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ABSTRACT 

Medical decision making can be viewed along a spectrum, with categorical (or deterministic) reasoning 
at one extreme and probabilistic (or evidential) reasoning at the other. In this paper we examine the 
flowchart as the prototype of categorical reasoning and decision analysis as the prototype of probabil- 
istic reasoning. Within this context we compare PIP, INTERNIST, CASNET, and MYCZN-four 
of the present programs which apply the techniques of artificial intelligence to medicine. Although 
these systems can exhibit impressive expert-like behavior, we believe that none of them is yet capable 
of truly expert reasoning. We suggest that a program which can demonstrate expertise in the area 
of medical consultation will have to use a judicious combination of categorical and probabilistic 
reasoning-the former to establish a sufficiently narrow context and the latter to make comparisons 
among hypotheses and eventually to recommend therapy. 

1. Introduction 

How do practicing physicians make clinical decisions? What techniques can we 
use in the computer to produce programs which exhibit medical expertise? Our 
interest in these questions is motivated by our desire: 

1. to provide (by computer) expert medical consultation to general practitioners 
or paramedical personnel in communities where such consultation is normally 
unavailable; 
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2. to come to understand the reasoning processes of the expert doctors so that we 
may improve the teaching of their skills to medical students; 

3. to advance the techniques of Artificial Intelligence, especially as applied to 
Medicine (AIM), to support our other goals. 

In other publications, we have described research by our group on programs to 
take the history of the present illness of a patient with renal disease 115, 331 and 
to advise the physician in the administration of the drug digitalis to patients with 
heart disease [ 11,27, 3 11. Here, we would like to review the reasoning mechanisms’ 
used by our own programs, by other AI programs with medical applications, 
and, by inference, by physicians. 

2. Categorical and Probabilistic Decisions 

Most decisions made in medical practice are straightforward. Whether the physician 
is taking a history of a patient’s illness, performing a routine physical examination 
or ordering a standard battery of laboratory tests, he makes few real decisions. To 
a large extent his expertise consists of his mastery of the appropriate set of routines 
with which he responds to typical clinical situations. 

This view is corroborated, in part, by the observed differences between the 
diagnostic approach of a medical student or a newly minted doctor and that of a 
practicing expert. The novice struggles “from first principles” initially to propose 
plausible theories and then to rule out unlikely ones, whereas the expert simply 
recognizes the situation and knows the appropriate response. We might say that 
the expert’s knowledge is compiled [23, 301. Similar differences have even been 
noted among expert consultants in different specialties when they are presented 
the same case, and even between the performance of the same consultant on cases 
within compared to cases outside his specialty. The expert doctor dealing with a 
case within his own specialty approaches the case parsimoniously; the expert 
less familiar with the case resorts to the more general diagnostic style associated 
with the non-expert 1121. 

An important characteristic of expert decision making, then, is the use of an 
appropriate set of routines or rules which apply to the great majority of clinical 
situations. We shall identify this as categorical reasoning.2 A categorical medical 
judgment is one made without significant reservations: if the patient’s serum 
sodium is less than 110 mEq./l., administer sodium supplements; if the patient 
complains of pain on urination, obtain a urine culture and consider the possibility 
of a urinary tract infection. These rules, as applied by the physician, are not 
absolutely deterministic. Although their selection and use do not involve deep 

1 In this discussion, we take “reasoning” to be synonymous with “decision making.” Although 
the former is a broader term, we are specifically concerned with that aspect of reasoning which 
yields medical decisions. An earlier review of work in this area was made by Pople [19]. 

2 Webster’s defines categorical as “unqualified; unconditional; absolute; positive; direct; 
explicit; . . .“. 
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reasoning, the doctor may withhold his full commitment from conclusions reached 
by even such categorical rules. He thereby establishes the flexibility to modify 
his conclusions and re-think the problem if later difficulties arise. 

A categorical decision typically depends on relatively few facts, its appropriate- 
ness is easy to judge, and its result is unambiguous. A categorical decision is 
simple to make and the rule which forms its basis is usually simple to describe 
(although its validity may be complicated to justify). Physicians most often work 
with categorical decisions, and, to whatever extent possible, computer experts 
should do the same. 

Unfortunately, not every decision can be categorical. No simple rule exists for 
deciding whether to perform a bone marrow biopsy or when to discharge a patient 
from the cardiac intensive care unit. Those decisions must be made by carefully 
weighing all the evidence. Although we know that doctors do so, we do not 
understand just how they weigh the evidence that favors and that opposes various 
hypotheses or courses of action; this is an important unsolved problem for both 
AI and cognitive psychology [13, 341. 

A number of formal schemes for the weighing of evidence are used, and we shall 
concentrate on one of them, the probabilistic, to contrast with the above-discussed 
categorical mode of reasoning.3 We do not believe or suggest that formal proba- 
bilistic schemes are naturally used in decision making by physicians untrained in 
the use of such schemes. Indeed, there is convincing evidence that people are very 
poor at probabilistic reasoning [34]. Yet we believe that, with appropriate limita- 
tions as discussed below, probabilistic reasoning can be an appropriate component 
of a computerized medical decision making system, especially for the difficult 
decisions for which categorical reasoning is inappropriate? 

In this paper we examine prototypical categorical and probabilistic reasoning 
systems, their limitations and successful applications, and then describe and 
analyze the reasoning mechanisms of some current AIM programs in terms of 
these schemes. We conclude with some comments and speculations on the require- 
ments for reasoning mechanisms in future AIM programs. 

2.1. Purely categorical decision making-the flowchart 

Categorical reasoning is exemplified by the simplest flowchart programs for 
guiding frequent decisions based on a well-accepted rationale. The flowchart is a 

3 Other potentially appropriate schemes include the theory of belief functions [24] and the 
application of fuzzy set theory [S, 371. All share the characteristic that arithmetic computations 
are performed to combine separate beliefs or implications to determine their joint effect. We are 
not convinced of the uniform superiority of any of these formalisms. Because we are most familiar 
with the probabilistic scheme, we have chosen to examine it in detail. 

4 Although our approach to the construction of expert medical systems has been, in general, 
to follow the way we think our expert physicians reason, the known deficiencies in people’s 
abilities to make correct probabilistic inferences suggest that this is one area in which the computer 
consultant could provide a truly new service to medicine. However, it is not universally accepted 
in medicine that probabilistic techniques are a valid way to make clinical decisions [6]. 
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finite state acceptor in which every non-terminal node asks a question whose 
possible answers are the labels of the arcs leaving that node. The machine has a 
unique initial state corresponding to initial contact with the user and a number of 
possible terminal states, each labelled by an outcome-a diagnosis, patient referral, 
selected therapy-relevant in its domain of application.5 Every answer to every 
question is decisive; the formulation is simple and attractive. 

Perhaps the most successful use of categorical decision making programs is in 
patient-referral triage.6 Nurse-practitioners using standardized information- 
gathering and decision-making protocols can effectively handle routine orders 
for non-invasive laboratory tests and the scheduling of emergency or routine 
visits with a doctor. Such a system is now used in the walk-in clinic at the Beth 
Israel Hospital in Boston [17], actually employing pen and printed forms rather 
than computer-generated displays and keyboard input. 

Although every decision in a flowchart is categorical, the development of that 
flowchart may have been based on extensive probabilistic computations. Optimal 
test selection studies [18] and treat vs. no treat decision models [16] are examples 
of probabilistic means of generating categorical decision models. 

Whereas patient referral deals with a broad problem domain which may require 
only shallow knowledge, the problem of providing the physician with advice about 
the administration of digitalis requires a great deal of knowledge about a narrow 
medical domain. That domain is, in fact, sufficiently well understood at the 
clinical (although not the physiological) level, that a reasonably straightforward 
program has been implemented [27] which gathers relevant clinical parameters 
about the patient, projects digitalis absorption and excretion rates, adjusts for 
patient sensitivities, and monitors the patient’s clinical condition for signs of 
therapeutic benefit or toxic effect. Although the numerical models used by the 
program are complex, its data-gathering strategy and its heuristic techniques for 
adjusting dosages are simple enough that most parts of the program can be ex- 
plained to the user by simply translating the computer’s routines into English [31]. 
These programs rely largely on categorical reasoning. 

Why are categorical decisions not sufficient for all of medicine? Because the 
world is too complex! Although many decisions may be made straightforwardly, 
many others are too difficult to be prescribed in any simple manner. When many 

5 In some flowchart schemes, the structure of the acceptor is a tree. In that case, every terminal 
node can be reached only by a unique path. In other flowcharts, the acceptor is augmented to 
retain information collected during questioning (e.g., in history taking systems). Even in those 
systems, it is uncommon for a piece of information to be used to select a branch in the flowchart 
in any place except where it is determined. Thus, that augmentation does not provide the program 
with any additional state information. 

