<xs : e l ement name=" range " type=" range " maxOccurs="unbounded" minOccurs="1"></

xs : e l ement>

</ x s : sequence>

</xs:complexType>

<xs:complexType name=" f i n i t e −var i ab l e−domain">

<xs : sequence>

<xs : e l ement name="value " type=" x s : s t r i n g " maxOccurs="unbounded" minOccurs="1"><

/ xs : e l ement>

</ x s : sequence>

</xs:complexType>

273

<xs:complexType name="guarded−tn−member">

<xs : sequence>

<xs : e l ement name=" id " type="xs : ID "></ xs : e l ement>

<xs : e l ement name="name" type=" x s : s t r i n g "></ xs : e l ement>

<xs : e l ement name="guard" type="guard"></ xs : e l ement>

</ x s : sequence>

</xs:complexType>

<xs:complexType name=" di spatchab le−guarded−tn−member">

<xs:complexContent>

<xs : e x t en s i on base="guarded−tn−member">

<xs : sequence>

<xs : e l ement name=" di spatch " type=" x s : s t r i n g " minOccurs="0"></ xs : e l ement>

</ x s : sequence>

</ x s : e x t en s i on>

</xs:complexContent>

</xs:complexType>

<xs:s impleType name=" dec i s i on−var i ab l e−type ">

<x s : r e s t r i c t i o n base=" x s : s t r i n g ">

<xs:enumerat ion value=" c o n t r o l l a b l e "/>

<xs:enumerat ion value=" uncon t r o l l ab l e "/>

<xs:enumerat ion value=" p r o b a b i l i s t i c "/>

</ x s : r e s t r i c t i o n>

</xs:s impleType>

<xs:complexType name=" dec i s i on−va r i ab l e ">

<xs:complexContent>

<xs : e x t en s i on base="guarded−tn−member">

<xs : sequence>

<xs : e l ement name=" type" type=" dec i s i on−var i ab l e−type "></ xs : e l ement>

<xs : e l ement name="at−event " type="xs:IDREF" minOccurs="0"></ xs : e l ement>

<xs : e l ement name="domain">

<xs:complexType>

<xs : sequence>

<xs : e l ement name="domainval " maxOccurs="unbounded" minOccurs="1">

<xs:complexType>

<xs : sequence>

<xs : e l ement name="value " type=" x s : s t r i n g "></ xs : e l ement>

<xs : e l ement name=" u t i l i t y " type=" xs :doub l e " minOccurs="0"></

xs : e l ement>

<xs : e l ement name=" p r obab i l i t y " type=" xs :doub l e " minOccurs="0"><

/ xs : e l ement>

</ x s : sequence>

274

</xs:complexType>

</ xs : e l ement>

</ x s : sequence>

</xs:complexType>

</ xs : e l ement>

</ x s : sequence>

</ x s : e x t en s i on>

</xs:complexContent>

</xs:complexType>

<xs:complexType name=" state−va r i ab l e ">

<xs : sequence>

<xs : e l ement name=" id " type="xs : ID "></ xs : e l ement>

<xs : e l ement name="name" type=" x s : s t r i n g "></ xs : e l ement>

<xs : e l ement name="domain" type=" var i ab l e−domain"></ xs : e l ement>

</ x s : sequence>

</xs:complexType>

<xs:complexType name=" d i s t r i b u t i o n ">

<xs : sequence>

<xs : e l ement name=" d i s t r i bu t i o n−type " type=" x s : s t r i n g "></ xs : e l ement>

<xs : e l ement name="parameters ">

<xs:complexType>

<xs : sequence>

<xs : e l ement name="parameter " type=" x s : f l o a t " maxOccurs="unbounded"

minOccurs="0"></ xs : e l ement>

</ x s : sequence>

</xs:complexType>

</ xs : e l ement>

</ x s : sequence>

</xs:complexType>

<xs:complexType name="durat ion ">

<x s : c h o i c e>

<xs : e l ement name="bounded−durat ion ">

<xs:complexType>

<xs : sequence>

<xs : e l ement name=" lower−bound" type=" xs :doub l e " maxOccurs="1" minOccurs="

0"></ xs : e l ement>

<xs : e l ement name="upper−bound" type=" xs :doub l e " maxOccurs="1" minOccurs="0"

></ xs : e l ement>

</ x s : sequence>

</xs:complexType>

</ xs : e l ement>

275

<xs : e l ement name=" set−bounded−uncerta in−durat ion ">

<xs:complexType>

<xs : sequence>

<xs : e l ement name=" lower−bound" type=" xs :doub l e " maxOccurs="1" minOccurs="

0"></ xs : e l ement>

<xs : e l ement name="upper−bound" type=" xs :doub l e " maxOccurs="1" minOccurs="0"

></ xs : e l ement>

</ x s : sequence>

</xs:complexType>

</ xs : e l ement>

<xs : e l ement name=" p r o b ab i l i s t i c−uncerta in−durat ion " type=" d i s t r i b u t i o n ">

</ xs : e l ement>

</ x s : c h o i c e>

</xs:complexType>

<xs:complexType name="wff−value ">

<x s : c h o i c e>

<xs : e l ement name=" constant " type=" x s : s t r i n g " />

<xs : e l ement name=" state−va r i ab l e " type="xs:IDREF" />

</ x s : c h o i c e>

</xs:complexType>

<xs:s impleType name=" timepoint−type ">

<x s : r e s t r i c t i o n base=" x s : s t r i n g ">

<xs:enumerat ion value=" s t a r t "/>

<xs:enumerat ion value="end"/>

</ x s : r e s t r i c t i o n>

</xs:s impleType>

<xs:complexType name="wff−boolean−expres s ion−t imepoint ">

<xs : sequence>

<xs : e l ement name=" t imepoint " type=" timepoint−type " />

<xs : e l ement name=" o f f s e t " type=" xs :doub l e " maxOccurs="1" minOccurs="0" />

</ x s : sequence>

</xs:complexType>

<xs:complexType name="wff−boolean−expres s ion−when−at ">

<xs : sequence>

<xs : e l ement name="at " type="wff−boolean−expres s ion−t imepoint " />

</ x s : sequence>

</xs:complexType>

<xs:complexType name="wff−boolean−expres s ion−when−between">

<xs : sequence>

276

<xs : e l ement name="from" type="wff−boolean−expres s ion−t imepoint " />

<xs : e l ement name=" to " type="wff−boolean−expres s ion−t imepoint " />

</ x s : sequence>

</xs:complexType>

<xs:complexType name="wff−boolean−expres s ion−when">

<x s : c h o i c e>

<xs : e l ement name="at " type="wff−boolean−expres s ion−when−at " />

<xs : e l ement name="between" type="wff−boolean−expres s ion−when−between" />

</ x s : c h o i c e>

</xs:complexType>

<xs:complexType name="wff−boolean−exp r e s s i on ">

<xs : sequence>

<xs : e l ement name="when" type="wff−boolean−expres s ion−when" minOccurs="0"/>

<xs : e l ement name=" cond i t i on " type=" x s : s t r i n g " />

<xs : e l ement name="value " type="wff−value " maxOccurs="unbounded" minOccurs="1"

/>

</ x s : sequence>

</xs:complexType>

<xs:complexType name="wff− l i s t ">

<x s : sequence>

<xs : e l ement name="wff " type="wff " maxOccurs="unbounded" minOccurs="1" />

</ x s : sequence>

</xs:complexType>

<xs:complexType name="wff ">

<x s : c h o i c e>

<xs : e l ement name="boolean−constant " type=" xs :boo l ean " />

<xs : e l ement name="boolean−exp r e s s i on " type="wff−boolean−exp r e s s i on " />

<xs : e l ement name="and" type="wff− l i s t " />

<xs : e l ement name="or " type="wff− l i s t " />

<xs : e l ement name="not">

<xs:complexType>

<xs : sequence>

<xs : e l ement name="wff " type="wff "></ xs : e l ement>

</ x s : sequence>

</xs:complexType>

</ xs : e l ement>

</ x s : c h o i c e>

</xs:complexType>

<xs:complexType name=" state−c on s t r a i n t ">

277

<xs : c h o i c e>

<xs : e l ement name="wff " type="wff " />

</ x s : c h o i c e>

</xs:complexType>

<xs:complexType name=" event ">

<xs:complexContent>

<xs : e x t en s i on base=" d i spatchab le−guarded−tn−member">

<xs : sequence>

</ x s : sequence>

</ x s : e x t en s i on>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="temporal−c on s t r a i n t ">

<xs:complexContent>

<xs : e x t en s i on base="guarded−tn−member">

<xs : sequence>

<xs : e l ement name="to−event " type="xs:IDREF"></ xs : e l ement>

<xs : e l ement name="from−event " type="xs:IDREF"></ xs : e l ement>

<xs : e l ement name="durat ion "

type=" durat ion ">

</ xs : e l ement>

</ x s : sequence>

</ x s : e x t en s i on>

</xs:complexContent>

</xs:complexType>

<xs:complexType name=" ep i sode ">

<xs:complexContent>

<xs : e x t en s i on base="temporal−c on s t r a i n t ">

<xs : sequence>

<xs : e l ement name=" di spatch " type=" x s : s t r i n g " minOccurs="0"></ xs : e l ement>

