

Filtragem Estocástica para Sistemas Híbridos e suas Aplicações em Robótica Aérea

Pedro Henrique de Rodrigues Quemel e Assis Santana

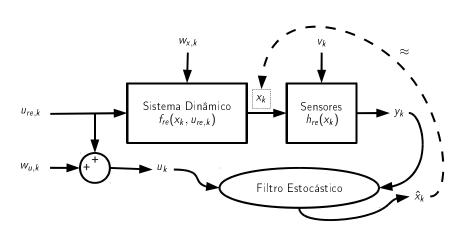
phrqas@ieee.org

Laboratório de Automação e Robótica (LARA), Universidade de Brasília (UnB)

Programa de Pós-Graduação em Engenharia de Sistemas Eletrônicos e de Automação

28 de fevereiro de 2011

Sumário


- Introdução
- 2 Sistemas a Múltiplos Modelos
- 3 Sistema de Localização
- 4 Contribuições e Resultados
- 5 Conclusão

Filtragem Estocástica

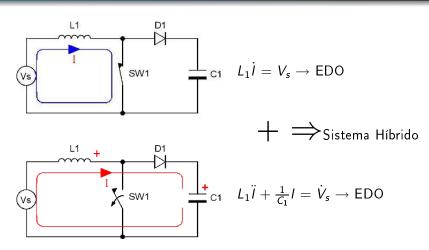
para
Sistemas Híbridos
e suas

Aplicações em Robótica Aérea

Diagrama ilustrativo

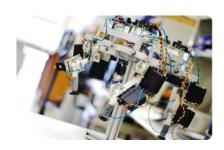
Filtragem Estocástica para **Sistemas Híbridos** e suas

Aplicações em Robótica Aérea


Definição

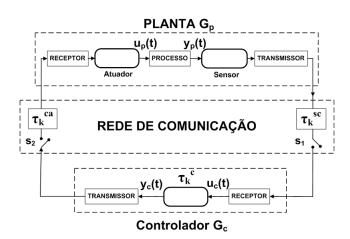
Sistemas Híbridos (Goebel et al. (2009))

Sistemas que combinam comportamentos dinâmicos contínuos e discretos.


- Conceito extremamente abrangente
- Método formal para descrição de dinâmicas complexas → modelos de EDOs convencionais podem se mostrar insuficientes
- Grande aplicabilidade prática
- Difícil tratamento matemático

Circuito chaveado (Boost)

Filtragem Estocástica Sistemas Híbridos Aplicações em Robótica Aére


Robôs com patas

Adaptado de http://www.lara.unb.br/images/projects/quadrupede.png e http://www.oricomtech.com/misc/misc2/rhex.jpe

Sistema de Controle em Rede (NCS)

Filtragem Estocástica para Sistemas Híbridos e suas Aplicações em Robótica Aérea

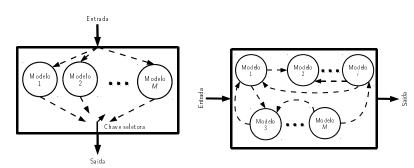
Inspeção aérea de linhas de transmissão de energia

- Manutenção periódica
- Procedimento caro
- Ambiente perigoso
- Longas distâncias
- Necessidade de locais de pouso

Metas

- Detectar e contornar falhas dos sensores
- Prover estimativas confiáveis da pose do sistema em condições desfavoráveis de operação

Paradigma de Modelagem de Sistemas Híbridos

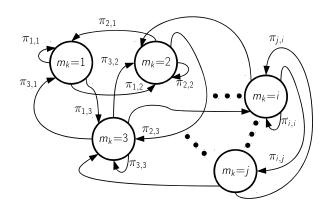

Sumário

- 1 Introdução
- 2 Sistemas a Múltiplos Modelos
- 3 Sistema de Localização
- 4 Contribuições e Resultados
- 5 Conclusão

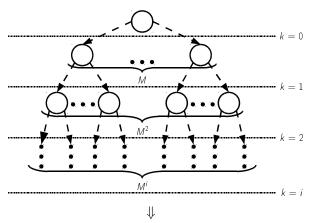
Sistemas MM

- Caso particular de sistemas híbridos
 - Uma das variáveis de estado discretas denota o modo de operação do sistema
 - Modo → define o modelo matemático que descreve a evolução da porção contínua do vetor de estados
- Estimação adaptativa → mudanças estruturais e paramétricas
- Sistemas dinâmicos complexos
 - Modelo único: demasiadamente complexo ou insuficiente
 - "Dividir e Conquistar": conjunto de sub-modelos mais simples

