Syfer: Neural Obfuscation for Private Data Release

Central challenges for Clinical Al

Data sharing is a major obstacle to Clinical AI

- Key tension protecting patient privacy v.s. advancing care
- Need tools to enable secure and privacy preserving ML

HIPAA's standard of de-identification

- HIPAA defines two methods for *de-identification* of PHI:

1. Removing specific identifiers

Or

Names

- Geographic subdivisions smaller than a state
- All elements of dates (except year) related to an individual (including admission and discharge dates, birthdate, date of death, all ages over 89 years old, and elements of dates (including year) that are indicative of age)
- Telephone, cellphone, and fax numbers
- Email addresses
- IP addresses
- Social Security numbers
- Medical record numbers
- Health plan beneficiary numbers
- Device identifiers and serial numbers
- Certificate/license numbers

HIPAA establishes the standard to protect individuals' medical records (PHI)

2. Using statistical tools to render information not individually identifiable

- Homomorphic encryption
 - Requires building with crypto primitives. 100-1000x overhead
 - Too cumbersome for training modern DL models

SecureML: A System for Scalable Privacy-Preserving Machine Learning

Payman Mohassel^{*} and Yupeng Zhang[†] *Visa Research, [†]University of Maryland

primitives. 100-1000x overhead

Oblivious Neural Network Predictions via MiniONN transformations

> Jian Liu Aalto University jian.liu@aalto.fi

> Yao Lu Aalto University yao.lu@aalto.fi

Mika Juuti Aalto University mika.juuti@aalto.fi

N. Asokan Aalto University asokan@acm.org

- Homomorphic encryption
 - Too cumbersome for training modern DL models
- **Differential Privacy**
 - applications

Differential Privacy Has Disparate Impact on Chasing Your Long Tails: Differentially Private Prediction in Model Accuracy Health Care Settings Vinith M. Suriyakumar, Nicolas Papernot, Anna Goldenberg, Marzyeh Ghassemi Eugene Bagdasarvan **Omid Poursaeed** Vitalv Shmatikov vinith@cs.toronto.edu Cornell Tech Cornell Tech Cornell Tech University of Toronto, Vector Institute eugene@cs.cornell.edu op63@cornell.edu shmat@cs.cornell.edu

• Private at the cost of a large utility loss, especially for healthcare

- Homomorphic encryption
 - Too cumbersome for training modern DL models
- **Differential Privacy**
 - Private at the cost of a large utility loss, especially in healthcare
- Lightweight encoding schemes
 - Allow downstream training of DL models but are not private

Dauntless: Data Augmentation and Uniform Transformation for Learning with Scalability and Security

Hanshen Xiao and Srinivas Devadas

MIT, {hsxiao, devadas}@mit.edu

InstaHide: Instance-hiding Schemes for Private Distributed Learning*

Yangsibo Huang[†]

Zhao Song[‡]

Kai Li[§]

Sanjeev Arora[¶]

- Homomorphic encryption
 - Too cumbersome for training modern DL models
- **Differential Privacy**
 - Private at the cost of a large utility loss, especially in healthcare
- Lightweight encoding schemes
 - Allow downstream training of DL models but are not private

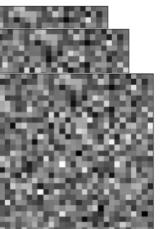
Need a method to evaluate the privacy of encoding schemes

Ideal use case

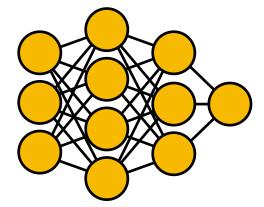


Private (PHI)

Secure encodings

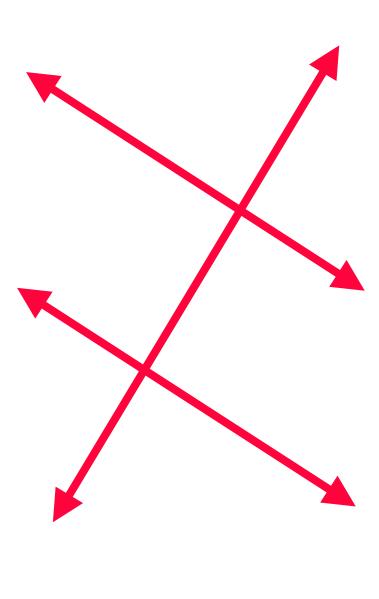


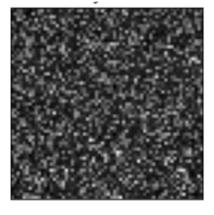
classifier



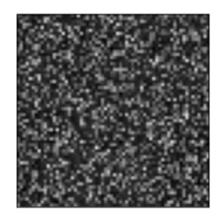
Threat model

Private (PHI)





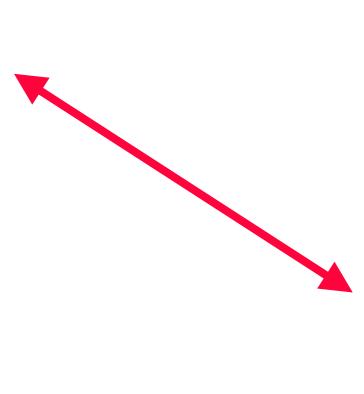
Secure encodings



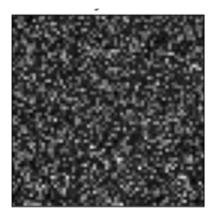
An attacker who observes the plaintext data and the encoded data should not be able to reconstruct the matching.

Threat model

Private (PHI)



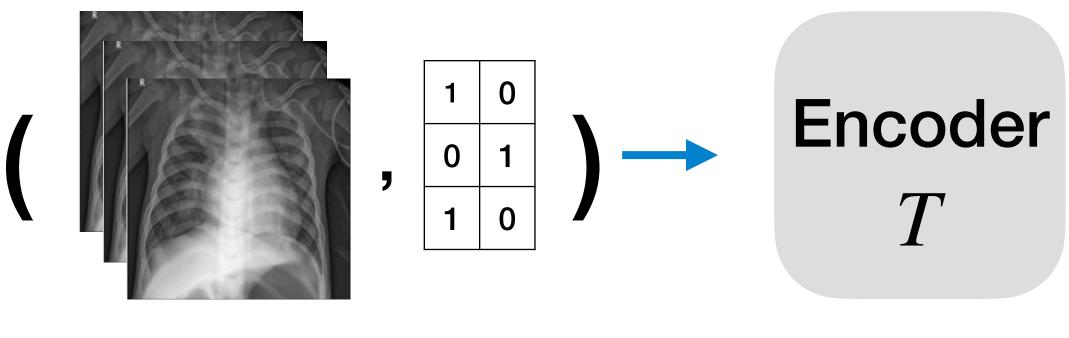
Secure encodings



An attacker who observes the plaintext data and the encoded data should not be able to retrieve a *single matching pair*.

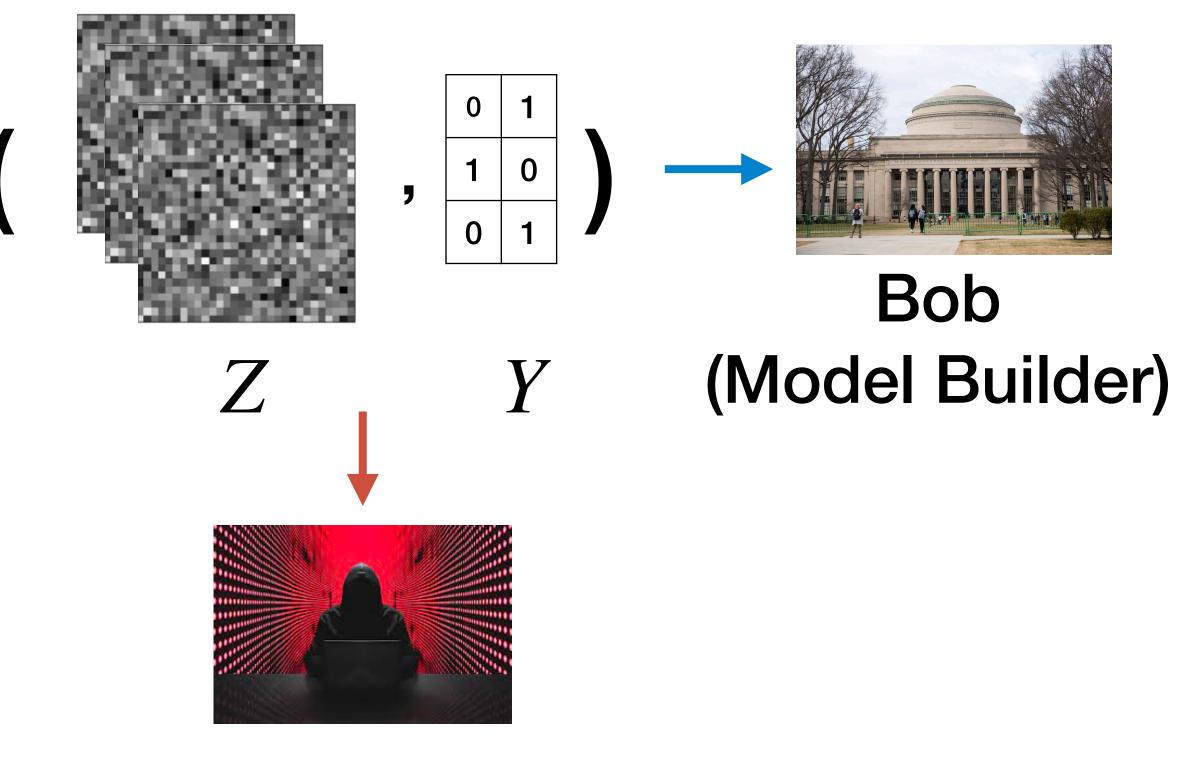
Attacker task = police line-up What is the plaintext image corresponding to

Formal setting

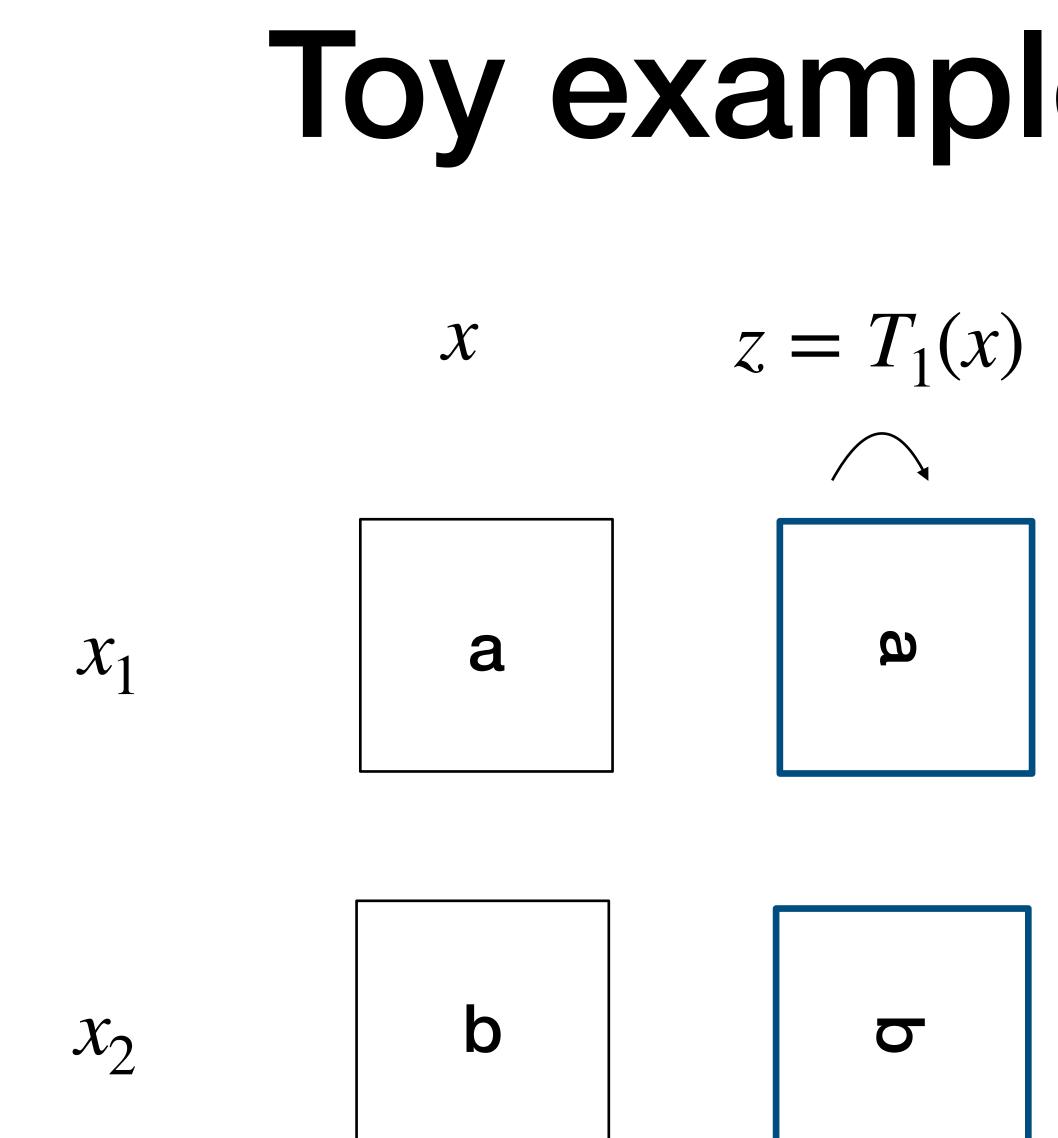


 $T \sim \mathbb{P}(\mathbf{T})$

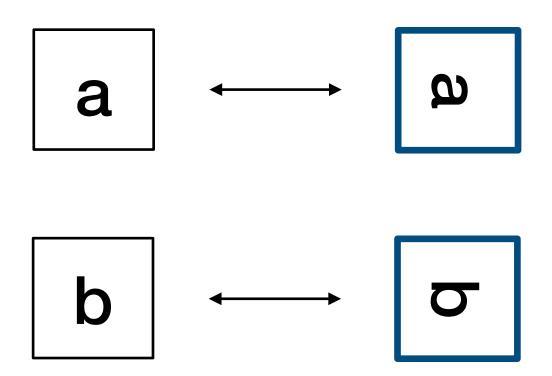
Alice (Data Owner)

