
Can Computers be Programmed Productively in the Post-Dividend Era?

Rastislav Bodík, Justin Bonnar University of California, Berkeley

Doug Kimelman IBM T.J. Watson Research Center

We hold the future in our hands. If Bell’s Law is correct,

continuing miniaturization will further shrink the personal

computer. Handhelds will bring new usage modes, making

laptops obsolete.

This transition to a new computer class has been expected;

what has not been anticipated is that Moore’s Dividend has

run out. Exponential hardware speedups have disappeared,

leaving handhelds too power-constrained to run programs

written in productive languages. The need to close this

performance gap gives the programming languages

community the opportunity, perhaps for the first time ever, to

dramatically accelerate the ubiquity of a new computer class.

The new usage modes suggest that many new applications

will be written. The desire to accelerate their development

motivates our technical challenge — making programming

efficient handheld applications productive.

On the laptop, the roots of productive programming can be

traced to 1996 when the dynamically typed JavaScript

language was added to the web browser. Soon, programmers

were enjoying the convenience of the flow layout engine and

high-level frameworks. The browser grew successful by

spending Moore’s Dividend, ultimately enabling Web 2.0. In

this post-Dividend era, it will be sustained by clever software

engineering and familiar compiler optimizations, which will

be sufficient thanks to laptops relative abundance of CPU

cycles.

In contrast, evolutionary improvements alone may not enable

productive programming on the handheld. The tiny battery

and lack of cooling restricts the handheld CPU to about

0.5W, which makes it 12-times slower than a 20W laptop

CPU. Because browsers are CPU-intensive, they run about 7-

times slower on a handheld. As a result, a typical web page

renders in 15 seconds, and that’s too slow for handhelds to

break through as a new computer class.

To counteract the 12x performance penalty, we sacrifice

productivity. While laptop programmers develop for the

browser, handheld programmers reach for somewhat less

productive frameworks such as Java-based Android, or by

escaping to C on the iPhone. Historically, handhelds are the

first emerging class that is unable to use the best software

tools of its predecessor.

Hardware will continue to improve, of course, but at a much

slower pace. While future transistors will switch faster, on-

chip heat density will keep clock speeds constant, leaving us

with improvements in energy efficiency instead. These

improvements will eventually lead to fast handheld

processors, but only when today’s 20W laptop CPU can be

run at 0.5W. However, this is predicted to take twenty years

(see Section 6.2.1 in the Exascale report) – four-times longer

than it took to bridge the same 12x performance gap during

the 90’s.

It is tempting to address the problem by making the handheld

a thin client connected to the cloud. Unfortunately, there are

fundamental limits to what we can offload. First, the latency

of wireless communication will often exceed the 100ms user

interface perception threshold. Second, radio communication

may consume more energy than client-side computation.

Finally, disconnected operation, likely to remain a problem,

precludes relying on the cloud as a co-processor. The bottom

line: the handheld must be as standalone as the laptop.

Making handhelds productively programmable involves other

problems, such as designing new domain abstractions, but we

focus here on the problem of efficient execution of high-level

abstractions. Our goal is to reduce the abstraction tax, or the

runtime overhead of supporting productive abstractions. Is

the abstraction tax large enough to merit our attention? An

experiment by Chris Jones et al showed that a browser

application using the Google Maps API is about 100-times

slower than its C counterpart. It is revealing to realize that

only one in a hundred instructions delivers essential

functionality, while the rest merely build the ―scaffolding‖

for convenient software engineering.

There are many ways to make high-level programs more

efficient, but many of us in academia and industry are betting

on two technologies in particular: parallelization and

specializing virtual machines. Parallelism is popular because

scaling in energy efficiency (about 25%/2 years) will double

the number of cores roughly every four years. Specialization

is popular because it eliminates repeated sub-computations;

presumably the abstraction tax scaffolding is among them.

These techniques are technically sound but the goal of this

paper is to point out their inherent limitations and ask

whether they are the best directions for our research.

To evaluate their potential, we need performance metrics; the

most important on the handheld are responsiveness (speed of

the computation) and battery life (energy efficiency of the

computation). Perfect parallelization over n processors

improves responsiveness n-times. The total work remains

unchanged, so the battery life is not improved. Abstraction

tax reduction in general, and specialization in particular,

improves responsiveness as well as the battery life. If the

program is sped up m-times, both are improved m-times

because the program performs m-times less work. Let us also

consider voltage scaling, which improves battery life at the

cost of responsiveness, and can be used to translate the

speedup of parallelization into an improvement in battery

life. The idea is to slow down the clock frequency and

correspondingly also the supply voltage, improving energy

efficiency; the improvement is linear up to 2- to 3-fold

frequency reduction after which returns are diminishing.

http://en.wikipedia.org/wiki/Bell%27s_Law_of_Computer_Classes
http://www.designboom.com/cms/images/-Z95/wc2.jpg
http://www.wired.com/epicenter/2009/02/ted-digital-six/
http://research.microsoft.com/apps/pubs/default.aspx?id=70581
http://en.wikipedia.org/wiki/Comparison_of_JavaScript_frameworks
http://en.wikipedia.org/wiki/Instructions_per_second#Timeline_of_instructions_per_second
http://users.ece.gatech.edu/~mrichard/ExascaleComputingStudyReports/exascale_final_report_100208.pdf
http://www.opera.com/mobile/
http://www.skyfire.com/
http://www.useit.com/papers/responsetime.html
http://portal.acm.org/citation.cfm?id=1476589.1476628
http://www.cs.berkeley.edu/~bodik/research/cs262-abstraction-tax.pdf

