
A Proposal for Targeting Streaming Languages
with the Value State Dependence Graph

James Stanier
Department of Informatics,

University of Sussex
j.stanier@sussex.ac.uk

Des Watson
Department of Informatics,

University of Sussex
desw@sussex.ac.uk

Abstract
The Value State Dependence Graph is a sparse data-dependence
IR that has been investigated as a midpoint in compilers produc-
ing sequential code for uniprocessors. However, we argue that par-
allelism is an important feature that has been largely overlooked.
We conjecture that the VSDG is exploitable for parallelism through
partitioning, and investigate the feasibility of generating streaming
languages via a VSDG implementation, possibly bridging the gap
between streaming languages and von Neumann-style languages
such as C.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Compilers

General Terms Algorithms, Languages

Keywords VSDG, StreamIt, stream programming, intermediate
representations

Introduction
The Value State Dependence Graph (VSDG) is an intermediate
representation for modeling programs using data dependencies.
It can be seen as a spiritual successor to the Value Dependence
Graph[4], with the addition of “state” edges to allow only the
essential sequential dependences in a program to constrain the
ordering of instructions. The IR was introduced by Johnson[1] in
2004, with further developments by Upton[3] and Lawrence[2] in
2006 and 2007 respectively.

The aforementioned work focuses on the difficulties of produc-
ing sequential code from the VSDG. Sequentializing the graph in
an optimal fashion was proved to be NP-complete[5], resulting in a
new theoretical compiler architecture being proposed by Lawrence
in order to overcome this problem. However, we feel that work to
date has overlooked the fact that the structure of the VSDG may
be exploitable for parallelism. We shall now briefly introduce the
graph, and then consider how partitioning could proceed.

Partitioning the VSDG
In this section, we explore the feasibility of partitioning the graph
into instructions that could be executed in parallel. Firstly, we

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI ’09 June 15–21, 2005, Trinity College, Dublin.
Copyright c© 2009 ACM [to be supplied]. . . $10.00

present an example program in source code and as a VSDG. We
then define properties of the VSDG that afford parallelization.
Then, we sketch an algorithm for doing the partitioning.

The graph diagram in Figure 1 illustrates a majority of the main
VSDG components. Solid lines in the graph show data dependen-
cies and dashed lines show state dependencies. Data dependency
edges illustrate the values that must be consumed to evaluate the
instruction they come from. State dependencies encode the essen-
tial sequential order of execution; the minimal control information
needed to represent the program semantics.

int foo(int x, int y, int z) {
 x = x * 7;
 a = x - 1;
 y = y * 2;
 b = y + 18;
 z = z + 1;
 c = z - 5;
 return a + b + c;
}

(a) A simple function.

ret

STATE
foo()

foo()
x STATEy

add

z

addsub

mul add sub

addmul

5

1
2

1

7
18

(b) The corresponding VSDG.

Figure 1. An example function.

Since the VSDG represents programs in such an adaptable man-
ner, there exist properties that can be exploited for parallelism.

Many expressions in the VSDG representation have no side-effects.
Any part of the graph that does not read or write to the state can be
considered referentially transparent. It follows that any part of the
graph that has this property can be evaluated and replaced with a
result without affecting the trace semantics of the program.

Parts of the graph that do interact with the state of the program
must wait for other sections of the program to evaluate in order to
be evaluated themselves. Therefore we see state-interacting nodes
as barriers, where the subgraph contained between two barriers
is a step. The intuition behind this name is that one state is live
at a time, and the evaluation of one state followed by the next
represents the main “steps” in the computation. Within each step,
there may exist some parallelism. In Figure 1 a step is trivially the
whole function, since the content is pure – it is contained within the
enclosing region of the state edge. Within each step, we can apply
an algorithm for discovering chunks of the computation that can be
parallelized. A useful property of non side-effecting statements is
that they are always structured as a tree in the VSDG. We perform
a reverse breadth-first search from the current live state, marking
each instruction found with the current level of the search. For each
level of the search, there will exist some number of instructions that
reside on that level. Due to the tree structure, we reason that these
can be executed in parallel (Figure 2).

add

add sub

add sub mul 1

7 xadd 5

z 1

mul 18

y 2

Level
1

2

3

4

Figure 2. Non side-effecting expressions from Figure 1 form a
tree. All expressions on a given level can be executed in parallel.