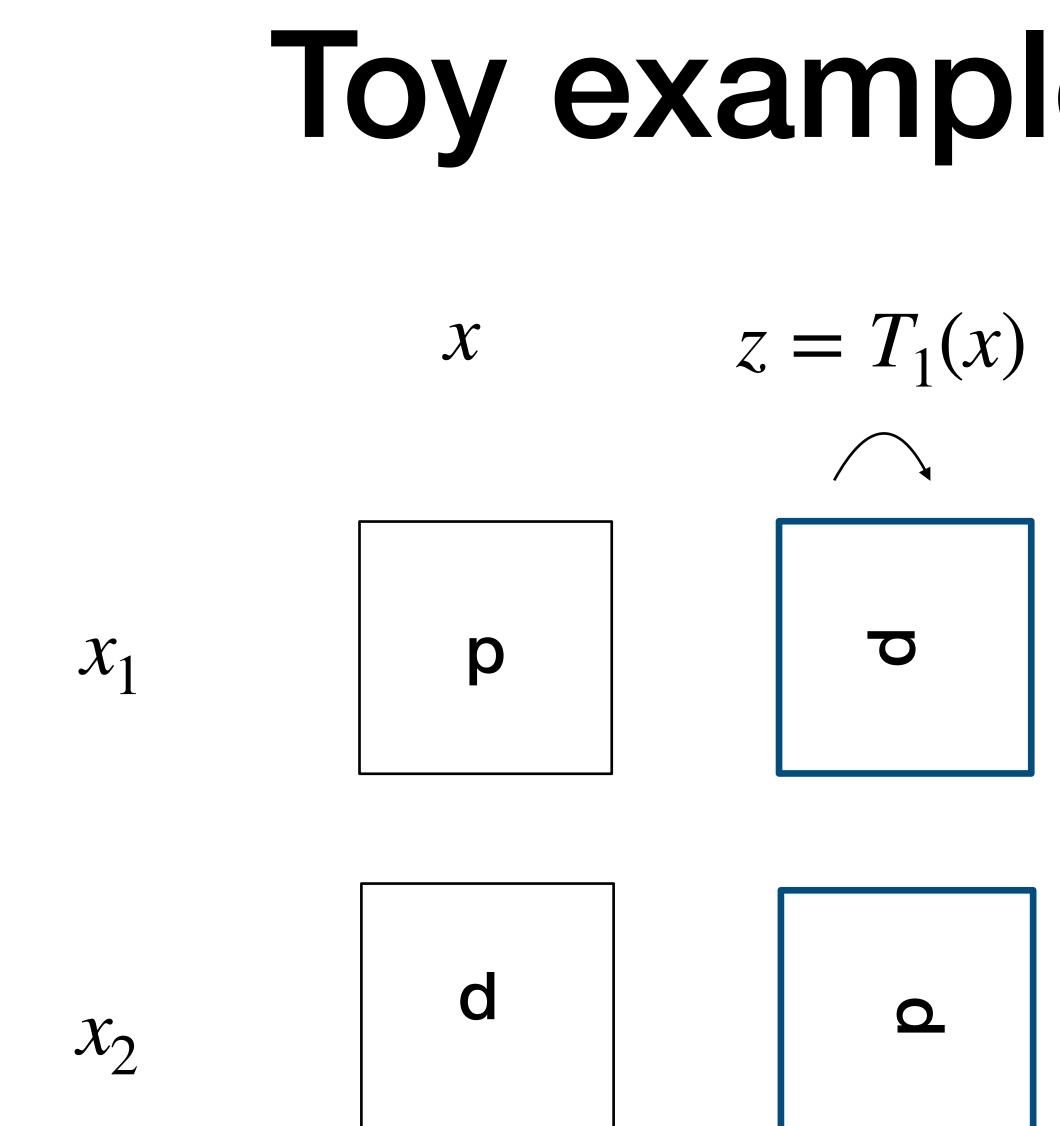


Eve (Adversary)

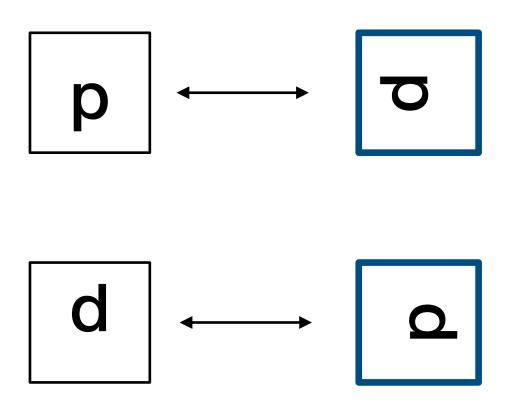


If Alice only ever uses T_1 the -90° rotation, Eve can deduce the matching:





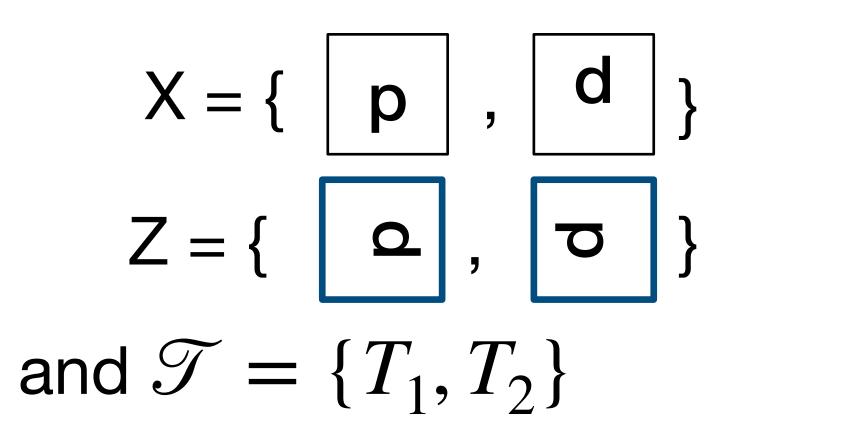
If Alice only ever uses T_1 the -90° rotation, Eve can deduce the matching:



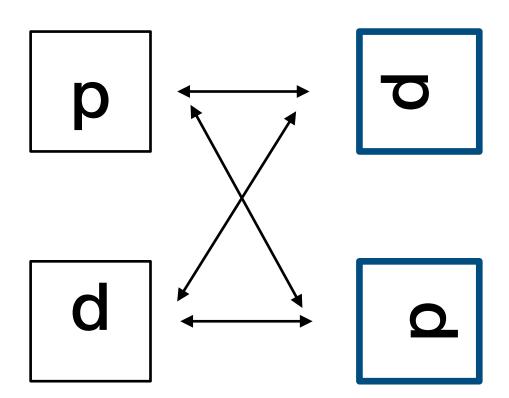


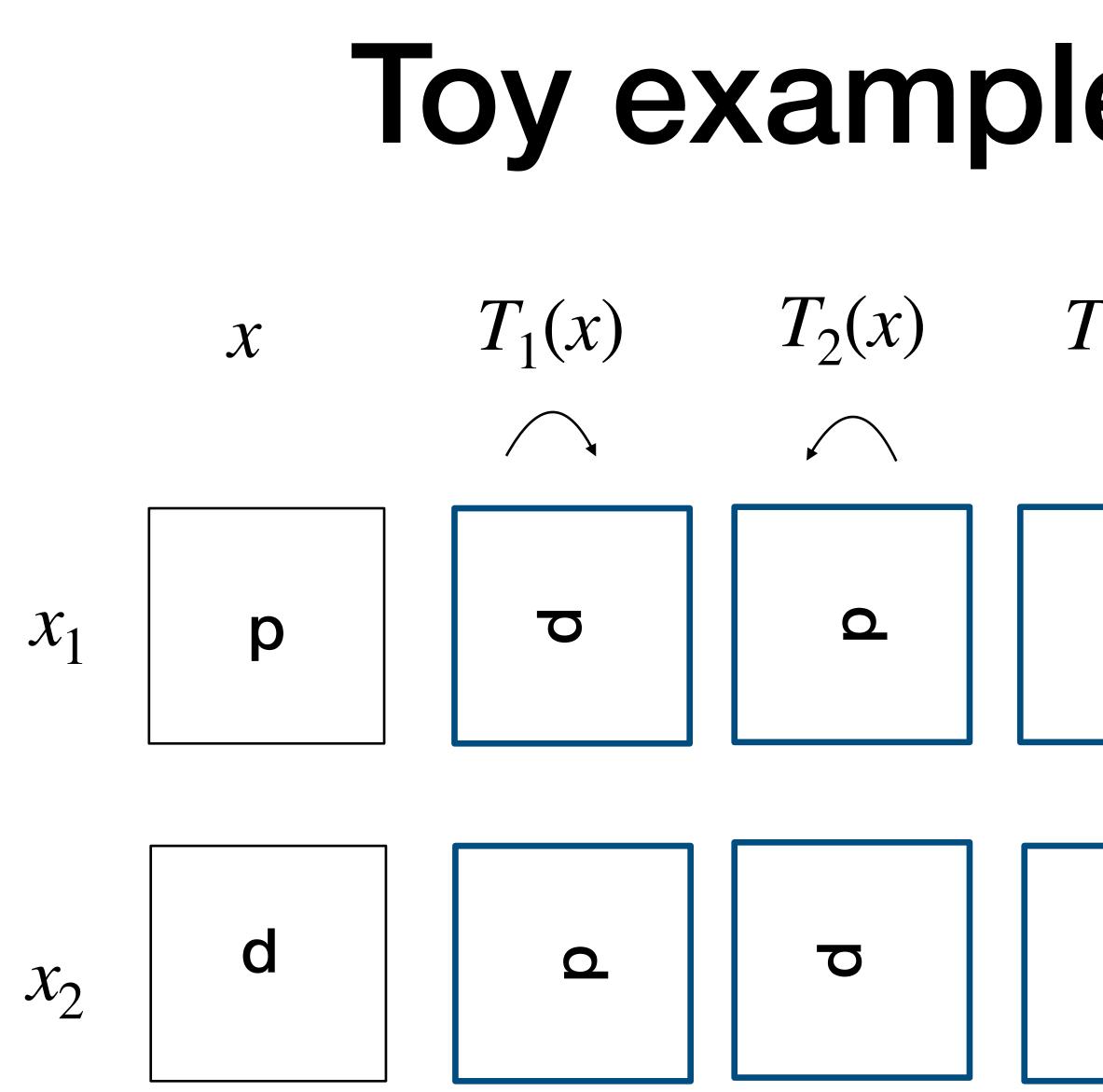
Now Alice uses T_1 and T_2 with equal probability.

