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ABSTRACT
Dynamically optimizing programs is worthwhile only if the
overhead created by the dynamic optimizer is less than the
benefit gained from the optimization. Program trace se-
lection is one of the most important, yet time consuming,
components of many dynamic optimizers. The dynamic ap-
plication of monitoring and profiling can often result in an
execution slowdown rather than speedup. Achieving sig-
nificant performance gain from dynamic optimization has
proven to be quite challenging. However, current technolog-
ical advances, namely multicore architectures, enable us to
design new approaches to meet this challenge.

Selecting traces in current dynamic optimizers is typically
achieved through the use of instrumentation to collect con-
trol flow information from a running application. Using in-
strumentation for runtime analysis requires the trace selec-
tion algorithms to be light weight, and this limits how so-
phisticated these algorithms can be. This is problematic
because the quality of the traces can determine the poten-
tial benefits that can be gained from optimizing the traces.
In many cases, even when using a lightweight approach, the
overhead incurred is more than the benefit of the optimiza-
tions. In this paper we exploit the multicore architecture to
design an aggressive trace selection approach that produces
better traces and does not perturb the running application.

1. INTRODUCTION
The goal of dynamic optimization is to take advantage of

information available only at runtime to perform optimiza-
tion. At the core, this information usually involves identify-
ing hot regions of executing code. When using bytecode with
source level information, these regions can take the form of a
frequently executed method, as in Java dynamic optimizers
[18]. On the other hand, when dynamically optimizing a na-
tive binary, a basic block trace representing a path through
the control flow graph of the binary is used, as in Dynamo
RIO [3]. We call the regions in the latter example a trace.

A hot trace is formed by taking a frequently executed se-
quence of basic blocks and coalescing them into a single unit
for optimization with one entrance and multiple exits [2, 8].
The benefits of forming traces, among others, include im-
proved instruction locality, branch elimination, compaction,
and new optimization opportunities.

The potential benefits of dynamically optimizing traces
depend heavily on the quality of the traces produced. To
evaluate the quality of traces, a number of metrics have been
proposed. These metrics include the amount of code dupli-
cation, the number of transitions off traces, the amount of

time spent on traces, and the length of the traces [2, 6, 8], In
addition to these we propose another metric, the amount of
ideal trace executions. An ideal trace execution occurs when
a trace is executed to completion. In many cases it is critical
to get ideal trace executions because the key of many trace
optimizations is the assumption that the entire trace will be
executed. If there is an early exit from the trace, compensa-
tion code must be executed [13, 2]. Executing compensation
code can diminish the possible improvements achieved by
optimizing a trace.

The two primary challenges of identifying hot traces in-
clude the obtrusion of the executing application and the
development of good analysis techniques to produce high
quality traces. In current systems, detection of hot traces is
achieved through monitoring the application execution us-
ing instrumentation [2, 8, 6, 3]. This instrumentation usu-
ally requires saving some process state, executing injected
code, and restoring process state.

When stealing cycles from the application, a second prob-
lem arises. To minimize the overhead of monitoring the ap-
plication dynamically, simple trace analysis algorithms are
used. This further constrains the quality of traces that are
produced. If too much overhead is incurred, there may be
no overall performance improvement, and in some cases per-
formance degradation can occur.

With the advent of multicore architectures comes new op-
portunities for dynamic optimization. In this paper, we pro-
pose a new approach for trace selection. Our approach takes
advantage of the multicore architecture to address both of
the challenges mentioned above. Using the multicore archi-
tecture, we design a cross core trace selection technique that
produces better traces and incurs no direct overhead to the
running application. Using a variation of currently available
hardware structures, our approach can monitor application
execution, analyze its branch behavior patterns, and con-
struct high quality traces without instrumenting the applica-
tion. This is achieved by moving the application monitoring,
execution path analysis, and trace selection, into a separate
core. By doing this our approach can take advantage of idle
cores while our application executes undisturbed.

We experimentally compared our approach with the widely
used next executed tail (NET) algorithm [3, 2]. We show
that our approach produces traces that cover 33% more dy-
namic instructions (e.g. 33% more instructions are executed
within traces), and more than doubles the amount of ideal
trace executions, with 2.2x more ideal trace execution cov-
erage.