6 Triage is “the medical screening of patients to determine their priority for treatment; the 
separation of a large number of casualties, in military or civilian disaster medical care, into three 
groups: those who cannot be expected to survive even with treatment; those who will recover 
without treatment; and the priority group of those who need treatment in order to survive” [29]. 
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factors may enter into a decision, when those factors may themselves be uncertain, 
when some factors may become unimportant depending on other factors, and 
when there is a significant cost associated with gathering information that may 
not actually be required for the decision, then the rigidity of the flowchart makes 
it an inappropriate decision making instrument.’ 

2.2. Purely probabilistic decision making-Bayes rule and decision analysis 

In a typical probabilistic decision problem,* we are to find the true state of the 
world, H,, which is one of a fixed, finite set of exhaustive and mutually exclusive 
hypotheses, HI, Hz, . . ., H,. We start with an initial estimate of the probability 
that each Hi is the true state. We then perform a series of tests on the world and 
use the results to revise the probability of each hypothesis. Formally, we have a 
probability distribution, P, which assigns to each Hi a prior probability PHI. The 
available tests are T,, T,, . . ., T,,,, and for each test Ti we may obtain one of the 
results Ri,l, Ri,2, . . ., Ri,,i. 

Consider the case where we perform a series of the tests. We define the test 
history of the patient after the ith test to be the list of (test, result) pairs performed 
so far: 

Qi = ((T,~L,I,, Rsel(~),k,,t(l)), - . .) (T,el,ip Rsel(i),ksrq,))) 
where se1 is the test selection function. 

(1) 

If for every Hj and for every possible testing sequence Qi we can assess how 
likely we would be to observe Qi in the situation where Hj were known to be the 
true state, then we may apply Bayes’ rule to estimate, after any possible test 
history, the likelihood that Hj is H,. In other words, if we know the conditional 
probability of any test history given any hypothesis, PQ~~H~, for each j and Qi, 
then we can apply Bayes’ rule to compute the posterior probability distribution 
over H: 

P 
P 

HjlQi = n 
QiWl . PH, 

& PQil.%. ‘H, 

(4 

A straightforward application of the above methodology would be to perform 
every test for every patient in a fixed order, obtaining Q,, and then to use formula 
(2) to compute the posterior probabilities. Less naive applications of the method- 
ology involve sequential diagnosis, in which the order of tests selected depends 

’ Of course, one could, in principle, anticipate every complication and degree of uncertainty 
to every answer in the flowchart. If medical diagnosis is a finite process, then a gigantic flowchart 
could capture it “all.” This is, however, the equivalent of playing chess by having precomputed 
every possible game; it is probably equally untenable. It suffers similarly from losing all of the 
parsimony of the underlying model which the physician must have and from which the giant flow- 
chart would be produced. 

8 Here we follow Gorry [9]. This is the Bayesian approach to probabilistic decision problems. 
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A second assumption often made is that test results are conditionally independent 
-i.e., given that some hypothesis is the true state of the world, the probability of 
observing result Ri,k for test 7”i does not depend on what results have been obtained 
for any other test. This assumption allows all information from previous tests to 
be summarized in the revised probability distribution after the ith test, and the 
data requirements are reduced to approximately m-n.r conditional probabilities 
(100 in our example), which is reasonable for some applications [7]. 

Unfortunately, three serious problems arise with the above scheme and its 
simplifications. The assumption of conditional independence is usually false, and 
the basic premises of the applicability of Bayes’ rule, that the set of hypotheses is 
exhaustive and mutually exclusive, are often violated. These may all lead to 
diagnostic conclusions which are wrong. 

In a small study of the diagnosis of left-sided valvular heart disease, we have 
found that assuming conditional independence between observations of systolic 
and diastolic heart murmurs leads (not surprisingly) to erroneously reversed 
conclusions from those obtained by a proper analysis. To the extent that anatomical 
and physiological mechanisms tie together many of the observations which we 
can make of the patient’s condition and to the extent that our probabilistic models 
are incapable of capturing those ties, simplifications in the computational model 
will lead to errors of diagnosis. 

A similar error is introduced when conditional probabilities involving the 
negation of hypotheses are used. PRl-~, being the probability of a test result 
R given that hypothesis H is not the true state of the world, can not be 
assessed without knowing the actual probability distribution over the other 
hypotheses (unless, of course, there is only one other hypothesis). In fact, in our 
formalism, 

P RI-Hi = Ji PHj ’ PRIHj/(L-PHi) (5) 

which obviously depends on the probability distribution over the hypotheses. 
Even if we make the usual assumption of conditional independence, the practice 
of considering PRI-H~ to be a constant is unjustified and leads to further errors. 
Formalisms which employ a constant likelihood ratio implicitly commit this 
error, often without recognizing it [5, 71. The likelihood ratio is defined as PRIHi/ 
PRI-H~. Assuming conditional independence of the test results guarantees only 
that the numerator is constant, while, in general, the denominator will vary 
according to formula (5) as new results alter the probability distribution over the 
hypotheses. Using a constant likelihood ratio evaluates the current result in the 
context of the apriori probabilities, wrongly ignoring the impact of all the evidence 
gathered up to that point. 

A far more serious objection to the use of pure probabilistic decision making 
is that in most clinical situations the hypotheses under consideration are neither 
exhaustive nor mutually exclusive. If we perform a Bayesian calculation in the 
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absence of exhaustiveness within the set of hypotheses, we will arrive at improperly 
normalized posterior probabilities. Their use in assessing the relative likelihoods 
of our possible hypotheses is appropriate, but we may not rest absolute prognostic 
judgments or compute expected values on the basis of such calculations. 

The absence of mutual exclusivity is a more serious flaw in this methodology. 
Doctors find it useful to describe the clinical situation of a patient in terms of 
abstractions of disorders. When a patient is described as having Acute Post- 
streptococcal Glomerulonephritis (AGN), for example, no one means that this 
patient exhibits every symptom of the disease as described in a textbook nor that 
every component of the disease and its typical accompaniments are present. 
Having accepted such a description of the patient with AGN, diagnosis may then 
turn to consideration of whether such common (but not necessary) complications 
as acute renal failure and hypertension are present as well. Mapping this process 
into the view imposed by classical probabilistic methods requires the creation of 
independent hypotheses for every possible combination of diseases. That technique 
leads to a combinatorial explosion in the data collection requirements of the 
system and at the same time destroys the underlying view the practicing physician 
takes toward the patient. 

Because of the distortions that the pure probabilistic scheme imposes on the 
problem and because of the enormous data requirements it implies, it tends to be 
used successfully only in small, well-constrained problem domains. 

3. Reasoning in Current AIM Programs 

Medical judgment, by the physician and by computer programs, must be based 
on both categorical and probabilistic reasoning. The focus of research in applying 
Artificial Intelligence techniques to medicine is to find appropriate ways to combine 
these forms of reasoning to create competent programs which exhibit medical 
expertise. In this section, we will outline in brief the central reasoning strategy of 
four major AIM programs and compare their methods to the two “pure cases” 
presented above. 

3.1. The present illness program 

Perhaps the best way to explain the reasoning of our program is to describe the 
data which are available to it. The Present Illness Program (PIP) [15, 331 can deal 
with a large set of possibleJin&zgs and a separate set of hypotheses. Findings are 
facts about the patient which are reported to the program by its user. Hypotheses 
represent the program’s conjecture that the patient is suffering from a disease or 
manifesting a clinical or physiological state. Associated with hypotheses are sets 
of prototypical findings which can either support or refute the hypothesis. Findings 
reported by the user are matched against these prototypical findings and, if a 
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match occurs,1z PIP’s belief in the hypothesis is re-evaluated. Fig. 1 shows the 
structure of a hypothesis in PIP. 

relation to findings 
TRIGGERS < findings > 
FINDINGS < findings> 

logical decision criteria 
IS-SUFFICIENT < findings > 
MUST-HAVE < findings > 
MUST-NOT-HAVE < findings > 

complementary relation to other hypotheses 
CAUSED-BY < hypotheses > 
CAUSE-OF < hypotheses> 
COMPLICATED-BY < hypotheses > 
COMPLICATION-OF < hypotheses> 
ASSOCIATED-WITH < hypotheses > 

competing relation to other hypotheses 
DIFFERENTIAL-DIAGNOSIS 
(< condition 1 > < hypotheses>) . . . (< condition k > < hypotheses >) 

numerical likelihood estimator 
SCORE 
((< condition 1,l > < score l,l>) . . . (< condition l,nl > < score l,nl >)) 
. . . 
((<condition m,l > < score m,l >) . . . ( < condition m,nm > < score m,nm >)) 

FIG. 1. Structure of a Hypothesis Frame in the PIP. 