Eve observes:



There are two possible matchings





Toy example and intuition Alice uses $\mathcal{T} = \{T_1, T_2, T_3\}$ $T_3(x)$ With probability 1/3, Eve observes: **d** | } X = { p d Z = { d р р She would р then deduce d

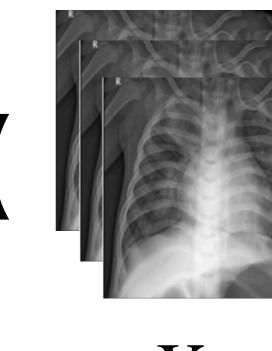
- Takeaways
 - sample T

• Whether T is private or not depends on \mathcal{T} (set of transformations used by Alice) and more generally on the distribution $\mathbb{P}(\mathbf{T})$ that Alice uses to

• Adding more Ts does not make an encoding scheme more private

• Designing an encoding scheme = finding a good distribution $\mathbb{P}(\mathbf{\Gamma})$

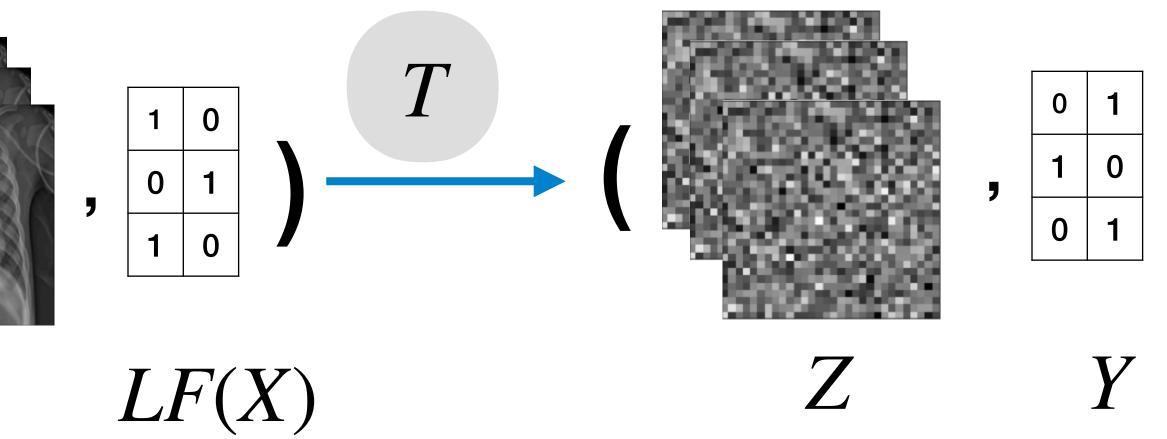
 $T \sim \mathbb{P}(\mathbf{T})$



Alice (Data Owner)

Alice owns a dataset X with labels LF(X)She samples a transformation $T \sim P(\mathbf{T})$ and releases the encoded data (Z, Y) = T(X, LF(X))

Formal setting - Alice Data Owner



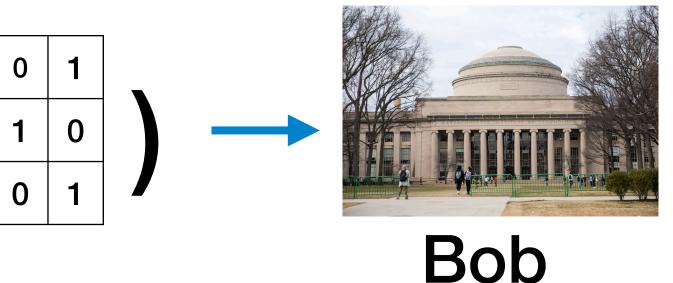
Formal setting - Bob Model Builder

Bob receives the encoded data (Z, Y) = T(X, LF(X))

Bob trains a classifier C_T to minimize generalization error on the test set $(Z^{test}, Y^{test}) = T(X^{test}, LF(X^{test}))$

Bob sends C_T to Alice for usage on new data

Ζ



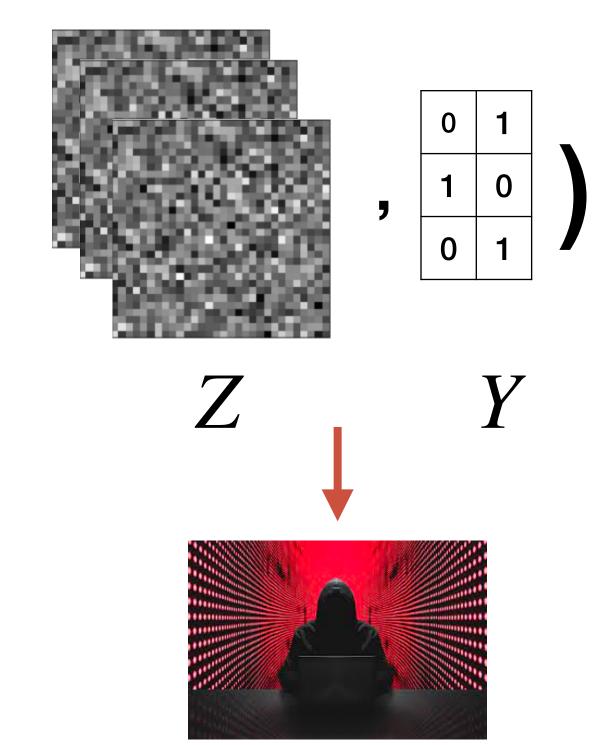
Y (Model Builder)

- **Eve** observes the encoded data (Z, Y) = T(X, LF(X))
- Eve knows the encoding scheme used by Alice, i.e $\mathbb{P}(\mathbf{T})$
- Eve possesses a $X_E \supseteq X$, and more generally a prior $\mathbb{P}(\mathbf{X}_{\mathbf{A}} = X)$

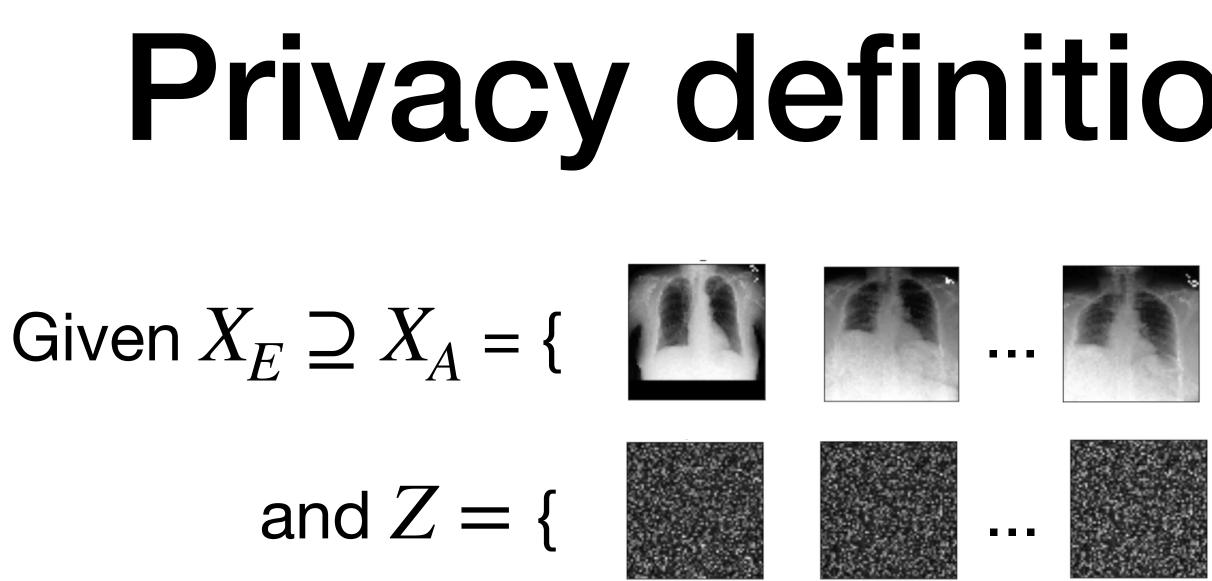
Eve *does not know* T, which acts as Alice's private key.

Goal: re-identify any one private image

Formal setting - Eve Adversary



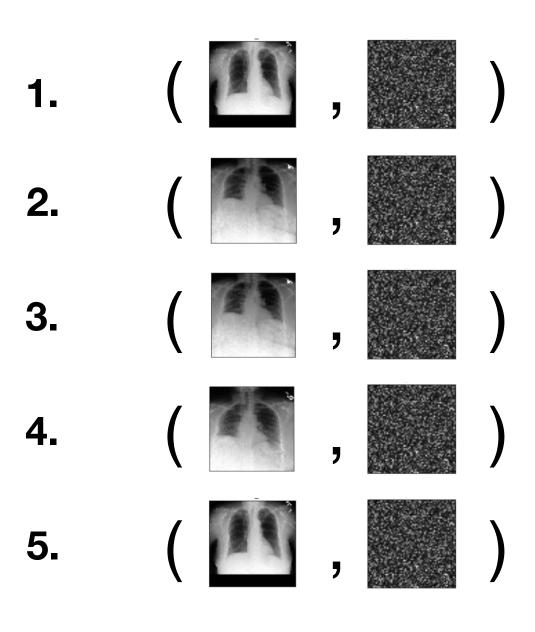
Eve (Adversary)

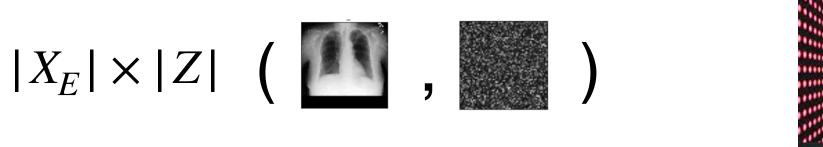


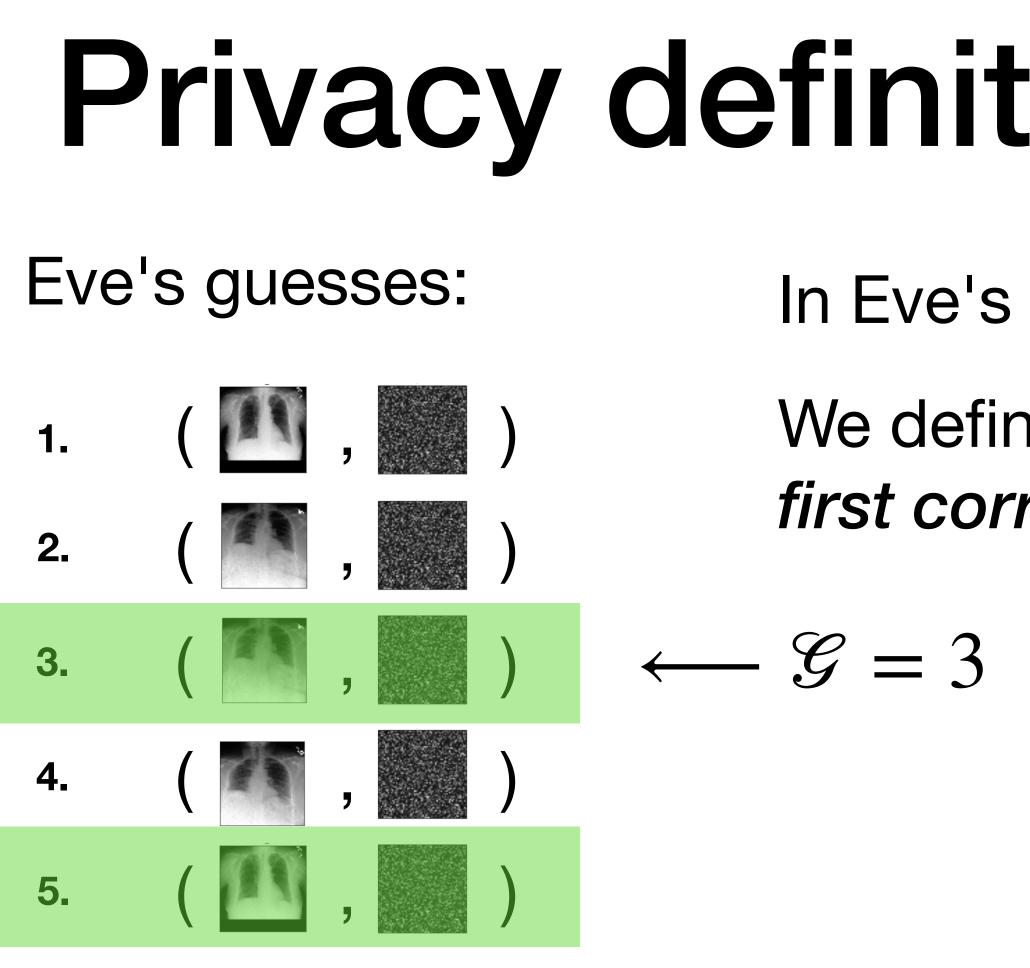
A computationally unbounded Eve uses her knowledge of $\mathbb{P}(T)$ to compute for each pair (x, z) the probability that they match and ranks the all possible pairs from most likely to least likely.

