Why Should | Rewrite My Software When Dynamic
Compilation Can Be Good Enough?

Nathan Clark
College of Computing
Georgia Institute of Technology
ntclark@cc.gatech.edu

1. FUTURE MANY-CORE SOFTWARE

Trends in device manufacturing and processor developneré h
made it abundantly clear that heterogeneous many-coregsorcs
are going to be the dominant computational platform for akec
ing tomorrow’s applications. Projections are that thesgfpims
will soon contain thousands of cores, many of which will bghty
customized to provide as much computational capacity asilpes
within a fixed power budget.

Clearly there are many challenges associated with engimgesuich
complex systems, but software development is the mostariti
one. Looking at the problem from an economic perspective; pe
ple purchase computers because of the valuable serviceprite
vide. Almost universally, these services are developedfinare.
New services are constantly being enabled by more poweafal-h
ware, which drives consumers to purchase that new hardamade,
fuels the computing industry in a positive feedback loog.[Clur-
rent developers are used to creating sequential applsatémd the
move to parallel applications is a daunting challenge. beoto
maintain the pace of software innovation and growth of thamat-
ing industry as a whole, we must provide simple ways for safewv
developers to leverage the computational power of hetermes
many-core architectures.

Developing software for many-core systems is certainlysnoew
problem. The supercomputing community has devised segiral
ferent strategies to tackle the problem, as they have besting
applications that use hundreds or thousands of cores fadésc
Unfortunately many of these techniques are ineffectivaénttands
of the average developer, and thus there have been seveegal re
proposals for how mainstream developers should creatdliglara
software. | will briefly discuss the strengths and weakrnessde
the classes of proposed solutions.

New Languages: Much of the difficulty in writing parallel soft-
ware stems from the fact that programmers typically speitiéy
computation to be executed in relatively old, sequentiadjleages
(e.g., C), which were not designed with parallelism in miSgec-
ifying the desired computation in new languages that betxer
press dependencies (e.g., by eliminating pointers andj stict
typing) or by explicitly describing parallelism that exsin the
code enables compilers to do a very good job parallelizingiap
cations automatically. There are several drawbacks wibpgs-
ing new languages, however. First, developers using a new la
guage often must think in parallel to explicitly write pdehlcode,
and they must also debug the parallel applications theyewfihe

icantly raises the difficulty of software engineering. Setoin

most markets legacy code is still critically important, &inel cost of
rewriting legacy applications using new languages is tredoas.
Lastly, the historical adoption rate of new programmingglaages
is very poor. Despite the many benefits available to devetopbo

use modern programming languages, convincing developerset
those languages has generally not been successful.

Libraries:. The use of libraries is a popular method for parallel
programming, particularly in the supercomputing communin
this approach, a group of skilled library writers identifynamon
functionality used in many applications and manually degigr-
allel software to effectively execute that functionalitthen the
underlying hardware evolves, a new library must be develppet
the software developers who use the library do not have togeha
their applications. As with new languages, software deie
who utilize libraries must rewrite their legacy code, hoefeus-
ing libraries moves the burden of parallel thinking and dgling
to a small set of library writers. Another issue with libesiis that
the entire set of functionality needs to be defined a pridrie-
velopers need parallel functionality that is not impleneehin the
library, then they must implement it themselves. Libratgifaces
also hinder program optimization; for example, if an apaiign
had consecutive calls tein(x) andcos(x), there is a significant
amount of redundant work that could be eliminated if the citenp
could see beyond the interface boundaries.

