
Syfer: Neural Obfuscation for 
Private Data Release



• Data sharing is a major obstacle to Clinical AI


• Key tension protecting patient privacy v.s. advancing care


• Need tools to enable secure and privacy preserving ML

Central challenges for Clinical AI

reproducibility rare diseases diversity



HIPAA's standard of de-identification
• HIPAA establishes the standard to protect individuals' medical records (PHI) 

• HIPAA defines two methods for de-identification of PHI:

1. Removing 
specific identifiers

2. Using statistical tools to 
render information not 
individually identifiable

or



Existing approaches are not enough
• Homomorphic encryption 

• Requires building with crypto primitives. 100-1000x overhead


• Too cumbersome for training modern DL models
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Existing approaches are not enough
• Homomorphic encryption


• Too cumbersome for training modern DL models


• Differential Privacy 

• Private at the cost of a large utility loss, especially in healthcare


• Lightweight encoding schemes


• Allow downstream training of DL models but are not private

     Need a method to evaluate the privacy of encoding schemes ⟶



Ideal use case

encode

Private (PHI) Secure encodings

train

classifier



Threat model
Private (PHI) Secure encodings

An attacker who observes the 
plaintext data and the encoded 
data should not be able to 
reconstruct the matching.



Threat model
Private (PHI) Secure encodings

An attacker who observes the 
plaintext data and the encoded 
data should not be able to retrieve 
a single matching pair.



Attacker task = police line-up
What is the plaintext image corresponding to ( )
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Toy example and intuition
x z = T1(x)
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Toy example and intuition
x T1(x)

x1

x2

Now Alice uses  and  
with equal probability.

T1 T2

p

 p p

p

T2(x)

p

p

Z = { p p, }

X = { , }p
p

Eve observes:

There are two 

possible 
matchings p

p p
p

and 𝒯 = {T1, T2}



Toy example and intuition
x T1(x)

x1

x2

Alice uses 𝒯 = {T1, T2, T3}

p

 p p

p

T2(x)

p
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With probability 1/3, Eve observes:

She would 
then deduce
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Toy example and intuition
• Takeaways


• Whether  is private or not depends on  (set of transformations used 
by Alice) and more generally on the distribution  that Alice uses to 
sample  

• Adding more s does not make an encoding scheme more private 

• Designing an encoding scheme = finding a good distribution 

T 𝒯
ℙ(T)

T

T

ℙ(T)



Formal setting - Alice Data Owner
1 0

0 1

1 0

Alice (Data Owner) X LF(X) Z

,( ) ( )
0 1

1 0

0 1

Y

,
T

T ∼ ℙ(T)

Alice owns a dataset  with labels  

She samples a transformation  and 


releases the encoded data 

X LF(X)

T ∼ P(T)

(Z, Y) = T(X, LF(X))



Formal setting - Bob Model Builder

Bob receives the encoded data 


Bob trains a classifier  to minimize generalization error on the test set 



Bob sends  to Alice for usage on new data

(Z, Y) = T(X, LF(X))

CT
(Ztest, Ytest) = T(Xtest, LF(Xtest))

CT

( )
0 1

1 0

0 1
,

Bob  
(Model Builder)Z Y



Formal setting - Eve Adversary
Eve observes the encoded data 




Eve knows the encoding scheme used 
by Alice, i.e  


Eve possesses a , and more 
generally a prior 


Eve does not know , which acts as 
Alice's private key.


Goal: re-identify any one private image

(Z, Y) = T(X, LF(X))

ℙ(T)

XE ⊇ X
ℙ(XA = X)

T

Z

( )
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0 1

Y

,

Eve (Adversary)



Privacy definition - Guesswork
Given  = { XE ⊇ XA }...

and {Z = ... }

A computationally unbounded Eve 
uses her knowledge of  to 
compute for each pair  the 
probability that they match and ranks 
the all possible pairs from most likely 
to least likely.

ℙ(T)
(x, z)

Eve's guesses:

( , )
( , )
( , )
( , )

( , )

( , )

...