Formas de representação



(b) Sistema MM com transições entre di-(a) Sistema MM sem transições ferentes modelos matemáticos. de modelo


Pedro Henrique de Rodrigues Quemel e Assis Santana

Transições Markovianas

$$\Pi_k = \{\pi_{i,j}\}, \pi_{i,j} = \Pr\{m_k = j | m_{k-1} = i\}, i, j \in \mathbb{M}, \forall k \in \mathbb{N}.$$

Explosão da árvore de modos em sistemas Markovianos

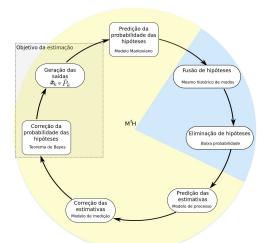
Requisitos computacionais ilimitados!

O Filtro Interacting Multiple Models (IMM)

- Proposto por Henk Blom: Blom (1984), Blom and Bar-Shalom (1988)
- Motivação: sistemas de controle de tráfego aéreo
- Estimador híbrido sub-ótimo
- Mazor et al. (1998): melhor relação custo-benefício na estimação de estados de sistemas híbridos
- Aplicação mais comum: rastreamento de alvos
- Cada modo $m_k = i$, $i \in \{1, 2, ..., M\}$, do sistema é rastreado por um filtro convencional
 - Sistemas lineares: FK (Não é, necessariamente, ótimo!)
 - Sistemas não-lineres: FKE, FKU, Filtro de Partículas, etc.
- Principal característica: "mistura" das estimativas.

O Filtro Interacting Multiple Models (IMM)

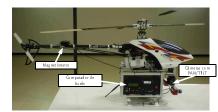
- Proposto por Henk Blom: Blom (1984), Blom and Bar-Shalom (1988)
- Motivação: sistemas de controle de tráfego aéreo
- Estimador híbrido sub-ótimo → todos os estimadores híbridos implementáveis o são
- Mazor et al. (1998): melhor relação custo-benefício na estimação de estados de sistemas híbridos
- Aplicação mais comum: rastreamento de alvos
- Cada modo $m_k = i$, $i \in \{1, 2, ..., M\}$, do sistema é rastreado por um filtro convencional
 - Sistemas lineares: FK (Não é, necessariamente, ótimo!)
 - Sistemas não-lineres: FKE, FKU, Filtro de Partículas, etc.
- Principal característica: "mistura" das estimativas.


Diagrama do algoritmo

O Filtro Multiple Model Multiple Hypothesis (M³H)

- Proposto por Boers and Driessen (2005)
- Apresenta melhor desempenho do que o amplamente adotado IMM
- Considera $d \ge 1 \to \mathsf{profundidade}$ variável
- Hipótese → uma seqüência particular de modos do sistema
- Não realiza mistura de estimativas
- Várias hipóteses podem ter o mesmo modo ≠ IMM → a cada modo está associada apenas uma hipótese
- Seleciona estimativas de máxima verossimilhança ≠ IMM → estimativas de mínima variância
- Elimina hipóteses com baixas probabilidades

Diagrama do algoritmo



Sumário

- 1 Introdução
- 2 Sistemas a Múltiplos Modelos
- 3 Sistema de Localização
- 4 Contribuições e Resultados
- 5 Conclusão

Instrumentação

- Magnetômetro tri-axial
- Altímetro barométrico
- Sonar
- GPS
- Central Inercial (IMU)
- Modem Wi-Fi de alta potência
- Sistema de visão estéreo
- CPU de 500 Mhz

Instrumentação

- Magnetômetro tri-axial
 - Distúrbios eletromagnéticos
 - "Maus-contatos"
- Altímetro barométrico
- Sonar
- GPS
- Central Inercial (IMU)
- Modem Wi-Fi de alta potência
- Sistema de visão estéreo
- CPU de 500 Mhz

Sistemas de coordenadas

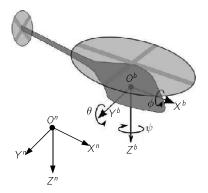


Figura: Sistemas de coordenadas do corpo (**b**) e de referência (**n**). Os ângulos mostrados são denominados rolagem (ϕ), arfagem (θ) e guinada (ψ).

