Simple thread semantics require race detection

Hans-J. Boehm

HP Labs
Hans.Boehm®@hp.com

Abstract

Data race detectors are commonly viewed as debugging tools. We
argue that if we knew how to make them both fully accurate and
sufficiently fast for “always on” use, they could address an addi-
tional and much more foundational role: They would allow us to
give precise, simple, and safe semantics to shared variables in mul-
tithreaded programs, a problem that has so far defied a complete
solution.

1. Introduction

Data races are well-recognized as a common source of particularly
difficult-to-diagnose bugs in parallel programs. As a result many
tools have been built to explicitly detect data races, either at com-
pile time, or as the program is executing (cf. [6, 8]).

Although code correctness typically requires stronger proper-
ties, such as atomicity[7] or even determinacy, data-race-freedom
remains interesting since it is a well-defined condition that is
easy to check, even in the absence of any additional programmer-
supplied specifications. This is particularly true for a number of
important language specifications, notably the expected upcoming
revisions of the C and C++ language standards [14, 11, 15] and
the much earlier Posix threads [10] and Ada [17] standards, that
explicitly treat all data races as programmer errors [1]. In these
languages, an accurate (no false positives) data race detector, such
as [6] or [8], by definition diagnoses only actual errors.

Here we argue that there is another, different argument for
accurate data-race detection: If we could guarantee that data races
are always detected, we get much simpler program semantics, and
hence it becomes far easier to reason about programs.

Part of this is already fairly widely appreciated: Many mod-
ern programming languages promise sequentially consistency [12]
i.e. that the behavior of a program can be understood as simply
interleaving the actions of its threads, but only in the absence of
data races [1]. Both Java and the upcoming C and C++ standards
promise sequential consistency for data-race-free programs that
avoid some, relatively esoteric, library routines.

But there are two additional reasons we would really like to see
an accurate mechanism for detecting and avoiding data races, e.g.
by throwing an exception as in [6]:

1. Data-race-free programs are independent of the granularity at
which memory accesses are performed. They exhibit the same
behavior on a machine that accesses memory a byte-at-a-time
as it does if memory is accessed 64 bits at a time. Similarly,
accesses to library or user-defined synchronization-free data
structures behave atomically. In both cases, a half-updated data
structure can’t be observed by another thread, since the observer
thread would introduce a data race.

Note that this property is orthogonal to sequential consistency.

2. It has proven to be very difficult to define the meaning of pro-
grams with data races in a way that both disallows behavior that

can result in blatant security holes, and allows simple meaning-
preserving compiler transformations on source programs.

The first point above would allow us to, for example, remove
a small, but ugly, wart from the Java language specification. If we
could ensure that no data races were ever executed, we would no
longer need the special exception (section 17.7 in [9]) that allows
a half-updated long or double to be observed by the program.
A program that would otherwise have seen a half-updated long
would instead throw a data-race exception, so that the program
would never see such a value.

But the second point is much more important: If we didn’t
have to define the semantics of data races, the most complex piece
of the Java memory model specification, the so-called “causality”
treatment could be removed, solving some open problems with the
specification in the process.

We present an overview of why it is so important and attractive
to remove this specification, and how we got here to start with.
Although we believe that a few members of the community are
generally aware of these issues, we are only aware of a hints of
this in the literature [16, 6], and we believe it is under-appreciated.
By specifying the problem more directly, we point out possible
avenues for addressing the remaining performance problems, and
argue that a practical solution might actually be feasible.

2. Enforcing “causality”

Languages like Java must ensure that malicious code cannot gen-
erate “out of thin air” results. A simple memory model that always
allows a load to see the result of a racing store to the same memory
location does allow “out-of-thin-air” results. To see this consider

Thread 1 | Thread 2
rl = x; r2 =y;
y =rl; X = r2;

where x and y are shared variables, and all variables are initially
zero.! (Effectively one thread copies x to y while the other simul-
taneously copies y to x.) If each load of a shared variable can see
the store of the shared variable in the other thread, r1 and r2 may
contain any value whatsoever, e.g. rl = r2 = 42 becomes an ac-
ceptable final outcome. If both loads see a value of 42, both stores
will store 42, circularly validating the originally loaded values.

This even corresponds to an intuitively semi-plausible execu-
tion. The compiler might predict, e.g. based on past profiling in-
formation, that this code is likely to be executed when x = y = 42,
speculatively store 42 in each thread, and then verify that the loaded
value matches the expected one. Such code would be correct for se-
quential execution, but result in our questionable outcome.

However, in a Java-like language, this is completely unaccept-
able. If a piece of untrusted and malicious code introduced such a
race on String variables, x and y, these semantics would allow

I There is an interesting related example in section 17.4.8 of [9]

2009/6/10



the implementation to set x and y to any “out-of-thin-air” string,
including the password of your bank account.

Obvious attempts to outlaw this behavior fail by also outlawing
common and important compiler transformations. To see the begin-
nings of the difficulties, consider that r1 = r2 = 42 must be a valid
outcome if the stores in the above example are replaced by y = 42
and x = 42 respectively; anything else would be very expensive to
enforce on some common hardware.

This problem was addressed by the causality treatment in the
Java memory model[13], which was reflected in section 17.4.8
of [9]. Although this approach, unlike its predecessor, appears to
be somewhat workable, it still looks problematic. In particular:

e This is arguably the most complex aspect of the Java specifica-
tion.

e There is strong evidence that it has been correctly understood by
very few people. For example, [13] claims (Theorem 1) that se-
mantics are not affected by reordering independent statements,
which is refuted by [2], a result that was also a surprise to even
JSR133 (memory model) participants, including me.

e Although alternate specifications for Java-like languages have
been proposed [16], these also appear too complex to have
generated much of a following.

