A Map Reduce Framework for Programming Graphics Processors

Bryan Catanzaro
Narayanan Sundaram
Kurt Keutzer
Overview

- Map Reduce is a good abstraction to map to GPUs
 - It is easy for programmers to understand a computation in terms of Map Reduce
 - Map Reduce can map well to GPUs
- Programming efficient Map Reduce on the GPU can be hard
 - Reduction is a global operation, requiring coordination
- We show how a code generation framework for Map Reduce can ease programming and provide high performance
What is Map Reduce?

- "Map Reduce" can mean various things
- To us, it means
 - A map stage, where threads compute independently
 - A reduce stage, where the results of the map stage are summarized
- This is a pattern of computation and communication
 - Not tied to key/value pairs, etc...
- We consider Map Reduce computations where:
 - Each instance of a map function produces one set of outputs
 - Each of a set of reduce functions, gated by per element predicates, produces a set of outputs
Map Reduce on the GPU

- GPUs are well suited for the Map phase of Map Reduce
 - Lots of parallelism to execute independent threads, multithreading, high bandwidth

- The reduce phase is more difficult, since it introduces dependences
- The natural dependence graph must be restructured to provide these dependences
 - Only local communication allowed, global synchronization very expensive
Reduction on the GPU

- It’s well known that efficient reductions on the GPU are difficult

- Many choices
 - How much serialization
 - How much loop unrolling

- Pitfalls
 - Tree structure of reduction can map poorly to SIMD architectures
 - Bank conflicts

- Strongly data size dependent
 - The best reduction for one data set size may be 60x worse than the best for another data set size

- Solution: Have a framework take care of the reductions
 - At present, we provide two variations of a logarithmic reduction, that differ in their loop unrolling
Our framework takes as inputs:
- A Map function, written in CUDA, which produces:
 - A set of outputs in local memory
 - A set of predicates, controlling how the outputs should be used in the various reduce functions
- A set of binary reduce operators
- And a cleanup function which operates on the outputs of the reductions

And creates:
- A map + local reduce function
- A global reduce + cleanup function
Map Reduce: Map

- Map function produces outputs in local memory
 - Each output is an array with one entry per thread

- The Map function produces predicates which gate participation of each output in each reduction function
 - The predicates are stored in an array of integers, one entry per thread
 - This means we currently don’t support more than 32 reduce functions, since we use a bit in every entry for each reduce
 - Predicates provide algorithmic selection (limited “keys” from Google MR) and solve thread count boundary issues
Map Reduce: Reduce

- Reduce operators take two sets of inputs, and produce one set of outputs

- Reduce operators must be associative (or at least pseudo-associative, like floating-point add)
 - This gives us flexibility to restructure the reduction however is best

- Reduce operators must provide an identity value
Support Vector Machines

- SVMs are a popular binary classification technique
 - Recognition, Bioinformatics, Text processing, Network security, etc.
- The idea is to find a hyperplane separating labeled training data with maximal margin
- New points are classified against the hyperplane
- Maximal margin criterion provides generality
- Use of kernel functions allows for nonlinearity

\[w \cdot x + b = 1 \]
\[w \cdot x + b = -1 \]
\[\hat{x} = \text{sgn}(w \cdot x + b) \]
SVM Training

- Quadratic Program

\[
\max \sum_{i=1}^{l} \alpha_i - \frac{1}{2} \alpha^T Q \alpha
\]

s.t. \(0 \leq \alpha_i \leq C, \quad \forall i \in [1, l] \)

\[
y^T \alpha = 0
\]

\[
Q_{ij} = y_i y_j \Phi(x_i, x_j)
\]

- Some kernel functions:

\[
\Phi(x_i, x_j; a, r, d) = (ax_i \cdot x_j + r)^d
\]

\[
\Phi(x_i, x_j; \gamma) = \exp\{-\gamma||x_i - x_j||^2\}
\]

Variables:

- \(\alpha \): Weight for each training point (determines classifier)

Data:

- \(l \): number of training points
- \(C \): trades off error on training set for generalization performance
- \(y \): Label (+/- 1) for each training point
- \(x \): training points

Polynomial

Radial Basis Function
SVM Training: Implementation

- We use the Sequential Minimal Optimization algorithm
- The computation is iterative, with each iteration containing a Map Reduce
 $i \quad i+1 \quad i+2 \quad i+3 \quad i+4 \quad i+5 \quad i+6 \quad i+7$
- The framework enables composition of the loop & the Map Reduce
 - Library based approaches have too much overhead
- At each iteration, we find the arg max and arg min of two data dependent subsets of a vector
 - Predication used for algorithmic purposes
- SVM Training requires computation of a large matrix
 - We cache rows of this matrix on the GPU, managing the cache on the CPU
SVM Training Results

Comparing GeForce 8800GTX to LibSVM, on 2.66 GHz Intel Core 2 Duo
10-30x speedup
This despite our currently naive algorithm compared to competitors
Map Reduce Framework reduced kernel LOC by 34%
SVM Classification

- Training points with nonzero weights determine the classifier
 - “Support Vectors”
- Classify new point against support vectors:

\[
\hat{z} = \text{sgn} \left\{ b + \sum_{i=1}^{l} y_i \alpha_i \Phi(x_i, z) \right\}
\]

- SVM Classification involves lots of dot products
- We cast the dot products as an SGEMM, and then use the Map Reduce framework to finish the classification
SVM Classification Results

- 120-150x speedup
 - Some of this is due to suboptimal implementation by LibSVM
- Map Reduce Framework reduced kernel LOC by 64%
Conclusion & Future Work

- The Map Reduce programming framework is a natural fit for GPUs
- Using the framework saves significant programmer effort
 - The most error prone sections of code subsumed in framework
 - Framework enables composition of Map Reduce computations
- Our SVM training and classification implementations perform well on the G80

Future work
- Prove applicability of framework with more applications
- Add more reduction styles (including hybrid CPU/GPU reductions)
The end