Referências

Saídas dos sensores

$$f_k^b = \left(C_{n,k}^b\right)^T \left(a_k^n - g_E^n\right) + \epsilon_{f,k} \qquad \rightarrow \text{Acelerômetro}$$

$$m_{mag,k}^b = \left(C_{n,k}^b\right)^T m_E^n + \epsilon_{m,k} \qquad \rightarrow \text{Magnetômetro}$$

$$p_{gps,k}^n = p_k^n + \epsilon_{p,k} \qquad \rightarrow \text{GPS (Posição)}$$

$$v_{gps,k}^n = v_k^n + \epsilon_{v,k} \qquad \rightarrow \text{GPS (Velocidade)}$$

$$h_{alt,k}^n = z_k^n + \epsilon_{h,k} \qquad \rightarrow \text{Altímetro}$$

Modos do Sistema

Número	
(m_k)	Descrição
1	Magnetômetro operando normalmente
2	Falha de comunicação entre o magnetômetro e o computador embarcado
3	$X-b_X$, $Y-b_Y$, $Z-b_Z$
4	$X+b_{X}$, $Y-b_{Y}$, $Z-b_{Z}$
5	$X-b_{X}$, $Y+b_{Y}$, $Z-b_{Z}$
6	$X+b_X$, $Y+b_Y$, $Z-b_Z$
7	$X-b_X,\ Y-b_Y,\ Z+b_Z$
8	$X+b_X$, $Y-b_Y$, $Z+b_Z$
9	$X-b_X$, $Y+b_Y$, $Z+b_Z$
10	$X+b_X$, $Y+b_Y$, $Z+b_Z$

$$m^b_{disc,k} = 0 + \epsilon_{disc,k}$$
 o Desconexão $m^b_{bias,k} = \left(C^b_{n,k}\right)^T m^n_E + b_{bias,k} + \epsilon_{bias,k}$ o Bias

Sumário

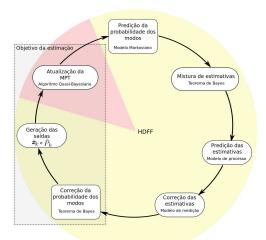
- Introdução
- 2 Sistemas a Múltiplos Modelos
- 3 Sistema de Localização
- 4 Contribuições e Resultados
- 5 Conclusão

Hybrid Data Fusion Filter (Santana et al. (2010a))

- Primeira experiência envolvendo filtragem estocástica, sistemas híbridos e robótica móvel
- Motivador dos trabalhos seguintes

Contribuições

- Propõe a modelagem híbrida como alternativa para descrição de sistemas perturbados
- Incorpora a estimação online da MPT baseado nas medidas dos sensores
 - IMM → a MPT é dada → hipótese geralmente irreal (Jilkov and Li (2004))
 - É particularmente difícil escolher a MPT quando se está lidando com dados reais


Hybrid Data Fusion Filter (Santana et al. (2010a))

- Primeira experiência envolvendo filtragem estocástica, sistemas híbridos e robótica móvel
- Motivador dos trabalhos seguintes

Contribuições

- Propõe a modelagem híbrida como alternativa para descrição de sistemas perturbados
- Incorpora a estimação online da MPT baseado nas medidas dos sensores
 - IMM → a MPT é dada → hipótese geralmente irreal (Jilkov and Li (2004))
 - É particularmente difícil escolher a MPT quando se está lidando com dados reais

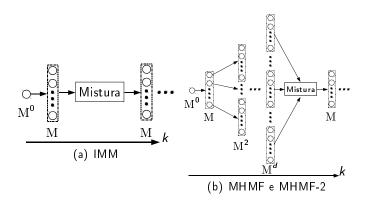
Diagrama do algoritmo

Multiple Hypotheses Mixing Filter (Santana et al. (2010b))

- HDFF → demonstrou a utilidade da modelagem híbrida para sistemas perturbados, em particular robôs móveis com sensores sujeitos a falhas
- Próximo passo → melhorar o desempenho do algoritmo

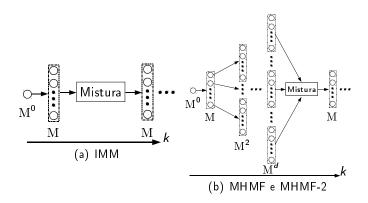
Contribuições

- Generalização do IMM
 - Profundidade de fusão $d \ge$
 - Eliminação de hipóteses de baixa probabilidade
- Conserva a estimação online da MPT

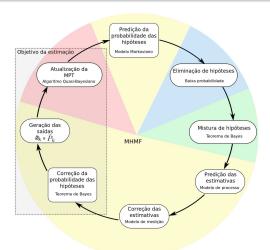

Multiple Hypotheses Mixing Filter (Santana et al. (2010b))

- HDFF → demonstrou a utilidade da modelagem híbrida para sistemas perturbados, em particular robôs móveis com sensores sujeitos a falhas
- Próximo passo → melhorar o desempenho do algoritmo

Contribuições


- Generalização do IMM
 - \blacksquare Profundidade de fusão $d \geq 1$
 - Eliminação de hipóteses de baixa probabilidade
- Conserva a estimação online da MPT

