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We hold the future in our hands. If Bell’s Law is correct, 

continuing miniaturization will further shrink the personal 

computer. Handhelds will bring new usage modes, making 

laptops obsolete. 

This transition to a new computer class has been expected; 

what has not been anticipated is that Moore’s Dividend has 

run out. Exponential hardware speedups have disappeared, 

leaving handhelds too power-constrained to run programs 

written in productive languages. The need to close this 

performance gap gives the programming languages 

community the opportunity, perhaps for the first time ever, to 

dramatically accelerate the ubiquity of a new computer class.  

The new usage modes suggest that many new applications 

will be written. The desire to accelerate their development 

motivates our technical challenge — making programming 

efficient handheld applications productive.  

On the laptop, the roots of productive programming can be 

traced to 1996 when the dynamically typed JavaScript 

language was added to the web browser. Soon, programmers 

were enjoying the convenience of the flow layout engine and 

high-level frameworks. The browser grew successful by 

spending Moore’s Dividend, ultimately enabling Web 2.0. In 

this post-Dividend era, it will be sustained by clever software 

engineering and familiar compiler optimizations, which will 

be sufficient thanks to laptops relative abundance of CPU 

cycles.  

In contrast, evolutionary improvements alone may not enable 

productive programming on the handheld. The tiny battery 

and lack of cooling restricts the handheld CPU to about 

0.5W, which makes it 12-times slower than a 20W laptop 

CPU. Because browsers are CPU-intensive, they run about 7-

times slower on a handheld. As a result, a typical web page 

renders in 15 seconds, and that’s too slow for handhelds to 

break through as a new computer class. 

To counteract the 12x performance penalty, we sacrifice 

productivity. While laptop programmers develop for the 

browser, handheld programmers reach for somewhat less 

productive frameworks such as Java-based Android, or by 

escaping to C on the iPhone.  Historically, handhelds are the 

first emerging class that is unable to use the best software 

tools of its predecessor. 

Hardware will continue to improve, of course, but at a much 

slower pace. While future transistors will switch faster, on-

chip heat density will keep clock speeds constant, leaving us 

with improvements in energy efficiency instead.  These 

improvements will eventually lead to fast handheld 

processors, but only when today’s 20W laptop CPU can be 

run at 0.5W.  However, this is predicted to take twenty years 

(see Section 6.2.1 in the Exascale report) – four-times longer 

than it took to bridge the same 12x performance gap during 

the 90’s.   

It is tempting to address the problem by making the handheld 

a thin client connected to the cloud.  Unfortunately, there are 

fundamental limits to what we can offload. First, the latency 

of wireless communication will often exceed the 100ms user 

interface perception threshold.  Second, radio communication 

may consume more energy than client-side computation. 

Finally, disconnected operation, likely to remain a problem, 

precludes relying on the cloud as a co-processor. The bottom 

line: the handheld must be as standalone as the laptop. 

 

Making handhelds productively programmable involves other 

problems, such as designing new domain abstractions, but we 

focus here on the problem of efficient execution of high-level 

abstractions.  Our goal is to reduce the abstraction tax, or the 

runtime overhead of supporting productive abstractions.  Is 

the abstraction tax large enough to merit our attention? An 

experiment by Chris Jones et al showed that a browser 

application using the Google Maps API is about 100-times 

slower than its C counterpart.  It is revealing to realize that 

only one in a hundred instructions delivers essential 

functionality, while the rest merely build the ―scaffolding‖ 

for convenient software engineering.  

 

There are many ways to make high-level programs more 

efficient, but many of us in academia and industry are betting 

on two technologies in particular: parallelization and 

specializing virtual machines.  Parallelism is popular because 

scaling in energy efficiency (about 25%/2 years) will double 

the number of cores roughly every four years. Specialization 

is popular because it eliminates repeated sub-computations; 

presumably the abstraction tax scaffolding is among them. 

These techniques are technically sound but the goal of this 

paper is to point out their inherent limitations and ask 

whether they are the best directions for our research.  

 

To evaluate their potential, we need performance metrics; the 

most important on the handheld are responsiveness (speed of 

the computation) and battery life (energy efficiency of the 

computation). Perfect parallelization over n processors 

improves responsiveness n-times. The total work remains 

unchanged, so the battery life is not improved. Abstraction 

tax reduction in general, and specialization in particular, 

improves responsiveness as well as the battery life.  If the 

program is sped up m-times, both are improved m-times 

because the program performs m-times less work. Let us also 

consider voltage scaling, which improves battery life at the 

cost of responsiveness, and can be used to translate the 

speedup of parallelization into an improvement in battery 

life.  The idea is to slow down the clock frequency and 

correspondingly also the supply voltage, improving energy 

efficiency; the improvement is linear up to 2- to 3-fold 

frequency reduction after which returns are diminishing.  
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After we plug in the constants, we see this quantitative 

