
Gradual Programming: Bridging the Semantic Gap
(Position Paper)

Bor-Yuh Evan Chang Amer Diwan Jeremy G. Siek
University of Colorado, Boulder

{evan.chang, amer.diwan, jeremy.siek}@colorado.edu

Abstract
There is no perfect programming language. Programmers must
write code conforming to the idiosyncrasies of a programming
language. Thus, there is often a disconnect between the intent of the
developer and the meaning of the program. This semantic gap has
a negative effect on programmer productivity, software reliability,
and execution efficiency. In this position paper, we argue that in
order to address this semantic gap, we must drastically rethink how
we develop software.

1. Introduction
Language design is an exercise in trade-offs. Is the language bi-
ased towards static safety or towards expressiveness? Is the lan-
guage biased towards applications that must be resilient to errors
or applications that can simply terminate? This list of trade-offs
goes on and on. For this reason, no language is a perfect fit for any
non-trivial programming task. Consequently, there is often a dis-
crepancy between what the programmer intends and what the code
actually means, which we call a semantic gap.

One instance of a semantic gap is when the meaning of a pro-
gram is missing behaviors that were intended by the programmer.
For example, the equals method in Java’s Object class [Gosling
et al. 2005] takes an argument of type Object, and Java’s type
system requires that any override of the equals method in any sub-
class must also take an argument of type Object. Thus, the equals
implementation for the Matrix class in Figure 1 takes an argument
of type Object instead of an argument of type Matrix. Thus, there
is less static checking than what was intended by the programmer.
While there is a good reason for the restriction on argument types
(allowing covariant argument types would introduce a hole in the
type system), it is counter-intuitive and not what the programmer
wants: the code fails to capture the programmer’s intent. If a client
of the Matrix class incidentally invokes equals with an object of
another class, Java’s type system will not catch the error at compile
time.

Another example of a semantic gap is when the meaning of
a program includes behaviors that were not intended by the pro-
grammer. Consider again the equals function in Figure 1. The
programmer intends this function to return true if the correspond-
ing elements of the two matrices are equal (as determined by
CompareFloats.same) and false otherwise. Unfortunately, the ac-
tual code does much more: it may throw an exception if parameter y
is a null pointer, it loops over the two matrices in a particular order
(which in this case exhibits poor data locality), it may dynamically
load and initialize the CompareFloats class, it may propagate ex-
ceptions that originate from the get method, the same method, or
from initializers run during dynamic class loading.

PLDI-FIT ’09 June 16, 2009, Dublin, Ireland.

class Matrix extends Object {
private double data[][]; private int nrows, ncolumns;
public double get(int i, int j) { return data[i][j]; }
public boolean equals(Object y) {
Matrix to = (Matrix)y;
if (this.nrows != to.nrows

|| this.ncolumns != to.ncolumns) return false;
for (int j = 0; j != ncols; ++j) {

for (int i = 0; i != nrows; ++i) {
if (!CompareFloats.same(get(i,j), to.get(i,j))

return false;
}

}
return true;

}
}

Figure 1. An excerpt from a matrix class demonstrating two in-
stances of a semantic gap.

Because of the semantic gap, the programmer’s intent is hidden
from both humans and tools that need to understand or transform
the code. Furthermore, we hypothesize that this gap has a pervasive
negative effect on programmer productivity, software reliability,
and execution efficiency.

The semantic gap reduces programmer productivity by affecting
the writability and readability of the code. To see this, consider
again our equals example. The author of the Matrix class cannot
write what she wants: she wants the equals method to take an
argument of type Matrix and not of type Object. A reader of
the Matrix class also suffers: she does not know what types of
arguments are actually legal to the equals method (as opposed to
what the Java type system allows).

The semantic gap degrades software reliability by crippling
tools designed to check and improve the safety of programs.
In particular, a tool that verifies safety properties of programs
needs to consider all the possibilities allowed by the code in-
stead of just the possibilities that are consistent with the program-
mer’s intent. For example, the equals method cannot cause an
ArrayIndexOutOfBoundsException; however, a conservative
tool cannot prove this property because get may be overridden by
a dynamically loaded subclass of Matrix. In general, the semantic
gap causes tools to produce overly conservative and thus less useful
results.

Finally, the semantic gap diminishes program efficiency by
hindering program transformations and specifically compiler op-
timizations. Like an analyzer, an optimizer also needs to consider
all the possibilities allowed by the code instead of the possibili-
ties that are consistent with the programmer’s intent. For example,
in the equals method, an optimizer could improve performance
by exchanging the order of the two loops and thus iterate over
the rows of the matrix instead of the columns. However, the body

1

of the loop contains potential side effects (e.g., get can throw an
ArrayIndexOutOfBoundsException), and reordering the loops
would change the order of these side effects. Thus, an optimiz-
ing compiler will not transform these loops even though such a
transformation would be consistent with the programmer’s intent.