Mistura de estimativas com diferentes profundidades d


- O MHMF é capaz de representar mais precisamente a evolução dos modos do sistema
- lacksquare Mistura ightarrow conserva os ganhos de desempenho do IMN

Mistura de estimativas com diferentes profundidades d

- O MHMF é capaz de representar mais precisamente a evolução dos modos do sistema
- lue Mistura ightarrow conserva os ganhos de desempenho do IMM

Diagrama do algoritmo

- MHMF, M³H → eliminação de hipóteses é executada imediatamente antes dos passos de predição das estimativas
- Minimiza o número de FKEs
- Transição para modos com baixas probabilidades
 - Eliminação incorreta de hipóteses
 - Discrepância entre o filtro e o modelo real → instabilidade

- MHMF, M³H → eliminação de hipóteses é executada imediatamente antes dos passos de predição das estimativas
- Minimiza o número de FKEs
- Transição para modos com baixas probabilidades
 - Eliminação incorreta de hipóteses
 - lacktriangle Discrepância entre o filtro e o modelo real ightarrow instabilidade

- Possíveis soluções (M³H, MHMF)
 - lacktriangle Elevar o valor do limiar ϵ de eliminação de hipóteses
 - Distribuir as probabilidades mais uniformemente na MPT
- Ambas as soluções aumentam o número médio de hipóteses
 - Crescimento da complexidade computacional
 - Possível degeneração das estimativas (Li and Bar-Shalom (1996))

- Possíveis soluções (M³H, MHMF)
 - lacktriangle Elevar o valor do limiar ϵ de eliminação de hipóteses
 - Distribuir as probabilidades mais uniformemente na MPT
- Ambas as soluções aumentam o número médio de hipóteses
 - Crescimento da complexidade computacional
 - Possível degeneração das estimativas (Li and Bar-Shalom (1996))

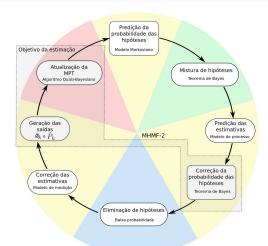
Contribuições

Conserva as melhorias do MHMF

- Estimação online da MPT
- lacksquare Fusão com profunidade variável $d\geq 1$
- Mistura de estimativas
- Eliminação de hipóteses com baixa probabilidade

■ Ganhos de estabilidade

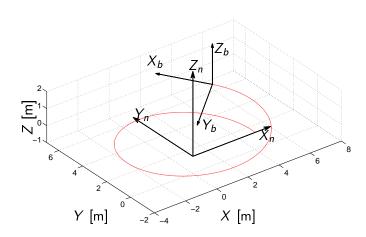
- Passo de eliminação considerando as estimativas preditas
- Permite corrigir as probabilidades antes de se eliminar hipóteses
- Evita discrepâncias entre filtro e modelo real
- FK → predição tem custo insignificante em relação à correção (Chui and G.Chen (1987))


Contribuições

- Conserva as melhorias do MHMF
 - Estimação online da MPT
 - lacksquare Fusão com profunidade variável $d\geq 1$
 - Mistura de estimativas
 - Eliminação de hipóteses com baixa probabilidade
- Ganhos de estabilidade
 - Passo de eliminação considerando as estimativas preditas
 - Permite corrigir as probabilidades antes de se eliminar hipóteses
 - Evita discrepâncias entre filtro e modelo rea
 - FK → predição tem custo insignificante em relação à correção (Chui and G.Chen (1987))

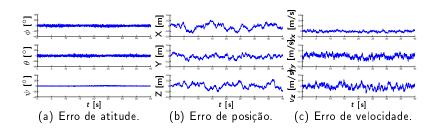
Contribuições

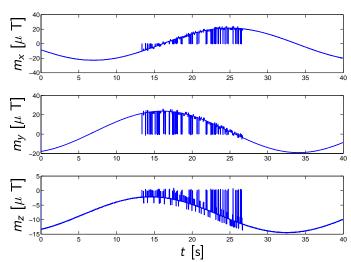
- Conserva as melhorias do MHMF
 - Estimação online da MPT
 - $lue{}$ Fusão com profunidade variável $d\geq 1$
 - Mistura de estimativas
 - Eliminação de hipóteses com baixa probabilidade
- Ganhos de estabilidade
 - Passo de eliminação considerando as estimativas preditas
 - Permite corrigir as probabilidades antes de se eliminar hipóteses
 - Evita discrepâncias entre filtro e modelo real
 - FK \rightarrow predição tem custo insignificante em relação à correção (Chui and G.Chen (1987))