Although [13] is probably the best existing solution to this
problem, and certainly represents substantial progress, it is not
entirely satisfactory, and we’d like to do better.

3. Alternate solutions

The obvious solution here is to insist that every load of a shared
variable can only see a store that “happens before” it, i.e. that
ordering between stores and corresponding loads must be enforced
with sufficient synchronization. Such an ordering avoids any risk
of causal cycles as in the example above.

We can guarantee such ordering by avoiding data races. There
are two common approaches to doing so:

1. Data races result in “undefined behavior”. This solves the prob-
lem in C++0x [4, 11], except in the presence of the previously
mentioned esoteric library calls.

2. Statically enforce the absence of data races, as in e.g. [3].

At a minimum, the former doesn’t work for Java-like languages.
The latter requires extremely challenging trade-offs between type
system complexity and generality, which appears likely to continue
to limit its acceptance in the mainstream.

“Always on” data race detection provides a third option and a
way out. If a racing load throws an exception rather than returning
a value, there is no need to specify the value. The only substantial
disadvantage appears to be performance.

4. Variations and implications

We can avoid specifying general semantics of racing loads by
enforcing conditions weaker than data-race-freedom.

At a minimum, there is no need to detect write-after-read races.
Even if we don’t detect these, every load either sees a store that
happened before it, or results in an exception. This significantly,
but probably still insufficiently, reduces the cost of race detectors
like [8] by eliminating the need to track reads from each location,
while perhaps only modestly reducing their utility for debugging.

In a slightly different context, Luis Ceze et al. suggest [5]
detecting only sequential consistency violations. This may be more

2 Clearly such a static solution may still be attractive for particularly critical
applications.

practical, but seems to sacrifice more essential properties, such as
insensitivity to memory access granularity.

We are currently exploring other intermediate properties that
might represent more desirable tradeoffs.

Acknowledgments

This benefitted from discussions with Sarita Adve, Luis Ceze,
Dhruva Chakrabarti, Cormac Flanagan, Vivek Sarkar, Rob Schreiber,
Yin Wang, and others.

References

[1] S. V. Adve. Designing Memory Consistency Models for Shared-
Memory Multiprocessors. PhD thesis, University of Wisconsin-
Madison, 1993.

D. Aspinall and J. Sevcik. Java memory model examples: Good,
bad, and ugly. VAMPO7 Proceedings http://www.cs.ru.nl/
~chaack/VAMPO7/, 2007.

[3] R. L. Bocchino Jr., V. S. Adve, D. Dig, S. Adve, S. Heumann,
R. Komuravelli, J. Overby, P. Simmons, H. Sung, and M. Vakilian.
A type and effect system for deterministic parallel java. Technical
Report UIUCDCS-R-2009-3032, UIUC, 2009.

[4] H.-J. Boehm and S. Adve. Foundations of the C++ concurrency
memory model. In Proc. Conf. on Programming Language Design
and Implementation, pages 68—78, 2008.

[2

—

[5] L. Ceze, J. Devietti, B. Lucia, and S. Qadeer. A case for system
support for concurrency exceptions. In HotPar, 2009.

[6] T. Elmas, S. Qadeer, and S. Tasiran. Goldilocks: a race and
transaction-aware java runtime. In Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and
Implementation, pages 245-255, 2007.

[7

—

C. Flanagan and S. Freund. Atomizer: A dynamic atomicity checker
for multithreaded programs. Science of Computer Programming,
71:89-109, 2008.

[8] C. Flanagan and S. Freund. FastTrack: Efficient and precise
dynamic race detection. In Proceedings of the ACM SIGPLAN 2009
Conference on Programming Language Design and Implementation,
2009.

[9]1 J. Gosling, B. Joy, G. Steele, and G. Bracha. Java Language
Specification, 3rd edition. Addison Wesley, 2005.

[10] IEEE and The Open Group. [EEE Standard 1003.1-2001. 1EEE,
2001.

[11] ISO/IECJTC1/SC22/WG21. ISO/IEC 14882, programming language
- C++ (committee draft). http://www.open-std.org/jtcl/
sc22/wg21/docs/papers/2008/n2800 . pdf, 2008.

[12] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. [EEE Transactions on Computers,
C-28(9):690-691, 1979.

[13] J. Manson, W. Pugh, and S. Adve. The Java memory model. In Proc.
Symp. on Principles of Programming Languages, 2005.

[14] C. Nelson and H.-J. Boehm. Concurrency memory model (final
revision). C++ standards committee paper WG21/N2429=J16/07-
0299, http://www.open-std.org/JTC1/SC22/WG21/docs/
papers/2007/n2429 . htm, October 2007.

[15] C. Nelson, H.-J. Boehm, and L. Crowl. Parallel memory sequencing
model proposal. C standards committee paper WG14/N1349, http:
//wuw.open-std.org/JTC1/sc22/wgld/www/docs/n1349.
htm, February 2009.

[16] V. Saraswat, R. Jagadeesan, M. Michael, and C. von Praun. A theory
of memory models. In PPoPP 07, March 2007.

[17] United States Department of Defense. Reference Manual for the
Ada Programming Language: ANSI/MIL-STD-1815A-1983 Standard
1003.1-2001, 1983. Springer.

2009/6/10