<xs : e l ement name="macro−tpn−id " type=" x s : s t r i n g " minOccurs="0"></

xs : e l ement>

<xs : e l ement name=" state−c on s t r a i n t "

type=" state−c on s t r a i n t ">

</ xs : e l ement>

</ x s : sequence>

</ x s : e x t en s i on>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="chance−c on s t r a i n t ">

278

<xs : sequence>

<xs : e l ement name=" id " type="xs : ID "></ xs : e l ement>

<xs : e l ement name="name" type=" x s : s t r i n g "></ xs : e l ement>

<xs : e l ement name=" con s t r a i n t s " type="xs:IDREFS"></ xs : e l ement>

<xs : e l ement name=" p r obab i l i t y " type=" x s : f l o a t "></ xs : e l ement>

</ x s : sequence>

</xs:complexType>

<xs:complexType name=" state−var i ab l e−ass ignment ">

<xs : sequence>

<xs : e l ement name=" state−va r i ab l e " type="xs:IDREF"></ xs : e l ement>

<xs : e l ement name="value " type=" x s : s t r i n g "></ xs : e l ement>

</ x s : sequence>

</xs:complexType>

<xs:complexType name=" s t a t e ">

<xs : sequence>

<xs : e l ement name="assignment " type=" state−var i ab l e−ass ignment " minOccurs="0"

maxOccurs="unbounded"></ xs : e l ement>

</ x s : sequence>

</xs:complexType>

<xs:complexType name="tpn">

<xs : sequence>

<xs : e l ement name=" id " type="xs : ID "></ xs : e l ement>

<xs : e l ement name="name" type=" x s : s t r i n g "></ xs : e l ement>

<xs : e l ement name=" f e a t u r e s ">

<xs:complexType>

<xs : sequence>

<xs : e l ement name=" f e a tu r e " type="TPN−f ea ture−type " minOccurs="0"

maxOccurs="unbounded"></ xs : e l ement>

</ x s : sequence>

</xs:complexType>

</ xs : e l ement>

<xs : e l ement name=" s ta r t−event " type="xs:IDREF"></ xs : e l ement>

<xs : e l ement name="end−event " type="xs:IDREF" minOccurs="0"></ xs : e l ement>

<xs : e l ement name=" events ">

<xs:complexType>

<xs : sequence>

<xs : e l ement name=" event " type=" event " minOccurs="0" maxOccurs="unbounded"

></ xs : e l ement>

</ x s : sequence>

</xs:complexType>

279

</ xs : e l ement>

<xs : e l ement name="temporal−c on s t r a i n t s ">

<xs:complexType>

<xs : sequence>

<xs : e l ement name="temporal−c on s t r a i n t " type="temporal−c on s t r a i n t "

minOccurs="0" maxOccurs="unbounded"></ xs : e l ement>

</ x s : sequence>

</xs:complexType>

</ xs : e l ement>

<xs : e l ement name=" ep i s ode s ">

<xs:complexType>

<xs : sequence>

<xs : e l ement name=" ep i sode " type=" ep i sode " minOccurs="0" maxOccurs="

unbounded"></ xs : e l ement>

</ x s : sequence>

</xs:complexType>

</ xs : e l ement>

<xs : e l ement name="chance−c on s t r a i n t s ">

<xs:complexType>

<xs : sequence>

<xs : e l ement name="chance−c on s t r a i n t " type="chance−c on s t r a i n t " minOccurs="

0" maxOccurs="unbounded"></ xs : e l ement>

</ x s : sequence>

</xs:complexType>

</ xs : e l ement>

<xs : e l ement name=" dec i s i on−va r i a b l e s ">

<xs:complexType>

<xs : sequence>

<xs : e l ement name=" dec i s i on−va r i ab l e " type=" dec i s i on−va r i ab l e " minOccurs="

0" maxOccurs="unbounded"></ xs : e l ement>

</ x s : sequence>

</xs:complexType>

</ xs : e l ement>

<xs : e l ement name=" state−va r i a b l e s ">

<xs:complexType>

<xs : sequence>

<xs : e l ement name=" state−va r i ab l e " type=" state−va r i ab l e " minOccurs="0"

maxOccurs="unbounded"></ xs : e l ement>

</ x s : sequence>

280

</xs:complexType>

</ xs : e l ement>

<xs : e l ement name=" i n i t i a l −s t a t e " type=" s t a t e " minOccurs="0" />

</ x s : sequence>

</xs:complexType>

<xs:complexType name=" tpns ">

<xs : sequence>

<xs : e l ement name="tpn" type="tpn" maxOccurs="unbounded">

<!−− Make sure keys / IDs match with in t h i s TPN −−>

<!−− Make sure a l l temporal c on s t r a i n t s and ep i s ode s have unique ID ’ s −−>

<xs :key name="TEMPORAL−CONSTRAINT−ID">

<x s : s e l e c t o r xpath="./ t : tempora l−c on s t r a i n t s / t : tempora l−c on s t r a i n t / t : i d

| . / t : e p i s o d e s / t : e p i s o d e / t : i d " />

<x s : f i e l d xpath="." />

</xs:key>

<!−− Make sure a l l events have unique ID ’ s −−>

<xs :key name="EVENT−ID">

<x s : s e l e c t o r xpath=" . / t : e v e n t s / t : e v en t / t : i d " />

<x s : f i e l d xpath=" . " />

</ xs :key>

<!−− Make sure a l l d e c i s i o n & s t a t e v a r i a b l e s have unique ID ’ s −−>

<xs :key name="VARIABLE−ID">

<x s : s e l e c t o r xpath=".// t : d e c i s i o n−va r i ab l e / t : i d | . // t : s t a t e−va r i ab l e /

t : i d " />

<x s : f i e l d xpath="." />

</xs:key>

<!−− Make sure a l l temporal c on s t r a i n t from−event and to−event po int to

ac tua l event ID ’ s −−>

<xs : k e y r e f name="TEMPORAL−CONSTRAINT−EVENT−IDREF" r e f e r="EVENT−ID">

<x s : s e l e c t o r xpath=" . / t : tempora l−c on s t r a i n t s / t : tempora l−c on s t r a i n t / t : f rom

−event | . / t : tempora l−c on s t r a i n t s / t : tempora l−c on s t r a i n t / t : t o−event "/>

<x s : f i e l d xpath=" . "/>

</ x s : k e y r e f>

<!−− Make sure a l l ep i sode from−event and to−event po int to

ac tua l event ID ’ s −−>

<xs : k e y r e f name="EPISODE−EVENT−IDREF" r e f e r="EVENT−ID">

<x s : s e l e c t o r xpath="./ t : e p i s o d e s / t : e p i s o d e / t : f rom−event | . / t : e p i s o d e s /

t : e p i s o d e / t : t o−event"/>

281

<x s : f i e l d xpath="."/>

</xs : k ey r e f >

<!−− Make sure the TPN’ s s t a r t and end events a l s o r e f e r to

ac tua l event ID ’ s −−>

<xs : k e y r e f name="TPN−START−END−EVENT−IDREF" r e f e r="EVENT−ID">

<x s : s e l e c t o r xpath="./ t : s t a r t −event | . / t :end−event"/>

<x s : f i e l d xpath="."/>

</xs : k ey r e f >

<!−− Make sure a l l r e f e r e n c e s to va r i ab l e ID ’ s are ac tua l ID ’ s −−>

<xs : k e y r e f name="VARIABLE−IDREF" r e f e r="VARIABLE−ID">

<x s : s e l e c t o r xpath=".// t : v a r i a b l e "/>

<x s : f i e l d xpath="."/>

</xs : k ey r e f >

</xs :e lement>

</x s : sequence>

</xs:complexType>

</xs:schema>

Listing C.2: Schema for PTPN definitions.

282

Appendix D

RSS model

This appendix contains the PDDL model used in the Resilient Space Systems (RSS)

demonstration of Chapter 7.

