
Mutable state in parallel programs

Matteo Frigo

June 10, 2009

The need for parallel state. Mutable state is generally re-
garded as problematic in the presence of parallelism.

Consider for example the imperative program in Figure 1, which
is intended to be an oversimplified proxy for more complicated sit-
uations. Like many real programs, fib() executes an irregular
control flow, occasionally updating the mutable state variable x.
This mutable state makes the program hard to parallelize. For ex-
ample, one cannot execute the two recursive calls to fib(n-1)
and fib(n-2) concurrently, because otherwise a determinacy race
would arise between the concurrent updates to x. One can resolve
the determinacy race by using some form of atomic addition, but
this solution serializes all updates to x, and therefore its completely
destroys the parallelism of the program.

Although in this simple case the obvious solution is to rewrite
fib() in a functional style, such a code restructuring is not prac-
tical in existing large programs that were never meant to execute
in parallel in the first place. I claim that, in order to parallelize
these programs, the meaning of mutable state must be redefined so
as to be compatible with parallelism. I now show how one way to
accomplish this goal.

Hyperobjects. One way to avoid the determinacy race on x is
to split x into multiple copies that are never accessed concurrently.
Well-known examples of this idea can be found in the __thread
storage class used by gcc to denote thread-local storage, and in the
private directive in OpenMP. Expanding on this concept, we de-
fine a hyperobject as an object that shows distinct views to different
observers, where the views of observers running concurrently are
guaranteed to be distinct (in the eq? sense). Hyperobject views are
therefore race-free by construction. Unlike the __thread anno-
tation, which is a storage class and only applies to variables, hy-
perobjects are first-class objects that can be allocated dynamically,
stored in classes or arrays, etc. Unlike the OpenMP private direc-
tive, hyperobjects are not tied to the lexical contour delimited, e.g.,
by a for loop.

Figure 2 shows how fib can be written using hyperobjects. The
program is written in the Cilk++ language, which augments C++
with fork/join parallelism expressed by means of the cilk_spawn
and cilk_sync keywords. The syntactic form x() (the view oper-
ator) returns a reference to a view of hyperobject x.

Reducers. More specifically, the hyperobject x from Figure 2 is a
reducer, which in addition to supporting multiple views, obeys pe-
culiar semantic rules that guarantee that fib() works as intended.
We first define some terminology, and then explain the rules.

Cilk Arts, Inc. matteo@cilk.com. This work was supported in part by
the National Science Foundation under SBIR Grants 0712243 and 0822896.

Submitted to the Fun Ideas and Thoughts session of PLDI’09.

int x;

void fib(int n) {
if (n < 2) {

x += n;
} else {

fib(n-1);
fib(n-2);

}
}

int main() {
x = 0;
fib(35);
printf("%d\n", x);

}

Figure 1: A sequential C/C++ imperative program that computes Fibonacci
numbers.

A parent procedure executing the statement cilk_spawn f()
forks the control flow of the program into a child f() and a contin-
uation, which is the portion of the parent procedure that follows the
spawn in the dynamic execution. (In the example, the continuation
starts with the execution of fib(n-2).) A cilk_sync statement
waits until both the child and the continuation have completed, and
then joins the control flow.1 A strand is a maximal segment of the
dynamic control flow of a program that does not contain forks or
joins. To reduce a right view r into a left view l means invoking
procedure reduce(&l, &r). An identity view is one constructed
by the identity() procedure.

We are now ready to state the rules of reducers.

1. All invocations of the view operator in the same strand return
the same (eq?) view. We say that the strand owns the view.

2. No two concurrent strands own the same view.

3. After a fork in the control flow, the child owns the view of the
parent, and the continuation owns a fresh identity view.

4. An implementation of reducers can axiomatically assume that
reducing an identity into a view does not alter the value of
the view. The implementation is free not to perform such
reductions at all.

5. Before completing a cilk_sync, the continuation’s view is
reduced into the child’s view. After this reduction, the parent
procedure owns the child’s view.

6. The reduction in Rule 5 can be executed at any time before
the join, provided that Rules 1 and 2 are not violated. Specif-
ically, if the child has completed before the continuation has
started, then the implementation can reduce the continuation’s
view into the child’s view, and give the child’s view to the

1In the actual Cilk++ language, the cilk sync statement waits for mul-
tiple children, but here for simplicity we consider only binary join opera-
tions.



#include <cilk.h>
#include <stdio.h>

extern "C++" {
template <typename T>
struct add_monoid : cilk::monoid_base<T> {

void reduce(T *left, T *right) const {
*left += *right;

}
void identity(T *p) const {

new (p) T(0);
}

};
}

cilk::reducer<add_monoid<int> > x;

void fib(int n) {
if (n < 2) {

x() += n;
} else {

cilk_spawn fib(n-1);
fib(n-2);
cilk_sync;

}
}

int cilk_main() {
x() = 0;
fib(35);
printf("%d\n", x());

}

Figure 2: A parallel imperative program that computes Fibonacci numbers,
written in Cilk++ with hyperobjects. The add monoid class is meant as an
illustration of the internals of a reducer. In production programs, one would
use the more complete reducer opadd provided by the Cilk++ library.

continuation. Since the continuation’s view is an identity be-
fore the reduction, the reduction is a no-op by Rule 4.

