
Why Should I Rewrite My Software When Dynamic
Compilation Can Be Good Enough?

Nathan Clark
College of Computing

Georgia Institute of Technology
ntclark@cc.gatech.edu

1. FUTURE MANY-CORE SOFTWARE
Trends in device manufacturing and processor development have
made it abundantly clear that heterogeneous many-core processors
are going to be the dominant computational platform for execut-
ing tomorrow’s applications. Projections are that these platforms
will soon contain thousands of cores, many of which will be highly
customized to provide as much computational capacity as possible
within a fixed power budget.

Clearly there are many challenges associated with engineering such
complex systems, but software development is the most critical
one. Looking at the problem from an economic perspective, peo-
ple purchase computers because of the valuable services they pro-
vide. Almost universally, these services are developed in software.
New services are constantly being enabled by more powerful hard-
ware, which drives consumers to purchase that new hardware,and
fuels the computing industry in a positive feedback loop [11]. Cur-
rent developers are used to creating sequential applications, and the
move to parallel applications is a daunting challenge. In order to
maintain the pace of software innovation and growth of the comput-
ing industry as a whole, we must provide simple ways for software
developers to leverage the computational power of heterogeneous
many-core architectures.

Developing software for many-core systems is certainly nota new
problem. The supercomputing community has devised severaldif-
ferent strategies to tackle the problem, as they have been creating
applications that use hundreds or thousands of cores for decades.
Unfortunately many of these techniques are ineffective in the hands
of the average developer, and thus there have been several recent
proposals for how mainstream developers should create parallel
software. I will briefly discuss the strengths and weaknesses of
the classes of proposed solutions.

New Languages: Much of the difficulty in writing parallel soft-
ware stems from the fact that programmers typically specifythe
computation to be executed in relatively old, sequential languages
(e.g., C), which were not designed with parallelism in mind.Spec-
ifying the desired computation in new languages that betterex-
press dependencies (e.g., by eliminating pointers and using strict
typing) or by explicitly describing parallelism that exists in the
code enables compilers to do a very good job parallelizing appli-
cations automatically. There are several drawbacks with propos-
ing new languages, however. First, developers using a new lan-
guage often must think in parallel to explicitly write parallel code,
and they must also debug the parallel applications they write. The
move from understanding a single thread of execution to many
threads of execution is a tremendous cognitive leap, and signif-

icantly raises the difficulty of software engineering. Second, in
most markets legacy code is still critically important, andthe cost of
rewriting legacy applications using new languages is tremendous.
Lastly, the historical adoption rate of new programming languages
is very poor. Despite the many benefits available to developers who
use modern programming languages, convincing developers to use
those languages has generally not been successful.

Libraries: The use of libraries is a popular method for parallel
programming, particularly in the supercomputing community. In
this approach, a group of skilled library writers identify common
functionality used in many applications and manually design par-
allel software to effectively execute that functionality.When the
underlying hardware evolves, a new library must be developed, but
the software developers who use the library do not have to change
their applications. As with new languages, software developers
who utilize libraries must rewrite their legacy code, however us-
ing libraries moves the burden of parallel thinking and debugging
to a small set of library writers. Another issue with libraries is that
the entire set of functionality needs to be defined a priori; if de-
velopers need parallel functionality that is not implemented in the
library, then they must implement it themselves. Library interfaces
also hinder program optimization; for example, if an application
had consecutive calls tosin(x) andcos(x), there is a significant
amount of redundant work that could be eliminated if the compiler
could see beyond the interface boundaries.

Advanced Compilation: Recent work [4, 14] has shown that
automated compiler parallelization of sequential code is surpris-
ingly effective for many applications. Clearly, automatedparal-
lelization of legacy codes falls short of what expert human de-
velopers are capable of, but this technology presents a low-cost
path for many software developers to create parallel applications
that perform “good enough” without sacrificing the sequential pro-
gramming model. Another major benefit of this approach is that
legacy applications can be parallelized simply through recompi-
lation. Among the drawbacks of compiler parallelization isthat
increasingly the compiler’s scope is being limited by dynamically
loaded libraries and several advanced language features, such as
virtual functions and reflection. If the compiler cannot seesignif-
icant portions of the application statically, then its ability to par-
allelize that code greatly diminishes. A second issue is that, even
though it is simpler that rewriting applications, recompilation of
legacy code is still a significant cost that has prevented theadop-
tion of many innovations in the past. Perhaps the most important
drawback of compilation based parallelization is that the thread de-
composition produced by the compiler is static and does not ad-
just based on the underlying architecture or the current state of the



system. Clearly the best thread decomposition for an application
can change depending on factors such as number of cores on chip,
whether a heterogeneous processor (e.g., a GPU) exists in the sys-
tem, or how overloaded a shared resource is.

New languages, libraries, and automated compiler parallelization
have all been used successfully in various circumstances, but they
all leave a lot to be desired. What software developersreally want is
the ability to use the sequential programming model they know and
understand. They do not want to learn new programming languages
and they want their legacy applications to “just work” when new
hardware is developed.