3.1.1. Presentation 
Both TRIGGERS and FINDINGS are often associated with the hypothetical disorder. 
If a reported finding matches one of the TRIGGERS of a hypothesis, that hypothesis 
is immediately activated. If it matches a non-trigger finding, its relevance to that 
hypothesis is only noticed if the hypothesis is already under consideration. The 
logical decision criteria are used by the program to make categorical decisions 
about the likelihood of the patient’s suffering from the currently-considered 
hypothesis. IS-SUFFICIENT covers the case of pathognomonic findings, in which the 
presence of a single finding is in itself sufficient to confirm the presence of the 

I2 The details of this matching process are not relevant to the questions addressed here, and 
will not be discussed. The prototype finding can express either the presence or absence of a sign, 
symptom, laboratory test, or historical finding. For example, it is possible to use the absence of 
increased heart muscle mass (which takes months to develop) to argue in favor of acute rather 
than chronic hypertension. In general, many possible findings may match a prototype finding 
pattern. Thus, within each frame, only those aspects of a finding which are important to the 
hypothesis at hand need be mentioned, and any of the category of possible findings thus defined 
will match successfully. 
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hypothesized disorder; logical combinations (by NOT, AND and OR) may also be 
used to specify more complex criteria. MUST-HAVE and MUST-NOT-HAVE specify 
necessary conditions, in the absence of which the hypothesis will not be accepted 
as confirmed. l 3 

The complementary hypotheses identify other disorders which may be necessary 
in addition to the hypothesis under consideration to account for the condition of 
the patient.14 The relationship may be known as “causal” if the physiology of the 
disorders is well understood, may be “complicational” if one disorder is a typical 
complication of the other, or may be “associational” if the two may be related 
by some known but incompletely understood association. Although all non- 
complementary hypotheses are competitors, medical practice specifically identifies 
those which may often be confused-that is the role of the DIFFERENTIAL- 
DIAGNOSIS relationships in the frame. 

The complementary and competing relations to other hypotheses are used in 
controlling the activation of hypotheses. In an anthropomorphic analogy, we 
think of an active hypothesis as corresponding to one about which the physician is 
consciously thinking. Active hypotheses offer the possible explanations for the 
patient’s reported condition and are the basis from which the program reasons 
to select its next question. Inactive hypotheses are all those possible disorders 
which play no role in the program’s current computations; they may be inactive 
either because no findings have ever suggested their possibility or because they 
have been considered and rejected by evaluation in light of the available evidence. 
Semi-active hypotheses bridge the gap between active and inactive ones and allow 
us to represent hypotheses which are not actively under consideration but which 
may be “in the back of the physician’s mind.” As mentioned above, if a trigger of 
any hypothesis is reported, that hypothesis is made active. When a hypothesis is 
activated, all of its closely related complementary hypotheses are semi-activated. 
Whereas non-trigger findings of inactive hypotheses do not lead to consideration of 
those hypotheses, any reported finding of a semi-active hypothesis causes it to be 
activated (i.e., each of its findings is treated as a trigger). This models the observa- 
tion that physicians are more likely to pay attention to the minor symptoms of a 
disease related to the diagnosis which they are already considering’than to the 
minor symptoms of an unrelated disorder. Each of the complementary hypotheses 
identifies another disorder which may be present along with the one under con- 
sideration, and therefore to be semi-activated. The DIFFERENTIAL-DIAGNOSIS 
relation identifies a set of competing hypotheses which are to be semi-activated 
if the appropriate condition holds. 

We need to assign to every hypothesis some estimate of its likelihood. In PIP, 

I3 For logical completeness, we could have an IS-SUFFICIENT-NOT-TO-HAVE criterion, 
which would confirm a hypothesis in the absence of some finding, but this is just not useful. 

I4 Note that we use the word “complement” in the sense of “completion,” not implying negation 
or something missing. This is the sense of the word used in [19]. 
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that estimate forms one basis for deciding whether the hypothesis ought to be 
conjirmed, if the estimate is sufficiently high, or inactivated, if it is sufficiently low. 
Further, PIP bases its questioning strategy in part on the likelihood of its leading 
hypothesis. That likelihood is estimated by combining a function which measures 
the fit of the observed findings to the expectations of the hypothesis with a function 
which is the ratio of the number of findings which are accounted for by the hypo- 
thesis to the total number of reported findings. These two components of the 
likelihood estimate are called the matching score and the binding score. 

PIP allows us to define clinical and physiological states (not only diseases) as 
hypotheses. Thus, it is not necessary to list every symptom of a disease with that 
disease hypothesis; commonly co-occurring symptoms can be made symptoms of 
a clinical state hypothesis, and their relation to the disease derives from the causal 
relation of the disease to the clinical state. This is an appropriate structure which 
is consistent with medical practice. It does, however, raise a problem in computing 
the matching and binding scores for a hypothesis. If a finding is accounted for by 
a clinical state which is related to a disease, then the binding score of the disease 
hypothesis should reflect that relation, and its matching score should also reflect 
that the finding has improved the fit of the facts of the case to the hypothesis. To 
effect this behavior, PIP uses a score propagation scheme, described below. A 
similar argument can be made to extend score propagation to disease hypotheses 
as well : if a disease is made more likely by the observation of one of its symptoms, 
causally related diseases should also be seen as more likely. 

The numerical likelihood estimator (see Fig. 1) is used to compute the local 
score part of the matching score. The local score reflects the degree to which the 
facts found support the hypothesis directly. It consists of a series of clauses, each 
of which is evaluated as a LISP COND. l5 The local score of a hypothesis is the 
sum of the values of the clauses, normalized by the maximum possible total score. 
Thus, it ranges from a maximum of 1 (complete agreement) downward to arbi- 
trarily large negative numbers (complete disagreement). 

PIP now computes the matching score by revising the local score to include the 
effects of propagated information deriving from related hypotheses. Consider the 
case when PIP is trying to compute the score for the hypothesis Hi. First we 
identify all those other hypotheses Hj which are possibly complementary to 
Hi.16 PIP then computes the MATCHING-SCORE by adding up the contributions 

I5 That is, for clause i, first < condition i,l > is evaluated, and if it is true, the value of clause i 
is < score i,l >. If that first condition is false, then each other condition in the clause is evaluated 
in turn, and the value of the clause is the score for the first true condition. Prototypical finding 
patterns in the condition which have not yet been asked about-thus, whose truth is not yet 
known-are treated as false, unless the pattern requests a negative or unknown finding. If none 
of the conditions is true, the value of the clause is zero. 

I6 Hj may be directly linked as a complementary relation to Hi or it may be linked by a causal 
path going through some other hypotheses. In the latter case, we insist that the flow of causality 
along such a linking path be unidirectional, for we do not want, for example, that two independent 

9 
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TRIGGERS (EDEMA with LOCATION = FACIAL or PERI-ORBITAL, 
PAINFULNESS = not PAINFUL, SYMMETRY = not 

ASYMMETRICAL, ERYTHEMA = not ERYTHEMATOUS) 
FINDINGS (COMPLEMENT with RANGE = LOW), (MALAISE), (WEAKNESS), 

(ANOREXIA), (EDEMA with SEVERITY = not MASSIVE), 
(PATIENT with AGE = CHILD or YOUNG, SEX = MALE) 

CAUSED-BY (STREPTOCOCCAL-INFECTION in RECENT-PAST) 
CAUSE-OF SODIUM-RETENTION, ACUTE-HYPERTENSION, NEPHROTIC- 

SYNDROME, GLOMERULITIS 
COMPLICATED-BY ACUTE-RENAL-FAILURE 
COMPLICATION-OF CELLULITIS 

DIFFERENTIAL-DIAGNOSIS 
(CHRONIC-HYPERTENSION implies CHRONIC-GLOMERULITIS) 
(EDEMA with RECURRENCE = not FIRST-TIME 

implies NEPHROTIC-SYNDROME, CHRONIC-GLOMERULONEPHRITIS, 
FOCAL-GLOMERULONEPHRITIS) 

(ABDOMINAL-PAIN implies HENOCH-SCHOENLEIN-PURPURA) 
(RASH with PURPURA = PURPURIC implies HENOCH-SCHOENLEIN-PURPURA) 
(RASH with (either LOCATION = MALAR or PHOTOSENSITIVITY = PHOTO- 