Privacy definition - Guesswork

Eve's guesses:







 $|X_E| \times |Z| \quad \left(\begin{array}{c} & & \\$

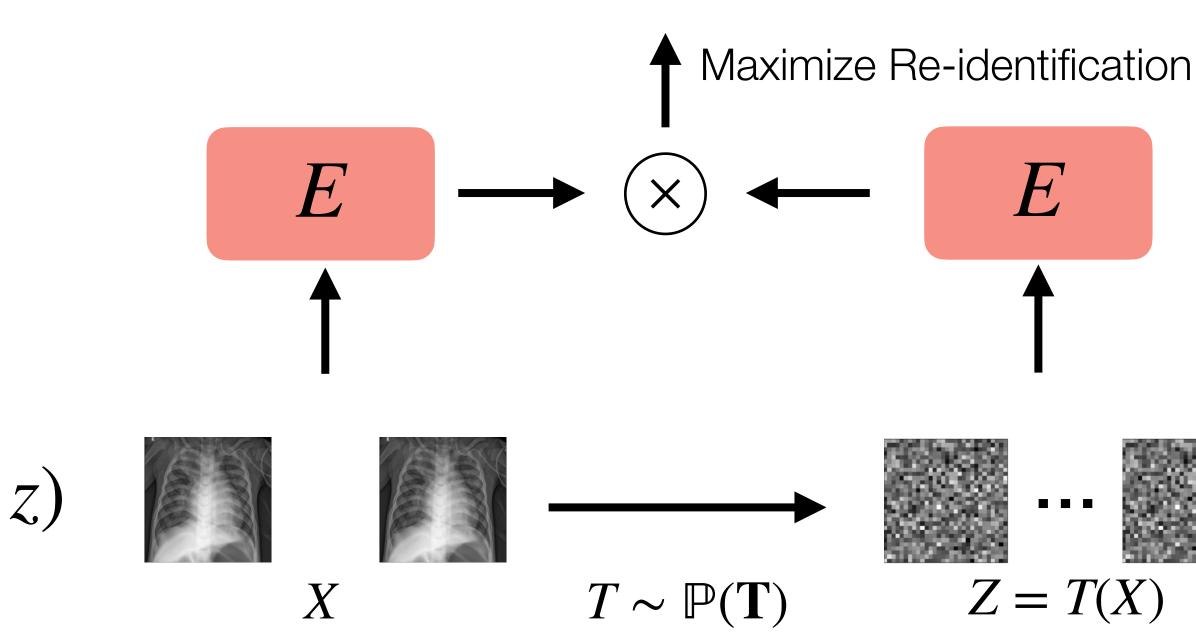
Privacy definition - Guesswork

- In Eve's list, exactly |Z| pairs are correct.
- We define *guesswork* as the index of the *first correct guess*.

- Can't simulate true computationally unbounded Eve
- We estimate privacy with contrastive learning
- Our model-based attacker learns to estimate the probability that a pair (x, z)is a correct match $P((x, z) \in M_T)$

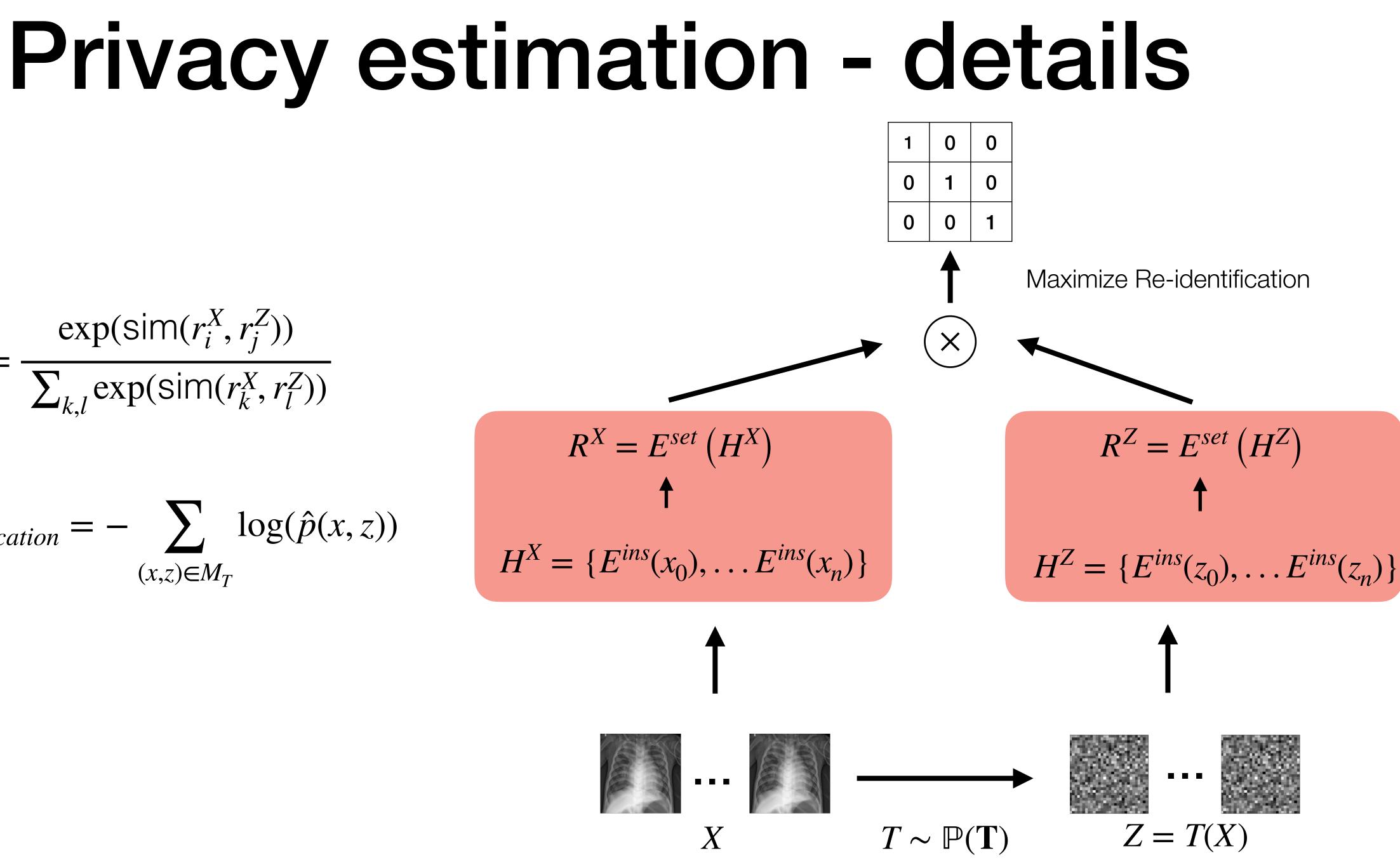
Privacy estimation

1	0	0
0	1	0
0	0	1



$$\hat{p}(x_i, z_j) = \frac{\exp(\operatorname{sim}(r_i^X, r_j^Z))}{\sum_{k,l} \exp(\operatorname{sim}(r_k^X, r_l^Z))}$$

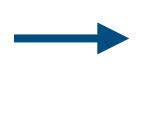
$$\mathcal{L}_{reidentification} = -\sum_{(x,z)\in M_T} \log(\hat{p}(x,z))$$



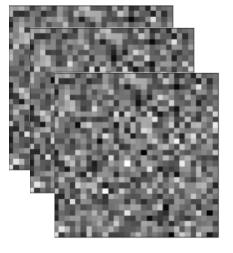
Ideal use case

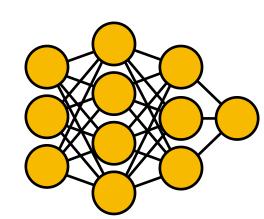
Private (PHI)

encode



Secure encodings





Desiderata:

classifier

- Protect raw data identity (HIPAA), i.e. achieve high guesswork
- Support any downstream task with standard ML tools
- Data owner does not train any models
- No centralized coordination, publish encoded dataset

Main challenge

How to build a distribution $\mathbb{P}(\mathbf{T})$

... that achieves privacy

... while maintaining downstream utility on tasks of interest

... without knowing the tasks a priori

... nor having access to the private data

Main challenge

How to build a distribution $\mathbb{P}(\mathbf{T})$

... that achieves privacy

... while maintaining downstream utility on tasks of interest

... without knowing the tasks a priori

... nor having access to the private data

Always output 0 as the "encoded data", i.e. $\mathcal{T} = \{T : x \mapsto 0\}$

Train a classifier and output predicted labels as the "encoded data"

 \rightarrow

Syfer: we model T as a neural network and learn a "good" distribution $\mathbb{P}(\mathbf{T})$ using public data

Proposed Encoding scheme: Syfer

 $T = (T^X, T^Y)$

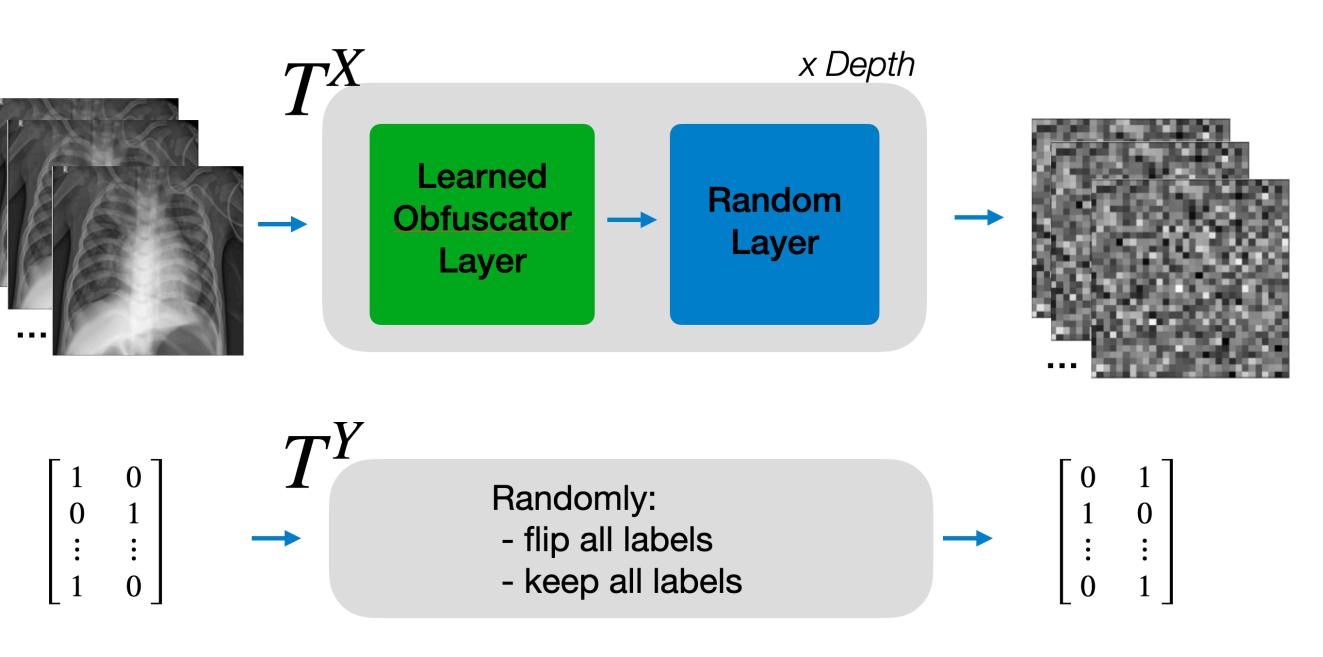
Neural encoder T^X

We decompose T^X in blocks of **obfuscator layers** and **random layers**.

In practice:

- The **learned obfuscator weights** are known to all actors (Alice and Eve)

- To construct a T^X , Alice samples random layer weights



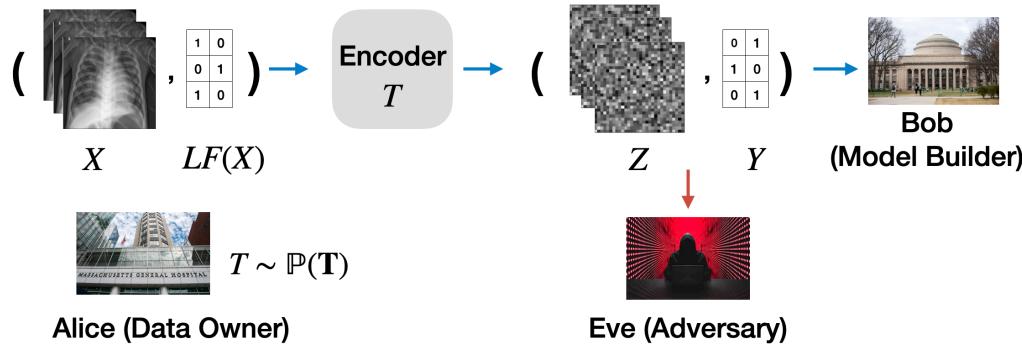
Label encoder T^Y

In practice: Alice **randomly** decides to flip the labels or not.

Motivation for training

Reminder: How do we evaluate Syfer?