The specific contributions of this work are as follows:



• An analysis and study of ideal trace executions and a
demonstration of its importance as a trace evaluation
metric.

• A multicore framework for the implementation of trace
selection techniques.

• New trace selection algorithms that are more aggres-
sive and produce better traces than previous work.

• An experimental analysis of the improvement of traces
when using more sophisticated algorithms versus the
more traditional techniques.

Next, Section 2 describes the multicore configuration of
our approach and discusses cross core monitoring. Section
3 motivates our trace selection technique and describes the
desired characteristics of the traces we produce. Section 4
describes our pattern based aggressive trace selection ap-
proach. In Section 5 we describe our experimental setup,
evaluate our approach and present preliminary results. In
Section 6 we present related work, and finally, we conclude
in Section 7.

2. CROSS CORE MONITORING
The key requirement of our approach is the ability to mon-

itor and react to the behavior of an application that resides
on a neighboring core. This would allow our trace selector to
perform more complex and expensive computation without
directly effecting the application. This new capability is the
key of our trace selection technique. We first develop a cross
core monitoring framework, and then we develop algorithms
that produce better traces than current techniques.

The question arises as to how we achieve cross core moni-
toring and whether there are algorithms that produce better
traces than current techniques.

The hardware/software interface of the proposed log-based
architectures [5] could be used for the cross core monitoring.
Unfortunately there is significant hardware overhead when
implementing log-based architectures, and thus they have
not been implemented in real systems. We propose a differ-
ent approach. The branch trace buffer (BTB) of the Itanium
and Core 2 Duo processors have proved to be a useful tool
to detect the dynamic basic block trace of an application [4,
10]. However current multicore hardware configurations do
not allow cross core reading of a core’s branch trace buffer.
This capability can be achieved by placing the individual
buffers together and assigning a core id to each buffer. In
this way a trace selector could simply specify which BTB it
would like to read. The branch trace of the host application
is read by our trace selector thread that may reside on a
neighboring core. We call this the chip-wide branch trace
buffer (CWBTB).

In figure 1, the CWBTB is shown. It is a centralized unit
that is globally readable. Through the use of the CWBTB,
our trace selection technique can seamlessly collect the tar-
gets and PC’s of the branches of the application. We use
this dynamic program behavior to observer, collect and form
traces unlike any that are currently formed by modern dy-
namic optimizers.

Application

BTB
Core 1

C1

MEATS

Core 2

CWBTB

BTBC2

Figure 1: The Core Wide Branch Trace Buffer
serves as a centralized performance monitoring tool
that is available to all cores.

3. HOT TRACE SELECTION
To understand the need for better dynamic trace selection

techniques, we first consider what is currently used and the
characteristics of the traces they produce.

foo ( )
{

for ( int i =0; i <8; i++)
{

i f ( i <4)
{

block A
}
else
{

block B
unpred i c tab l e ( ) ;

}
}

}

A A A A B A B

Desired Trace: NET Traces:

Figure 2: This is a partially unrolled trace.

3.1 Next Executing Tail
The next executed tail (NET) algorithm described by Bala

et al. [2] NET has 2 phases, a profiling phase and a trace
collection phase. In the profiling phase, each branch that is
a backedge is instrumented. A counter is kept for each of
these backedges and incremented every time that backedge
is taken. When this counter hits a predefined threshold,
the next trace is collected. To collect the trace, the code
is instrumented and monitored block by block until another
backedge is executed. Note that it is possible to collect a
cold path during this collection even if another, more hot,
path was primarily responsible for reaching the backedge.