For these reasons, we argue that we must rethink how we de-
velop software. Specifically, we should focus on programming lan-
guages, supporting IDEs, and methodologies that enable program-
mers to express their intent naturally and compactly. We envision
a new methodology and tool chain based on gradual program-
ming. With this approach, a programmer starts with a program that
best captures her intent. However, such a program may not provide
enough information to the development tool, such as the compiler.
The development environment then guides the programmer in fill-
ing in the missing information; specifically, in situations where it
matters, the development environment interacts with the user to ob-
tain the additional information that it needs. Thus, the programmer
ultimately ends up with a program that captures the exact behavior
she intended.

Our vision is indeed a radical departure from common wisdom.
In essence, we are advocating developing programs in a family of
languages with varying semantics. Then, part of the development
process involves nailing down the precise semantics of the pro-
gram. Such a position is not without significant challenges and pos-
sible pitfalls, which we outline in Section 2. We then sketch some
potential solutions to these issues in Section 3.

2. But language design is for experts
One possible counterargument to our proposal is that while pro-
gram development is hard, programming language design is even
harder. For example, it is widely accepted that programming lan-
guage design is not compositional. In other words, many problems
arise not from a single feature but from a combination of features.
For instance, a famous example in the history of programming lan-
guages is the combination of type inference with parametric poly-
morphism and imperative references (e.g., in the dialects of ML).
In particular, type safety can be subverted by allowing values of
one type to be stored into reference cells and read out as another
type. Modern ML dialects maintain type safety by imposing what
is known as the value restriction [Wright 1995]. Thus, a key chal-
lenge is that we need to ensure that the program developer’s choices
work consistently together.

Semantic gaps arise because any given programming language
offers only a fixed semantics for a given aspect of the language and
that semantics may or may not fit the intention of the programmer.
We refer to these aspects as semantic dimensions (or dimensions
for short). For instance, one dimension may be “what happens
when we dereference a null pointer?”. This dimension has at least
two reasonable variants: throw a null-pointer exception, which the
program may handle, or terminate the program. Existing languages
force one of these two variants on all programs in the language.

We are not in fact arguing that program developers should also
be language designers. Rather a gradual programming system may
involve several kinds of users, or roles, that require varying levels
of expertise in language design and semantics. For example, on a
particular software project, one language expert may be responsible
for deciding which semantic dimensions are allowed to vary. With
the ability to put constraints on the semantics that may vary, a
development environment for gradual programming becomes more
feasible.

3. Roles and tool support
Figure 2 gives an overview of how users interact with a potential
gradual programming system. Users play three distinct roles: the

Gather information

Program

Compile program

Instrumented program
programmer

Executable program

Compile program

(a) Instantiating an interactive grad-
ual programming compiler with lan-
guage plugins.

(b) Gradual programming with an
interactive compiler.

Figure 2. A potential gradual programming system.

plugin developer, the language composer, and the programmer.
The plugin developer creates variants for semantic dimensions by
implementing plugins that conform to the interfaces for the respec-
tive dimensions. Besides implementing the core functionality of a
variant (e.g., generating code to throw exceptions on a null pointer
dereference), plugins provide information that is useful for deter-
mining its interactions with plugins for other dimensions. The plu-
gin developer is expected to be an expert in compiler construction.
The language composer defines a language by selecting plugins.
For example, before starting a new project, a company may employ
a language composer who picks plugins for each dimension. If the
language composer picks more than one plugin for a dimension,
then the language will contain a choice that the programmer must
make (e.g., parameter passing mode). The language composer must
pick plugins that work well with each other. Though potentially as-
sisted by program analysis tools, the language composer must be an
expert in programming languages. The programmer uses the lan-
guage selected by the language composer. If the language has more
than one plugin for a given dimension, then there are two possibil-
ities: (i) if the compiler can determine that the different possibili-
ties all have the same observable behavior, then the compiler can
pick one automatically (e.g., it may pick one that enables the most
optimizations); (ii) if the compiler finds that different plugins be-
have differently for the program, then the compiler interacts with
the programmer to determine which of the possible plugins to use.
Such choices should be reflected in the program so that they are
maintained as the program evolves.

We argue that this stratification of users provides a path to
addressing the challenges while affording the flexibility we want
with gradual programming. In particular, programmers have the
ability to better specify their intent by deciding what “language
semantic” plugins apply at which points in their program. At the
same time, we leave the definition of dimensions and variants,
the implementation of plugins, and the checking of problematic
interactions to language or compiler design experts (i.e., the plugin
developer and the language composer).

4. Conclusion
The semantic gap between what the programmer intends and what
the code actually means significantly impedes our efforts to im-
prove programmer productivity, software reliability, and execution
efficiency. To address the semantic gap, we argue that we must rad-
ically rethink how we develop software towards a model, method-
ology, and system for gradual programming.

References
James Gosling, Bill Joy, Guy L. Steele Jr., and Gilad Bracha. The Java

Language Specification. Addison-Wesley, 3rd edition, 2005.
Andrew K. Wright. Simple imperative polymorphism. Lisp and Symbolic

Computation, 8(4):343–355, 1995.

2

	Introduction
	But language design is for experts
	Roles and tool support
	Conclusion