Advanced Compilation: Recent work [4, 14] has shown that
automated compiler parallelization of sequential codeuipris-
ingly effective for many applications. Clearly, automateatal-
lelization of legacy codes falls short of what expert humaa d
velopers are capable of, but this technology presents actsu-
path for many software developers to create parallel agjpios
that perform “good enough” without sacrificing the sequergro-
gramming model. Another major benefit of this approach i$ tha
legacy applications can be parallelized simply througlomngu-
lation. Among the drawbacks of compiler parallelizatiorthat
increasingly the compiler’s scope is being limited by dyrzatty
loaded libraries and several advanced language featwrel,as
virtual functions and reflection. If the compiler cannot semif-
icant portions of the application statically, then its #@pito par-
allelize that code greatly diminishes. A second issue ig than
though it is simpler that rewriting applications, recoragibn of
legacy code is still a significant cost that has preventecattop-
tion of many innovations in the past. Perhaps the most imapbrt
drawback of compilation based parallelization is that tiread de-

move from understanding a single thread of execution to many composition produced by the compiler is static and does deot a

threads of execution is a tremendous cognitive leap, anuifsig

just based on the underlying architecture or the currete stithe

system. Clearly the best thread decomposition for an agijmic
can change depending on factors such as number of coresmn chi
whether a heterogeneous processor (e.g., a GPU) exists gysh
tem, or how overloaded a shared resource is.

New languages, libraries, and automated compiler paizdtedn
have all been used successfully in various circumstanceshéy
all leave a lot to be desired. What software developeatly want is
the ability to use the sequential programming model theykaid
understand. They do not want to learn new programming lagegia
and they want their legacy applications to “just work” wheswn
hardware is developed.

My position is thatdynamic compilation can make this possible
in many situations. A well engineered dynamic compiler can p
form the sophisticated analyses already demonstrated-atigliz-
ing static compilers, but unlike static compilers, the dyiacom-
piler can adjust its task decomposition based on the undgrly
hardware and system state. Dynamic compilation also hasmo |
tations on code visibility, and legacy binaries can be eteztwith-
out recompilation. Expert human programmers will alwaysbie
to generate better code than the automated parallelizétiovever,
providing a system that can parallelize legacy code andagifuns
developed using old, sequential programming models wiHl gmg
way toward helping sustain the rapid innovation we've comex
pect in the software industry. The remainder of this pap#itryito
convince the reader that automatic parallelization thinodygnamic
compilation is both feasible and a fruitful area of futureearch.

2. FEASIBILITY OF A PARALLELIZING
DYNAMIC COMPILER

In order to estimate the feasibility of a parallelizing dgrmia com-
piler, it is necessary to examine successful static péizteon
technigues and evaluate their effectiveness in a dynanmmiexb

Work by Ryoo et al. [14] cited several analyses that werergisde
in automatically parallelizing media applications. Thesneritical
analyses include interprocedural context-, heap-, andtiehsitive
pointer analysis, and value constraint analysis (i.ecadisring cer-
tain variables only take on a small number of values durirecex
tion). Bridges et al. [4] add to that list user-inserted dations
for commutative functions and hardware support for spdivela
thread execution. Commutative functions are functions llaze
dependences between calls, but violating these deperxieoes
not change program semantics. For example, hash tabléiamser
can be executed in any order without changing the resultlgesu
quent hash table lookups. These modern analyses and spatula
support have overcome many of the granularity problemscasso
ated with traditional automated parallelism.

One potential concern is that many of these analyses areweary
putationally intense to perform statically (such as consexsitive
pointer analysis), and may lead to dynamic compilation logads
that outweigh any potential performance improvements. e
tors mitigate this problem. First, analyses can be perfdringar-
allel of executing the input code. Second, the vast majorfifyro-
gram execution happens in very few “hot spots”. It is comnum f
dynamic compilers to monitor execution frequency to idgritiot
spots, and perform progressively more optimization onlgmwt is
clear the code is important [15]. With this in mind, let's exae
these analyses in the context of dynamic compilation.