Eve knows X and needs to generalize to unknown T



Bob sees $Z^{train} = T(X^{train})$ and needs to generalize to unknown X^{test}

Syfer Training Algorithm

The **obfuscater layers** are trained on a public unlabeled dataset X_{public} to optimize

where

 $\mathscr{L}_{reidentification} = \text{Re-identification loss of an adversary}$

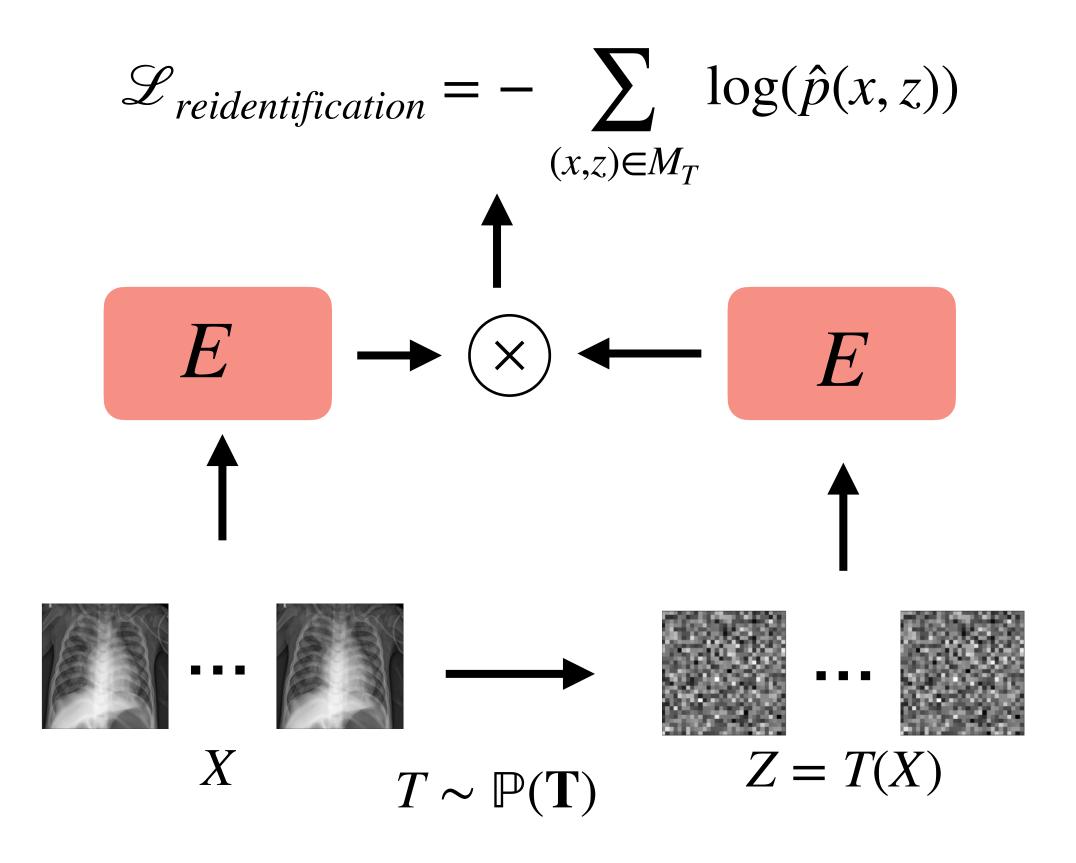
 $\mathscr{L}_{reconstruction}$ = Reconstruction loss of a decoder D_T for a fixed choice of random layers

Learned obfuscator layer

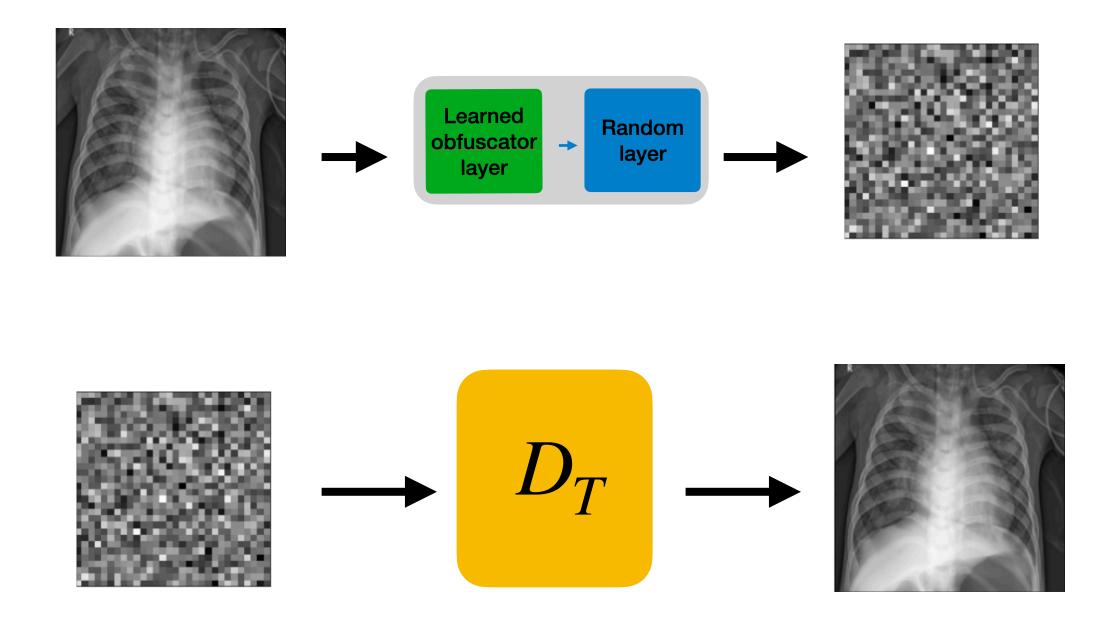
Random layer

Syfer Training Algorithm

Re-identification loss of an adversary



For a fixed choice of random weights, train a decoder D_T to minimize a reconstruction loss



Syfer Training Algorithm

The **obfuscater layers** are trained on a public unlabeled dataset X_{public} to optimize

The **adversary model** *E* is alternatively updated to minimize $\mathscr{L}_{reidentification}$

The decoder model D_T is alternatively updated to minimize $\mathscr{L}_{reconstruction}$

Algorithm 1 Syfer training

- 1: Initialize obfuscator parameters θ_{Syfer}
- 2: Initialize attacker E with parameters $\varphi = (\varphi^{\text{ins}}, \varphi^{\text{set}})$
- 3: Initialize decoders D_1, \ldots, D_s with parameters β_1, \ldots, β_s
- 4: For each decoder, sample random layer weights $\theta_{key}^1, \ldots \theta_{key}^s$ (fixed throughout training)
- 5: Set flag *optimize_estimators* \leftarrow true

6: repeat

- 7: Sample a batch of datapoints X from X^{public}
- 8: > Step 1: Compute re-identification loss
- 9: Sample a set of random layer weights $\theta_{key}^{\text{batch}}$
- 10: Using obfuscator parameters θ_{Syfer} and key $\theta_{key}^{\text{batch}}$:
- 11: $T^{\text{batch}} \leftarrow f(\theta_{Syfer}, \theta_{key}^{\text{batch}})$
- 12: $(Z^{\text{batch}}, Y^{\text{batch}}) \leftarrow T^{\text{batch}}(X, LF(X))$
- 13: $R^Z \leftarrow E_{\varphi} \left(Z^{\text{batch}}, Y^{\text{batch}} \right)$
- 14: $R^X \leftarrow E_{\varphi}(X, LF(X))$
- 15: $\mathcal{L}_{\text{reid}} \leftarrow \text{contrastive} \log \left(R^X, R^Z \right)$
- 16: ▷ Step 2: Compute reconstruction loss
- 17: $\mathcal{L}_{\text{rec}} \leftarrow 0$
- 18: **for** $i \in \{1, ..., s\}$ **do**
- 19: Using obfuscator parameters θ_{Syfer} and fixed key θ_{key}^{i} :
- 20: $T^i \leftarrow f(\theta_{Syfer}, \theta^i_{key})$
- 21: $(Z^i, Y^i) \leftarrow T^i(X, LF(X))$
- 22: $\mathcal{L}_{\text{rec}} \leftarrow \mathcal{L}_{\text{rec}} + \text{MSE}\left(D_i\left(Z^i\right), X\right)$
- 23: **end for**
- 24: > Step 3: Alternatively update parameters
- 25: **if** optimize_estimators **then**
- 26: $\varphi \leftarrow \varphi \nabla_{\varphi} \mathcal{L}_{\text{reid}}$
- 27: $\beta_i \leftarrow \beta_i \nabla_{\beta_i} \mathcal{L}_{\text{rec}} \quad \{\text{for } i \in \{1, \dots s\}\}$
- 28: *optimize_estimators* \leftarrow false
- 29: **else**
- 30: $\theta_{Syfer} \leftarrow \theta_{Syfer} \nabla_{\theta_{Syfer}} (\lambda_{rec} \cdot \mathcal{L}_{rec} \lambda_{reid} \cdot \mathcal{L}_{reid})$
- 31: *optimize_estimators* \leftarrow true
- 32: **end if**
- 33: **until** convergence

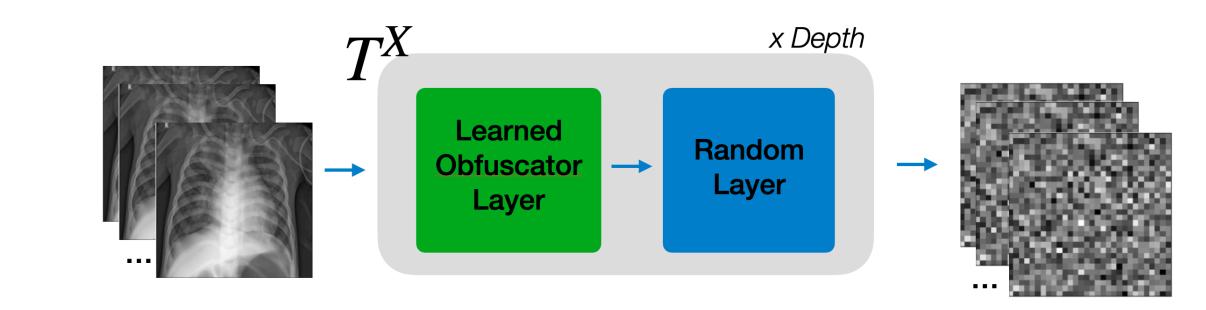
Experimental Setup

- Train Syfer and baselines on NIH Chest X-Ray dataset.
 - $X_{public} = \text{NIH}$
 - Obfuscator implemented as Simple Attention Unit (SAU)
 - Rand Layer implemented as Linear layer + SELU activation + LayerNorm
 - Attacker E, and Decoder D_T , implemented with SAUs.
- Test for Privacy and Utility on MIMIC Chest X-Ray dataset
 - architectures.

• Evaluate Syfer on held out datasets (X, LF(X)) and held out attacker

Experiments - Privacy evaluation

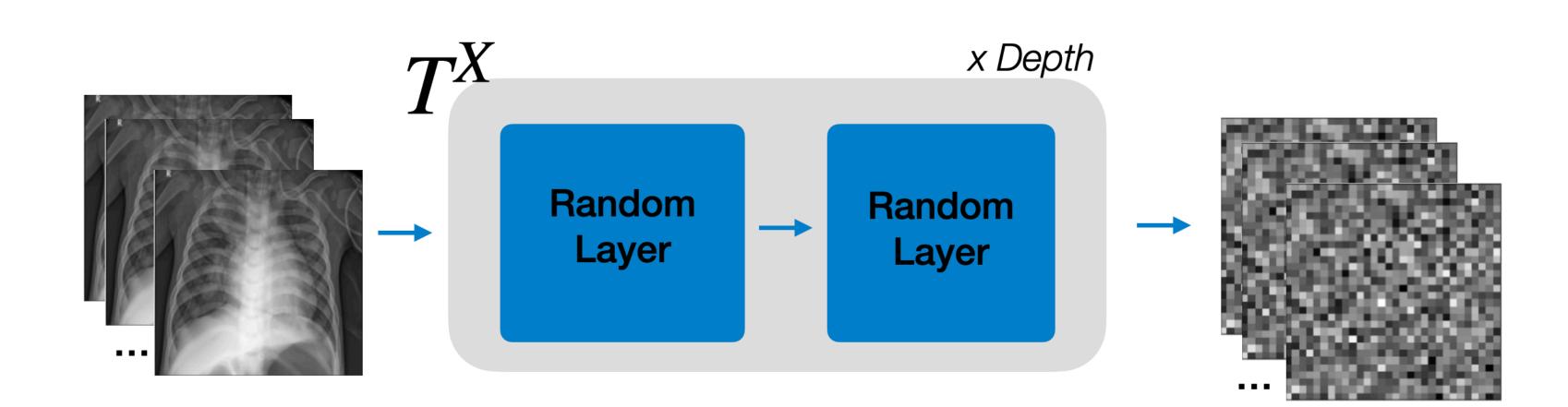
- Generalized Privacy: How secure are encodings Z when released alone (without labels)?
 - Guesswork \mathcal{G}
 - ReID AUC
 - ROC AUC of the attacker E, when viewed as binary classification
- We sample (10k examples, a T), evaluate \mathcal{G} and ReID AUC repeat 100 times



i.e. can we securely release unlabeled data?