My position is thatdynamic compilation can make this possible
in many situations. A well engineered dynamic compiler can per-
form the sophisticated analyses already demonstrated in paralleliz-
ing static compilers, but unlike static compilers, the dynamic com-
piler can adjust its task decomposition based on the underlying
hardware and system state. Dynamic compilation also has no limi-
tations on code visibility, and legacy binaries can be executed with-
out recompilation. Expert human programmers will always beable
to generate better code than the automated parallelization, however,
providing a system that can parallelize legacy code and applications
developed using old, sequential programming models will goa long
way toward helping sustain the rapid innovation we’ve come to ex-
pect in the software industry. The remainder of this paper will try to
convince the reader that automatic parallelization through dynamic
compilation is both feasible and a fruitful area of future research.

2. FEASIBILITY OF A PARALLELIZING
DYNAMIC COMPILER

In order to estimate the feasibility of a parallelizing dynamic com-
piler, it is necessary to examine successful static parallelization
techniques and evaluate their effectiveness in a dynamic context.

Work by Ryoo et al. [14] cited several analyses that were essential
in automatically parallelizing media applications. The most critical
analyses include interprocedural context-, heap-, and field-sensitive
pointer analysis, and value constraint analysis (i.e., discovering cer-
tain variables only take on a small number of values during execu-
tion). Bridges et al. [4] add to that list user-inserted annotations
for commutative functions and hardware support for speculative
thread execution. Commutative functions are functions that have
dependences between calls, but violating these dependences does
not change program semantics. For example, hash table insertions
can be executed in any order without changing the result of subse-
quent hash table lookups. These modern analyses and speculation
support have overcome many of the granularity problems associ-
ated with traditional automated parallelism.

One potential concern is that many of these analyses are verycom-
putationally intense to perform statically (such as context sensitive
pointer analysis), and may lead to dynamic compilation overheads
that outweigh any potential performance improvements. Twofac-
tors mitigate this problem. First, analyses can be performed in par-
allel of executing the input code. Second, the vast majorityof pro-
gram execution happens in very few “hot spots”. It is common for
dynamic compilers to monitor execution frequency to identify hot
spots, and perform progressively more optimization only when it is
clear the code is important [15]. With this in mind, let’s examine
these analyses in the context of dynamic compilation.

Pointer Analysis: There is a significant amount of work in Java

virtual machines discussing pointer analysis. For example, work
by Hirzel et al. [10], presented a very fast dynamic algorithm for
Andersen’s style pointer analysis with field sensitivity and partial
context sensitivity. While this is not quite as precise as the pointer
analysis used in [14], this algorithm took less than 0.1 seconds
to execute on average and provides a concrete example that so-
phisticated pointer analysis can be performed dynamically. Other
work [8] noted several instances where performing pointer analysis
on low level code, accessible at runtime, is actually more accurate
than pointer analysis on high level code, where static compilers tra-
ditionally perform it.

Value Constraint Analysis: Determining that variables take on a
small number of values during program execution is invaluable for
removing both control and memory dependencies in applications.
As with pointer analysis, there has been a significant amountof
work in this area in the Java community; the primary application
being dynamically removing spurious array bounds checks when
the array index is provably within the array boundary. One pa-
per [3] on this topic demonstrates that this analysis takes only 4
milliseconds, on average, per application. More extensivedynamic
invariant analysis techniques [7] have been implemented inthe soft-
ware engineering community, and again prove this analysis is pos-
sible in a dynamic compilation environment.

Commutativity Analysis: Unlike the previous two analyses, I am
unaware of any work on dynamically identifying commutativesec-
tions of code in applications. Several papers have exploredidenti-
fying commutative sections of code in static compilation [13], and
these static algorithms typically run in less than 1 second.Static
compilation algorithms almost always have a dynamic compilation
analog, and dynamic compilation should be able to, at the very
least, identify probable commutativity for use in automatic paral-
lelization by adapting the static technique.

Speculation Support: Proving thread independence in any compi-
lation system can be quite difficult, and so support for speculation
of probable thread independence is necessary for high performance
automatic parallelization. Beyond performance, speculation sup-
port also frees the dynamic compiler from having to analyze the en-
tire application. The compiler merely has to detect likely program
properties, parallelize assuming those properties hold, and correct
or update the parallelization when incorrect. Speculationsupport
has been commercially deployed using both software-based [1] and
hardware-based [5] detection and recovery, and has been used in
several research projects for speculative parallelization.

There is significant amount of previous research demonstrating many
of the critical analyses needed for effective static compiler paral-
lelization have been implemented in dynamic compilers. There is
even work showing that a subset of these optimizations has pro-
vided useful automatic parallelization in the context of a dynamic
compiler [12]. Building a dynamic compiler to effectively and au-
tomatically parallelize binaries is possible for many domains.

Beyond parallelization, there many other benefits to using dynamic
compilation, such as dynamic thread specialization. This transfor-
mation retargets individual threads for heterogeneous processors.
One excellent example of this technique is the PeakStream toolset,
which can take an application written once and dynamically gen-
erate code for diverse platforms such as multi-core x86 systems,
GPUs, or Cell processors. Stitt et al. [17] have also demonstrated
a system that dynamically retargets threads for FPGAs. The abil-



ity to dynamically specialize code for heterogeneous processors is
well within the realm of possibility.

