Dependency-driven Parallel Programming

Eva Burrows *

Magne Haveraaen

Department of Informatics, University of Bergen, Norway
May 15, 2009

Abstract

The appearance of low-cost highly parallel hardware
architectures has raised the alarm that a radically
new way of thinking is required in programming to
face the continually increasing parallelism of hard-
ware. In our data dependency based framework, we
treat data dependencies as first class entities in pro-
grams. Programming a highly parallel machine or
chip is formulated as finding an efficient embedding
of the computation’s data dependency into the un-
derlying hardware’s communication layout. With the
data dependency pattern of a computation extracted
as an explicit entity in a program, one has a powerful
tool to deal with parallelism.

1 Parallelism today

Computational devices are rapidly evolving into mas-
sively parallel systems. Multi-core processors are
standard, and high performance processors such as
the Cell processor [3] and graphics processing units
(GPUs) featuring hundreds of on-chip processors
(e.g. [5]) are all developed to accumulate process-
ing power. They make parallelism commonplace, not
only the privilege of expensive high-end platforms.
However, current parallel programming paradigms
cannot readily exploit these highly parallel systems.
In addition, each hardware architecture comes along
with a new programming model and/or application
programming interface (API). This makes the writ-
ing of portable, efficient parallel code difficult. As the
number of processors per chip is expected to double
every year over the next few years, entering paral-
lel processing into the mass market, software needs
to be parallelized and ported in an efficient way to
massively parallel, possibly heterogeneous, architec-
tures. The programming community is in great need
of high-level parallel programming models to adapt
to the new era of commonly available parallel com-
puting devices.

*http://www.ii.uib.no/"eva/
Thttp://www.ii.uib.no/ “magne/

2 Dependency-driven
thinking

Miranker and Winkler [4] suggested that program
data dependency graphs can abstract how parts of
a computation depends on data supplied by other
parts. In our formalism these graphs are captured by
algebraic abstractions — Data Dependency Algebras
(DDAs) — and turned into first-class citizens in pro-
gram code. This allows us to formulate the compu-
tation as expressions over consecutive computational
points of the dependency pattern, such that depen-
dencies between computational steps (DDA points)
become explicit entities in the expression itself.

A parallel hardware architecture’s space-time com-
munication layout, its API, can also be captured
by special space-time dependency patterns — Space-
Time Algebras (STAs). This is obtained by project-
ing the static spatial connectivity pattern of the hard-
ware over time. Mapping a computation to an avail-
able hardware resource then becomes a task of find-
ing an embedding of the computation’s DDA into the
STA of the hardware [2]. This can be defined and eas-
ily modified at a high-level using DDA-embeddings,
and a DDA-based compiler then can generate the ex-
ecutable for the required target mashine.

3 Little abstraction can do big
things

Due to limitations on paper size, we do not formally
define DDAs and STAs. Instead, we illustrate by
the means of some figures what DDA abstractions
enable us to do. Consider first the butterfly depen-
dency, which appears in many divide-and-conquer al-
gorithms, such as the Fast Fourier Transform. Fig. 1
shows the most common way it is layed out in a two
dimensional spatial grid.

In general, the points can be placed in many differ-
ent ways in a grid. The abstractions available in the
DDA concept allow us to easily define different map-
pings of the same dependency by placing the points in
different positions in the grid but preserving the de-



pendency relation between the points. This endows
us to control, at a high-level, the embedding of the
computation into the available hardware.

TR

= =

INV/F: 04
VAKX
N /XX
/AKX

R
V/

i
1

Figure 1: Butterfly dependency.

2

=

st

=1 =

= = -

Figure 2: Butterfly dependency layed out using an alter-
nativ DDA-projection setting.

BE-- e

Figure 3: Butterfly dependency with yet another pair of
projections.

VAKX

§§>>

=T

Figures 2-4 illustrates the same butterfly depen-
dency layed out using different DDA-projections.
Out of these, in particular the shuffle network plays
an important role in parallel processing.

Fig. 5 shows the dependency pattern of the Bitonic
sorter. This can be seen as a combination of several
butterfly dependencies of different height, each sub-
butterfly corresponding to a bitonic merge. This also
illustrates how data dependency abstractions entail
code-reusability and modularity.

4 Implementation

To be able to compile the embeddings onto a target
mashine, a DDA-enabled compiler is needed, and a
corresponding base language with constructs to ex-
press our proposed formalism. Currently, these ef-
forst are being carried out in the framework of the
Magnolia programming language [1], which itself is
under development. Magnolia allows the definition
of concepts to specify the interface and behaviour of
abstract data types which are useful to express the
DDA concepts.

Figure 4: Butterfly dependency layed out as a shuffle
network, as controlled by DDA-projections.

=

N>
KL

AN
N>

AN

Figure 5: Bitonic sort DDA for sorting 32 inputs.

References

[1] Anya Bagge and Magne Haveraaen. Interfacing
concepts. In T. Ekman and J. Vinju, editors,
Proceedings of the ninth Workshop on Language
Decsriptions Tools and Applications LDTA 2009,
pages 238-252, 2009.

[2] Eva Burrows and Magne Haveraaen. A hardware
independent parallel programming model. Jour-
nal of Logic and Algebraic Programming, (to ap-
pear), 2009.

[3] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata.
Cell Broadband Engine Architecture and its first
implementation — A performance view. IBM
Journal of Research and Development, 51(5):559—
572, 2007.

[4] W L. Miranker and A Winkler. Spacetime repre-
sentations of computational structures. Comput-
ing, 32(2):93-114, 1984.

[5] NVIDIA. CUDA Programming Guide, 2008.