SENSITIVE) implies SYSTEMATIC-LUPUS) 
(JOINT-PAIN implies HENOCH-SCHOENLEIN-PURPURA, SYSTEMIC-LUPUS) 

SCORE 
(((PATIENT with AGE = CHILD or YOUNG) -+ 0.8) 
((PATIENT with AGE = MIDDLE-AGED) -+ -0.5) 
((PATIENT with AGE = OLD) -+ - 1 .O)) 

(((COMPLEMENT with RANGE = LOW) + 1.0) 
((COMPLEMENT with RANGE = NORMAL or MODERATELY-ELEVATED) - -0.7) 
((COMPLEMENT with RANGE = VERY-HIGH) + - 1 .O)) 

(((EDEMA with LOCATION = FACIAL or PER&ORBITAL, SYMMETRY = not 
ASYMMETRICAL, DAILY-TEMPORAL-PATTERN = WORSE-IN- 
MORNING, PAINFULNESS = not PAINFUL, ERYTHEMA = not 
ERYTHEMATOUS) + 1 .O) 

((EDEMA with LOCATION = FACIAL or PERI-ORBITAL, SYMMETRY = not 
ASYMMETRICAL, PAINFULNESS = not PAINFUL, ERYTHEMA = not 
ERYTHEMATOUS) + 0.5) 

((EDEMA with SEVERITY = not MASSIVE) --f 0.1) 
((EDEMA with SEVERITY = MASSIVE) + - 1.0)) 

(((PATIENT with SEX = MALE) --f 0.3) ((PATIENT with SEX = FEMALE) + -0.3)) 
(((ANOREXIA) --z 0.3) ((ANOREXIA absent) + -0.3)) 
(((WEAKNESS) -+ 0.3) ((WEAKNESS absent) ---f -0.3)) 
(((ANOREXIA) + 0.3) ((ANOREXIA absent) + -0.3)) 

FIG. 2. The PIP Hypothesis Frame for Acute Glomerulonephritis. 

causes of some disease should reinforce each other’s likelihood merely by being possible causes 
of the same disorder. We also compute a LINK-STRENGTH between the hypotheses, which 
is the product of each LINK-STRENGTH along the component links. Those component link 
strengths are identified in the database, and reflect the strength of association represented by the 
links. 
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of every scoring clause of Hi and each Hj and normalizing by the maximum 
possible total for this virtual scoring function. The effect here is to mechanically 
undo the organization imposed by the use of clinical and physiological states, 
since we could achieve a similar effect by merely listing with each hypothesis the 
exhaustive set of symptoms to which it might lead. Fig. 2 shows, as an example, 
the PIP frame for acute glomerulonephritis. 

3.1.2. Discussion 
PIP uses both categorical and probabilistic17 reasoning mechanisms. We shall 
identify the various forms of reasoning which it undertakes and whether they are 
accomplished by categorical or probabilistic means. When a finding is reported to 
PIP, whether as a fact volunteered by the user or in response to the program’s 
questions, it tries to characterize fully the finding in terms of all the descriptors 
known to apply to that finding. For example, if EDEMA is reported, PIP will 
try to establish its location, severity, temporal pattern, and whether it is symmetrical 
try to establish its location, severity, temporal pattern, and whether it is sym- 
metrical, painful, and erythematous. Rather specific rules capture some of the 
physician’s common sense: If the question of past proteinuria is raised, PIP can 
conclude its absence if the patient passed a military physical examination at that 
time. These inferences are purely categorical. 

The main control over PIP’s diagnostic behavior resides in the list of active and 
semi-active hypotheses. Recall that only these hypotheses are “under considera- 
tion”-only they are evaluated or used to select the program’s further questions. 
The activation (but not the evaluation) of all hypotheses is purely categorical. A 
hypothesis can come up for consideration only if one of its prototype findings is 
matched by a reported finding, if a complementary hypothesis is activated, or if 
a competing hypothesis is active and a finding matches a condition among its 
differential diagnosis clauses. 

Once a hypothesis is under consideration, both categorical and probabilistic 
mechanisms exist to decide its merit. In 18 of the 38 fully developed hypothesis 
frames in the current PIP, we find categorical IS-SUFFICIENT rules to establish the 
presence of the hypothesized disorder. l8 By contrast, all frames have a scoring 
function by which a pseudo-probabilistic threshold test may confirm hypotheses. 

I7 As should be clear from the above discussion, we do not think of the score computations as 
representing a true probability (either objective or subjective). We have sometimes tried to think 
of our scores as log-transformed probabilities, but the analogy is weak. Rather, we must think of 
them as an arbitrary numeric mechanism for combining information, somewhat analogous to 
the static evaluation of a board position in a chess-playing program. It is useful, however, to 
contrast the scoring computations with a correct probabilistic formulation, because that analogy 
suggests an explanation for various deficiencies of the scoring scheme [32]. 

I8 Currently, PIP contains a total of 69 hypothesis frames, but 31 of them are so skeletal that 
they can never be confirmed. They are there to maintain the appropriate complementary relation- 
ships and they anticipate a future extension of our database. 
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Similarly, nine of the frames have necessary conditions which may be used cate- 
gorically to rule out a hypothesis, whereas all may be inactivated if their scores 
fall below another threshold. In our experience, the program performs best when 
presented with cases decided on categorical grounds. Too often, small variations 
in a borderline clinical case can push a score just above or just below a threshold 
and affect the program’s conclusions significantly. Of course, in a textbook case, 
even the probabilistic mechanism will reach the right conclusion because the 
evidence all points in a consistent direction. Perhaps it should not disappoint us 
when the program flounders on tough, indeterminate cases where we have neither 
certain logical criteria nor a concensus from the evidence. 

Once the re-evaluation of all hypotheses affected by the last finding introduced 
is done, PIP selects an appropriate question to ask the user. That selection depends 
on the probabilistic evaluation of each active hypothesis. PIP identifies the highest- 
scoring active hypothesis, and if one of its expected findings has not yet been 
investigated, that finding is asked about. If all its expected findings have already 
been investigated, then PIP pursues expected findings of hypotheses complementary 
to the leading one. 

To its user, PIP’s reasoning is discernible from the conclusions it reaches and 
the focus of its questioning. PIP appears unnatural when its focus frequently 
shifts, as the probabilistic evaluator brings first one and then another competing 
hypothesis to the fore. This major deficiency relates to the lack of categorical 
reasoning. Such reasoning might impose a longer-term discipline or diagnostic 
style [12] on the diagnostic process. 

In summary, PIP proposes categorically and disposes largely probabilistically. 

3.2. INTERNIST-The diagnostic system of Pople and Myers 

INTERNIST 114, 19, 201 is a computerized diagnostic program which emphasizes 
a very broad coverage of clinical diagnostic situations. The INTERNIST database 
currently covers approximately 80% of the diagnoses of internal medicine [21], 
and thus is the largest of these AIM programs. Although INTERNIST is close to 
its goal of covering most of internal medicine, other problems lie downstream for 
these researchers, including human engineering issues centered on usability of the 
program’s interface, possibly significant costs of running the program and main- 
taining the database, introducing some model of disease evolution in time, and 
dealing with treatment, as diagnosis is hard to divorce from therapy in any practical 
sense. 

3.2.1. Presentation 

The INTERNIST database associates with every possible diagnosis Di a set 
of manifestations {Mj>. A manifestation is a finding, symptom, sign, laboratory 
datum, or another diagnosis which may be associated with the diagnosis. For 
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every Mj listed under Di, two likelihoods are entered. LD~IM~, the evoking strength, 
is the likelihood that if manifestation Mj is seen in a patient, its cause is Di. It is 
assessed on a scale of 0 to 5, where 5 means that the manifestation is pathognomonic 
for the diagnosis and 0 means that it lends virtually no support. FMjlDi, the fre- 
quency, is the likelihood that a patient with a confirmed diagnosis Di would 
exhibit Mj. 

Although INTERNIST’s developers resist identifying these numbers as proba- 
bilities, P’M~JD~ is clearly analogous to the conditional probability P.M~JD~. The 
evoking strength is like a posterior probability, PD~~M~, which includes a population- 
dependent prior, PII~, that is not explicit in the database. If we were to take such a 
probabilistic interpretation, all the usual complaints about the failure of Bayesian 
assumptions would be appropriate. The INTERNIST scoring function which 
computes with these numbers is, however, in no sense probabilistic, and the rough 
granularity of the data is undoubtedly equally significant. It is reported that small 
random perturbations of the frequencies and evoking strengths in the database 
do not significantly alter the program’s behavior. A small example of a diagnosis, 
its associated manifestations, and the evoking strengths and frequencies connecting 
them are shown in Fig. 3 [21]. 