(d e f i n e (domain RSS_Project_Rover_Scenario)

(: requ i rements : typing)

(: types

Rover − ob j e c t

Request − ob j e c t

RockSampleRequest − Request

PictureRequest − Request

Locat ion − ob j e c t)

(: p r ed i c a t e s

(mastcam_ready ? rov − Rover)

(hazcam_ready ? rov − Rover)

(i d l e ? rov − Rover)

(mastcam_on ? rov − Rover)

(hazcam_on ? rov − Rover)

(pending ? req − Request)

(done ? req − Request)

(t ransmit ted ? req − Request)

(has_rock ? l o c − Locat ion)

(can_go_to ? l o c − Locat ion)

(orbiter_communicat ion_avai lable ? l o c − Locat ion)

(surveyed ? l o c − Locat ion)

(at ? rov − Rover ? l o c − Locat ion)

(l o c a t i o n ? p i c − PictureRequest ? l o c − Locat ion)

(mastcam_issue ? rov − Rover))

(: a c t i on move

: parameters (? s e l f − Rover ? l o c1 − Locat ion ? l o c2 − Locat ion)

283

: p r e cond i t i on

(and

(at ? s e l f ? l o c1)

(can_go_to ? l o c2)

(i d l e ? s e l f))

: e f f e c t

(and

(not (at ? s e l f ? l o c1))

(at ? s e l f ? l o c2)

(i d l e ? s e l f)))

(: a c t i on turnon_mastcam

: parameters (? s e l f − Rover ? l o c − Locat ion)

: p r e cond i t i on

(and

(at ? s e l f ? l o c)

(i d l e ? s e l f)

(mastcam_ready ? s e l f))

: e f f e c t

(and

(not (i d l e ? s e l f))

(mastcam_on ? s e l f)))

(: a c t i on turnon_hazcam

: parameters (? s e l f − Rover ? l o c − Locat ion)

: p r e cond i t i on

(and

(at ? s e l f ? l o c)

(i d l e ? s e l f)

(hazcam_ready ? s e l f)

(mastcam_issue ? s e l f))

: e f f e c t

(and

(not (i d l e ? s e l f))

(hazcam_on ? s e l f)))

(: a c t i on take_pictures_mastcam

: parameters (? s e l f − Rover ? l o c − Locat ion ? req − PictureRequest)

: p r e cond i t i on

(and

(at ? s e l f ? l o c)

(mastcam_on ? s e l f)

(l o c a t i o n ? req ? l o c)

(pending ? req))

: e f f e c t

284

(and

(done ? req)

(i d l e ? s e l f)

(not (mastcam_on ? s e l f))

(i d l e ? s e l f)))

(: a c t i on take_pictures_hazcam

: parameters (? s e l f − Rover ? l o c − Locat ion ? req − PictureRequest)

: p r e cond i t i on

(and

(at ? s e l f ? l o c)

(hazcam_on ? s e l f)

(l o c a t i o n ? req ? l o c)

(pending ? req)

(mastcam_issue ? s e l f))

: e f f e c t

(and

(not (pending ? req))

(done ? req)

(not (hazcam_on ? s e l f))

(i d l e ? s e l f)))

(: a c t i on survey_locat ion

: parameters (? s e l f − Rover ? l o c − Locat ion)

: p r e cond i t i on

(and

(at ? s e l f ? l o c)

(i d l e ? s e l f))

: e f f e c t

(and

(surveyed ? l o c)

(not (i d l e ? s e l f))))

(: a c t i on col lect_rock_sample

: parameters (? s e l f − Rover ? l o c − Locat ion ? req − RockSampleRequest)

: p r e cond i t i on

(and

(at ? s e l f ? l o c)

(pending ? req)

(has_rock ? l o c)

(surveyed ? l o c))

: e f f e c t

(and

(not (pending ? req))

(done ? req)

285

(not (has_rock ? l o c))

(i d l e ? s e l f)))

(: a c t i on transmit_data

: parameters (? s e l f − Rover ? l o c − Locat ion ? req − Request)

: p r e cond i t i on

(and

(at ? s e l f ? l o c)

(done ? req)

(orbiter_communicat ion_avai lable ? l o c)

(i d l e ? s e l f))

: e f f e c t

(and

(t ransmit ted ? req))))

Listing D.1: Domain file.

(d e f i n e (problem Planning_Problem)

(: domain RSS_Project_Rover_Scenario)

(: ob j e c t s

rover1 − Rover

l 1 − Locat ion

l 2 − Locat ion

l 3 − Locat ion

l 4 − Locat ion

l 5 − Locat ion

unknown − Locat ion

pic_req1 − PictureRequest

pic_req2 − PictureRequest

pic_req3 − PictureRequest

rock_req1 − RockSampleRequest

rock_req2 − RockSampleRequest)

(: i n i t

(at rover1 l 1)

(has_rock l 2)

(has_rock l 4)

(has_rock l 5)

(can_go_to l 1)

(can_go_to l 2)

(can_go_to l 3)

(can_go_to l 4)

(can_go_to l 5)

(i d l e rover1)

(l o c a t i o n pic_req1 l 3)

(l o c a t i o n pic_req2 l 2)

286

(l o c a t i o n pic_req3 l 5)

(mastcam_ready rover1)

(hazcam_ready rover1)

(orbiter_communicat ion_avai lable l 2)

(orbiter_communicat ion_avai lable l 4)

(pending pic_req1)

(pending pic_req2)

(pending pic_req3)

(pending rock_req1)

(pending rock_req2))

(: goa l

(and

(t ransmit ted pic_req1)

(t ransmit ted pic_req2)

(t ransmit ted pic_req3)

(t ransmit ted rock_req1)

(t ransmit ted rock_req2))))

Listing D.2: Problem file.

287

288

Bibliography

[Adept MobileRobots, 2005] Adept MobileRobots (2005). MobileSim. Available on-
line at http://robots.mobilerobots.com/wiki/MobileSim.

[Administration, 2009] Administration, F. A. (2009). Risk Management Handbook.
FAA. FAA-H-8083-2.

[Altman, 1999] Altman, E. (1999). Constrained Markov Decision Processes, vol-
ume 7. CRC Press.

[Andre and Russell, 2002] Andre, D. and Russell, S. J. (2002). State abstraction for
programmable reinforcement learning agents. In AAAI/IAAI, pages 119–125.

[APPL, 2014] APPL (April 25, 2014). PomdpX File Format (version 1.0). National
University of Singapore. Available online at http://bigbird.comp.nus.edu.sg/
pmwiki/farm/appl/index.php?n=Main.PomdpXDocumentation.

[Arantes et al., 2015] Arantes, J. d. S., Arantes, M. d. S., Toledo, C. F. M., and
Williams, B. C. (2015). A multi-population genetic algorithm for uav path re-
planning under critical situation. In Tools with Artificial Intelligence (ICTAI),
2015 IEEE 27th International Conference on, pages 486–493. IEEE.

[Arantes et al., 2016a] Arantes, M., Arantes, J., Toledo, C., and Williams, B.
(2016a). A hybrid multi-population genetic algorithm for uav path planning. In
Genetic and Evolutionary Computation Conference.

[Arantes et al., 2016b] Arantes, M., Toledo, C., Williams, B., and Ono, M. (2016b).
Collision-free encoding for chance-constrained, non-convex path planning. IEEE
Transactions on Robotics. To appear.

[Bajada et al., 2015] Bajada, J., Fox, M., and Long, D. (2015). Temporal planning
with semantic attachment of non-linear monotonic continuous behaviours. In Pro-
ceedings of the 24th International Conference on Artificial Intelligence, pages 1523–
1529. AAAI Press.

[Barto et al., 1995] Barto, A. G., Bradtke, S. J., and Singh, S. P. (1995). Learning
to act using real-time dynamic programming. Artificial Intelligence, 72(1):81–138.

289

http://robots.mobilerobots.com/wiki/MobileSim
http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.PomdpXDocumentation
http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/index.php?n=Main.PomdpXDocumentation

[Baum and Petrie, 1966] Baum, L. E. and Petrie, T. (1966). Statistical inference for
probabilistic functions of finite state markov chains. The annals of mathematical
statistics, 37(6):1554–1563.

[Beaudry et al., 2010] Beaudry, E., Kabanza, F., and Michaud, F. (2010). Planning
for concurrent action executions under action duration uncertainty using dynami-
cally generated bayesian networks. In ICAPS, pages 10–17.

[Behnel et al., 2011] Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S.,
and Smith, K. (2011). Cython: The best of both worlds. Computing in Science
Engineering, 13(2):31–39.

[Bellman, 1956] Bellman, R. (1956). Dynamic programming and lagrange multipliers.
Proceedings of the National Academy of Sciences, 42(10):767–769.

[Benazera et al., 2005a] Benazera, E., Brafman, R., Meuleau, N., and Hansen, E.
(2005a). An AO* Algorithm for Planning with Continuous Resources. In In Work-
shop on Planning under Uncertainty for Autonomous Systems, associated with the
International Conference on AI Planning and Scheduling (ICAPS).

[Benazera et al., 2005b] Benazera, E., Brafman, R., Meuleau, N., Hansen, E. A.,
et al. (2005b). Planning with continuous resources in stochastic domains. In In-
ternational Joint Conference on Artificial Intelligence, volume 19, page 1244.

[Benton et al., 2012] Benton, J., Coles, A. J., and Coles, A. (2012). Temporal plan-
ning with preferences and time-dependent continuous costs. In ICAPS, volume 77,
page 78.

[Berry and Gonthier, 1992] Berry, G. and Gonthier, G. (1992). The esterel syn-
chronous programming language: design, semantics, implementation. Science of
Computer Programming, 19(2):87 – 152.

[Bertsekas and Tsitsiklis,] Bertsekas, D. and Tsitsiklis, J. Neuro-dynamic program-
ming, 1996. Athena Scientific, Belmont, MA.