1.

2.

3.

4.

5.

|XE | × |Z |



Privacy definition - Guesswork
Eve's guesses:

( , )
( , )
( , )
( , )

( , )

( , )

...

1.

2.

3.

4.

5.

|XE | × |Z |

In Eve's list, exactly pairs are correct.


We define guesswork as the index of the 
first correct guess.

|Z |

⟵ 𝒢 = 3



Privacy estimation 

…
X Z = T(X)

…
T ∼ ℙ(T)

×

Maximize Re-identification

E E

1 0 0

0 1 0

0 0 1

• Can’t simulate true computationally 
unbounded Eve


• We estimate privacy with contrastive 
learning 


• Our model-based attacker learns to 
estimate the probability that a pair  
is a correct match   

(x, z)
P((x, z) ∈ MT)



Privacy estimation - details
1 0 0

0 1 0

0 0 1

̂p(xi, zj) =
exp(sim(rX

i , rZ
j ))

∑k,l exp(sim(rX
k , rZ

l ))

ℒreidentification = − ∑
(x,z)∈MT

log( ̂p(x, z))
HX = {Eins(x0), . . . Eins(xn)} HZ = {Eins(z0), . . . Eins(zn)}

RX = Eset (HX) RZ = Eset (HZ)

×

Maximize Re-identification

X Z = T(X)

…
T ∼ ℙ(T)

…



Ideal use case

encode

Private (PHI) Secure encodings

train

classifier

• Desiderata: 

• Protect raw data identity 
(HIPAA), i.e. achieve high 
guesswork


• Support any downstream task 
with standard ML tools 

• Data owner does not train any 
models


• No centralized coordination, 
publish encoded dataset



Main challenge
How to build a distribution  ℙ(T)

... that achieves privacy

... while maintaining 
downstream utility on 
tasks of interest

... without knowing the 
tasks a priori

... nor having access to the 
private data



Main challenge
How to build a distribution  ℙ(T)

... that achieves privacy

... while maintaining 
downstream utility on 
tasks of interest

... without knowing the 
tasks a priori

... nor having access to the 
private data

Train a classifier and 
output predicted labels as 
the "encoded data"

Syfer: we model  as a 
neural network and learn a 
"good" distribution  
using public data

T

ℙ(T)

Always output  as the 
"encoded data", i.e. 

0

𝒯 = {T : x ↦ 0}



Proposed Encoding scheme: Syfer

Neural encoder  

We decompose  in blocks of 
obfuscator layers and random 
layers.


In practice:


- The learned obfuscator weights 
are known to all actors (Alice and 
Eve)


- To construct a , Alice samples 
random layer weights

TX

TX

TX

T = (TX, TY)

Label encoder  

In practice: Alice randomly decides to 
flip the labels or not.

TY



Motivation for training
Reminder:How do we evaluate Syfer?

Eve knows  and needs to generalize to unknown X T

Bob sees  and needs to generalize to unknown Ztrain = T(Xtrain) Xtest



Syfer Training Algorithm
Learned 

obfuscator 
layer

Random 
layer

 ℒSyfer = ℒreconstruction − ℒreidentification

Re-identification loss of an adversaryℒreidentification

ℒreconstruction Reconstruction loss of a decoder  for a fixed choice of 
random layers 

DT= 

= 

where

The obfuscater layers are trained on a public 
unlabeled dataset  to optimize
Xpublic



Syfer Training Algorithm
Re-identification loss of 
an adversary

ℒreconstruction = 𝔼T[𝔼X[ | |x − DT(T(x)) | |2 ]]

For a fixed choice of random 
weights, train a decoder  to 
minimize a reconstruction loss

DT

X Z = T(X)

…

T ∼ ℙ(T)

×E E

…

ℒreidentification = − ∑
(x,z)∈MT

log( ̂p(x, z))

x

xz

z

DT



Syfer Training Algorithm

The obfuscater layers are trained on a public 
unlabeled dataset  to optimize
Xpublic

 ℒSyfer = ℒreconstruction − ℒreidentification

The adversary model  is alternatively 
updated to minimize 

E
ℒreidentification

The decoder model  is alternatively 
updated to minimize 

DT
ℒreconstruction



Experimental Setup

• Train Syfer and baselines on NIH Chest X-Ray  dataset. 