Portal-vein-occlusion 
Manifestation L F 

Hepatic-vein-wedge-pressure-normal 0 4 
Splenomegaly 1 4 
Gastro-intestinal-hemorrhage 1 4 
Varices-esophogeal 2 4 
Portal-vein-obstruction-by-radiography 5 3 
Anemia 1 3 
Appendicitis-history 1 2 
Ascites 1 2 

FIG. 3. A Diagnosis and its Manifestations in INTERNIST. 

INTERNIST also classifies all its diagnoses into a disease hierarchy, a small 
part of which is shown in Fig. 4 [14]. The use of hierarchy is an important mechan- 
ism for controlling the proliferation of active hypotheses during the diagnostic 
process because it allows a single general diagnosis to stand for all its possible 
specializations when no discriminating information is yet available to choose 
among them. This occurs, however, only when all specializations of the chosen 
general diagnosis have in common the same set of observed manifestations. 
Because INTERNIST wants to evaluate general as well as specific diagnoses, it 
computes for each general diagnosis a list of manifestations and their corresponding 
evoking strengths and frequencies. The manifestations for the general diagnosis 
are those common to each of its specializations, and the evoking strength and 



130 P. SZOLOVITS AND S. G. PAUKER 

frequency of each are, respectively, the maximum evoking strength and minimum 
frequency of that manifestation among the specializations. 

Borrowing the term from PIP, we will call a diagnosis active if at least one of 
its manifestations with a non-zero evoking strength has been observed, unless the 
diagnosis is a general one and must be replaced by its specializations (for example, 
because a manifestation occurring in one but not another of the more specific 
diagnoses has been reported). For each active hypothesis, a score is computed by 

LIVER-DISEASE 
; - - - - - - HEPATOCELLULAR-DISEASE 

1 - - - - - - HEPATOCELLULAR-INFECTION 

I 1 - - - - - - HEPATITIS-A 

I - - - - - LEPTOSPIROSIS 

( - - - - - - TOXIC-HEPATOCELLULAR-DISEASE 
1 - - - - - - ABNORMAL-IMMUNITY-HEPATOCELLULAR-REACTION 

- - - - - - NEOPLASMS-OF-LIVER 
I ------HEPATOMA 

; - - - - - - CHOLESTATIC-DISEASE 

I . . . 
. . . 

Fig. 4. A Small Portion of INTERNIST’s Diagnosis Hierarchy. 

summing the evoking strengths of all its manifestations which have been observed, 
adding “bonus” points for confirmed causally consequent diagnoses, subtracting 
the sum of frequencies of those of its manifestations which are known to be 
absent, and also subtracting a weight of importance for each significant finding 
which is reported to be present but which is not explained by either the diagnosis 
or some other confirmed diagnosis. Thus, evocative findings and confirmed 
consequences of a diagnosis count in its favor, while expected findings which are 
known to be absent and reported findings which are unexplained count against it. 

3.2.2. Discussion 

Drawing an analogy with PIP, INTERNIST’s diagnoses are PIP’s hypotheses, 
the manifestations are the findings and causally related hypotheses, the evoking 
strengths are like the triggers-they and the frequencies play the role of the scoring 
function. INTERNIST’s use of the importance measure for unexplained findings 
is superior to PIP’s simple fractional binding score. Because the scoring function 
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in PIP is explicit in each hypothesis frame, it requires more effort to create but 
provides a more general means of evaluating the significance of present and 
absent findings. Also, because PIP provides some logical criteria for confirming 
or denying a hypothesis, it provides a database with the option of categorical 
hypothesis evaluation. 

The lumping together of findings with causally consequent diagnoses, both as 
manifestations, leads INTERNIST to some difficulties. For it, any manifestation 
is either present, absent, or unobserved. This may be appropriate for findings, 
but when imposed on the evaluation of diagnoses, it ignores the arguably real 
support of a strongly suspected though not confirmed causally consequent diagnosis 
for its antecedent. As Pople has pointed out, this effect may prevent INTERNIST 
from diagnosing a syndrome of connected hypotheses if no one of them is de- 
finitely provable even though the circumstantial evidence of their combined high 
likelihood is convincing to a physician. A similar deficiency arises because reported 
findings are explained only by confirmed diagnoses. Again, a strongly suspected 
but not confirmed complementary hypothesis will not be able to explain its signifi- 
cant findings, and so the correct diagnosis may have its score strongly penalized. 
As discussed above, PIP addresses these problems by dealing more explicitly with 
complementary disorders and accepting that a hypothesis accounts for a finding 
if one of its active complementary hypotheses accounts for it. We will argue below, 
however, that both of these solutions are weakened by not having a sufficiently 
explicit model of the hypothesis which they are pursuing. 

The most interesting part of INTERNIST is its focusing mechanism. After 
scoring all its active diagnoses, INTERNIST chooses to concentrate on the highest 
ranking diagnosis. It partitions the others into two lists: the competing and com- 
plementary diagnoses. A diagnosis is complementary to the chosen one if the two, 
together, account for more findings than either alone; otherwise the diagnosis 
is competing. The complementary list is then temporarily set aside, and a questioning 
strategy (one of RULE-OUT, NARROW, DISCRIMINATE, or PURSUE) is 
selected, depending on the number of highly-scoring competitors and whether the 
information to be requested is low or high in cost. The complete scoring, partition- 
ing, and strategy selection processes are repeated after each new fact is reported. 
Confirmation is by numerical threshold. The partitioning heuristic is credited by 
Pople to have a very significant effect on the performance of the program, focusing 
its questioning on appropriate alternative diagnoses. 

Because its intended coverage of disorders and findings is universal, INTERNIST 
relies on a uniform processing strategy and a simply-structured database. Much 
of its decision-making falls under our probabilistic designation. The use of a 
hierarchic tree of diagnoses and the rule for moving from a general to more 
specific diagnoses is categorical and captures an important part of a clinician’s 
diagnostic behavior. The selection of questioning strategy is also categorical, 
although, interestingly, it depends on a probabilistic computation of the likelihood 
of each diagnosis. 
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3.3. CASNET-A model of causal connectives 
In a domain where normal and diseased states are well understood in physiological 
detail, it is sensible to build diagnostic models in which the basic hypotheses are 
much more detailed than the disease-level hypotheses of PIP and INTERNIST. 
Kulikowski, Weiss and their colleagues have built such a system based on the 
causal modelling of the disease glaucoma. Their system is called CASNET, and 
it is in principle a general tool for building causal models with which well-known 
diseases may be diagnosed and treated [35]. 

3.3.1. Presentation 

CASNET defines a causal network of dysfunctional states and a set of tests which 
provide evidence about the likelihood of existence of those states in the patient 
under consideration. States represent detailed dysfunctions of physiology, not 
complete diseases; thus, the determination of disease is separated from the question 
of what, in detail, is going wrong in the patient. 

The network consists of a set of nodes, some of which are designated as starting 
states, meaning that they are etiologically primary, and some as final states, 
meaning that they have no dysfunctional consequences. All causal relationships 
are represented by a link between two nodes, with a link strength which is inter- 
preted as the frequency with which the first node causes the second. Starting states 
are given a prior frequency. No cycles are allowed in the network. Almost all 
nodes are representations of real physiological disorders. Although logical com- 
binations of physiological states may be represented by a single node (for example, 
to express joint causation), this technique is discouraged. Further, “the resolution 
of states should be maintained only at a level consistent with the decision-making 
goal. A state network can be thought of as a streamlined model of disease that 
unifies several important concepts and guides us in our goal of diagnosis. It is not 
meant as a complete model of disease” [35, p. 341. 

Two separate probabilistic measures are computed for every state in the network. 
A node’s status is an estimate of its likelihood from the results of directly relevant 
tests. The status determines whether a node is conjrmed or discon$rmed. A node’s 
weight is an essentially independent estimate of its likelihood which derives from 
the strength of causal association between the node and its nearest confirmed and 
disconfirmed relatives. The weight computation ignores test results which affect 
the node’s own status but is sensitive to results which establish the confirmation 
status of its causal relatives. 

All tests are binary and are entered with an evaluation of the cost of each. If a 
positive or negative test result is reported, a set of links from the test to nodes of 
the network implies the presence or absence, respectively, of the corresponding 
nodes. Each link is labelled with a confidence measure for both positive and negative 
results, separately. A test may represent a simple observation of the patient or it 
may be a logical combination of specific results of other tests. Only the results of 
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simple tests are directly asked of the user of the program-the others are computed 
from the simple tests’ results. 

