
One Representation to Rule Them All
Combining analyses on SSA with On-Demand SSA Construction

Paul Biggar ∗

Trinity College Dublin
pbiggar@cs.tcd.ie

David Gregg
Trinity College Dublin
david.gregg@cs.tcd.ie

1. The elephant in (SSA’s) room
Static single assignment form (SSA) [5] is nearly ubiquitous in
the compiler world. It is dearly loved by most compiler writers,
and even more so by undergraduate compiler-class instructors. Its
popularity comes from a number of powerful features:

• It fits neatly into a 45 minute exam question.
• It provides flow-sensitivity for free.
• It adds sparseness to analyses, which can greatly reduce their

run-time (especially for propagation algorithms).
• The single assignment property greatly reduces memory usage,

compared to traditional bit-vector analyses.
• Factored use-def chains mitigate the explosion in memory use

of use-def chains in certain circumstances.

In an ideal world, every compiler could use an end-to-end SSA
representation, from just after parsing [2], right the way through to
code generation [7].

1.1 Problem
But a great big elephant sits in the room: you can’t just go straight
into SSA form. In real compilers/languages, some form of alias
analysis must be performed before SSA construction. Even in rep-
resentations that incorporate alias analysis results into SSA, such
as HSSA1 [4], the alias analysis runs first, as a separate pass. As
a result, the alias analysis cannot run on SSA, and cannot benefit
from its properties.

There have been a few nice ideas for more precise alias analysis
recently. Our favourite, from Pioli and Hind [11], avoids analysing
unrealizable paths by performing Conditional Constant Propaga-
tion (CCP) simultaneously with alias analysis. However, this re-
quires moving another analysis out of SSA form, reducing further
its benefits.

One of the most elegant features of SSA is that it allows a
unified value propagation framework. Sparse Conditional Constant

∗ Thanks to the Irish Research Council for Science, Engineering and Tech-
nology funded by the National Development Plan, whose funding made this
work possible.
1 Hashed-SSA adds χ and µ nodes, in addition to φ nodes, to represent
possible indirect definitions and uses due to aliasing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
FIT (PLDI) ’09 16 June 2009, Dublin, Ireland.

Propagation (SCCP) [14] provides a general framework for ef-
ficient value propagation through symbolic execution, which is
strictly more powerful than a combination of unreachable-code
elimination and simple constant propagation. This framework has
also been shown to work for value-range propagation (VRP) [10]
and type-inference [8]. In an ideal world, call-hierarchy analysis
[6], string-range propagation [13], and many value propagation
analyses would be performed within the same framework.

But here everything falls apart. If CCP is to be performed
alongside alias analysis, the sparse form cannot be used. This can
make it dangerous to use an analysis that uses a deep lattice, such
as VRP. The efficient representation is also lost, as a value must be
stored for each program point rather than for each unique definition
in a function. For algorithms which store values, like CCP, this can
be expensive.

Existing solutions to these problems are awful. As well as being
less powerful than Pioli’s solution, iterating over the analyses (i.e.
SSA → alias analysis → SSA → ...), leads to, well, iteration.
Worse still, there are languages like PHP which make it impossible
to create a non-pessimistic conservative estimate of a program’s
aliasing, making an iterative solution impossible.

1.2 Solution
The dream is to somehow combine all of these analyses. SSA
construction could use the results of an alias analysis which ran
on SSA form. If the phase ordering problems went away, all of this
would be possible.

What if we could combine SSA construction with the analyses
that use it? Essentially, we would construct SSA form on-demand:
simultaneously with alias analysis, SCCP, and other analyses which
use the SCCP algorithm. In effect, SSA construction would be just
another client of the SCCP algorithm.

This would achieve the precision of Pioli, the speed and mem-
ory efficiency of SCCP, and would not require iteration. Most im-
portantly, it would allow a “real” compiler to have an end-to-end
SSA representation.

To realize this, there are three requirements:

1. It must be possible to construct SSA using an SCCP framework.

2. We must show the results of alias analysis can be merged into
the SSA construction algorithm as it runs.

3. It must be possible to run each of these simultaneously without
error.

Below, we start this off by providing some of point 1, by de-
scribing an algorithm for SSA construction via symbolic execution.
It is completely unproven, and barely tested, but it looks right. We
prove points 2 and 3 by hand waving, since they sound like they
might work.



2. Algorithm
This section provides, quite seriously, our algorithm. It should
probably be skipped on first, and possibly subsequent, readings.

2.1 SCCP algorithm
We present a generalization of the SCCP algorithm [14]:

1. Use two worklists, one for CFG edges (from one basic block to
another), and one for SSA edges (from a definition to a use).