[Birge and Louveaux, 1997] Birge, J. R. and Louveaux, F. V. (1997). Introduction to
stochastic programming. Springer.

[Blackmore et al., 2011] Blackmore, L., Ono, M., and Williams, B. C. (2011).
Chance-constrained optimal path planning with obstacles. IEEE Transactions on
Robotics, 27(6):1080–1094.

[Blackmore, 2007] Blackmore, L. J. C. (2007). Robust execution for stochastic hybrid
systems. PhD thesis, Massachusetts Institute of Technology.

[Block et al., 2006] Block, S. A., Wehowsky, A. F., and Williams, B. C. (2006). Ro-
bust execution on contingent, temporally flexible plans. In AAAI, volume 2006,
pages 802–808.

290

[Blum and Furst, 1997] Blum, A. L. and Furst, M. L. (1997). Fast planning through
planning graph analysis. Artificial intelligence, 90(1):281–300.

[Bonet and Geffner, 2000] Bonet, B. and Geffner, H. (2000). Planning with incom-
plete information as heuristic search in belief space. In Proceedings of the Fifth
International Conference on Artificial Intelligence Planning Systems, pages 52–61.

[Bonet and Geffner, 2003] Bonet, B. and Geffner, H. (2003). Labeled rtdp: Improving
the convergence of real-time dynamic programming. In ICAPS, volume 3, pages
12–21.

[Bonet and Geffner, 2009] Bonet, B. and Geffner, H. (2009). Solving POMDPs:
RTDP-Bel vs. Point-based Algorithms. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence, pages 1641–1646.

[Bonet and Thiébaux, 2003] Bonet, B. and Thiébaux, S. (2003). Gpt meets psr. In
13𝑡ℎ International Conference on Automated Planning and Scheduling, pages 102–
111.

[Boutilier et al., 2000] Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S., et al.
(2000). Decision-theoretic, high-level agent programming in the situation calculus.
In AAAI/IAAI, pages 355–362.

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004). Convex op-
timization. Cambridge university press.

[Bryce et al., 2015] Bryce, D., Gao, S., Musliner, D. J., and Goldman, R. P. (2015).
SMT-Based Nonlinear PDDL+ Planning. In AAAI, pages 3247–3253.

[Burke et al., 2014] Burke, S., Fernandez, E., Figueredo, L., Hofmann, A., Hofmann,
C., Karpas, E., Levine, S., Santana, P., Yu, P., and Williams, B. (2014). Intent
Recognition and Temporal Relaxation in Human Robot Assembly. In The ICAPS-
14 System Demonstrations.

[Campbell et al., 2002] Campbell, M., Hoane, A. J., and Hsu, F.-h. (2002). Deep
blue. Artificial intelligence, 134(1):57–83.

[Cassez et al., 2005] Cassez, F., David, A., Fleury, E., Larsen, K. G., and Lime,
D. (2005). Efficient on-the-fly algorithms for the analysis of timed games. In
International Conference on Concurrency Theory, pages 66–80. Springer.

[Cimatti et al., 2014] Cimatti, A., Hunsberger, L., Micheli, A., Posenato, R., and
Roveri, M. (2014). Sound and complete algorithms for checking the dynamic con-
trollability of temporal networks with uncertainty, disjunction and observation. In
2014 21st International Symposium on Temporal Representation and Reasoning,
pages 27–36. IEEE.

291

[Cimatti et al., 2016a] Cimatti, A., Hunsberger, L., Micheli, A., Posenato, R., and
Roveri, M. (2016a). Dynamic controllability via timed game automata. Acta In-
formatica, pages 1–42.

[Cimatti et al., 2015] Cimatti, A., Micheli, A., and Roveri, M. (2015). Strong tem-
poral planning with uncontrollable durations: a state-space approach. AAAI.

[Cimatti et al., 2016b] Cimatti, A., Micheli, A., and Roveri, M. (2016b). Dynamic
Controllability of Disjunctive Temporal Networks: Validation and Synthesis of Ex-
ecutable Strategies. In Proceedings of the 30th AAAI Conference on Artificial
Intelligence.

[Coffrin and Van Hentenryck, 2014] Coffrin, C. and Van Hentenryck, P. (2014). A
linear-programming approximation of AC power flows. INFORMS Journal on
Computing, 26(4):718–734.

[Coles et al., 2008] Coles, A., Fox, M., Long, D., and Smith, A. (2008). Planning
with problems requiring temporal coordination. In AAAI, pages 892–897.

[Coles et al., 2009] Coles, A. J., Coles, A., Fox, M., and Long, D. (2009). Temporal
Planning in Domains with Linear Processes. In IJCAI, pages 1671–1676. Citeseer.

[Coles et al., 2010] Coles, A. J., Coles, A. I., Fox, M., and Long, D. (2010). Forward-
chaining partial-order planning. In Proceedings of the Twentieth International Con-
ference on Automated Planning and Scheduling (ICAPS-10).

[Coles et al., 2012] Coles, A. J., Coles, A. I., Fox, M., and Long, D. (2012). COLIN:
Planning with continuous linear numeric change. Journal of Artificial Intelligence
Research, pages 1–96.

[Combi et al., 2013] Combi, C., Hunsberger, L., and Posenato, R. (2013). An algo-
rithm for checking the dynamic controllability of a conditional simple temporal
network with uncertainty-revisited. In Agents and Artificial Intelligence, pages
314–331. Springer.

[Comtet, 1974] Comtet, L. (1974). Advanced Combinatorics: The art of finite and
infinite expansions. Springer.

[Conrad, 2010] Conrad, P. R. (2010). Flexible execution of plans with choice and
uncertainty. Master’s thesis, Massachusetts Institute of Technology.

[Conrad et al., 2009] Conrad, P. R., Shah, J. A., and Williams, B. C. (2009). Flexible
execution of plans with choice. In ICAPS, volume 9, pages 74–81.

[Conrad and Williams, 2011] Conrad, P. R. and Williams, B. C. (2011). Drake: An
efficient executive for temporal plans with choice. Journal of Artificial Intelligence
Research, 42(1):607–659.

292

[Cooper, 1990] Cooper, G. F. (1990). The computational complexity of probabilistic
inference using bayesian belief networks. Artificial intelligence, 42(2-3):393–405.

[Cushing et al., 2007] Cushing, W., Kambhampati, S., Weld, D. S., et al. (2007).
When is temporal planning really temporal? In Proceedings of the 20th interna-
tional joint conference on Artifical intelligence, pages 1852–1859. Morgan Kauf-
mann Publishers Inc.

[Dai et al., 2011] Dai, P., Weld, D. S., and Goldsmith, J. (2011). Topological value
iteration algorithms. Journal of Artificial Intelligence Research, 42:181–209.

[De Kleer et al., 1992] De Kleer, J., Mackworth, A. K., and Reiter, R. (1992). Char-
acterizing diagnoses and systems. Artificial Intelligence, 56(2):197–222.

[De Kleer and Williams, 1987] De Kleer, J. and Williams, B. C. (1987). Diagnosing
multiple faults. Artificial intelligence, 32(1):97–130.

[Dechter et al., 1991] Dechter, R., Meiri, I., and Pearl, J. (1991). Temporal constraint
networks. Artificial intelligence, 49(1):61–95.

[Della Penna et al., 2012] Della Penna, G., Magazzeni, D., and Mercorio, F. (2012).
A universal planning system for hybrid domains. Applied intelligence, 36(4):932–
959.

[Do and Kambhampati, 2003] Do, M. B. and Kambhampati, S. (2003). Sapa: A
multi-objective metric temporal planner. J. Artif. Intell. Res.(JAIR), 20:155–194.

[Dolgov and Durfee, 2005] Dolgov, D. A. and Durfee, E. H. (2005). Stationary deter-
ministic policies for constrained mdps with multiple rewards, costs, and discount
factors. In Proceedings of the Nineteenth International Joint Conference on Artifi-
cial Intelligence, pages 1326–1331.

[Dornhege et al., 2012] Dornhege, C., Eyerich, P., Keller, T., Trüg, S., Brenner, M.,
and Nebel, B. (2012). Semantic attachments for domain-independent planning sys-
tems. In Towards service robots for everyday environments, pages 99–115. Springer.

[Effinger et al., 2009] Effinger, R., Williams, B., Kelly, G., and Sheehy, M. (2009).
Dynamic Controllability of Temporally-flexible Reactive Programs. In Proceed-
ings of the 19th International Conference on Automated Planning and Scheduling
(ICAPS 09).

[Effinger, 2006] Effinger, R. T. (2006). Optimal Temporal Planning at Reactive
Time Scales via Dynamic Backtracking Branch and Bound. Master’s thesis, Mas-
sachusetts Institute of Technology.

[Effinger, 2012] Effinger, R. T. (2012). Risk-minimizing program execution in robotic
domains. PhD thesis, Massachusetts Institute of Technology.