The STATUS of each node is measured in the same units that are used to 
report the confidence measures of the implications of tests. Every time the result 
of a test is reported, the status of every node to which that test is linked is re- 
computed : If the result of the test has less confidence (i.e., is smaller in magnitude) 
than the status of the node, no change occurs. If the test result has greater con- 
fidence, the node’s status is changed to that value. If they are equal, but of opposite 
sign, the node’s status is set to zero, and a contradiction is noted for the user. One 
threshold, T, is defined such that if the status of a node is less than -T, the node 
is denied, and if the status exceeds + T, the node is conjirmed. 

The use of a maximum-confidence value for status and the ability to define a 
high-confidence test as the conjunction of two lower-confidence tests is in the 
fuzzy set tradition. It sidesteps the problems of the interpretation of mutually 
dependent test results, as they arise in a Bayesian formulation, by requiring the 
designer of the database to define explicitly a new test for any combination of 
tests which jointly support the same node. Weiss argues that in his application 
domain this is perfectly appropriate, because when tests of varying confidence are 
available, only the results of the strongest should be counted [35]. One may question, 
however, whether this approach could be extended to wider medical areas, especi- 
ally where many tests are available but only a consistent reading on most of them 
is enough to confirm a hypothesis. 

Both for selecting a “most informative” test and for interpreting the pattern of 
status values among nodes of the network as a coherent disease hypothesis, 
CASNET defines an acceptable path in the network as a sequence of nodes which 
includes no denied nodes. A forward weight is computed for every node in the 
network, which represents the likelihood of that node when considering the degree 
to which its confirmed causal antecedents should cause it. Consider each admissible 
path which leads to node nj and starts either at a starting node or at a closest 
confirmed node. CASNET computes the likelihood of causation along each such 
path by multiplying the link strengths along it (and the prior frequency for a 
starting state). The forward weight, wj, of node ni is defined to be the sum of the 
weights along each such path. 

An inverse weight, representing the degree to which the presence of a node is 
implied by the presence of its causal consequents, is also computed.lg CASNET 
then takes the maximum of the forward and inverse weights as the total weight, 
which is interpreted as a frequency measure of the degree to which the node is 
expected to be confirmed or disconfirmed from circumstantial causal evidence. 
Obviously, nodes with a high total weight and a status score near zero are excellent 

I9 We cannot describe all of the computational mechanisms of CASNET here. An excellent 
presentation of the algorithms and a thorough justificafion for the particular choices made is in 
Weiss’ thesis, [351. 
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candidates for testing, since we might expect them to be confirmed. Conversely, 
nodes with low total weight are also candidates for testing since we expect them 
to be denied. CASNET permits a number of different testing strategies to be used, 
based in part on the expected information implied by the weights and in part on 
the costs of the various tests.” 

One should interpret the status of various nodes in the network as measures of 
the likelihood of subparts of a coherent disease. Based on the notion of the accept- 
able path, CASNET defines a number of different kinds of disease pathways, 
depending on which starting nodes are acceptable for such a path and on what 
criteria are used to terminate the path. It can compute those paths which are most 
likely to account for all the confirmed nodes in the network, all those which are 
potential explanations, and those which are not contradicted by a denied starting 
node (called global). Once the start of a disease path is selected, its termination 
criterion determines the type of path. An acceptable path which ends on a con- 
firmed node is conjirmed. An acceptable path ending on an undenied node is 
possible. A path which ends on a final state, even if it includes denied nodes, is 
predictive. Depending on the intent of the user, any combination of disease path 
starting and termination criteria may be selected. For example, the most likely 
starting criterion taken with the confirmed termination criterion will yield the “best 
estimate” diagnosis of the patient’s current state. Selecting the global starting 
criterion and the predictive stopping criterion produces essentially all pathways 
through the network. 

The most likely starting nodes are used to establish the probable causal mechan- 
isms (the diseases) which account for the patient’s difficulties. The ends of disease 
pathways give an estimate of the extent of the diseases. Together, these can be 
used to identify the primary disorder, to select a therapy for it, and to make 
prognostic judgments. 

In a very clever manner, the determination of the effectiveness of therapy is 
handled by application of the same techniques used for diagnosis. A new causal 
network is constructed, in which the various therapies are the starting states and 
other nodes represent either complications of the treatments themselves or dis- 
orders not alleviated by the treatments. All of the above techniques are then 
available to assess whether any confirmed disorders are left after treatment and, 
if so, by what causal paths they could come about. 

3.3.2. Discussion 
At the level of testing, confirmation and denial of nodes of the causal network, 
virtually all of CASNET’s reasoning is probabilistic, based on the fuzzy set 
formalism for test interpretation and a probability interpretation for propagating 

2o At present, the program is used with a fixed sequence of tests because an attempt is being 
made to gather a large, uniform database about glaucoma patients. Thus, the test selection 
function and this interesting weighting function are not in use [36]. 
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causal frequency. The ability to define a hierarchy of tests (where higher tests 
summarize logical combinations of results of lower ones) and the simple confidence 
interpretation of node status provide a mechanism in which categorical rules for 
deciding node status are easily embedded. 

The selection of a diagnosis and an associated therapeutic plan depends princi- 
pally on the network designer’s categorical understanding of the possible causal 
pathways through the net and on his definition of just which paths are subsumed 
by a given disease. In fact, if forward and inverse weights were not calculated, the 
elimination of any causal links which are not part of an identified disease path 
would result in no net effect on the operation of the program. 

Weiss emphasizes that perfect accuracy in diagnosis by his program is not an 
unrealistic goal (presumably, without significant cost limitations on its testing 
strategy). This is to be contrasted to statistical classification schemes which would 
likely remain imperfect even with the addition of large quantities of new data. In 
CASNET, this confidence is justified because an error in its classification of a 
patient must ultimately indict some part of the causal model. In response, it may 
be necessary to add more tests to help distinguish the erroneous case or the network 
may need to be disaggregated in selected places to give a more detailed model of 
some aspect of the disease. In the typical statistical approach, where the unit 
hypothesis is the disease, such local refinement is less feasible. 

The glaucoma program works so well because its domain is narrow and the 
pathophysiology is well understood. Especially when compared with the domain 
of all of internal medicine (INTERNIST) or renal disease (PIP), the level of 
detail which is medically known and which it is practical to include in the glaucoma 
program is great. In fact, we speculate that that program could be recast as a 
categorical reasoning program. Given a fixed flowchart for test selection, we might 
consider in turn each of the roughly 50 starting states. From each, we might imagine 
a discrimination network which traces those diseases which start with that starting 
node. The discrimination net would branch based on the crudely quantized 
confidence measure (status) of each successor node. That same measure could be 
used to determine the end of the disease path, and thus the degree of progression 
of the disease and its possible therapies. Of course, such a technique may be too 
rigid to use in a changing environment or may not capture some capabilities of the 
original program (e.g., it could not compute all possible causes of some dys- 
function). We hasten to mark this as pure speculation, but it suggests that perhaps 
more powerful categorical decision making techniques could equally well solve the 
glaucoma problem, and thus, that the probabilistic appearance of the CASNET 
solution is perhaps unnecessary. 

A causal model is, nevertheless, attractive. We have seen physicians create 
(occasionally incorrect) causal explanations for phenomena which they associate 
with diseases even though such a causal model played no important role in their 
interpretation of the phenomena. People seem happier if they understand why 
something happens than if they merely know that, under the circumstances, it 
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does. Causal models for diagnosing dysfunction have been implemented for 
simple physical devices [22] and proposed for medicine [28]. In both these ap- 
proaches, causality is taken as a categorical, not probabilistic, connection. Reason- 
ing about likelihood is often quantified only in the very fuzzy sense of IMPOS- 
SIBLE, UNLIKELY, POSSIBLE, PROBABLE, and CERTAIN, and distinctive 
rules rather than a uniform numerical computation are used to combine data with 
different degrees of likelihood. 

3.4. Production rules-MYCIN and inference nets 

The final AIM program whose reasoning component we shall describe is MYCIN, 
which is being developed to advise physicians and medical students in the approp- 
riate treatment of infections [3, 251. 

3.4.1. Presentation 

MYCIN’s knowledge is expressed principally in a number of independently stated 
rules of deduction, a typical example of which is shown in Fig. 5. MYCIN’s 
highest-level goal is to determine if the patient is suffering from a significant 
infection which should to be treated, and if he is, to select the appropriate therapy. 

IF: 1) THE STAIN OF THE ORGANISM IS GRAM POSITIVE, AND 
2) THE MORPHOLOGY OF THE ORGANISM IS COCCUS, AND 
3) THE GROWTH CONFORMATION OF THE ORGANISM IS CHAINS 

THEN: THERE IS SUGGESTIVE EVIDENCE (.7) THAT THE IDENTITY 
OF THE ORGANISM IS STREPTOCOCCUS 

FIG. 5. A Typical MYCIN Rule. 