A number of shortcomings of the NET approach have been
outlined by previous work [2, 6]. Most notably, NET traces
cannot span the code before a interprocedural call and its
corresponding return. Also, NET traces cannot span outer
and inner loops. In addition to these limitations, there are
others that have not been fully addressed by previous work.
When collecting a trace, that trace is ended on the first
backedge; for this reason traces only average 2-3 basic blocks
in length. When using NET, it is impossible to collect com-



f oo ( )
{

for ( int i =0; i <20; i++)
{

block A
i f ( ! i %3)
{

block B
}
else
{

block C
}
block D
unpred i c tab l e ( ) ;

}
}

A B D A C

Desired Traces: NET Traces:

DC D B D

Figure 3: Here we have the competition for selec-
tion.

plex control flow paths that revisit blocks. As we will show,
our approach overcomes these limitations by using the global
context of the trace.

3.2 Trace Characteristics
There are some key trace characteristics we aim to achieve

that are not present in NET traces or other dynamic trace
selection algorithms. The first is the ability to form traces
that contain partially unrolled loops. For example, in Fig-
ure 2, we have a function foo with a loop that would be
partially unrolled into a trace by our technique. This loop
has the same behavior for the first few iterations and then
the behavior is erratic. If foo is called often, a trace AAAAB

could be formed, partially unrolling the loop. This kind of
trace cannot be formed by NET; Net is only able to produce
two small traces that span 1 basic block each, presenting no
code optimization opportunities. Our approach is able to
detect the desired trace and apply optimization.

Another trace characteristic we aim to capture with our
technique is to take advantage of the global temporal context
of each trace. For example if we have two hot paths with the
same head block, we want to have information about which
is ’more hot.’ For example in Figure 3, we have 2 candidate
hot streams: ABD or ACD. As can be seen, ACD is executed
twice as often as ABD; therefore it is hotter. NET is not able
to identify the hotter trace. Our technique, however, is able
to observe this. As we will discuss shortly, our approach has
an entire window sample to analyze and automatically col-
lects information about the number of occurrences of each
potential hot stream. This window view can be very bene-
ficial when electing which trace to use dynamically.

Beyond identifying what traces are hotter to break ties,
we would also like to collect traces that span multiple paths
through a loop. In Figure 4 we show a code example where
we would like our approach to generate the trace ABDACD as
one trace. This kind of trace selection has not been done
by software dynamic optimization. However this type of

foo ( )
{

for ( int i =0; i <4; i++)
{

block A
i f ( ! i %2)
{

block B
}
else
{

block C
}
block D

}
unpred i c tab l e ( ) ;

}

A B D A C D A B

Desired Trace: NET Traces:

D C D

Figure 4: This is a trace of a complex path through
a loop.

pattern sometimes presents itself in executing loops. This is
one of the main features of our technique and it is the key
to the power of our technique. The information necessary
to detect this trace is present when considering the global
context of the branch sequences.

4. PATTERN BASED ADAPTIVE TRACE SE-
LECTION

Our trace selection approach produces traces with the de-
sired characteristics mentioned in section 3. This is achieved
by using pattern detection to extract hot sequences of ba-
sic block executions. When inspecting taken branch targets
over a period of time, patterns emerge. These patterns in
taken branch targets represent a sequence of basic blocks
executed in succession. Using our cross core technique, re-
curring sequences of basic blocks can be detected and traces
can be formed without instrumenting the application. This
presents a solution that is unobtrusive to the application’s
execution.

4.1 Using Patterns
The first step is to collect a small history of taken branch

targets called a branch target window. We use our pattern
detection algorithm to learn candidate trace patterns from
this window.

To detect patterns we use the sequitur algorithm, devel-
oped by Nevill-Manning et al. [14] The sequitur pattern
detection approach is very well suited to our problem be-
cause it is fast (linear execution time), concise, and intuitive.
Sequitur builds a tree that represents the hierarchical struc-
ture from any sequence of elements. Grammatical symbols
are associated with subsequences in the elements that oc-
cur more than once, and a hierarchical structure emerges.
Whether these are sequences of numbers, letters, or any
other data objects that can be compared, the sequitur al-
gorithm can build a tree where each node in the tree can



Address:  30   42    20   12   12 24     2

Delta:       12   -22   -8   0    12   -22

Sequitur: S-> A -8 0 A
A-> 12 -22                

S
Tree:

A                    A

Figure 5: An Example of Sequitur
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Figure 6: Our Adaptive Trace Selection Approach

be expanded to a subsequence that occurs in the window of
elements more than once. For example in Figure 5, a simple
example of a sequitur tree is built from a small number of
elements. In this example, one pattern emerges: 12 -22. Se-
quitur associates the grammatical symbol A to this pattern.
Grammatical symbols represent our candidate traces.