Diagrama do algoritmo

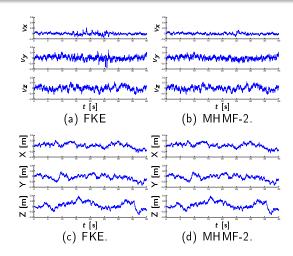
Análise comparativa de desempenho

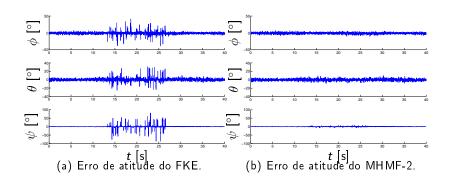
- Filtros testados
 - FKE
 - M³H
 - HDFF = IMM + MPT *online*
 - MHMF
 - MHMF-2
- Plataforma experimental → sistema de localização
- Modelamento híbrido (magnetômetro)
 - Vieses
 - Interferência
 - Desconexões temporárias
- Simulações
- Dados reais


Trajetória das simulações


Teste preliminar

- Verificar se todos os filtros estavam implementados corretamente
- Medidas perturbadas por ruído usual
- Mesmos parâmetros para o M³H, o MHMF e o MHMF-2
- \blacksquare $\hat{\Pi}_0$
 - HDFF, MHMF e MHMF-2 → completo desconhecimento
 - M³H → conhecimento perfeito

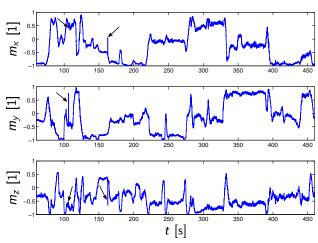

Desempenho dos filtros


Magnetômetro perturbado

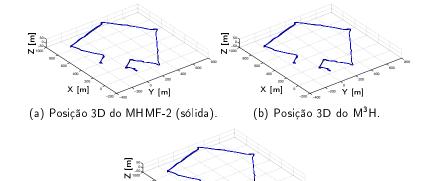
Comparação entre o FKE e o MHMF-2

Comparação entre o FKE e o MHMF-2

Desempenho dos filtros

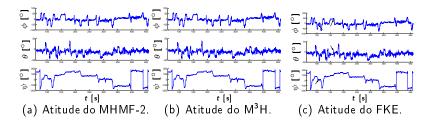

	d	ϵ	Ĥο	Convergência	Erro RMS	Número médio de hip.
FKE	_	_	_	Sim	Ruim	1
HDFF	1	_	Π_{ig}	Sim	Bom	10
мнмғ	2	0	Πig	Sim	Bom	54,949
	2	0,001	Π_{ig}	Sim	Ruim	10,222
	2	0,002	Π_{ig}	Sim	Ruim	5,300
	2	[0,003;0,005]	Π_{ig}^{σ}	Não	_	_
	2	[0, 01; 0, 05]	Π_{ig}	Não	_	_
	2	0	П	Sim	Bom	99,885
	2	0	По, в	Sim	Bom	99,885
	2	0,001	П	Sim	Bom	10,560
	2	0,005	П	Sim	Bom	10,089
	2	0,01	$\Pi_{0.7}$	Sim	Bom	10,332
М ³ Н	2	0,02	По.8	Sim	Bom	9,400
	2	0,03	По.8	Não	_	_
	2	0,03	$\Pi_{0,7}$	Sim	Bom	9,240
	2	[0, 04; 0, 05]	Пог	Não	_	_
	2	0,05	Π _{ig}	Sim	Bom	15,646
	2	0,05	- 11	Não	Bom	_
MHMF-2ª	2	0,05	∏ig	Sim	Bom	1,048
	2	0, 10	Π_{ig}	Sim	Bom	1,039
	2	0,20	∏ig	Sim	Bom	1,031

^a Número médio de hipóteses antes do passo de correção do filtro.


Experimento real de navegação

Leituras do magnetômetro

Comparação entre o FKE, o M³H e o MHMF-2

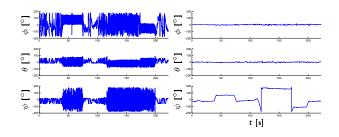


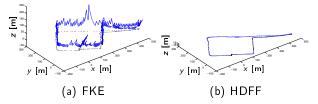
(c) Posição 3D do FKE.