• NIH


• Obfuscator implemented as Simple Attention Unit (SAU)


• Rand Layer implemented as Linear layer + SELU activation + LayerNorm


• Attacker , and Decoder , implemented with SAUs.


• Test for Privacy and Utility on MIMIC Chest X-Ray dataset


• Evaluate Syfer on held out datasets  and held out attacker 
architectures.

Xpublic =

E DT

(X, LF(X))



Experiments - Privacy evaluation

• Generalized Privacy: How secure are 
encodings   when released alone (without 
labels)?


• Guesswork 


• ReID AUC


• ROC AUC of the attacker , when 
viewed as binary classification


• We sample (10k examples, a ),  
evaluate  and ReID AUC  
repeat 100 times

Z

𝒢

E

T
𝒢

i.e. can we securely release 
unlabeled data?



Experiments - Baselines
Syfer-random ablation where the obfuscator layers are not trained



Experiments - Lightweight encoding baselines
InstaHide [Huang et al, 2020], linear image mixing with bit flip

Dauntless [Xiao et al, 2021], separate linear layer applied to each patch. 
Provably secure if assume X is Gaussian



Experiments - Diff privacy baselines

DP-Image [Lui et al 2021], Differential Privacy Methods on auto encoder. 
Add laplacian noise to latent space



Guesswork ReID AUC

Dauntless 1 100

InstaHide 1 100

DP-Image b =1 3 89

DP-Image b = 5 1379 73

Syfer-Rand 2 99

Syfer (w/o label 
encoding)

8476 50

Generalized Privacy (no label released)

Experiments - Privacy Evaluation



Guesswork ReID AUC

SAU 8477 50

ViT 8411 50

ResNet-18 10070 89

Syfer Privacy across attacker architectures

Experiments - Privacy Evaluation

Syfer maintains privacy across heldout datasets, heldout attackers.



Experiments - Privacy evaluation
• Now, we release the data with labels


• Privacy with labels: How secure is ?


• Privacy can only get worse (non-private schemes remain non-private)

(Z, Y) = (TX(X), TY(LF(X))

Syfer w/o label encoding Syfer



Guesswork ReID AUC
Edema 3617 50
Actel 1697 55
Cons 9834 51

Cardio 13189 50

Syfer Privacy when released 
with labels Edema, Atelectasis, 

Cardiomegaly, Consilidation

Experiments - Privacy evaluation

Guesswork ReID AUC
Edema 47 76
Actel 36 76
Cons 42 75

Cardio 80 75

Ablation: 
Syfer with no label encoding
TY(l) = l



Experiments - Utility evaluation
• Utility Evaluation:


• ROC AUC of classifiers trained on 
encoded MIMC data


• Achieves much better utility than DP-Image


• +25 points AUC relative to DP


• - 8 points relative to plaintext 
baseline


• - 6 points relative to random Syfer 
baseline


• How does it impact sample complexity?

Average Utility
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Takeaways

• New direction of private ML based on preconditioning random networks


• Properties: 

• Protect raw data identity (HIPAA), i.e. achieve high guesswork


• Support any downstream classification task with standard ML tools 

• Data owner does not train Syfer. Syfer trained on 
Xpublic
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Takeaways

• New direction of private ML based on preconditioning random networks


• Future work: 

• Improved architectures + training can further improve utility  


• Support multi-hospital training 


• Applications to other modalities
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Appendix Slides



SAU: Simple Attention Unit
• Attention based layer


• Interpolate with learnable gate 
between:


•  FFN 


• Multi-head self attention 
(MHSA)


• Empirically more stable than 
transformers 

Input

Positional 
Embedding

Depth x

+

+

MHSAFFN

FFN

σ