lesson: Considering the large (100x) abstraction tax and the 

modest number of cores (about 10 in 10 years on the 

handheld), it is more profitable to aim for a 10-fold tax 

reduction than at 10-fold parallelization.  Both appear 

feasible to achieve, but compare their benefits: assume that 

rendering of a web page takes r=10 seconds and consumes so 

much energy that it allows b=1 hour worth of web page 

downloads. Achieving 10-fold parallelization improves 

responsiveness to an acceptable r=1 second but the battery 

life stays at the unacceptable b=1 hour.  To improve the 

battery life, let us distribute the benefits of parallelization 

with 3x voltage scaling, obtaining r=3sec and battery life 

b=3hours. In contrast, 10-fold tax reduction yields 

r=1 second and b=10 hours.  The difference becomes clearer 

once we realize that the speedup of tax reduction, st=10, 

roughly equals the square of the parallelization benefit, sp≈3, 

that is st ≈ sp
2. Combining the two compounds the benefits, of 

course; parallelization should perhaps be applied once the 

code has little abstraction tax.  

Abstraction tax reduction is effective, but can it be performed 

automatically? Specialization, also known as partial 

evaluation, is a powerful transformation shown to be capable 

of compiling away interpretation overhead. It does so by 

statically evaluating computations observed to depend only 

on runtime-static values. Recently, specialization has gained 

new power through embeddings into dynamic optimizers, 

leading to hopes that modern VMs will remove most of the 

abstraction tax. We have examined three tax-heavy scenarios 

from the web browser and show that specialization is 

unlikely to be as profitable as we might hope. 

Passing arguments as strings. When a JavaScript program 

wishes to modify the style attribute of a HTML element, it 

does so by communicating with the layout engine through 

string values, for example with the expression tile.height 
= x + "px".  This interface is convenient because 

programmatic manipulations use the familiar (textual) syntax 

of CSS stylesheets.  However, the interface is inefficient 

because it converts the integer value x into a string and 

concatenates "px", only to perform the inverse operation 

within the layout library.  Unfortunately, when the value x is 

not constant the string manipulations cannot be specialized 

away. Furthermore, half of this inefficient computation 

occurs inside of the C++ layout library, outside of the reach 

of a VM-resident specializer. Hence, even a perfect 

specializer would be quite limited: because browsers spend 

only 15% of their time executing JavaScript, it would reduce 

the abstraction tax from the current 100x penalty to 85x. The 

lessons are that (i) the tax of a productive construct may be 

spread across components written in different languages; (ii) 

the specialization of the tax requires semantic reasoning that 

is higher-level than the classical constant propagation based 

on runtime static values. 

Page layout. Web applications create their user interface by 

manipulating a document tree, which the browser then lays 

out and renders. While convenient, the indirection is much 

less efficient than drawing to the screen directly, particularly 

for animations and other dynamic HTML effects that 

repeatedly modify the document causing frequent re-layouts. 

Because most of the document does not change between re-

layouts, specialization should be able to reduce the tax of 

interpreting the tree.  Again, this is hard to do, at least on 

existing implementations of layout engines.  First, consider 

the calculation topk=((top1+height1)+height2)+ 
…+heightk-1 which computes the x-coordinate of the kth 

stacked element.  Assume that only height1 is dynamic. 

While only one addition should be needed at runtime, all of 

subcomputations are marked dynamic. It may seem trivial to 

reassociate this computation and specialize them away, but 

the subexpressions are spread across the document tree, 

possibly obscured by a complex code base.  Furthermore, the 

intermediate results may be needed to render the other 

stacked boxes, preventing any expression reassociation.  If 

we are unable to specialize coordinate calculations, can we at 

least specialize away the tree traversal, so that unchanging 

subtrees need not be revisited?  In principle yes, but 

programs frequently modify the document structure, 

contaminating layout calculations up to the root node. 

Finally, we need to know which portions of the document are 

static, but applications provide no hints as to what changes 

are going to occur next. Solving this problem seems to 

require a reformulation of the layout process as well as the 

interface with the scripting language. 

Specializing embedded DSLs. Dynamic languages like 

JavaScript enable the creation of high-level 

frameworks/DSLs, such as the jQuery language for document 

manipulation and animation. These productive languages 

incur significant interpretation overhead, which 

specialization could in principle remove.  The challenge is 

illustrated by the following idiomatic example: loop { 
nodes = selectnodes(tree); …modify tree…; }. 
Often the value of nodes in successive iterations remains 

constant even though the tree has been modified; we would 

like to specialize away subsequent calls to selectnodes.  

However, doing so requires proving that changes to the tree 

did not affect the set of selected nodes.  A specializer that 

reasons about the static nature of individual memory 

locations does not seem powerful enough.  A more tractable 

approach seems to involve raising the level for reasoning 

about animation abstractions with declarative primitives. 

 

It seems that we currently cannot offer programming 

techniques that are both productive and efficient enough for 

handhelds.  Parallelism does not sufficiently improve battery 

life and classical specialization reasons at a prohibitively 

low-level of abstraction.  Our recommendation is to raise the 

level of efficient abstractions, and do so with compilers 

rather than with layers of unspecializable interpreters. It is 

also interesting to realize that the ML-family languages are 

efficient and productive in the hands of experts, but have not 

been widely adopted.  Designing an approachable language 

that is both efficient and productive remains an open 

problem. 
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