Pointer Analysis: There is a significant amount of work in Java

virtual machines discussing pointer analysis. For examptek
by Hirzel et al. [10], presented a very fast dynamic algonitfor
Andersen’s style pointer analysis with field sensitivitydgrartial
context sensitivity. While this is not quite as precise aspbinter
analysis used in [14], this algorithm took less than 0.1 sdso
to execute on average and provides a concrete example that so
phisticated pointer analysis can be performed dynamic@iyer
work [8] noted several instances where performing poimeiysis
on low level code, accessible at runtime, is actually moricte
than pointer analysis on high level code, where static ctargpira-
ditionally perform it.

Value Constraint Analysis. Determining that variables take on a
small number of values during program execution is invakiédr
removing both control and memory dependencies in appicati
As with pointer analysis, there has been a significant amofint
work in this area in the Java community; the primary appiocat
being dynamically removing spurious array bounds checksnwh
the array index is provably within the array boundary. One pa
per [3] on this topic demonstrates that this analysis takdyg 4
milliseconds, on average, per application. More extendj&mic
invariant analysis techniques [7] have been implement#ukisoft-
ware engineering community, and again prove this analgge$-
sible in a dynamic compilation environment.

Commutativity Analysis: Unlike the previous two analyses, | am
unaware of any work on dynamically identifying commutathez-
tions of code in applications. Several papers have expliolemuti-
fying commutative sections of code in static compilatio8][Jand
these static algorithms typically run in less than 1 secoBthtic
compilation algorithms almost always have a dynamic coatipih
analog, and dynamic compilation should be able to, at thg ver
least, identify probable commutativity for use in autorogtaral-
lelization by adapting the static technique.

Speculation Support: Proving thread independence in any compi-
lation system can be quite difficult, and so support for s|zimun

of probable thread independence is necessary for highrpeafice
automatic parallelization. Beyond performance, spemnasup-
port also frees the dynamic compiler from having to analjessn-
tire application. The compiler merely has to detect likelggram
properties, parallelize assuming those properties hoid,carrect
or update the parallelization when incorrect. Speculasiopport
has been commercially deployed using both software-bd3ech{l
hardware-based [5] detection and recovery, and has beeéninuse
several research projects for speculative parallelinatio

There is significant amount of previous research demonggratany
of the critical analyses needed for effective static coargiaral-
lelization have been implemented in dynamic compilers.r&he
even work showing that a subset of these optimizations has pr
vided useful automatic parallelization in the context ofyaamic
compiler [12]. Building a dynamic compiler to effectively and au-
tomatically parallelize binariesis possible for many domains.

Beyond parallelization, there many other benefits to usimgoic
compilation, such as dynamic thread specialization. THaissfor-
mation retargets individual threads for heterogeneousgssors.
One excellent example of this technique is the PeakStrealsetp
which can take an application written once and dynamicadiy-g
erate code for diverse platforms such as multi-core x86egyst
GPUs, or Cell processors. Stitt et al. [17] have also dematest
a system that dynamically retargets threads for FPGAs. Bhe a

ity to dynamically specialize code for heterogeneous Bsoss is
well within the realm of possibility.

There are also many instances in the literature of adapyimardic
compilation systems that monitor the system and contipusait
prove the code running on it [16]. In one example, Hazelwaudi a
Brooks describe a dynamic compiler that monitors when @nogr
cause supply voltage swings through fluctuating currentdaad
applies program transformations to ameliorate the prof@@nfp-
plying adaptive principals to automatic parallelizatioifi eertainly
be challenging, but gives automatic parallelization theeptal to
outperform manual parallelization by adjusting to the eystat
runtime.

Equally important, the applications predicted to be mogtdrtant

in the future are very amenable to automatic parallelizatising
dynamic compilation. Looking at media processing appiices,
RMS benchmarks [6], and Berkeley’'s “13 Dwarfs” [2], one can
observe that many of these applications have easily idestjfar-
allelism. These benchmarks are also long running, giviegdyr
namic compiler ample time to identify patterns and perfoha t
necessary optimizations.