293

[Fang, 2014] Fang, C. (2014). Mission-level planning with constraints on risk. Mas-
ter’s thesis, Massachusetts Institute of Technology.

[Fang et al., 2014] Fang, C., Yu, P., and Williams, B. C. (2014). Chance-constrained
probabilistic simple temporal problems. In Twenty-Eighth AAAI Conference on
Artificial Intelligence.

[Fargier et al., 1995] Fargier, H., Lang, J., Martin-Clouaire, R., and Schiex, T.
(1995). A constraint satisfaction framework for decision under uncertainty. In Pro-
ceedings of the Eleventh conference on Uncertainty in artificial intelligence, pages
167–174. Morgan Kaufmann Publishers Inc.

[Fargier et al., 1996] Fargier, H., Lang, J., and Schiex, T. (1996). Mixed constraint
satisfaction: A framework for decision problems under incomplete knowledge. In
Proceedings of the National Conference on Artificial Intelligence, pages 175–180.

[Feinberg and Shwarz, 1995] Feinberg, E. and Shwarz, A. (1995). Constrained Dis-
counted Dynamic Programming. Math. of Operations Research, 21:922–945.

[Fernández-González et al., 2015] Fernández-González, E., Karpas, E., and Williams,
B. C. (2015). Mixed discrete-continuous heuristic generative planning based on flow
tubes. In Proceedings of the 24th International Conference on Artificial Intelligence,
pages 1565–1572. AAAI Press.

[Fiacco and McCormick, 1964] Fiacco, A. V. and McCormick, G. P. (1964). The se-
quential unconstrained minimization technique for nonlinear programing, a primal-
dual method. Management Science, 10(2):360–366.

[Firby, 1990] Firby, R. J. (1990). Adaptive execution in complex dynamic worlds. PhD
thesis, Citeseer.

[Fox and Long, 2003] Fox, M. and Long, D. (2003). PDDL2. 1: An Extension to
PDDL for Expressing Temporal Planning Domains. J. Artif. Intell. Res.(JAIR),
20:61–124.

[Fox and Long, 2006] Fox, M. and Long, D. (2006). Modelling mixed discrete-
continuous domains for planning. J. Artif. Intell. Res.(JAIR), 27:235–297.

[Fritz and McIlraith, 2005] Fritz, C. and McIlraith, S. (2005). Compiling qualitative
preferences into decision-theoretic golog programs. In Proceedings of the 10th In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR-06).

[Gat, 1997] Gat, E. (1997). ESL: A language for supporting robust plan execution
in embedded autonomous agents. In Aerospace Conference, 1997. Proceedings.,
IEEE, volume 1, pages 319–324. IEEE.

294

[Geffner and Bonet, 2013] Geffner, H. and Bonet, B. (2013). A concise introduction
to models and methods for automated planning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 8(1):1–141.

[Gelle and Sabin, 2006] Gelle, E. and Sabin, M. (2006). Solver framework for condi-
tional constraint satisfaction problems. In Proceeding of European Conference on
Artificial Intelligence (ECAI-06) Workshop on Configuration, pages 14–19.

[Gerevini and Long, 2005] Gerevini, A. and Long, D. (2005). Plan constraints and
preferences in PDDL3. The Language of the Fifth International Planning Com-
petition. Tech. Rep. Technical Report, Department of Electronics for Automation,
University of Brescia, Italy, 75.

[Gregory et al., 2012] Gregory, P., Long, D., Fox, M., and Beck, J. C. (2012). Plan-
ning Modulo Theories: Extending the Planning Paradigm. In Proceedings of the
22nd International Conference on Automated Planning and Scheduling.

[Gupta et al., 1996] Gupta, V., Jagadeesan, R., and Saraswat, V. (1996). Models for
concurrent constraint programming. In CONCUR’96: Concurrency Theory, pages
66–83. Springer.

[Halbwachs, 1998] Halbwachs, N. (1998). Synchronous programming of reactive sys-
tems. In International Conference on Computer Aided Verification, pages 1–16.
Springer.

[Halbwachs et al., 1991] Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D.
(1991). The synchronous data flow programming language lustre. Proceedings
of the IEEE, 79(9):1305–1320.

[Hansen, 1998] Hansen, E. A. (1998). Solving POMDPs by searching in policy space.
In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence,
pages 211–219. Morgan Kaufmann Publishers Inc.

[Hansen and Zilberstein, 2001] Hansen, E. A. and Zilberstein, S. (2001). LAOâĹŮ:
A heuristic search algorithm that finds solutions with loops. Artificial Intelligence,
129(1):35–62.

[Harel, 1987] Harel, D. (1987). Statecharts: A visual formalism for complex systems.
Science of computer programming, 8(3):231–274.

[Hart et al., 1968] Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A formal
basis for the heuristic determination of minimum cost paths. Systems Science and
Cybernetics, IEEE Transactions on, 4(2):100–107.

[Hart et al., 2012] Hart, W. E., Laird, C., Watson, J.-P., and Woodruff, D. L. (2012).
Pyomo–optimization modeling in Python, volume 67. Springer Science & Business
Media.

295

[Hebrard et al., 2010] Hebrard, E., OâĂŹMahony, E., and OâĂŹSullivan, B. (2010).
Constraint programming and combinatorial optimisation in numberjack. In Inte-
gration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, pages 181–185. Springer.

[Hoeffding, 1963] Hoeffding, W. (1963). Probability inequalities for sums of bounded
random variables. Journal of the American statistical association, 58(301):13–30.

[Hoffmann and Edelkamp, 2005] Hoffmann, J. and Edelkamp, S. (2005). The deter-
ministic part of IPC-4: An overview. Journal of Artificial Intelligence Research,
24:519–579.

[Hou et al., 2014] Hou, P., Yeoh, W., and Varakantham, P. (2014). Revisiting risk-
sensitive mdps: New algorithms and results. In Proceedings of the Twenty-Fourth
International Conference on Automated Planning and Scheduling.

[Hou et al., 2016] Hou, P., Yeoh, W., and Varakantham, P. (2016). Solving Risk-
Sensitive POMDPs With and Without Cost Observations. In Proceedings of the
30th AAAI Conference on Artificial Intelligence.

[Howey et al., 2004] Howey, R., Long, D., and Fox, M. (2004). VAL: Automatic plan
validation, continuous effects and mixed initiative planning using PDDL. In Tools
with Artificial Intelligence, 2004. ICTAI 2004. 16th IEEE International Conference
on, pages 294–301. IEEE.

[Hunsberger, 2009] Hunsberger, L. (2009). Fixing the semantics for dynamic con-
trollability and providing a more practical characterization of dynamic execution
strategies. In 2009 16th International Symposium on Temporal Representation and
Reasoning, pages 155–162. IEEE.

[Hunsberger, 2010] Hunsberger, L. (2010). A fast incremental algorithm for managing
the execution of dynamically controllable temporal networks. In 2010 17th Inter-
national Symposium on Temporal Representation and Reasoning, pages 121–128.
IEEE.

[Hunsberger, 2013] Hunsberger, L. (2013). A faster execution algorithm for dynami-
cally controllable stnus. In 2013 20th International Symposium on Temporal Rep-
resentation and Reasoning, pages 26–33. IEEE.

[Hunsberger, 2014] Hunsberger, L. (2014). A faster algorithm for checking the dy-
namic controllability of simple temporal networks with uncertainty. In ICAART
(1), pages 63–73.

[Hunsberger et al., 2012] Hunsberger, L., Posenato, R., and Combi, C. (2012). The
dynamic controllability of conditional stns with uncertainty. In Workshop on
Planning and Plan Execution for Real-World Systems: Principles and Practices
(PlanEx), pages 1–8.

296

[Ingham et al., 2001] Ingham, M., Ragno, R., and Williams, B. C. (2001). A reactive
model-based programming language for robotic space explorers. Proceedings of
ISAIRAS-01.

[Ingham, 2003] Ingham, M. D. (2003). Timed model-based programming: Executable
specifications for robust mission-critical sequences. PhD thesis, Massachusetts In-
stitute of Technology.

[Isom et al., 2008] Isom, J. D., Meyn, S. P., and Braatz, R. D. (2008). Piecewise
Linear Dynamic Programming for Constrained POMDPs. In Proceedings 23rd
AAAI Conference on Artificial Intelligence, pages 291–296.

[Ivankovic et al., 2014] Ivankovic, F., Haslum, P., Thiébaux, S., Shivashankar, V.,
and Nau, D. S. (2014). Optimal planning with global numerical state constraints.
In ICAPS.

[Jones et al., 01] Jones, E., Oliphant, T., Peterson, P., et al. (2001–). SciPy: Open
source scientific tools for Python. [Online; accessed 2016-06-06].

[Kaelbling et al., 1998] Kaelbling, L. P., Littman, M. L., and Cassandra, A. R.
(1998). Planning and acting in partially observable stochastic domains. Artifi-
cial intelligence, 101(1):99–134.