There are also many instances in the literature of adaptive dynamic
compilation systems that monitor the system and continually im-
prove the code running on it [16]. In one example, Hazelwood and
Brooks describe a dynamic compiler that monitors when programs
cause supply voltage swings through fluctuating current draw, and
applies program transformations to ameliorate the problem[9]. Ap-
plying adaptive principals to automatic parallelization will certainly
be challenging, but gives automatic parallelization the potential to
outperform manual parallelization by adjusting to the system at
runtime.

Equally important, the applications predicted to be most important
in the future are very amenable to automatic parallelization using
dynamic compilation. Looking at media processing applications,
RMS benchmarks [6], and Berkeley’s “13 Dwarfs” [2], one can
observe that many of these applications have easily identified par-
allelism. These benchmarks are also long running, giving the dy-
namic compiler ample time to identify patterns and perform the
necessary optimizations.

The compiler field has advanced to the point where we understand
many of the analyses needed to provide effective automatic paral-
lelization for many classes of applications. There is certainly much
research left to be done, but many of these analyses have already
been implemented in dynamic compilation systems, and the ones
that have not are ripe research targets. Threads discoveredby an au-
tomatic parallelization system can leverage heterogeneous process-
ing resources, and the can be dynamically adapted to improveover-
all system performance. A parallelizing dynamic compiler would
enable software developers to hold onto the sequential program-
ming model they understand, and maintain the pace of software in-
novation. I believe the pieces to make this system work are within
reach. Let’s try to put the them together and see what can be ac-
complished before rewriting all of our legacy code and completely
abandoning the sequential programming model that has brought us
so far.

3. REFERENCES
[1] M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney. A

survey of adaptive optimization in virtual machines.IEEE
Proceedings of, 93(2):449–466, June 2005.

[2] K. Asanovic et al. The landscape of parallel computing
research: A view from berkeley. Technical Report
UCB/EECS-2006-183, Dec. 2006.

[3] R. Bodik, R. Gupta, and V. Sarkar. Abcd: eliminating array
bounds checks on demand. InProc. of the SIGPLAN ’00
Conference on Programming Language Design and
Implementation, pages 321–333, June 2000.

[4] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and
D. August. Revisiting the sequential programming model for
multi-core. InProc. of the 40th Annual International
Symposium on Microarchitecture, pages 69–84, 2007.

[5] M. K. Chen and K. Olukotun. The Jrpm system for
dynamically parallelizing Java programs. InProc. of the 30th
Annual International Symposium on Computer Architecture,
pages 434–446, 2003.

[6] P. Dubey. A platform 2015 workload model recognition,
mining and synthesis moves computers to the era of tera,
2005. ftp://download.intel.com/technology/computing/

archinnov/platform2015/download/RMS.pdf.
[7] M. Ernst et al. The daikon system for dynamic detection of

likely invariants.Science of Computer Programming,
69(1):35–45, Dec. 2007.

[8] B. Guo et al. Selective runtime memory disambiguation ina
dynamic binary translator. InProc. of the 15th International
Conference on Compiler Construction, pages 65–79, 2006.

[9] K. Hazelwood and D. Brooks. Eliminating voltage
emergencies via microarchitectural voltage control feedback
and dynamic optimization. InProc. of the 2004 International
Symposium on Low Power Electronics and Design, pages
326–331, 2004.

[10] M. Hirzel, D. von Dincklage, A. Diwan, and M. Hind. Fast
online pointer analysis.ACM Transactions on Programming
Languages and Systems, 29(2):11, Apr. 2007.

[11] W. Hwu et al. Implicitly parallel programming models for
thousand-core microprocessors. InProc. of the 44th Design
Automation Conference, pages 754–759, June 2007.

[12] L. Rauchwerger.Runtime Parallelization: A Framework for
Parallel Computation. PhD thesis, University of Illinois at
Urbana-Champaign, 1995.

[13] M. Rinard and P. Diniz. Commutativity analysis: A new
analysis technique for parallelizing compilers.ACM
Transactions on Programming Languages and Systems,
19(6):1–47, Nov. 1997.

[14] S. Ryoo, S. Ueng, C. Rodrigues, R. Kidd, M. Frank, and
W. Hwu. Automatic discovery of coarse-grained parallelism
in media applications.Transactions on High Performance
Embedded Architectures and Compilers, 1(1):194–213, Jan.
2007.

[15] J. E. Smith and R. Nair.Virtual Machines. Morgan
Kaufmann Publishers, 2005.

[16] M. Smith. Overcoming the challenges to feedback directed
optimization. InProc. of the 2000 ACM Workshop on
Dynamic and Adaptive Compilation and Optimization, pages
1–11, 2000.

[17] G. Stitt and F. Vahid. Thread warping: A framework for
dynamic synthesis of thread acclerators. InProc. of the 2007
International Conference on on Hardware/Software
Co-design and System Synthesis, pages 93–98, Sept. 2007.