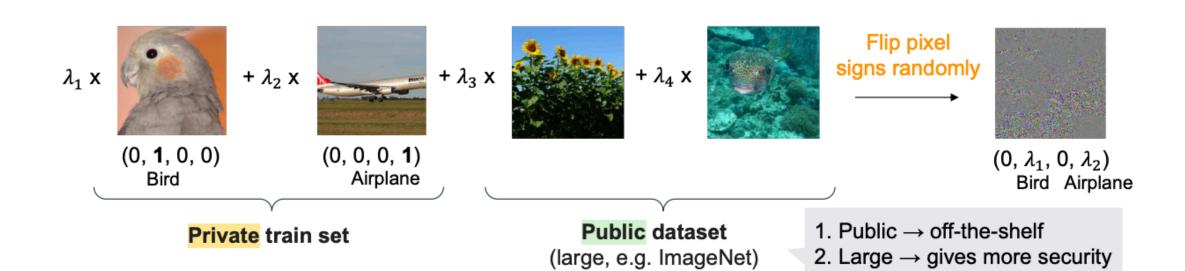
Experiments - Baselines

Syfer-random ablation where the obfuscator layers are not trained

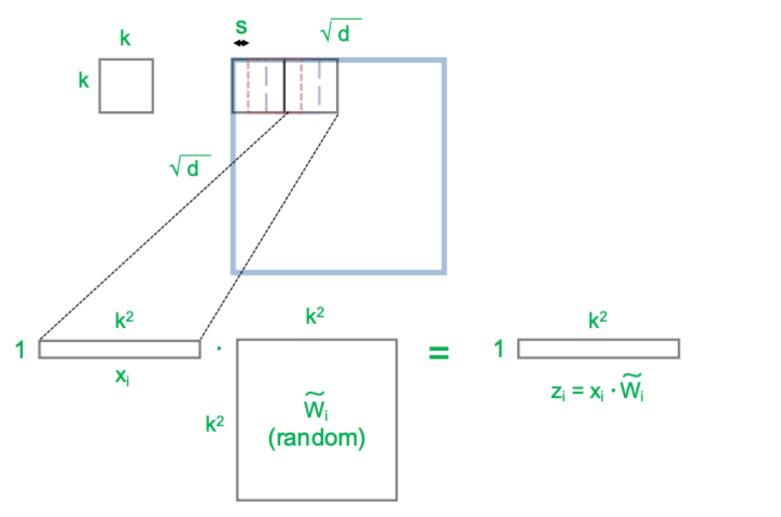


Experiments - Lightweight encoding baselines

InstaHide [Huang et al, 2020], linear image mixing with bit flip

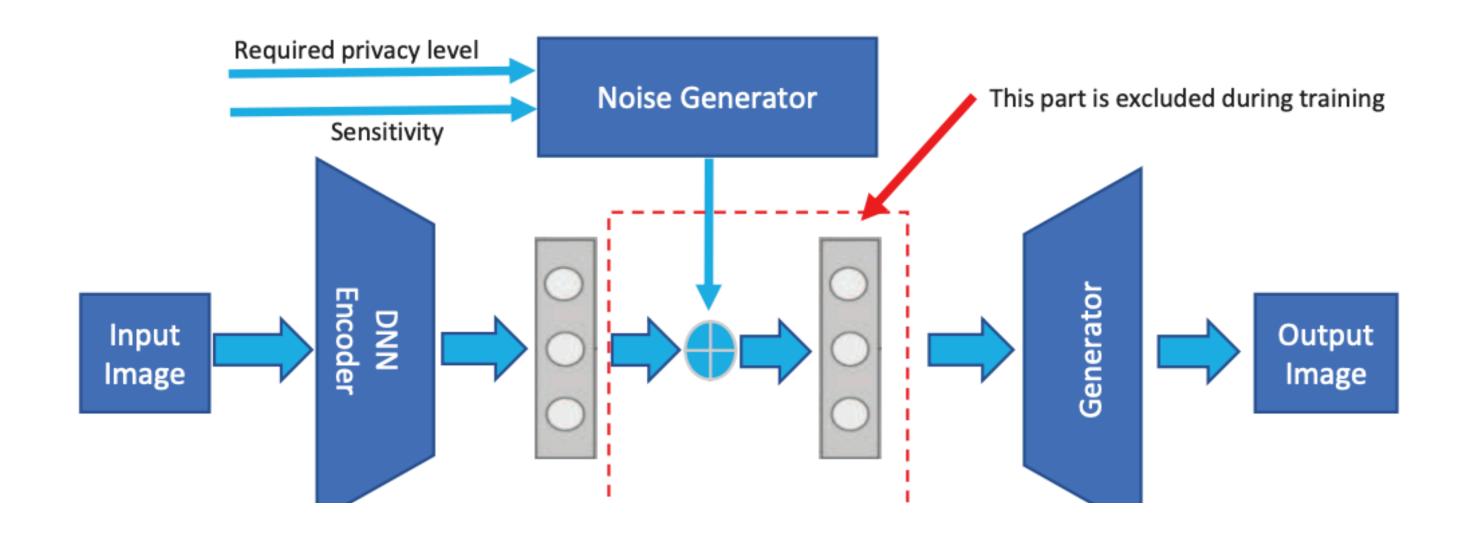


Dauntless [Xiao et al, 2021], separate linear layer applied to each patch. Provably secure if assume X is Gaussian



Experiments - Diff privacy baselines

DP-Image [Lui et al 2021], Differential Privacy Methods on auto encoder. Add laplacian noise to latent space



Experiments - Privacy Evaluation

Generalized Privacy (no label released)

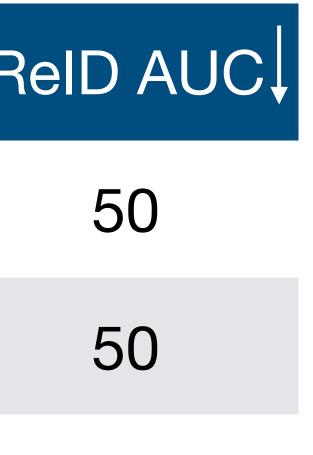
	Guesswork	ReID AUC
Dauntless	1	100
InstaHide	1	100
DP-Image b =1	3	89
DP-Image b = 5	1379	73
Syfer-Rand	2	99
Syfer (w/o label encoding)	8476	50

Experiments - Privacy Evaluation

Syfer Privacy across attacker architectures

	Guesswork F
SAU	8477
ViT	8411
ResNet-18	10070

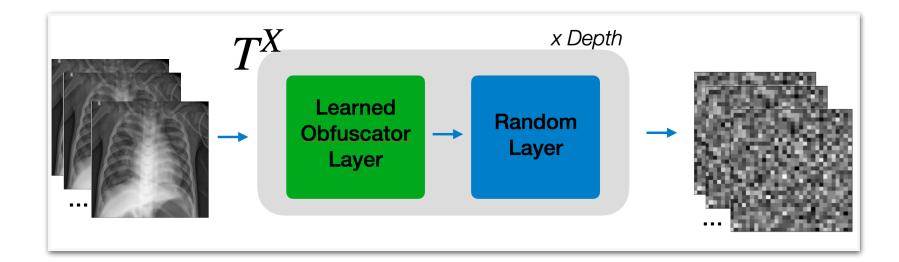
Syfer maintains privacy across heldout datasets, heldout attackers.



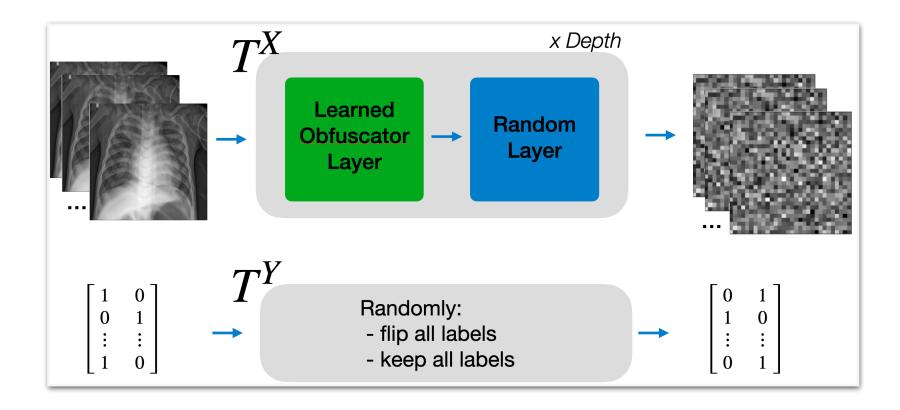
89

Experiments - Privacy evaluation

- Now, we release the data with labels
- Privacy with labels: How secure is $(Z, Y) = (T^X(X), T^Y(LF(X)))$?
- Privacy can only get worse (non-private schemes remain non-private)



Syfer w/o label encoding



Syfer

Experiments - Privacy evaluation

Syfer Privacy when released with labels Edema, Atelectasis, Cardiomegaly, Consilidation

Ablation: **Syfer with no label encoding** $T^{Y}(l) = l$

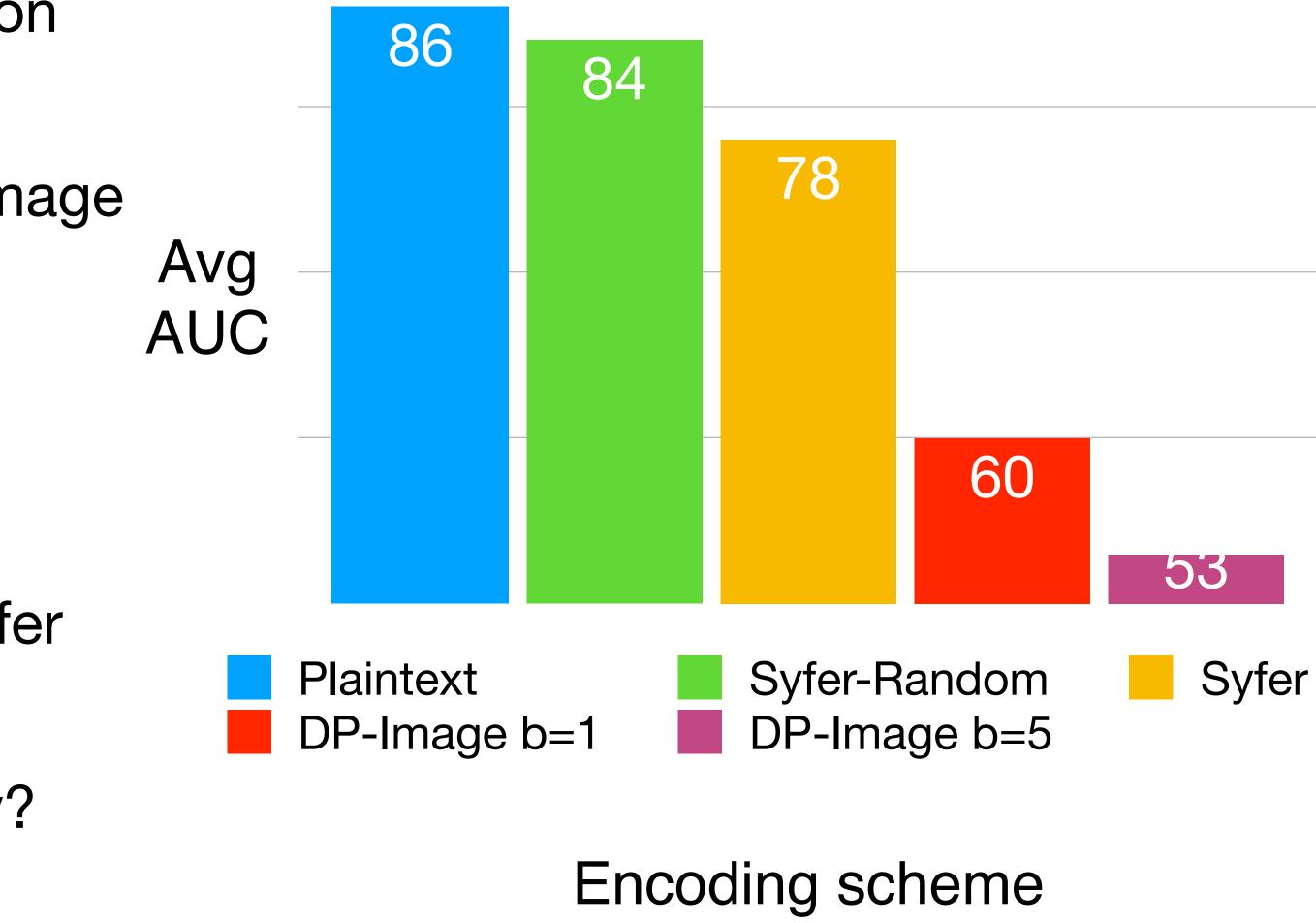
	Guesswork	ReID AUC
Edema	3617	50
Actel	1697	55
Cons	9834	51
Cardio	13189	50