[Kaipa et al., 2015] Kaipa, K. N., Thevendria-Karthic, S. S., Shriyam, S., Kabir,
A. M., Langsfeld, J. D., and Gupta, S. K. (2015). Resolving automated perception
system failures in bin-picking tasks using assistance from remote human operators.
In 2015 IEEE International Conference on Automation Science and Engineering
(CASE), pages 1453–1458. IEEE.

[Karaman et al., 2011] Karaman, S., Walter, M. R., Perez, A., Frazzoli, E., and
Teller, S. (2011). Anytime motion planning using the rrt. In Robotics and Automa-
tion (ICRA), 2011 IEEE International Conference on, pages 1478–1483. IEEE.

[Karmarkar, 1984] Karmarkar, N. (1984). A new polynomial-time algorithm for linear
programming. In Proceedings of the sixteenth annual ACM symposium on Theory
of computing, pages 302–311. ACM.

[Kautz and Selman, 2006] Kautz, H. and Selman, B. (2006). Satplan04: Planning
as satisfiability. Working Notes on the Fifth International Planning Competition
(IPC-2006), pages 45–46.

[Keller and Helmert, 2013] Keller, T. and Helmert, M. (2013). Trial-based Heuristic
Tree Search for Finite Horizon MDPs. In Proceedings of the 23rd International
Conference on Automated Planning and Scheduling (ICAPS), pages 135–143.

[Kim et al., 2011] Kim, D., Lee, J., Kim, K., and Poupart, P. (2011). Point-Based
Value Iteration for Constrained POMDPs. In Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, pages 1968–1974.

297

[Kim et al., 2001] Kim, P., Williams, B., and Abramson, M. (2001). Executing reac-
tive, model-based programs through graph-based temporal planning. In IJCAI.

[Kocsis and Szepesvári, 2006] Kocsis, L. and Szepesvári, C. (2006). Bandit based
monte-carlo planning. InMachine Learning: ECML 2006, pages 282–293. Springer.

[Koenig and Howard, 2004] Koenig, N. and Howard, A. (2004). Design and use
paradigms for gazebo, an open-source multi-robot simulator. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 3,
pages 2149–2154. IEEE.

[Kurniawati et al., 2008] Kurniawati, H., Hsu, D., and Lee, W. S. (2008). SARSOP:
Efficient Point-Based POMDP Planning by Approximating Optimally Reachable
Belief Spaces. In Robotics: Science and Systems, volume 2008.

[Lane, 2016] Lane, S. (2016). Propositional and activity monitoring using qualitative
spatial reasoning. Master’s thesis, Massachusetts Institute of Technology.

[Le Guernic et al., 1986] Le Guernic, P., Benveniste, A., Bournai, P., and Gautier,
T. (1986). Signal–a data flow-oriented language for signal processing. IEEE trans-
actions on acoustics, speech, and signal processing, 34(2):362–374.

[Levesque et al., 1997] Levesque, H. J., Reiter, R., Lesperance, Y., Lin, F., and
Scherl, R. B. (1997). GOLOG: A logic programming language for dynamic do-
mains. The Journal of Logic Programming, 31(1):59–83.

[Levine and Williams, 2014] Levine, S. J. and Williams, B. C. (2014). Concurrent
plan recognition and execution for human-robot teams. In ICAPS-14.

[Li, 2010] Li, H. (2010). Kongming: A Generative Planner for Hybrid Systems with
Temporally Extended Goals. PhD thesis, Massachusetts Institute of Technology.

[Li and Williams, 2011] Li, H. and Williams, B. C. (2011). Hybrid Planning with
Temporally Extended Goals for Sustainable Ocean Observing. In Proceedings of
the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2011, San
Francisco, California, USA, August 7-11, 2011.

[Li and Williams, 2008] Li, H. X. and Williams, B. C. (2008). Generative planning
for hybrid systems based on flow tubes. In ICAPS, pages 206–213.

[Lin et al., 2016] Lin, C., Hadfield-Menell, D., Chitnis, R., Russell, S., and Abbeel,
P. (2016). Sequential Quadratic Programming for Task Plan Optimization. In
PlanRob Workshop, 26th International Conference on Automated Planning and
Scheduling.

[Lozano-Pérez and Kaelbling, 2014] Lozano-Pérez, T. and Kaelbling, L. P. (2014). A
constraint-based method for solving sequential manipulation planning problems.
In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3684–3691. IEEE.

298

[Marecki and Varakantham, 2010] Marecki, J. and Varakantham, P. (2010). Risk-
sensitive planning in partially observable environments. In Proceedings of the 9th
International Conference on Autonomous Agents and Multiagent Systems: volume
1-Volume 1, pages 1357–1368. International Foundation for Autonomous Agents
and Multiagent Systems.

[Mausam and Weld, 2008] Mausam and Weld, D. S. (2008). Planning with durative
actions in stochastic domains. J. Artif. Intell. Res.(JAIR), 31:33–82.

[McDermott et al., 1998] McDermott, D., Ghallab, M., Howe, A., Knoblock, C.,
Ram, A., Veloso, M., Weld, D., and Wilkins, D. (1998). PDDL-the planning
domain definition language.

[McGhan and Murray, 2015] McGhan, C. L. and Murray, R. M. (2015). Application
of correct-by-construction principles for a resilient risk-aware architecture. In AIAA
SPACE 2015 Conference and Exposition, page 4527.

[McGhan et al., 2015] McGhan, C. L. R., Murray, R. M., Serra, R., Ingham, M. D.,
Ono, M., Estlin, T., and Williams, B. C. (2015). A risk-aware architecture for
resilient spacecraft operations. In 2015 IEEE Aerospace Conference, pages 1–15.

[Meuleau et al., 2009] Meuleau, N., Benazera, E., Brafman, R. I., Hansen, E. A., and
Mausam, M. (2009). A heuristic search approach to planning with continuous re-
sources in stochastic domains. Journal of Artificial Intelligence Research, 34(1):27.

[Micheli et al., 2015] Micheli, A., Do, M., and Smith, D. E. (2015). Compiling away
uncertainty in strong temporal planning with uncontrollable durations. In Inter-
national Joint Conference on Artificial Intelligence.

[Millman and Aivazis, 2011] Millman, K. J. and Aivazis, M. (2011). Python for sci-
entists and engineers. Computing in Science & Engineering, 13(2):9–12.

[Morris, 2006] Morris, P. (2006). A structural characterization of temporal dynamic
controllability. In Proceedings of the 12th International Conference on Principles
and Practice of Constraint Programming (CP-2006), pages 375–389.

[Morris, 2014] Morris, P. (2014). Dynamic controllability and dispatchability rela-
tionships. In International Conference on AI and OR Techniques in Constriant
Programming for Combinatorial Optimization Problems, pages 464–479. Springer.

[Morris and Muscettola, 2005] Morris, P. and Muscettola, N. (2005). Temporal dy-
namic controllability revisited. In Proceedings of the 20th National Conference on
Artificial Intelligence (AAAI-2005, pages 1193–1198. AAAI Press / The MIT Press.

[Morris et al., 2001] Morris, P., Muscettola, N., and Vidal, T. (2001). Dynamic con-
trol of plans with temporal uncertainty. In IJCAI, volume 1, pages 494–502.

299

[Nieuwenhuis et al., 2006] Nieuwenhuis, R., Oliveras, A., and Tinelli, C. (2006). Solv-
ing sat and sat modulo theories: From an abstract davis–putnam–logemann–
loveland procedure to dpll (t). Journal of the ACM (JACM), 53(6):937–977.

[Nilsson, 1982] Nilsson, N. J. (1982). Principles of artificial intelligence. Springer.

[Ono et al., 2012a] Ono, M. et al. (2012a). Robust, goal-directed plan execution with
bounded risk. PhD thesis, Massachusetts Institute of Technology.

[Ono et al., 2012b] Ono, M., Kuwata, Y., and Balaram, J. (2012b). Joint chance-
constrained dynamic programming. In CDC, pages 1915–1922.

[Ono et al., 2013] Ono, M., Williams, B., and Blackmore, L. (2013). Probabilistic
planning for continuous dynamic systems under bounded risk. JAIR, 46:511–577.

[Ono and Williams, 2008] Ono, M. and Williams, B. C. (2008). Iterative risk allo-
cation: A new approach to robust model predictive control with a joint chance
constraint. In Decision and Control, 2008. CDC 2008. 47th IEEE Conference on,
pages 3427–3432. IEEE.

[Papadimitriou and Tsitsiklis, 1987] Papadimitriou, C. H. and Tsitsiklis, J. N. (1987).
The complexity of markov decision processes. Mathematics of operations research,
12(3):441–450.

[Pearl, 1984] Pearl, J. (1984). Heuristics: intelligent search strategies for computer
problem solving.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine
Learning Research, 12:2825–2830.

[Peintner et al., 2007] Peintner, B., Venable, K. B., and Yorke-Smith, N. (2007).
Strong controllability of disjunctive temporal problems with uncertainty. In Prin-
ciples and Practice of Constraint Programming–CP 2007, pages 856–863. Springer.