. Y [m]

X [m]

Comparação entre o FKE, o M³H e o MHMF-2




	FKE	MHMF-2	M^3H
Número médio de hip.	1,0	1,0001	2,0001

Experimento com dados reais

FKE versus Abordagem Híbrida

Sumário

- 1 Introdução
- 2 Sistemas a Múltiplos Modelos
- 3 Sistema de Localização
- 4 Contribuições e Resultados
- 5 Conclusão

Propostas para trabalhos futuro: Contribuições Agradecimentos

Considerações finais

- Três novos filtros para sistemas estocásticos
- MHMF-2
 - Principal resultado do trabalho
 - Bom desempenho em todas as situações testadas até o momento
 - Melhores resultados na análise comparativa
- Modelagem híbrida de falhas dos sensores
 - Tornou o sistema de localização robusto a perturbações
 - Abordagem inovadora para o problema (de acordo com a revisão bibliográfica)
 - MHMF-2 → custo praticamente igual ao do FKE

- Três novos filtros para sistemas estocásticos
- MHMF-2
 - Principal resultado do trabalho
 - Bom desempenho em todas as situações testadas até o momento
 - Melhores resultados na análise comparativa
- Modelagem híbrida de falhas dos sensores
 - Tornou o sistema de localização robusto a perturbações
 - Abordagem inovadora para o problema (de acordo com a revisão bibliográfica)
 - MHMF-2 → custo praticamente igual ao do FKE

Propostas para trabalhos futuros Contribuições Agradecimentos

Algumas questões

- Sim
- Análise do sinal
 - Interferência externa ao filtro
 - Custos adicionais de cálculo
 - Análise espectral não é capaz de rejeitar perturbações de baixa freqüência (e.g., vieses induzidos)
- Abordagem híbrida
 - lestes de hipóteses naturalmente incorporados
 - MHMF-2 \rightarrow praticamente o mesmo custo do FKE
 - Qualquer tipo de falha modelável pode ser considerada

Propostas para trabalhos futuro Contribuições Agradecimentos

Algumas questões

- Sim
- Análise do sinal
 - Interferência externa ao filtro
 - Custos adicionais de cálculo
 - Análise espectral não é capaz de rejeitar perturbações de baixa freqüência (e.g., vieses induzidos)
- Abordagem híbrida
 - lestes de hipóteses naturalmente incorporados
 - MHMF-2 \rightarrow praticamente o mesmo custo do FKE
 - Qualquer tipo de falha modelável pode ser considerada

Propostas para trabalhos futuro: Contribuições Agradecimentos

Algumas questões

- Sim
- Análise do sinal
 - Interferência externa ao filtro
 - Custos adicionais de cálculo
 - Análise espectral não é capaz de rejeitar perturbações de baixa freqüência (e.g., vieses induzidos)
- Abordagem híbrida
 - Testes de hipóteses naturalmente incorporados
 - \blacksquare MHMF-2 \rightarrow praticamente o mesmo custo do FKE
 - Qualquer tipo de falha modelável pode ser considerada

Propostas para trabalhos futuro Contribuições Agradecimentos

Algumas questões

- Sim
- Análise do sinal
 - Interferência externa ao filtro
 - Custos adicionais de cálculo
 - Análise espectral não é capaz de rejeitar perturbações de baixa freqüência (e.g., vieses induzidos)
- Abordagem híbrida
 - Testes de hipóteses naturalmente incorporados
 - MHMF-2 → praticamente o mesmo custo do FKE
 - Qualquer tipo de falha modelável pode ser considerada

Propostas para trabalhos futuro Contribuições Agradecimentos

Algumas questões

- Sim
- Análise do sinal
 - Interferência externa ao filtro
 - Custos adicionais de cálculo
 - Análise espectral não é capaz de rejeitar perturbações de baixa freqüência (e.g., vieses induzidos)
- Abordagem híbrida
 - Testes de hipóteses naturalmente incorporados
 - MHMF-2 → praticamente o mesmo custo do FKE
 - Qualquer tipo de falha modelável pode ser considerada

Propostas para trabalhos futuros Contribuições Agradecimentos

Algumas questões

- Sim
- Análise do sinal
 - Interferência externa ao filtro
 - Custos adicionais de cálculo
 - Análise espectral não é capaz de rejeitar perturbações de baixa freqüência (e.g., vieses induzidos)
- Abordagem híbrida
 - Testes de hipóteses naturalmente incorporados
 - MHMF-2 → praticamente o mesmo custo do FKE
 - Qualquer tipo de falha modelável pode ser considerada

Propostas para trabalhos futuros Contribuições Agradecimentos

Algumas questões

Você propõe que sistemas híbridos sejam uma solução definitiva para o tratamento de sistemas com falhas?

- Não
- Função da dinâmica do sistema
 - Lenta (evolução contínua)

Rápida (mudanças abruptas)

Propostas para trabalhos futuros Contribuições Agradecimentos

Algumas questões

Você propõe que sistemas híbridos sejam uma solução definitiva para o tratamento de sistemas com falhas?