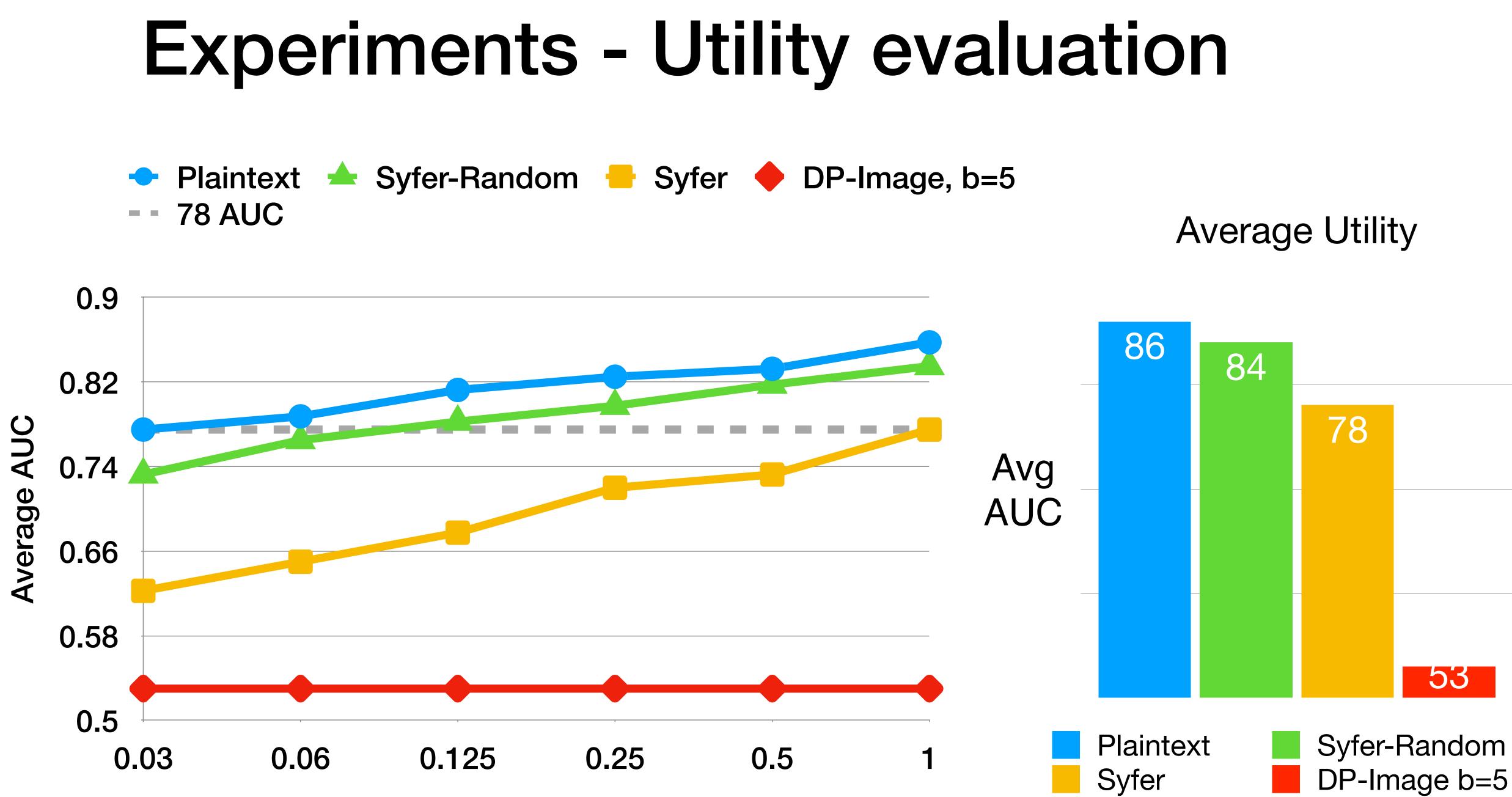
	Guesswork	ReID AUC
Edema	47	76
Actel	36	76
Cons	42	75
Cardio	80	75

Experiments - Utility evaluation

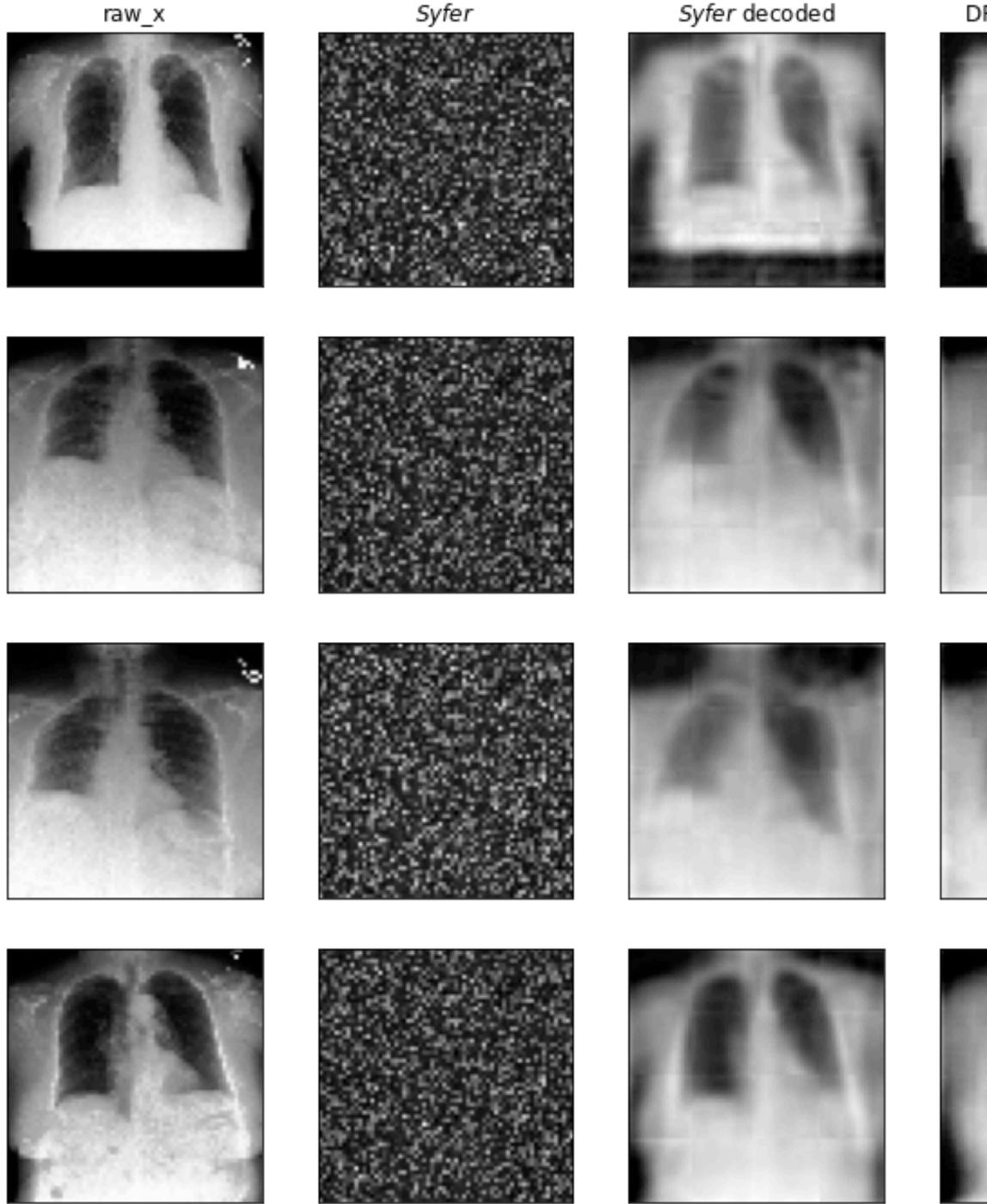
- Utility Evaluation:
 - ROC AUC of classifiers trained on encoded MIMC data
- Achieves much better utility than DP-Image
 - +25 points AUC relative to DP
 - 8 points relative to plaintext baseline
 - 6 points relative to random Syfer baseline
- How does it impact sample complexity?