It uses a backward-chaining deduction scheme in which all applicable rules are 
tried: If a condition in the IF (antecedent) part of a rule is decidable from the 
database, that is done; if the condition can be asserted by the THEN (consequent) 
part of some other rules, they are applied; otherwise, MYCIN asks the user. Thus, 
the rule of Fig. 5 might be applied in the following chain of reasoning: 

1. To decide if the patient needs to be treated, we must decide if he has a 
significant infection. 

2. We must know the likely identity of the infecting organism to decide if the 
infection is significant. 

3. The rule of Figure 5 can determine the identity of the organism. 

Because conditions in the rules may include logical disjunctions as well as con- 
junctions, the deduction forms an and/or tree. 
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When the methodology of MYCIN was applied to the simple domain of bicycle 
troubleshooting, a small set of categorical rules of this type were sufficient to give 
the program some interesting behavior. The complication in MYCIN arises from 
the uncertainty with which a medical rule implies its consequences, the applicability 
of several uncertain rules to suggest the same consequence, and the need to apply 
rules even when their antecedents are to some degree uncertain. 

MYCIN associates a certainty factor (CF) with each rule, which is a number 
between 0 and I, representing the added degree of belief that the rule implies for 
its consequent. With each fact in the database is a measure of beZief (MB) and a 
measure of disbelief (MD), both numbers between 0 and 1, which summarize all 
the positive and negative evidence that has been imputed for this datum by the 
application of rules which conclude about the datum. The measures of belief and 
disbelief are maintained separately for each item, and the certainty factor of the 
fact is their difference. Thus, the CF of a fact is a number between - 1 and 1. 

Arguing that the rule “A implies B with probability X” should not be inverted 
in the traditional probabilistic sense to entail “A implies not B with probability 
(I-X),” Shortliffe defines a confirmation formalism for computing the certainty of 
facts [25]. In its simplest form, it says the following: Assume that we are told 
(perhaps by some rule Sl) the fact H with certainty MB~lsr. Later, we discover 
that another source of information, S2, tells us H again, this time with certainty 
MBHISZ. Instead of using a maximum, as CASNET would, we would like to feel 
more confident in H after having received two reports in its favor than after either 
one by itself. MYCIN’s scheme means that every new report of the truth of H 
reduces the difference between 1 and H’s measure of belief by the fraction which is 
the certainty of the new report. For example, if MB~lsr = 0.4 and MBHIS~ = 0.6, 
then the combined result is MBH~~~,sz = 0.76. This process is defined separately for 
positive and negative reports, and we have 

MBH~s~,sz = 0 if MDHIS~,SI= 1, 
= MBH~SI+MBHISZ U-MBHISI) otherwise (6) 

and 
MDwlsi,sz = 0 if MBHISI,SZ = 1, 

= MD~lsi + MDH~SZ (I-MDHIs~) otherwise (7) 

where Sl and S2 are the two reports. The measures of belief and disbelief combine 
to give a certainty factor for each fact: 

CF, = MB, - MD, (8) 

This, then, defines MYCIN’s method of summarizing the certainty of a hypothesis 
when the application of several rules has contributed evidence for it. 

To compute the measure of belief (or disbelief) contributed by a particular rule, 
MYCIN multiplies the CF of the rule by the MB (or MD) of the rule’s antecedent. 
A fuzzy set strategy of maximizing for OR and minimizing for AND is adopted 
.to compute the belief measures of the antecedent from the belief measures of its 
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components. This approach is presented and justified in [25] and [26]. An alternative 
formulation of separate measures of belief and disbelief is to be found in [24]. 

3.4.2. Discussion 
In MYCIN, the question of just what connections exist among different facts in 
the database is not explicitly addressed. In addition to the rules which we have 
mentioned above, MYCIN also includes a context hierarchy, which plays a smaller 
but still important role in the program’s operation. For example, the facts that 
“there are cultures associated with infections” and that “cultured organisms are 
associated with cultures” are embedded in no rules, but rather in this additional 
mechanism.” Turning MYCIN inside-out, that context mechanism could be 
viewed as the principal organizational facility of the diagnosis program. In such 
a view, the underlying reasoning activity is filling in a frame for the patient by 
directly asking for some information (e.g., age and sex), and by instantiating and 
recursively filling in other frames (e.g., cultures and operations). The productions 
and their associated certainty factors are then seen as a set of procedurally attached 
heuristics to help fill in those frames. We conjecture that this methodology, which 
underlies the operation of the GUS program [I], would provide a reasonable 
alternative way of implementing the MYCIN system. 

MYCIN’s categorical knowledge is encoded in three ways. First, the presence 
of each rule implicitly establishes a categorical, inferential connection between 
those facts in its consequent and those it uses in its antecedent. The MYCIN 
control structure, which is a nearly purely categorical backward chaining deduction 
scheme, is based on these relationships. Second, the context tree explicitly defines 
what objects may exist in MYCIN’s universe of discourse and how they may 
relate. Such categorical information would underline a GUS-like implementation 
of MYCIN. Third, many other relationships, which record such data as how to 
ask a question and what answers are acceptable, are also categorical in nature. 
MYCIN’s probabilistic reasoning resides in its use of the measures of belief and 
disbelief about each fact and the certainty factors associated with each rule. 
Although this probabilistic method has important consequences for the assessment 
of the relative likelihoods of the various infecting organisms under consideration, 
it appears that it affects the program’s questioning behavior only slightly. Except 
in the case where a line of reasoning is pursued because of the joint effect of several 
very weak independent inferences, which we suspect is rare, the particular numbers 
used make little difference except in the final diagnosis (and thus therapy). We 
note that the context tree which is built for each patient depends for its structure 
mainly on information that is always asked of the patient, such as what cultures 
have been taken, what operative procedures have been performed, and what drugs 

21 Note that, because of interposed levels of complexity such as the existence of cultures, the 
example “traceback” we presented above of how MYCIN would decide to apply the rule of 
Fig. 5 is overly simplistic. 
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are being used in treatment. Even dramatic changes in the probabilistic component 
of MYCIN’s reasoning strategy would not alter this behavior. 

MYCIN has also inspired the creation of a more uniform inference scheme, in 
which every potential fact in the database is viewed as a node in a large inferential 
network.” In such a network, the reasoning rules form the connections among 
the fact nodes, and we think of propagating some measures of likelihood among 
the nodes so that the impact of directly observable facts may be reflected on the 
diagnostic consequences of ultimate interest. This is the approach taken by Duda, 
Hart and Nilsson [5] in their inference net formalism. The propagation scheme 
used there is Bayesian in its heritage but suffers from the typical distortions (uide 
supru) which the Bayesian methodology can introduce. 

Of course, it is natural to compare the inference net to the causal net. The 
difference is primarily in the semantic interpretation of what a node and a link 
represent. In CASNET, the node is a dysfunctional state and the link represents 
causality in the application domain. In the inference net, nodes are essentially 
arbitrary facts about the world and rules are arbitrary implications among those 
facts. Much of Weiss’ reasoning in justifying the particular propagation algorithms 
he has chosen rests on his specific interpretation of the network. Because the 
semantics of the inference net are less clearly (or constantly) defined, we must be 
more skeptical when evaluating the acceptability of the approximations introduced 
by the propagation formulas. 

4. Another look at the problems of diagnosis 

Compared to the expert physician, our best AIM programs still have many defici- 
encies. We catalog a few of the more significant ones: 

1. Programs which deal with relatively broad domains, such as INTERNIST and PIP, 
have inadequate criteria for deciding when a diagnosis is complete. There is no sense of 
when the major diagnostic problems have been resolved and only the “loose ends” remain: 
the programs continue exploring less and less sensible additional hypotheses until the user 
tires of the consultation. For example, PIP only stops if no active hypotheses remain or if 
every finding of every active hypothesis has been explored already. 

2. Because the initial strategy of the programs is to use every significant new finding as a 
clue to raise the possibility of associated disorders, and because this strategy remains through- 
out the programs’ operation, new hypotheses are continually being activated. Thus, when 
the program asks about an expected finding for one of its leading hypotheses and the finding is 
present, that finding often suggests new hypotheses as well, even though it is perfectly consistent 
with the diagnosis being pursued. Obviously, some such sensitivity is necessary or the program 
would remain committed to its first hypothesis, but we now feel that it would be preferable 
if new hypotheses were triggered only by evidence which contradicts a current belief. 