- Não
- Função da dinâmica do sistema
 Lenta (evolução contínua)

Rápida (mudanças abruptas)

Propostas para trabalhos futuros Contribuições Agradecimentos

Algumas questões

Você propõe que sistemas híbridos sejam uma solução definitiva para o tratamento de sistemas com falhas?

- Não
- Função da dinâmica do sistema
 - Lenta (evolução contínua)
 - Estimação *online* de parâmetros
 - Há tempo suficiente para convergência do filtro
 - Rápida (mudanças abruptas)
 - É bem modelada como um sistema híbrido
 - Pode não haver tempo hábil para estabilização das estimativas

Propostas para trabalhos futuro Contribuições Agradecimentos

Algumas questões

É necessário que haja modelos matemáticos das falhas para a abordagem de sistemas híbridos?

- Não
- Forma de manifestação desconhecida
 - Dois modos: bom e mau funcionamento
 - Teste baseado na Distância de Mahalanobis
 - Apenas detecta medidas discrepantes da predição

Propostas para trabalhos futuros Contribuições Agradecimentos

Algumas questões

É necessário que haja modelos matemáticos das falhas para a abordagem de sistemas híbridos?

- Não
- Forma de manifestação desconhecida
 - Dois modos: bom e mau funcionamento
 - Teste baseado na Distância de Mahalanobis
 - Apenas detecta medidas discrepantes da predição

Propostas para trabalhos futuros Contribuições Agradecimentos

Algumas questões

É necessário que haja modelos matemáticos das falhas para a abordagem de sistemas híbridos?

- Não
- Forma de manifestação desconhecida
 - Dois modos: bom e mau funcionamento
 - Teste baseado na Distância de Mahalanobis
 - Apenas detecta medidas discrepantes da predição

Propostas para trabalhos futuros Contribuições Agradecimentos

Algumas questões

Onde está a análise de convergência dos filtros?

- Estabilidade de sistemas híbridos é um assunto complexo
 - Goebel et al. (2009) traz uma revisão excepcional
 - Um conjunto de modos estáveis pode ser instável
 - Um conjunto de modos instáveis pode ser estável
 - Necessidade de assumir diversas hipóteses simplificadoras
- Resultados fortemente dependentes dos modelos e da dinâmica do chaveamento
- As análises existentes consideram casos particulares (e.g., Seah and Hwang (2008))
- Dentre as referências do trabalho → nenhuma delas faz uma análise de estabilidade geral para os seus filtros

Propostas para trabalhos futuro: Contribuições Agradecimentos

Algumas questões

Onde está a análise de convergência dos filtros?

- Estabilidade de sistemas híbridos é um assunto complexo
 - Goebel et al. (2009) traz uma revisão excepcional
 - Um conjunto de modos estáveis pode ser instável
 - Um conjunto de modos instáveis pode ser estável
 - Necessidade de assumir diversas hipóteses simplificadoras
- Resultados fortemente dependentes dos modelos e da dinâmica do chaveamento
- As análises existentes consideram casos particulares (e.g., Seah and Hwang (2008))
- Dentre as referências do trabalho → nenhuma delas faz uma análise de estabilidade geral para os seus filtros

Propostas para trabalhos futuros Contribuições Agradecimentos

Algumas questões

Onde está a análise de convergência dos filtros?

- Estabilidade de sistemas híbridos é um assunto complexo
 - Goebel et al. (2009) traz uma revisão excepcional
 - Um conjunto de modos estáveis pode ser instável
 - Um conjunto de modos instáveis pode ser estável
 - Necessidade de assumir diversas hipóteses simplificadoras
- Resultados fortemente dependentes dos modelos e da dinâmica do chaveamento
- As análises existentes consideram casos particulares (e.g., Seah and Hwang (2008))
- Dentre as referências do trabalho → nenhuma delas faz uma análise de estabilidade geral para os seus filtros

Propostas para trabalhos futuros

- Incorporar informações do estado no modelo de transição de modos
- Avaliar filtros não-lineares alternativos: FKU, Filtro de Partícula, etc.
- Correlação entre os passos de predição e correção do FKE → FKEC
- Testar o MHMF-2 em uma situação real de vôo