[Penberthy and Weld, 1994] Penberthy, J. S. and Weld, D. S. (1994). Temporal plan-
ning with continuous change. In AAAI, volume 94, page 1010.

[Pineda et al., 2015] Pineda, L., Wray, K. H., and Zilberstein, S. (2015). Revisiting
Multi-Objective MDPs with Relaxed Lexicographic Preferences. In 2015 AAAI
Fall Symposium Series.

[Piotrowski et al., 2016] Piotrowski, W., Fox, M., Long, D., Magazzeni, D., and Mer-
corio, F. (2016). Heuristic Planning for PDDL+ Domains. In Proceedings of the
25th International Joint Conference on Artificial Intelligence.

300

[Poupart et al., 2015] Poupart, P., Malhotra, A., Pei, P., Kim, K.-E., Goh, B., and
Bowling, M. (2015). Approximate linear programming for constrained partially
observable markov decision processes. In Proceedings of the 29th AAAI Conference
on Artificial Intelligence.

[Quigley et al., 2009] Quigley, M., Faust, J., Foote, T., and Leibs, J. (2009). ROS: an
open-source Robot Operating System. Available online at http://www.ros.org/.

[Sanner, 2010] Sanner, S. (2010). Relational dynamic influence diagram language
(RDDL): Language description. NICTA & the Australian National Univer-
sity. Available online at http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/
RDDL.pdf.

[Santana et al., 2015] Santana, P., Lane, S., Timmons, E., Williams, B., and Forster,
C. (2015). Learning hybrid models with guarded transitions. In Proceedings of the
29th AAAI Conference on Artificial Intelligence.

[Santana et al., 2014] Santana, P., Lopes, R., Amui, B., Borges, G., ao Ishihara,
J., Williams, B., and Forster, C. (2014). A new filter for hybrid systems and
its applications to robust attitude estimation. In Proceedings of the 53rd IEEE
Conference on Decision and Control.

[Santana et al., 2016a] Santana, P., Lopes, R., Borges, G., and Williams, B. (2016a).
A hybrid data fusion approach for robust attitude estimation. Recent Advances on
Multisensor Attitude Estimation: Fundamental Concepts and Applications, ?(?):?–
?

[Santana et al., 2016b] Santana, P., Thiébaux, S., and Williams, B. (2016b). RAO*:
an Algorithm for Chance-Constrained POMDP’s. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence.

[Santana et al., 2016c] Santana, P., Vaquero, T., Toledo, C., Wang, A., Fang, C., and
Williams, B. (2016c). PARIS: a Polynomial-Time, Risk-Sensitive Scheduling Algo-
rithm for Probabilistic Simple Temporal Networks with Uncertainty. In Proceedings
of the 26th International Conference on Automated Planning and Scheduling.

[Santana and Williams, 2014] Santana, P. and Williams, B. (2014). Chance-
constrained consistency for probabilistic temporal plan networks. In Proceedings of
the 24th International Conference on Automated Planning and Scheduling.

[Shah et al., 2009] Shah, J. A., Conrad, P. R., and Williams, B. C. (2009). Fast
distributed multi-agent plan execution with dynamic task assignment and schedul-
ing. In Proceedings of the International Conference on Automated Planning and
Scheduling, Thessaloniki, Greece.

[Shah et al., 2007] Shah, J. A., Stedl, J., Williams, B. C., and Robertson, P. (2007). A
fast incremental algorithm for maintaining dispatchability of partially controllable
plans. In ICAPS, pages 296–303.

301

http://www.ros.org/
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf
http://users.cecs.anu.edu.au/~ssanner/IPPC_2011/RDDL.pdf

[Shah and Williams, 2008] Shah, J. A. and Williams, B. C. (2008). Fast dynamic
scheduling of disjunctive temporal constraint networks through incremental com-
pilation. In ICAPS, pages 322–329.

[Shin and Davis, 2005] Shin, J.-A. and Davis, E. (2005). Processes and continuous
change in a SAT-based planner. Artificial Intelligence, 166(1):194–253.

[Shu et al., 2005] Shu, I.-h., Effinger, R. T., and Williams, B. C. (2005). Enabling fast
flexible planning through incremental temporal reasoning with conflict extraction.
In ICAPS, pages 252–261.

[Silver et al., 2016] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van
Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot,
M., et al. (2016). Mastering the game of Go with deep neural networks and tree
search. Nature, 529(7587):484–489.

[Silver and Veness, 2010] Silver, D. and Veness, J. (2010). Monte-Carlo planning in
large POMDPs. In Advances in Neural Information Processing Systems, pages
2164–2172.

[Simmons and Apfelbaum, 1998] Simmons, R. and Apfelbaum, D. (1998). A task
description language for robot control. In Intelligent Robots and Systems, 1998.
Proceedings., 1998 IEEE/RSJ International Conference on, volume 3, pages 1931–
1937. IEEE.

[Smallwood and Sondik, 1973] Smallwood, R. and Sondik, E. (1973). The optimal
control of partially observable markov decision processes over a finite horizon. Op-
erations Research, 21(5):1071âĂŞ88.

[Smith et al., 2008] Smith, D. E., Frank, J., and Cushing, W. (2008). The ANML
language. In The ICAPS-08 Workshop on Knowledge Engineering for Planning
and Scheduling (KEPS).

[Smith and Weld, 1998] Smith, D. E. and Weld, D. S. (1998). Conformant Graph-
plan. In AAAI/IAAI, pages 889–896.

[Smith and Weld, 1999] Smith, D. E. and Weld, D. S. (1999). Temporal planning
with mutual exclusion reasoning. In IJCAI, volume 99, pages 326–337.

[Sprauel et al., 2014] Sprauel, J., Kolobov, A., and Teichteil-Königsbuch, F. (2014).
Saturated path-constrained mdp: Planning under uncertainty and deterministic
model-checking constraints. In AAAI, pages 2367–2373.

[Srivastava et al., 2014] Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S.,
and Abbeel, P. (2014). Combined task and motion planning through an extensible
planner-independent interface layer. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 639–646. IEEE.

302

[Stallman and Sussman, 1977] Stallman, R. M. and Sussman, G. J. (1977). Forward
reasoning and dependency-directed backtracking in a system for computer-aided
circuit analysis. Artificial intelligence, 9(2):135–196.

[Stergiou and Koubarakis, 2000] Stergiou, K. and Koubarakis, M. (2000). Backtrack-
ing algorithms for disjunctions of temporal constraints. Artificial Intelligence,
120(1):81–117.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Reinforcement learn-
ing: An introduction, volume 1. MIT press Cambridge.

[Szer et al., 2005] Szer, D., Charpillet, F., and Zilberstein, S. (2005). MAA*: A
Heuristic Search Algorithm for Solving Decentralized POMDPs. In Proceedings of
the Twenty-First Conference on Uncertainty in Artificial Intelligence, pages 576–
583, Edinburgh, Scotland.

[Tarim et al., 2006] Tarim, S. A., Manandhar, S., and Walsh, T. (2006). Stochastic
constraint programming: A scenario-based approach. Constraints, 11(1):53–80.

[Tarjan, 1972] Tarjan, R. (1972). Depth-first search and linear graph algorithms.
SIAM journal on computing, 1(2):146–160.

[Teichteil-Königsbuch, 2012] Teichteil-Königsbuch, F. (2012). Path-Constrained
Markov Decision Processes: bridging the gap between probabilistic model-checking
and decision-theoretic planning. In ECAI, pages 744–749.

[Thiébaux and Cordier, 2001] Thiébaux, S. and Cordier, M.-O. (2001). Supply
restoration in power distribution systems — a benchmark for planning under un-
certainty. In Proc. 6th European Conference on Planning (ECP), pages 85–95.

[Timmons, 2013] Timmons, E. (2013). Fast, approximate state estimation of con-
current probabilistic hybrid automata. Master’s thesis, Massachusetts Institute of
Technology.

[Timmons et al., 2015] Timmons, E., Fang, C., Fernandez, E., Karpas, E., Levine, S.,
Santana, P., Wang, A., Wang, D., Yu, P., and Williams, B. (2015). Reactive Model-
based Programming of Micro-UAVs. In The ICAPS-15 ISF Research Workshops.

[Toussaint, 2015] Toussaint, M. (2015). Logic-Geometric Programming: An
Optimization-Based Approach to Combined Task and Motion Planning. In Proceed-
ings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
pages 1930–1936. AAAI Press.

[Trevizan et al., 2016] Trevizan, F., Thiébaux, S., Santana, P., and Williams, B.
(2016). Heuristic Search in Dual Space for Constrained Stochastic Shortest Path
Problems. In Proceedings of the 26th International Conference on Automated Plan-
ning and Scheduling.

303

[Tsamardinos, 2002] Tsamardinos, I. (2002). A probabilistic approach to robust exe-
cution of temporal plans with uncertainty. InMethods and Applications of Artificial
Intelligence, pages 97–108. Springer.