The sequitur pattern detection algorithm is a part of our
trace selection approach. Beyond detecting recurrent subse-
quences, we must also harvest these candidates traces that
meet predefined criteria; only a subset of these are chosen
for final selection.

4.2 Adaptive Trace Selection
Hot traces are placed in a trace bank. The trace bank

holds the currently active traces. When a trace becomes
cold, i.e. it has not recently been executed, it is invalidated
and removed from the trace bank. Remember that since we
are not obtruding our application, we can perform this trace
bank management with no penalty to the application.

In Figure 6 we give an overview of our adaptive approach.
In the monitoring phase, we simply probe the CWBTB, col-
lect new branch targets, and place them in the taken branch
window. The branch window size can be fixed or dynam-
ically resized to adjust to the desired pattern granularity.
In our case this size ranges between 20 and 500 branch tar-
gets.When the taken branch history window is full, we go
into analysis phase. Here we run our pattern detection algo-
rithms, harvest for good trace forming patterns, add them
to the trace bank, remove stale traces, clear the current win-
dow, and return to monitoring phase.

Our approach also tries to automatically detect the best

window sizes for producing a number of patterns that is
space efficient, but also captures the relevant hot regions of
code. In our experiments we have set the ideal number of
hot traces to detect per window to be between 5 to 30. This
means if we detect any less than 5 hot traces we increase the
window size; if we find any more than 30 we decrease the
window size.

5. EVALUATION
To evaluate our approach, we use the Pin instrumenta-

tion framework [11]. Pin provides an API interface to the
dynamic profiling of native application binaries. Using this
API we implement our baseline trace selection algorithm,
as well as our multicore enabled approach. This evaluation
methodology has been validated by previous work [6].

With Pin we are able to simulate the core wide branch
trace buffer (CWBTB) by simply instrumenting the branches
of the application to send the instruction address and branch
target of every executed branch to our trace selection en-
gine. Our trace selection engine then analyzes this branch
information to execute our trace selection algorithms and
generate the necessary statistics.

For our baseline approach we use the next executing tail
algorithm. Similar to previous work, the benchmarks we
use are the SPEC2006 test suite [6]. We compile the SPEC
benchmarks using GCC 4 on Pentium Xeons.

5.1 Metrics
The first metric we use to evaluate and compare our trace

selection techniques is the percent of time, represented by
dynamic instructions, spent on traces. If traces are formed
but infrequently executed, little benefit can be gained. The
second metric involves the ideal trace execution metric. As
mentioned before, an ideal trace execution occurs when a
trace is executed in its entirety.

The final metric we use to evaluate our trace quality is the
length of our traces. We identify exactly how many basic
blocks our typical trace spans. Longer traces present better
optimization opportunities which can better be exploited
when we have ideal trace executions.

5.2 Results
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Figure 7: Here we show the percent of dynamically
executed code spent on traces.

In Figure 7, we compare the dynamic code coverage of our
approach to NET. In this graph we consider traces that span



at least 2 basic blocks as most code optimization opportuni-
ties on a single block can be exploited by the static compiler.
As can be seen in Figure 7, our approach outperforms NET
by a considerable margin in all but 3 benchmarks. On aver-
age, we spend 33% more time on traces than NET.
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Figure 8: Here we show the percent of dynamically
executed code spent on ideal trace executions.

Our ideal trace execution cover is also quite good com-
pared to NET’s. Figure 8 shows that the amount of execu-
tion time spent executing traces to completion. Achieving
more ideal trace executions is one of the major goals of our
approach. Figure 8 shows that on average, we more than
double the ideal trace executions of NET. This naturally
raises the question of what the typical size for these ‘ideal’
traces are.