Familiarização com o Tema

- Conferências Internacionais
 - L.F.C. Figueredo, P.H.R.Q.A. Santana, E.S. Alves, J.Y. Ishihara, G.A. Borges e A. Bauchspiess, Robust Stability of Networked Control Systems, 7th IEEE Conference on Control and Automation, ICCA, Dezembro, 2009
 - P.H.R.Q.A. Santana, L.F.C. Figueredo, E.S. Alves, J.Y. Ishihara, G.A. Borges e A. Bauchspiess, Stability of Networked Control Systems with Dynamic Controllers in the Feedback Loop, 18th IEEE Mediterranean Conference on Control and Automation, MED, Junho, 2010
- Conferências Nacionais
 - P.H.R.Q.A. Santana e G.A. Borges, Modelagem e Controle de Quadrirrotores, IX Simpósio Brasileiro de Automação Inteligente, SBAI, Setembro, 2009
 - L.F.C. Figueredo, P.H.R.Q.A. Santana, E.S. Alves, J.Y. Ishihara, G.A. Borges e A. Bauchspiess, Estabilidade e Estabilização de Sistemas de Controle em Rede com Incertezas e Atrasos Variantes no Tempo, XVIII Congresso Brasileiro de Automática, CBA, Setembro, 2010

Filtragem para Sistemas Híbridos (Teoria)

- Periódicos Internacionais
 - P.H.R.Q.A. Santana, G.A. Borges e J.Y. Ishihara, A New Hybrid Data Fusion Filter: Applications to Outdoor Localization of Mobile and Aerial Robots, IEEE Transactions on Robotics, 2010 (Submetido)
- Conferências Internacionais
 - P.H.R.Q.A. Santana, G.A. Borges e J.Y. Ishihara, Hybrid Data Fusion for 3D Localization Under Heavy Disturbances, IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, Outubro, 2010
 - P.H.R.Q.A. Santana, H.M. Menegaz, G.A. Borges e J.Y. Ishihara, Multiple Hypotheses Mixing Filter for Hybrid Markovian Switching Systems, 49th
 IEEE Conference on Decision and Control, CDC, Dezembro, 2010

Filtragem para Sistemas Híbridos (Prática)

- Conferências Nacionais
 - P.H.R.Q.A. Santana, G.A. Borges e J.Y. Ishihara, Métodos Híbridos de Fusão de Dados para Localização sob Condições Adversas, VI Simpósio Brasileiro de Engenharia Inercial, SBEIN, Outubro, 2010
- Notas Técnicas
 - P.H.R.Q.A. Santana, B.G. Amui, F.B. Cavalcanti, G.G. Scandaroli, and G.A. Borges, Building a real-time Debian distribution for embedded systems. 2010
 - P.H.R.Q.A. Santana, G.G. Scandaroli, F.B. Cavalcanti, and G.A. Borges. How to install a RTAI extension in Linux 2.6.24 Kernel. 2009

Apoio financeiro

- CNPQ
- FINATEC
- Plena Transmissoras
- DPP-UnB
- PPGEE-UnB

Agradecimentos

Obrigado a todos!

- Blom, H. (1984). An efficient filter for abruptly changing systems. Proceedings of the 23rd Conference on Decision and Control, 4(30):656-658.
- Blom, H. and Bar-Shalom, Y. (1988). The Interacting Multiple Model Algorithm for Systems with Markovian Switching Coefficients. *IEEE Transactions on Automatic Control*, 33(8):780-783.
- Boers, Y. and Driessen, H. (2005). A multiple model multiple hypothesis filter for Markovian switching systems. Automatica, 41(4):709 - 716.
- Chui, C. and G.Chen (1987). Kalman filtering with real-time applications. Springer-Verlag New York, 3rd edition.
- Goebel, R., Sanfelice, R., and Teel, A. (2009). Hybrid dynamical systems. IEEE Control Systems Magazine, 29(2):28-93.
- Jilkov, V. and Li, X. (2004). Online Bayesian estimation of transition probabilities for Markovian jump systems. IEEE Transactions on Signal Processing, 52(6):1620-1630.
- Li, X.-R. and Bar-Shalom, Y. (1996). Multiple-model estimation with variable structure. IEEE Transactions on Automatic Control, 41(4):478-493.
- Mazor, E., Averbuch, A., Bar-Shalom, Y., and Dayan, J. (1998). Interacting multiple model methods in target tracking: a survey. IEEE Transactions on Aerospace and Electronic Systems, 34(1):103-123.
- Santana, P., Borges, G., and Ishihara, J. (2010a). Hybrid data fusion for 3D localization under heavy disturbances. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pages 55-60.
- Santana, P., Menegaz, H., Borges, G., and Ishihara, J. (2010b). Multiple hypotheses mixing filter for hybrid Markovian switching systems. In Proceedings of the 49th IEEE Conference on Decision and Control.
- Seah, C. E. and Hwang, I. (2008). Stability analysis of the interacting multiple model algorithm. In American Control Conference, pages 2415 -2420.

The sweetest dilemma...

Massachusetts Institute of Technology