From the VSDG to streaming languages
Streaming languages such as StreamIt[6] are a development to-
wards representing programs as explicit data channels of commu-
nication. As well as being an ideal way of representing streaming
applications, they serve as a step towards programming effectively
for multicore machines[7]. In StreamIt, a program is represented as
independent filters which communicate via explicit data channels.

We now consider a way of targeting streaming languages with
our partitioned VSDG. StreamIt provides three single-input, single-
output structures in addition to the filter: a pipeline, which is a
string of filters; a splitjoin which splits parallel computation and
a feedback loop where the output feeds back into the input. The
whole-program VSDG forms a StreamIt pipeline, where the order
of execution is that which is enforced by the state edges in the
graph. Each step in the program becomes a filter in the pipeline.
This ensures that the I/O semantics of the program are maintained.
If it is the case that a step contains non side-effecting parallel
partitions, then the filter in the pipeline for that step becomes that
of a splitjoin structure to execute these partitions in parallel, in a
level-by-level manner as marked by the search algorithm, as shown
in Figure 3.

Bridging the gap
Languages such as C that target uniprocessor machines have been
in use for a very long time. If it is the case that the streaming lan-

split
add

sub
joinadd

split

mulsub

join

add

split
mul

add
join

Figure 3. Instructions arranged as StreamIt filters.

guages paradigm becomes a mainstream standard, then it follows
that a vast quantity of existing programs will not be able to take ad-
vantage of the benefits that streaming languages bring. Construct-
ing the VSDG straight from C has already been accomplished[1].
If it is the case that targeting streaming languages with the VSDG
is a feasible option, then it presents a very interesting opportunity
for extracting parallelism from existing non-parallel programs.

Ongoing work
There are two VSDG constructs omitted from this paper. The first
is the γ-node which acts as a conditional branch. Here, a condi-
tion C is evaluated, and then data is consumed through the T or
F edge depending on the result of the condition. Optimizations
such as if-conversion would make these suitable for this style of
partitioning, or branches could even be executed in parallel. The
other construct is loops. Lawrence proposed that loops should be
infinitely unrolled structures in the VSDG. Since these infinitely
unrolled structures are also tree shaped, we conjecture that the par-
titioning would be applicable here too. Work is being undertaken
using the LLVM compiler to explore a variety of compilation ideas
using the VSDG. Before adopting the approach this paper takes to
arranging StreamIt filters, more research must be done to ensure
that the overhead of the splitting and joining operations is less than
the overall speedup through parallelism. For example, it will be
worth considering larger regions of multiple instructions for parti-
tioning, using techniques already presented in the literature.

Acknowledgments
We would like to thank Philip Brisk, Christopher Gautier and Paul
Biggar for their comments and helpful discussion.

References
[1] Neil Johnson. Code size optimization for embedded processors. Ph.D.

thesis, University of Cambridge, 2004.
[2] Alan Lawrence. Optimizing compilation with the Value State Depen-

dence Graph. Ph.D. thesis, University of Cambridge, 2007.
[3] Eben Upton. Compiling with Data Dependence Graphs. Ph.D. thesis,

University of Cambridge, 2006.
[4] Daniel Weise, Roger F. Crew, Michael Ernst and Bjarne Steensgaard.

Value dependence graphs: representation without taxation. In Proceed-
ings of POPL ’94, ACM, 1994.

[5] Eben Upton. Optimal Sequentialization of Gated Data Dependence
Graphs is NP-Complete. In PDPTA ’03, 2003.

[6] William Thies. Language and Compiler Support for Stream Programs.
Ph.D. thesis, MIT, 2009.

[7] Michael Gordon, William Thies and Saman Amarasinghe. Exploit-
ing Coarse-Grained Task, Data, and Pipeline Parallelism in Stream Pro-
grams. In International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ACM, October 2006.