 MEATS

 NET (ideal)

 NET

 MEATS (ideal)

as
ta

r  0

  10

  20

  30

  40

  50

m
ea

n

x
al

an

sj
en

g

o
m

n
et

p
p

m
cf

li
b
q
u
an

tu
m

h
m

m
er

h
2
6
4
re

f

g
o
b
m

k

g
cc

b
zi

p
2

T
ra

ce
 L

en
g
th

 (
B

as
ic

 B
lo

ck
s)

Figure 9: The trace lengths of our approach are sig-
nificantly longer than NET’s.

Our traces are also longer than NET’s. In Figure 9 we
show the average length of our hot traces. Our technique
produces traces that are 3x to 10x as long as NET. This is
due to the partial unrolling that can occur, and the complex
paths that may revisit basic blocks. Most interestingly, the
average length of even our ideal trace executions is quite a
bit longer than those of NET’s. Having such long traces cre-
ates much more optimization potential than those presented
NET’s traces.

6. RELATED WORK
In this section we first discuss the relevant research in dy-

namic optimization and then we discuss work dealing specif-
ically with the runtime trace selection problem.

There are two classes of hot code based optimizers: those
that are method based and those that are trace based. Dy-
namic optimization frameworks that target bytecode [15, 18,
1] detect frequently executed methods and identify them as
hot. These hot methods are then compiled and recompiled
at higher levels of optimization, depending on how often
they are executed.

There is also a class of dynamic optimizers and optimiza-
tion frameworks that deal with native binaries directly [2,
3, 17]. This class is known as binary translators. These
dynamic optimizers typically form program traces and use
these traces to apply dynamic optimization techniques.

Some research attention has been paid to dynamic opti-
mization approaches using multicore architecture. Work in
the Java VM community dealing with parallel recompilation
shows the importance of intelligently scheduling the opti-
mizer thread [9]. However, this work deals with the method
level dynamic optimizers.

There has also been some research proposing a number of
hardware extensions to support software dynamic optimiza-
tion on multicore architectures [19, 20]. This work proposes
that trace selection occurs entirely in hardware and uses a
number of hardware extensions that, considering commer-
cial interest, are not available now and may not be available
in the future.

Trace selection and formation can occur in hardware specif-
ically as a hardware optimization. This type of trace forma-
tion been well studied [12]. Techniques such as the trace
cache [16] and trace preconstruction [7] use hardware func-
tional units and memory buffers to form traces. However,
these traces are not made available to software dynamic op-
timizers, thus limiting trace selection to hardware only.

Dynamic trace selection, namely the NET algorithm, was
developed and used by Bala et al. for the Dynamo project
[2], the first dynamic binary optimizer. Other software-
based trace selection techniques have also been developed.
Chen et al. [4] developed a technique to take advantage
of the branch trace buffer of the Itanium to assist in trace
selection. The Adore system [10] also proposes using the
branch trace buffer to identify hot traces. These approaches
deal more with the efficiency of detecting traces and less
about the quality of the traces themselves. Hiniker et al.
[6] developed the LEI trace selection algorithm which deals
with the question of trace quality. However, this work had
the same constraints of the NET algorithm of Dynamo, and
thus a lightweight algorithm for trace selection was devel-
oped. While LEI produced better loop spanning traces than
NET, it also shares many of NET’s limitations.

7. CONCLUSION
The hot spot monitoring requirement of dynamic opti-

mizers is one of its most expensive and inhibiting tasks. In
this paper we show that taking advantage of the multicore
architecture can enable us to develop more effective trace
selection techniques while remaining unobtrusive to the ex-
ecuting application. In addition we have demonstrated that
more sophisticated trace selection techniques can give us
higher quality traces. We presented a novel online trace



selection approach that takes advantage of global branch
target patterns to extrapolate longer traces that excel along
all current metrics. Producing higher quality traces can en-
able beneficial dynamic optimization

Multicore architectures are evolving. One major new fea-
ture of this evolution is the capability to use hardware in-
trospection. Through the use of performance monitoring
hardware we are able to monitor the effects and behaviors
of applications while incurring minimal to no overhead. We
believe that this evolution is moving towards the inclusion
of core wide hardware monitors, given the advantages they
offer to software.
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