[Tsamardinos et al., 2001] Tsamardinos, I., Pollack, M. E., and Ganchev, P. (2001).
Flexible dispatch of disjunctive plans. In Sixth European Conference on Planning.

[Tsamardinos et al., 2003] Tsamardinos, I., Vidal, T., and Pollack, M. (2003). CTP:
A new constraint-based formalism for conditional, temporal planning. Constraints,
8(4):365–388.

[Undurti, 2011] Undurti, A. (2011). Planning under uncertainty and constraints for
teams of autonomous agents. PhD thesis, Massachusetts Institute of Technology.

[Undurti and How, 2010] Undurti, A. and How, J. P. (2010). An online algorithm
for constrained POMDPs. In IEEE International Conference on Robotics and Au-
tomation, pages 3966–3973.

[van der Walt et al., 2011] van der Walt, S., Colbert, S. C., and Varoquaux, G.
(2011). The numpy array: A structure for efficient numerical computation. Com-
puting in Science Engineering, 13(2):22–30.

[Venable et al., 2010] Venable, K. B., Volpato, M., Peintner, B., and Yorke-Smith, N.
(2010). Weak and dynamic controllability of temporal problems with disjunctions
and uncertainty. In Workshop on Constraint Satisfaction Techniques for Planning
& Scheduling, pages 50–59.

[Venable and Yorke-Smith, 2005] Venable, K. B. and Yorke-Smith, N. (2005). Dis-
junctive temporal planning with uncertainty. In IJCAI, pages 1721–1722.

[Vidal, 1999] Vidal, T. (1999). Handling contingency in temporal constraint net-
works: from consistency to controllabilities. Journal of Experimental & Theoretical
Artificial Intelligence, 11(1):23–45.

[Vidal and Ghallab, 1996] Vidal, T. and Ghallab, M. (1996). Dealing with uncertain
durations in temporal constraint networks dedicated to planning. In ECAI, pages
48–54.

[Vlasic and Boudette, 2016] Vlasic, B. and Boudette, N. (2016). As U.S. Investi-
gates Fatal Tesla Crash, Company Defends Autopilot System. The New York
Times. Available online at http://www.nytimes.com/2016/07/13/business/

tesla-autopilot-fatal-crash-investigation.html. Accessed on July 14th,
2016.

[Wächter and Biegler, 2006] Wächter, A. and Biegler, L. T. (2006). On the imple-
mentation of an interior-point filter line-search algorithm for large-scale nonlinear
programming. Mathematical programming, 106(1):25–57.

304

http://www.nytimes.com/2016/07/13/business/tesla-autopilot-fatal-crash-investigation.html
http://www.nytimes.com/2016/07/13/business/tesla-autopilot-fatal-crash-investigation.html

[Walcott, 2004] Walcott, A. (2004). Unifying Model-Based Programming and Path
Planning Through Optimal Search. Master’s thesis, Massachusetts Institute of
Technology.

[Wang, 2013] Wang, A. J. (2013). Risk allocation for temporal risk assessment. Mas-
ter’s thesis, Massachusetts Institute of Technology.

[Wang and Williams, 2015a] Wang, A. J. and Williams, B. C. (2015a). Chance-
constrained scheduling via conflict-directed risk allocation. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence.

[Wang, 2015] Wang, D. (2015). A Factored Planner for the Temporal Coordination
of Autonomous Systems. PhD thesis, Massachusetts Institute of Technology.

[Wang and Williams, 2015b] Wang, D. and Williams, B. (2015b). tBurton: A Divide
and Conquer Temporal Planner. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence.

[Washington, 1996] Washington, R. (1996). Incremental markov-model planning. In
Tools with Artificial Intelligence, 1996., Proceedings Eighth IEEE International
Conference on, pages 41–47. IEEE.

[Washington, 1997] Washington, R. (1997). BI-POMDP: Bounded, incremental
partially-observable Markov-model planning. In European Conference on Planning,
pages 440–451. Springer.

[Williams et al., 2001] Williams, B. C., Chung, S., and Gupta, V. (2001). Mode
estimation of model-based programs: monitoring systems with complex behavior.
In IJCAI, pages 579–590.

[Williams and Ingham, 2002] Williams, B. C. and Ingham, M. D. (2002). Model-
based programming: Controlling embedded systems by reasoning about hidden
state. In Principles and Practice of Constraint Programming-CP 2002, pages 508–
524. Springer.

[Williams et al., 2003] Williams, B. C., Ingham, M. D., Chung, S. H., and Elliott,
P. H. (2003). Model-based programming of intelligent embedded systems and
robotic space explorers. Proceedings of the IEEE, 91(1):212–237.

[Williams and Ragno, 2007] Williams, B. C. and Ragno, R. J. (2007). Conflict-
directed A* and its role in model-based embedded systems. Discrete Applied Math-
ematics, 155(12):1562–1595.

[Wray and Zilberstein, 2015] Wray, K. H. and Zilberstein, S. (2015). Multi-objective
POMDPs with lexicographic reward preferences. In Proceedings of the 24th Inter-
national Joint Conference of Artificial Intelligence (IJCAI), pages 1719–1725.

305

[Wray et al., 2015] Wray, K. H., Zilberstein, S., and Mouaddib, A.-I. (2015). Multi-
Objective MDPs with Conditional Lexicographic Reward Preferences. In AAAI,
pages 3418–3424.

[Younes and Littman, 2004] Younes, H. L. and Littman, M. L. (2004). PPDDL1. 0:
An extension to PDDL for expressing planning domains with probabilistic effects.
Techn. Rep. CMU-CS-04-162.

[Yu et al., 2015] Yu, P., Fang, C., and Williams, B. C. (2015). Resolving over-
constrained probabilistic temporal problems through chance constraint relaxation.
In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
Austin, TX.

[Yu et al., 1998] Yu, S., Lin, Y., and Yan, P. (1998). Optimization models for the
first arrival target distribution function in discrete time. Journal of mathematical
analysis and applications, 225(1):193–223.

[Ziafati et al., 2012] Ziafati, P., Dastani, M., Meyer, J.-J., and van der Torre, L.
(2012). Agent programming languages requirements for programming autonomous
robots. In Programming Multi-Agent Systems, pages 35–53. Springer.

[Zimmerman et al., 2011] Zimmerman, R. D., Murillo-Sánchez, C. E., and Thomas,
R. J. (2011). Matpower: Steady-state operations, planning, and analysis tools for
power systems research and education. Power Systems, IEEE Transactions on,
26(1):12–19.

306

	List of Figures
	List of Tables
	Introduction
	Minimal vs bounded risk: key thesis principles
	Desiderata
	Problem statement
	Approach in a nutshell
	Thesis contributions
	Thesis roadmap

	Related work
	(Constrained) MDP's and POMDP's
	Scheduling under uncertainty
	Temporal and hybrid planning
	Programming languages for autonomy

	Generating chance-constrained, conditional plans
	Introduction
	Problem formulation
	Managing belief states
	Computing mission risk dynamically
	Chance-constrained POMDP's
	Enforcing safe behavior at all times

	Relation to constrained POMDP's
	Solving CC-POMDP's through RAO*
	Propagating risk bounds forward
	Algorithm
	Grounded example
	Properties

	Experiments
	Conclusions

	Programming risk-aware missions with cRMPL
	Introduction
	Motivation: programming high level missions
	Design desiderata for cRMPL
	Syntax
	Episodes
	Episode constraints
	Composing episodes in cRMPL

	Execution semantics
	Valid executions of a cRMPL program
	Execution of cRMPL programs as CC-POMDP

	Conclusions

	Risk-sensitive unconditional scheduling under uncertainty
	Introduction
	Motivation: planetary rover coordination

	Background & PSTNU's
	Problem formulation
	Computing strong schedules
	Computing scheduling risk

	Polynomial-time, risk-aware scheduling
	Assumptions and walk-through
	A linear scheduling risk bound
	The risk of ``squeezing'' contingent durations
	Improving piecewise approximations
	From minimum risk to other linear objectives
	Algorithm properties

	Experiments
	Conclusions

	Risk-sensitive scheduling of PTPN's
	Introduction
	Approach in a nutshell
	Problem statement
	Chance-constrained consistency of PTPN's
	Chance-constrained weak consistency
	Chance-constrained strong consistency

	Numerical chance constraint evaluation
	Conclusions

	Integrated CLARK experiments
	The CLARK system
	Inputs
	Outputs
	Execution on Enterprise
	Chance-constrained path planning

	Collaborative manufacturing
	Data retrieval missions
	Extending RSS with risk-bounded path planning

	Conclusions

	Conclusions
	Summary of contributions
	Future work

	Extending RAO* to partially-enumerated beliefs and policies
	Partial enumeration of belief states
	Predicting PEBS's
	Updating partially-enumerated beliefs
	Computing approximate execution risks
	Approximate forward-propagation of execution risks
	Computing approximate utilities

	Trial-based bounds

	A SAT model for power supply restoration
	Modeling circuit-breakers
	Simulating the network

	PTPN XML schema
	RSS model
	Bibliography