After we plug in the constants, we see this quantitative

lesson: Considering the large (100x) abstraction tax and the

modest number of cores (about 10 in 10 years on the

handheld), it is more profitable to aim for a 10-fold tax

reduction than at 10-fold parallelization. Both appear

feasible to achieve, but compare their benefits: assume that

rendering of a web page takes r=10 seconds and consumes so

much energy that it allows b=1 hour worth of web page

downloads. Achieving 10-fold parallelization improves

responsiveness to an acceptable r=1 second but the battery

life stays at the unacceptable b=1 hour. To improve the

battery life, let us distribute the benefits of parallelization

with 3x voltage scaling, obtaining r=3sec and battery life

b=3hours. In contrast, 10-fold tax reduction yields

r=1 second and b=10 hours. The difference becomes clearer

once we realize that the speedup of tax reduction, st=10,

roughly equals the square of the parallelization benefit, sp≈3,

that is st ≈ sp
2. Combining the two compounds the benefits, of

course; parallelization should perhaps be applied once the

code has little abstraction tax.

Abstraction tax reduction is effective, but can it be performed

automatically? Specialization, also known as partial

evaluation, is a powerful transformation shown to be capable

of compiling away interpretation overhead. It does so by

statically evaluating computations observed to depend only

on runtime-static values. Recently, specialization has gained

new power through embeddings into dynamic optimizers,

leading to hopes that modern VMs will remove most of the

abstraction tax. We have examined three tax-heavy scenarios

from the web browser and show that specialization is

unlikely to be as profitable as we might hope.

Passing arguments as strings. When a JavaScript program

wishes to modify the style attribute of a HTML element, it

does so by communicating with the layout engine through

string values, for example with the expression tile.height
= x + "px". This interface is convenient because

programmatic manipulations use the familiar (textual) syntax

of CSS stylesheets. However, the interface is inefficient

because it converts the integer value x into a string and

concatenates "px", only to perform the inverse operation

within the layout library. Unfortunately, when the value x is

not constant the string manipulations cannot be specialized

away. Furthermore, half of this inefficient computation

occurs inside of the C++ layout library, outside of the reach

of a VM-resident specializer. Hence, even a perfect

specializer would be quite limited: because browsers spend

only 15% of their time executing JavaScript, it would reduce

the abstraction tax from the current 100x penalty to 85x. The

lessons are that (i) the tax of a productive construct may be

spread across components written in different languages; (ii)

the specialization of the tax requires semantic reasoning that

is higher-level than the classical constant propagation based

on runtime static values.

Page layout. Web applications create their user interface by

manipulating a document tree, which the browser then lays

out and renders. While convenient, the indirection is much

less efficient than drawing to the screen directly, particularly

for animations and other dynamic HTML effects that

repeatedly modify the document causing frequent re-layouts.

Because most of the document does not change between re-

layouts, specialization should be able to reduce the tax of

interpreting the tree. Again, this is hard to do, at least on

existing implementations of layout engines. First, consider

the calculation topk=((top1+height1)+height2)+
…+heightk-1 which computes the x-coordinate of the kth

stacked element. Assume that only height1 is dynamic.

While only one addition should be needed at runtime, all of

subcomputations are marked dynamic. It may seem trivial to

reassociate this computation and specialize them away, but

the subexpressions are spread across the document tree,

possibly obscured by a complex code base. Furthermore, the

intermediate results may be needed to render the other

stacked boxes, preventing any expression reassociation. If

we are unable to specialize coordinate calculations, can we at

least specialize away the tree traversal, so that unchanging

subtrees need not be revisited? In principle yes, but

programs frequently modify the document structure,

contaminating layout calculations up to the root node.

Finally, we need to know which portions of the document are

static, but applications provide no hints as to what changes

are going to occur next. Solving this problem seems to

require a reformulation of the layout process as well as the

interface with the scripting language.

Specializing embedded DSLs. Dynamic languages like

JavaScript enable the creation of high-level

frameworks/DSLs, such as the jQuery language for document

manipulation and animation. These productive languages

incur significant interpretation overhead, which

specialization could in principle remove. The challenge is

illustrated by the following idiomatic example: loop {
nodes = selectnodes(tree); …modify tree…; }.
Often the value of nodes in successive iterations remains

constant even though the tree has been modified; we would

like to specialize away subsequent calls to selectnodes.

However, doing so requires proving that changes to the tree

did not affect the set of selected nodes. A specializer that

reasons about the static nature of individual memory

locations does not seem powerful enough. A more tractable

approach seems to involve raising the level for reasoning

about animation abstractions with declarative primitives.

It seems that we currently cannot offer programming

techniques that are both productive and efficient enough for

handhelds. Parallelism does not sufficiently improve battery

life and classical specialization reasons at a prohibitively

low-level of abstraction. Our recommendation is to raise the

level of efficient abstractions, and do so with compilers

rather than with layers of unspecializable interpreters. It is

also interesting to realize that the ML-family languages are

efficient and productive in the hands of experts, but have not

been widely adopted. Designing an approachable language

that is both efficient and productive remains an open

problem.

We wish to thank Elad Alon, Krste Asanovic, Joel Galenson,

James Ide, Chris Jones, Tsu-Jae King, David Mandelin, Leo

Meyerovich, and the reviewers.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=931895
http://portal.acm.org/citation.cfm?id=1094811.1094837
http://blog.mozilla.com/dmandelin/tracemonkey-paper-pldi-2009/
http://blogs.msdn.com/ie/archive/2008/08/26/ie8-performance.aspx
http://jquery.com/