Average Utility

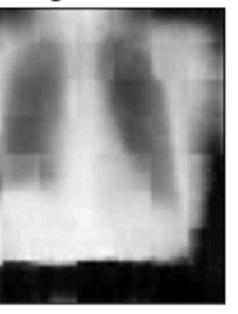


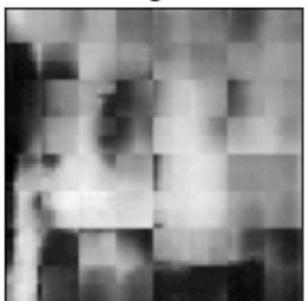


Fraction of Training Data

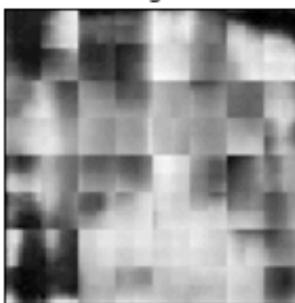


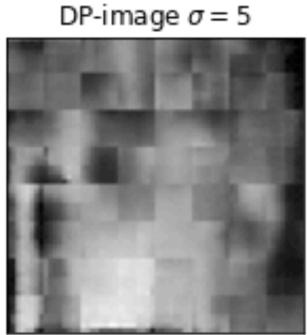
DP-image no noise

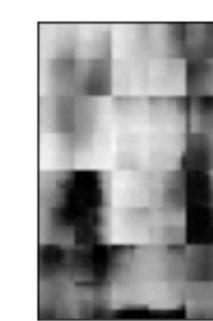


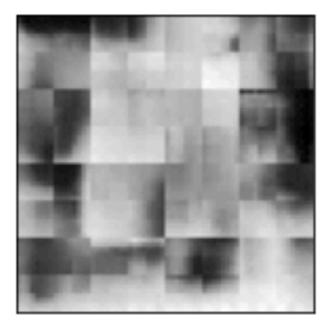


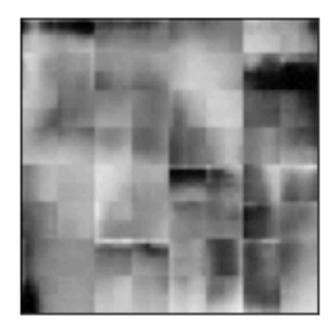
DP-image $\sigma = 2$

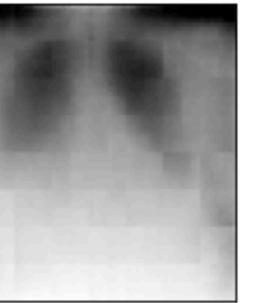


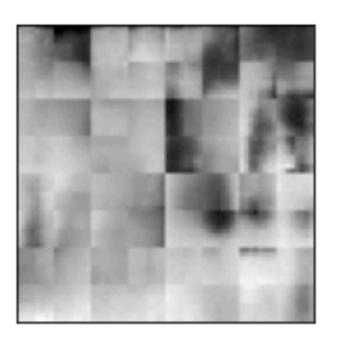


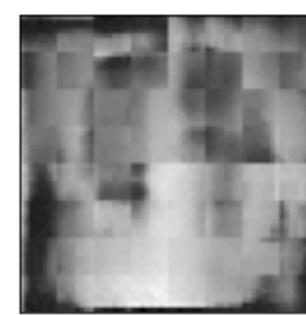


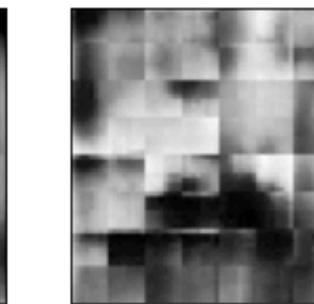


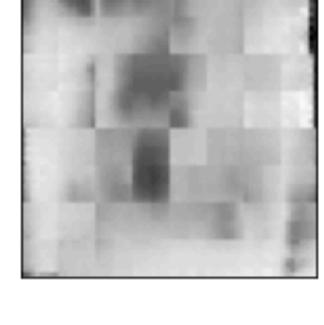


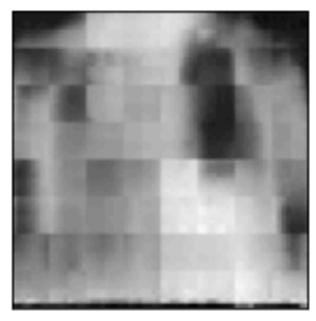


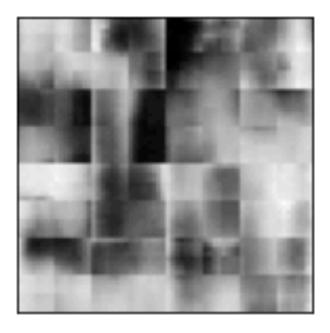


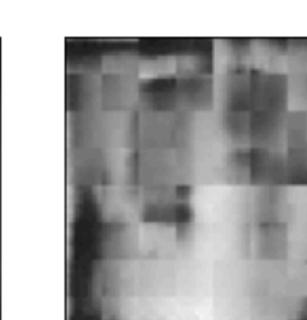


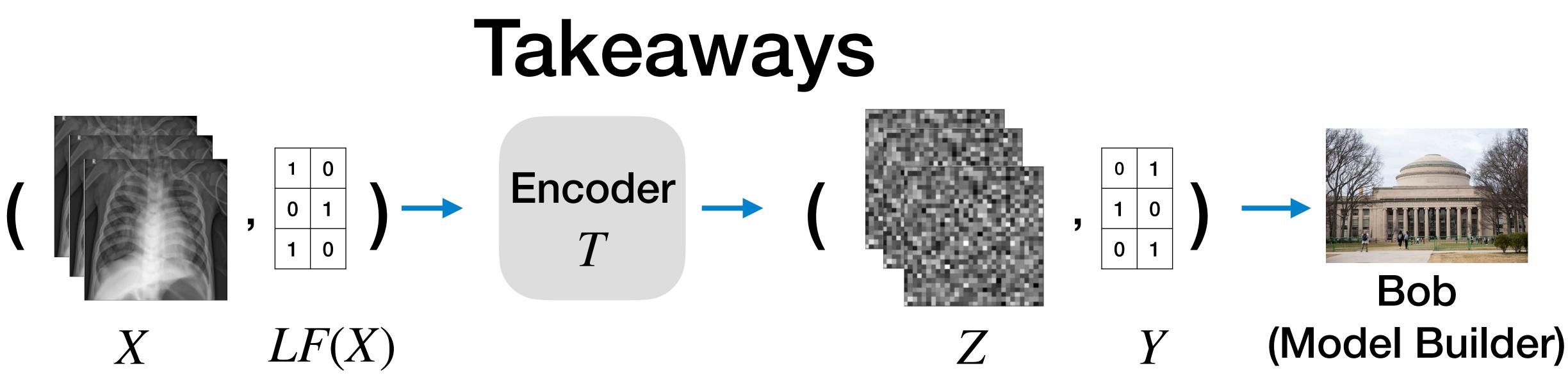










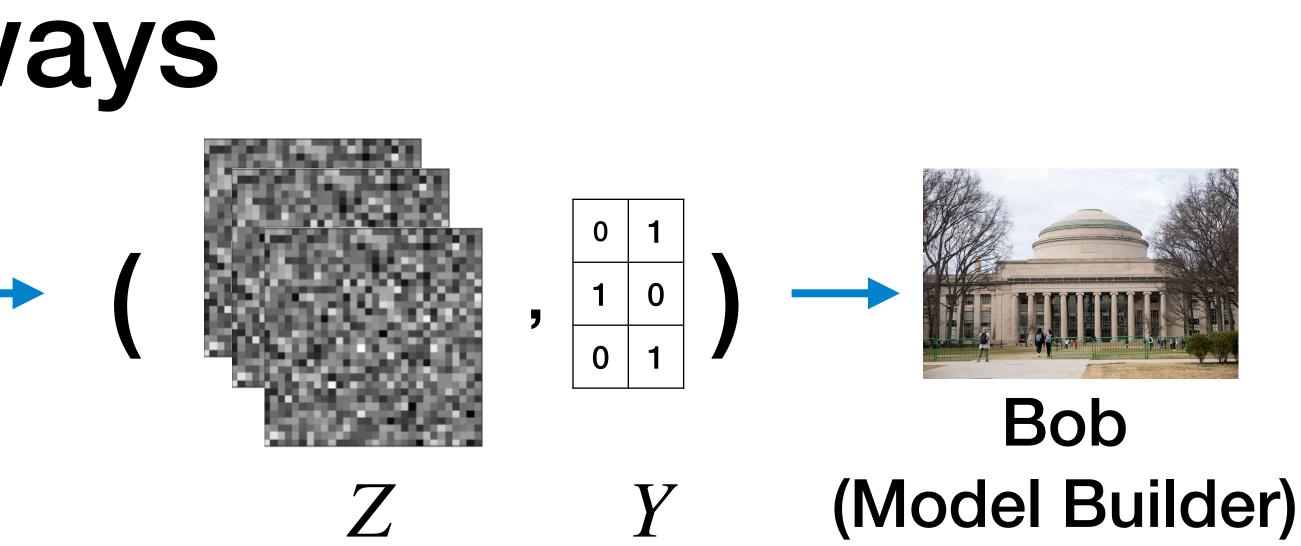


- New direction of private ML based on preconditioning random networks
- **Properties:**
 - Protect raw data identity (HIPAA), i.e. achieve high guesswork
 - Support any downstream classification task with standard ML tools
 - Data owner **does not train** Syfer. Syfer trained on X_{public}

Takeaways 0 Encoder 0 " TX LF(X)

- Future work:

 - Support multi-hospital training
 - Applications to other modalities



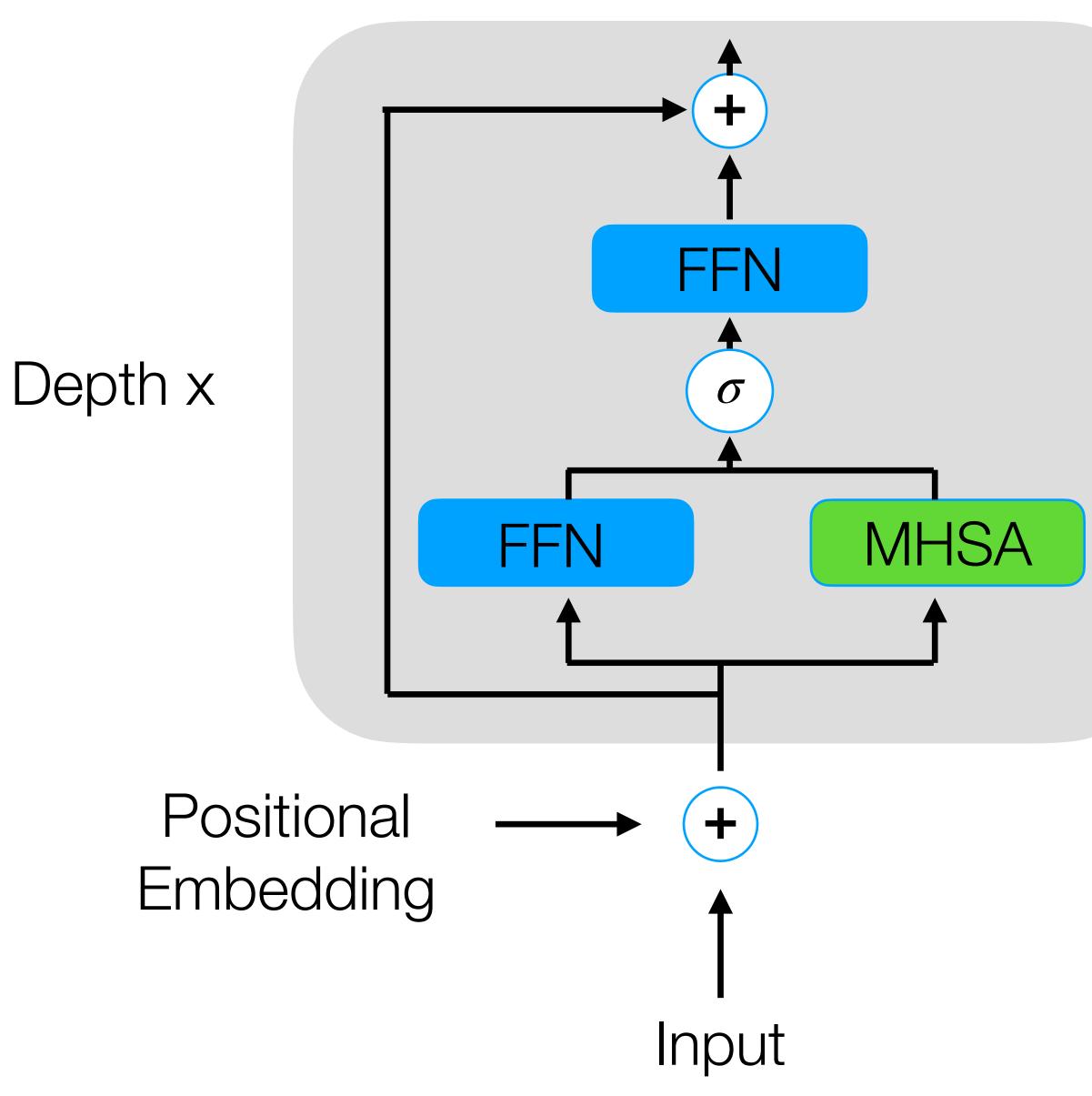
New direction of private ML based on preconditioning random networks

Improved architectures + training can further improve utility

Appendix Slides

SAU: Simple Attention Unit

- Attention based layer
- Interpolate with learnable gate between:
 - FFN
 - Multi-head self attention (MHSA)
- Empirically more stable than transformers



Encoding	Guesswork	ReId AUC	Diagnosis Guesswork ReId AUC			
Dauntless	1 (1,1)	100 (100, 100)	Syfer			
InstaHide	1 (1,1)	100 (100, 100)	Edema 3617 (94, 11544) 50 (49, 51)			
DP-S, $b = 10$	1 (1, 2)	98 (98, 98)	Consolidation 1697 (83, 5297) 55 (53, 57)			
DP-S, $b = 20$	4 (1, 14)	86 (85, 86)	Cardiomegaly 9834 (2072, 15766) 51 (49, 53)			
DP-S, $b = 30$	68 (2, 189)	70 (70, 70)	Atelectasis 13189 (2511, 28171) 50 (48, 52)			
DP-I, $b = 1$	3 (1, 8)	89 (88, 89)	Ablation: Syfer with no label encoding $(T^Y(l) =$			
DP-I, $b = 3$	97 (7, 296)	73 (73, 73)	Edema 47 (12, 83) 76 (76, 76)			
DP-I, $b = 5$	1379 (49, 4135)	59 (59, 60)	Consolidation 36 (2, 104) 76 (76, 76)			
Syfer-Random	2 (1, 4)	99 (99, 99)	Cardiomegaly $42(17, 57)$ 75 (75, 75)			
<i>Syfer</i> 8476 (1971, 20225)	50 (49, 52)	Atelectasis 80 (65, 98) 75 (75, 75)				

Table 1. Privacy evaluation of different encoding schemes against an SAU based attacker on the unlabeled MIMIC-CXR training set. DP-S and DP-I stand for DP-Simple and DP-Image respectively. All metrics are followed by 95% confidence intervals.

Attacker	Guesswork	ReId AUC
SAU	8476 (1971, 20225)	50 (49, 52)
ViT	8411 (5219, 12033)	50 (49, 51)
Resnet-18	10070 (9871, 10300)	50 (47, 53)

Table 2. Privacy evaluation of for *Syfer* across different attacker architectures on the unlabeled MIMIC-CXR training set. All metrics are followed by 95% confidence intervals.

Table 3. Privacy evaluation of *Syfer* when released with different diagnoses in MIMIC-CXR training set. All metrics are followed by 95% confidence intervals.

Dataset	Train	Dev	Test		
Unlabeled					
NIH	40365	NA	NA		
MIMIC-CXR	57696	NA	NA		
Labeled					
MIMIC-CXR E	3660	1182	12125		
MIMIC-CXR Co	1120	375	11031		
MIMIC-CXR Ca	11724	3876	12791		
MIMIC-CXR A	2164	3992	12129		

Table 5. Dataset statistics for all datasets. The training and development sets of MIMIC CXR Edema, Consolidation, Cardiomegaly

Encoding	Ε	Co	Ca	Α	Avg
Plaintext	91	78	89	85	86
DP-Simple, $b = 10$	51	51	52	52	52
DP-Simple, $b = 20$	50	50	50	50	50
DP-Simple, $b = 30$	49	49	50	51	50
DP-Image, $b = 1$	60	59	60	59	60
DP-Image, $b = 2$	54	50	55	55	54
DP-Image, $b = 5$	53	55	51	52	53
Syfer-Random	89	75	86	84	84
Syfer	82	69	81	78	78

Table 4. Impact of *Syfer* on chest X-ray prediction tasks across different encoding schemes. All metrics are ROC AUCs across the MIMIC-CXR test set. Guides of abbreviations for medical diagnosis: (E)dema, (Co)nsolidation, (Ca)rdiomegaly and (A)telectasis.