22 Uniformity is not necessarily an advantage for a reasoning scheme. For example, the par- 
ticular structures used by MYCIN are cleverly exploited by Davis in building an interesting 
knowledge acquisition module [2]. In a uniform system of representation, it would be more 
difficult for his programs to decide just where new knowledge is to be added. 
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3. Part of the routine developed by clinicians is an appropriate order for acquiring in- 
formation systematically. Computer diagnosticians tend either to enforce such an order too 
strictly (for example, the flowcharts and MYCIN, which cannot accept out-of-sequence 
information in any useful way) or not at all (e.g., INTERNIST or PIP, where a global 
computation after the report of each fact may, in the worst case, change the program’s focus 
to an entirely new topic for each question). 

4. The programs rely on a global likelihood assessment scheme, but they use too weak 
semantics for the states over which they try to compute approximate probabilities. For 
example, none of the programs can dynamically distinguish among the aggregate hypotheses 

a. A and B, both together, when in fact A has caused B, 

b. A and B co-occurring but apparently unrelated, and 

c. A or B but not both. 

Yet there are therapeutic and strategic decisions which hinge on just such distinctions. For 
example, it may be sufficient to treat only for A in the first case, but not in the second; trying 
to discriminate between A and B makes sense in the third case, but not in the others. PIP 
and INTERNIST might eliminate some of these hypotheses by noting those causal or 
associational links which are disallowed by the database, but in no sense are these hypotheses 
generally distinguishable. MYCIN might include some rules which could, for example, 
reduce the possibility of hypothesis c., but it also lacks any mechanism to take up the prob- 
lems of dependence. Although CASNET does allow the proper handling of this problem, it 
must do so by the creation of joint states, which is its weakest semantic ability. 

4.1. Possible improvements 

The practice of clinical medicine offers some clues to the proper solution of some 
of these difficulties. Questions of the appropriate termination of the diagnostic 
process and control over the proliferation of hypotheses may be resolved by 
considering two factors. First, the diagnosis needs to be only as precise as is 
required by the next decision to be taken by the doctor. Thus, if all the remaining 
possible diagnoses are irrelevant or equivalent in their implications for therapy or 
test selection, then nothing is lost by postponing their consideration. Bayesian 
programs which explicitly compare the cost of new information to its expected 
benefit will achieve this saving [lo], but none of the programs discussed here 
includes such a computation. 

Second, the simple passage of time, “creative indecision,” often provides the 
best diagnostic clues because the evolution of the disorder in time adds a whole 
new dimension to the other available information. Whereas MYCIN, CASNET, 
and the Digitalis Advisor all use changes over time as diagnostic clues, none of the 
programs exploits the possibility of deferring its own decisions with a deliberate 
eye to waiting for disease evolution. Such a strategy is also applicable on the much 
shorter time scale of the diagnostic session. In taking the present illness, for example, 
the doctor knows that a physical examination and a review of systems will soon 
provide additional information. Therefore, consideration of unlikely leads and 
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small discrepancies can be deferred, leaving a coherent structure of problems to 
work with at the moment. 

The ability to lay aside information which does not fit well with the current 
hypotheses is also a good mechanism for limiting the rapid shifts of focus caused 
by consideration of newly raised but unrelated hypotheses. In addition, however, 
the programs must have a sense of the orderly process by which information is 
normally gathered. The attempts in PIP to characterize a finding fully before 
proceeding and the attempts in INTERNIST and CASNET to ask summarizing 
questions (not described here) before launching on a series of similar, detailed 
questions are attempts to reflect such an order. We might, as Miller suggests [12], 
go much further. We could, for example, incorporate a strategy that says: “When 
investigating a suspected chronic disease, insist on a chronological description of 
all the patient’s relevant history.” If such a strategy were followed, the program 
would not quickly jump at a “red herring” uncovered during the acquisition of 
those historical data. For example, consider a patient with a long history of sickle 
cell anemia who now complains of acute joint pain. Although that complaint would 
ordinarily raise the issue of rheumatoid arthritis, in this case we (and the program) 
should realize that the joint pain is a reasonable consequence of an already known 
disease process and should not evoke an immediate attempt to create elaborate 
additional explanations. Maintaining a richer semantic structure of just what the 
current hypothesis is and allowing that structure to control the program’s focus 
of attention should also stabilize the program’s behavior. 

Another possible mechanism for controlling the logic of diagnosis is suggested 
by the following example: Consider the earliest stages in the diagnosis of chest 
pain, a symptom of potentially grave consequence. With a disaggregated structure 
of relationships between findings and hypotheses, chest pain might suggest angina 
pectoris, aortic stenosis, pneumonia, tuberculosis, pericarditis, costro-chondritis, 
depression, hiatus hernia, pancreatitis, esophagitis, gastric ulcer, fractured rib, 
pulmonary embolism, etc.-a long list of significantly different low-level hypotheses. 
Once those are all active, we must evaluate and compare them all to choose a 
best hypothesis. On the other hand, we can say that, initially, we will only use the 
finding of chest pain to choose a somewhat specific diagnostic area for our further 
focus; specifically, we would like to choose one of these generic hypotheses: The 
pain is due to CARDIAC, PULMONARY, GASTRO-INTESTINAL, PSYCHO- 
GENIC, or MUSCULAR-SKELETAL causes. We ask only the age and sex of the 
patient and three of the most important descriptors of the chest pain, its character, 
provocation, and duration. Obtaining a rank order for the five categories from 
each descriptor and combining them by a very simple arithmetic formula, we get 
a reasonably robust estimate of what is the best diagnostic area to pursue. 

No simple scheme like the one suggested here is, of course, a panacea. However, 
we have been surprised at how effective rather crude heuristic techniques can be 
when they are tailored to a specific problem. To illustrate the necessity of that 

10 
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tailoring, it should be pointed out that the same technique appears not to be 
effective at the next level of diagnosis, for example in sorting out the various 
possible cardiac causes of chest pain. 

In summary, our analysis of the reasoning mechanisms of current AI programs 
leads us to these conclusions: 

1. If possible, a carefully chosen categorical reasoning mechanism which is based on some 
simple model of the problem domain should be used for decision making. Many such mechan- 
isms may interact in a large diagnostic system, with each being limited to its small subdomain. 
Many of the intuitively appealing observations made above can probably be implemented 
by the use of such techniques. 

2. When the complex problems need to be addressed-which treatment should be selected, 
how much of the drug should be given, etc.-then causal or probabilistic models are necessary. 
The essential key to their correct use is that they must be applied in a limited problem domain 
where their assumptions can be accepted with confidence. Thus, it is the role of categorical 
methods to discover what the central problem is and to limit it as strongly as possible; only 
then are probabilistic techniques appropriate for its solution. 

4.2. Postscript 

As we interact with our medical colleagues at work, we are sometimes amazed 
by two observations: 

1. They are often extremely reluctant to engage in any numerical computation involving 
the likelihood of a diagnosis or the prognosis for a treatment. Even when official blessing 
is bestowed upon Bayesian techniques, we have seen both experienced and novice physicians 
acknowledge and then ignore them. Doctors certainly have a strong impression of their 
confidence in the diagnosis or treatment, but that impression must arise more from recognizing 
a typical situation or comparing the present case to their past experiences rather than from 
any formal computation of likelihoods. 

2. An experienced physician can be pushed, in his domain of expertise, to give arbitrarily 
many complex potential explanations for a patient’s condition. Especially in the teaching 
hospital environment with which we are most familiar, this serves the useful pedagogical 
purpose of discouraging pat answers from students. Because so many diagnostic possibilities 
appear to be available for the expert to consider, we suspect that the rapid generation and 
equally rapid modification or elimination of many explicit hypotheses plays a significant role 
in his reasoning. 

These observations reinforce our beliefs that somewhat more careful approaches 
to diagnosis are needed, ones which apply the most successful available techniques 
to each component of the diagnostic process. Although probabilistic techniques 
will be best in some well-defined domains, they should not be applied arbitrarily 
to making other decisions where the development of precise categorical models 
could lead to significantly better performance. The development and aggregation 
of a number of different approaches, both categorical and probabilistic, into a 
coherent program that is well suited to its application area remains a fascinating 
and difficult challenge. 
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When thinking about the effectiveness of a computerized medical consultant, 
it is essential to recognize the difference between impressive expert-like and truly 
expert behavior. A vehement critic of early work in Artificial Intelligence accused 
the practitioners of this “black art” of trying to reach the moon by climbing the 
tallest tree at their disposal [4]. We must be somewhat concerned that the initial 
successes of the current programs should not turn out to be merely the improved 
view from a lofty branch. 
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