The reader can verify that, under these rules, fib() computes
the correct answer no matter how often the implementation chooses
to apply Rule 6. Correctness depends upon integer addition being
associative and having identity 0, but commutativity is not required.
(One could, for example, reduce over list append and still obtain a
result in the correct order.)

Reducers can be implemented efficiently within a work-stealing
scheduler [1]. An open source implementation is available at
www.cilk.com.

Uses and abuses of reducers. We initially thought of reduc-
ers as a way to compute parallel reductions over arbitrary data
structures while minimizing code restructuring, but experience has
shown that reducers are more versatile than we expected. We now
discuss some of the surprising uses of reducers.
Multiple reductions in parallel. While one may think that the
result of the reduction is only valid “at the end” of the computation
(whatever that means), the value of a view is always constrained
by the reducer rules, and the value can be deterministic in certain
cases. For example, one could spawn multiple parallel instances
of cilk_main() in Figure 2, in which case the reducer rules imply
that each instance would accumulate the correct result, even though
they all share the same hyperobject! Thus, it is not correct to think
of reducers as some strange kind of atomic object that is magically
implemented without mutual exclusion.
Exceptions as reducers. When throwing an exception, Cilk++
stores the exception into a reducer. The reduce operation propa-

gates the leftmost exception (the one that would be propagated in a
serial execution).
Backward compatibility. Global variables can be retroactively
reinterpreted as special cases of reducers for programs executing
on one processor. In this case, no actual concurrency exists, Rule 6
always applies, and therefore all strands in the program share the
same (eq?) view, which is the “global variable.” Since only one
view is ever created, the reduce operation and the identity view are
irrelevant and need not even exist.
Generalization of thread-local storage. The standard thread-local
storage machinery is not too useful in environments where a sched-
uler moves strands across threads. Reducers (with no-op reduc-
tion) subsume the TLS concept in a useful way. For example, Cilk
Arts has successfully used reducers to implement a mostly lock-
free region-based memory allocator, storing regions in reducers.
Reducers for file I/O. Cilk Arts has parallelized the bzip2 file
compressor by spawning the compression of independent blocks,
and using a reducer to write to the output file in the correct order.
The implementation is considerably simpler than equivalent pro-
ducer/consumer organizations with a reorder buffer. The “leftmost”
view is flushed to disk as early as possible. (The leftmost view is
the one owned by the earliest strand in serial order. To know if a
view is the leftmost, reduce over OR with identity FALSE. Set the
view to TRUE at the beginning of the program.)
Counting the number of views. One can write intentionally non-
deterministic reducers where the nondeterministic value of a view
reveals properties of the execution. The simplest example is to
count the number of reducer views created, which can be inter-
preted as a reduction over + with “identity” 1.

Open problems. Although hyperobjects have proven really use-
ful in practice (they are used in all non-toy Cilk++ programs that
we know of), our current understanding of hyperobjects is limited.
I conclude by identifying some of the remaining problems.
Other kinds of hyperobjects. When forking a reducer view, the
child gets the view and the continuation gets an identity view. An-
other possibility would be to give the continuation a copy of the
child’s view instead of an identity. This kind of hyperobject (a split-
ter) appears to be useful for backtrack search, but we don’t know
how to implement it efficiently. Another possibility is to split the
view into two (roughly equal?) parts whose “sum” is the original
view. This pattern appears to be useful for parallel iteration over
certain data structures.
Reification of reduce(). You may wonder why the add_monoid
class in Figure 2 is declared as extern "C++". The reason is that
the reduce() function is in effect part of the implementation of
Cilk++, and it currently cannot be written in Cilk++ itself. In par-
ticular, it cannot spawn and it cannot use hyperobjects. Giving a
proper meaning to hyperobjects in reduce() appears to be a tricky
problem that is currently unsolved. For example, it is unclear in
which order views should be reduced that are created by reduce(),
and how to guarantee termination of the reduction process.
Syntax of reducers. Calling the view operator x() every time is
annoying for users. One could imagine compiler support that al-
lows the user to write x instead of x(), in which case we would
need to define some new syntax to denote the hyperobject itself
rather than a view. This would be a deep change that alters the
normal meaning of self-evaluating symbols.

References

[1] Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and
Stephen Lewin-Berlin. Reducers and other Cilk++ hyperob-
jects. In Proceedings of the Twenty-First Annual ACM Sym-
posium on Parallel Algorithms and Architectures (SPAA ’09),
2009. To appear.