The compiler field has advanced to the point where we undetsta
many of the analyses needed to provide effective automatialp
lelization for many classes of applications. There is ¢eiganuch
research left to be done, but many of these analyses haaglre
been implemented in dynamic compilation systems, and tles on
that have not are ripe research targets. Threads discdvgeetau-
tomatic parallelization system can leverage heterogenpmcess-
ing resources, and the can be dynamically adapted to imjorae

all system performance. A parallelizing dynamic compileud
enable software developers to hold onto the sequentialranmog
ming model they understand, and maintain the pace of sadtimar
novation. | believe the pieces to make this system work atleinvi

reach. Let’s try to put the them together and see what can-be ac

complished before rewriting all of our legacy code and catedy
abandoning the sequential programming model that has btaisg
so far.

3. REFERENCES

[1] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney. A
survey of adaptive optimization in virtual machin&SEE
Proceedings of, 93(2):449—-466, June 2005.
K. Asanovic et al. The landscape of parallel computing
research: A view from berkeley. Technical Report
UCB/EECS-2006-183, Dec. 2006.
R. Bodik, R. Gupta, and V. Sarkar. Abcd: eliminating grra
bounds checks on demand.Rroc. of the SGPLAN ' 00
Conference on Programming Language Design and
Implementation, pages 321-333, June 2000.
M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and
D. August. Revisiting the sequential programming model for
multi-core. InProc. of the 40th Annual International
Symposium on Microarchitecture, pages 69—-84, 2007.
M. K. Chen and K. Olukotun. The Jrpm system for
dynamically parallelizing Java programs.Rnoc. of the 30th
Annual International Symposium on Computer Architecture,
pages 434-446, 2003.
P. Dubey. A platform 2015 workload model recognition,
mining and synthesis moves computers to the era of tera,
2005. ftp://download.intel.com/technology/computing/

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

archinnov/platform2015/download/RMS.pdf.

M. Ernst et al. The daikon system for dynamic detection of
likely invariants.Science of Computer Programming,
69(1):35-45, Dec. 2007.

B. Guo et al. Selective runtime memory disambiguatioa in
dynamic binary translator. IRroc. of the 15th International
Conference on Compiler Construction, pages 65-79, 2006.
K. Hazelwood and D. Brooks. Eliminating voltage
emergencies via microarchitectural voltage control feettb
and dynamic optimization. IRroc. of the 2004 International
Symposium on Low Power Electronics and Design, pages
326-331, 2004.

M. Hirzel, D. von Dincklage, A. Diwan, and M. Hind. Fast
online pointer analysisACM Transactions on Programming
Languages and Systems, 29(2):11, Apr. 2007.

W. Hwu et al. Implicitly parallel programming modelsrfo
thousand-core microprocessorsHroc. of the 44th Design
Automation Conference, pages 754—759, June 2007.

L. RauchwergerRuntime Parallelization: A Framework for
Parallel Computation. PhD thesis, University of lllinois at
Urbana-Champaign, 1995.

M. Rinard and P. Diniz. Commutativity analysis: A new
analysis technique for parallelizing compilef&CM
Transactions on Programming Languages and Systems,
19(6):1-47, Nov. 1997.

S. Ryoo, S. Ueng, C. Rodrigues, R. Kidd, M. Frank, and
W. Hwu. Automatic discovery of coarse-grained parallelism
in media applicationsTransactions on High Performance
Embedded Architectures and Compilers, 1(1):194-213, Jan.
2007.

J. E. Smith and R. NaiMrtual Machines. Morgan
Kaufmann Publishers, 2005.

M. Smith. Overcoming the challenges to feedback deéct
optimization. InProc. of the 2000 ACM Workshop on
Dynamic and Adaptive Compilation and Optimization, pages
1-11, 2000.

G. Stitt and F. Vahid. Thread warping: A framework for
dynamic synthesis of thread accleratorsPioc. of the 2007
International Conference on on Hardware/Software
Co-design and System Synthesis, pages 93-98, Sept. 2007.