2. Starting at the entry node of the CFG worklist, analyse each
statement s of a basic block bb, then:

• For each variable definition d in s, add all uses of d to the
SSA worklist,
• Add each successor succ of bb to the CFG worklist, only if
succ is executable according to the analysis so far.

3. Once the CFG worklist is exhausted, analyse each statement s
which is the target of an edge in the SSA worklist, then:

• As above, for each variable definition d in s, add all uses of
d to the SSA worklist.

2.2 SSA construction algorithm
This generalized form of the SCCP algorithm can be used for
many client analyses. We extend it to allow SSA construction via
symbolic analysis, in the following way:

2.2.1 Assumptions
• Dominance information (the immediate dominator and domi-

nance frontiers of each basic block) is available.
• All variables in our program begin out of SSA form, and φ

nodes are not initially present anywhere in the program.
• When φ nodes are added, they are placed as the first statements

in the basic block.

2.2.2 Algorithm
Following the SCCP algorithm, for each statement s in a basic
block bb:

1. For each use u in s:

• Fetch an SSA version for u by searching upwards through
the dominance tree of bb for definitions of u:

• If no definitions are found, the zero version if chosen,
• If s is a φ node, we begin the search in the predecessor

of bb associated with u, rather than bb itself,

• If u already has a version, we must still recalculate it, since
a definition2 may have been inserted in between s and the
previous definition of u.

2. For each def d in s:

• Add an unversioned φ node p, named after d, to each dom-
inance frontier of b, and add p to the SSA worklist,
• Give a new version to d.
• Add the following uses of d to the SSA worklist:

• The unversioned d, from before SSA construction, as
they might not all have been reached,
• The version of d which holds just before the new defi-

nition, as this s may be a new statement inserted on an
existing path between some definition of d and its use.

2 Due to the addition of a φ node, or a χ node in HSSA form.

3. Future Work
While this is an exciting idea, there are a number of steps before
this research can be considered to be completed:
• We don’t really know if this works in general.
• We haven’t thought about complexity.
• Searching for a version could do with some caching.
• We have not really considered any of pruned, semi-pruned or

minimal forms.
• Pruned SSA form uses liveness information, which doesn’t fit

nicely into the SCCP framework.
• In some languages, exception conditions may need to be con-

servatively calculated. This might also be incorporated into the
SCCP framework.

4. Related Work
There are a slew of other SSA construction algorithms [1, 2, 3],
including one which looks like it might solve our problem [12].
In fact, none are suitable. However, we note the existence of an
unpublished algorithm in the Firm compiler [9], which constructs a
CFG simultaneously with SSA construction from Java bytecodes.
Although our algorithms are similar (especially the get value and
maturity abstractions), their algorithm lacks the ordering which
makes it suitable to be used with the SCCP algorithm. We believe
that they might be usefully combined in the future.

5. Conclusion
It looks like it should work, it solves a great and pressing problem,
and we have an algorithm that looks right.

References
[1] J. Aycock and R. N. Horspool. Simple generation of static single-

assignment form. In CC ’00.
[2] M. M. Brandis and H. Mössenböck. Single-pass generation of static

single-assignment form for structured languages. TOPLAS, 1994.
[3] P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson. Practical

improvements to the construction and destruction of static single as-
signment form. Softw. Pract. Exper., 28(8), 1998.

[4] F. C. Chow, S. Chan, S.-M. Liu, R. Lo, and M. Streich. Effective
representation of aliases and indirect memory operations in SSA form.
In CC ’96, 1996.

[5] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
Efficiently computing static single assignment form and the control
dependence graph. ACM Trans. Program. Lang. Syst., 13(4), 1991.

[6] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In ECOOP ’95.

[7] S. Hack and G. Goos. Optimal register allocation for SSA-form
programs in polynomial time. Inf. Process. Lett., 98(4), 2006.

[8] A. Lenart, C. Sadler, and S. K. S. Gupta. SSA-based flow-sensitive
type analysis: combining constant and type propagation. In SAC ’00.

[9] G. Lindenmaier. libFIRM – A library for compiler optimization
research implementing FIRM. Technical Report 2002-5, Sep 2002.

[10] J. R. C. Patterson. Accurate static branch prediction by value range
propagation. In PLDI ’95.

[11] A. Pioli. Conditional pointer aliasing and constant propagation. Tech-
nical report, Master’s thesis, SUNY at New Paltz, 1999.

[12] H. Saito and C. D. Polychronopoulos. sigma-SSA and its construction
through symbolic interpretation. In LCPC ’96.

[13] G. Wassermann and Z. Su. Sound and precise analysis of web appli-
cations for injection vulnerabilities. In PLDI ’07.

[14] M. N. Wegman and F. K. Zadeck. Constant propagation with condi-
tional branches. ACM Trans. Program. Lang. Syst., 13(2), 1991.


