Towards A New Definition of Object Types

Cong-Cong Xing
Fantasia International Inc.
Baton Rouge, LA 70809, USA

congcong.xing@gmail.com

ABSTRACT

The idea of integrating method interdependency informa-
tion into object types, representing the resulting new types
as graphs, and subsequently using algebraic graph transfor-
mation techniques to reason the subtyping under this new
typing scheme, is proposed.

1. THE PROBLEM

We call a rectangle free if its two sides are independent of
each other, constrained otherwise. Using a syntax similar to
that of Abadi-Cardelli’s object-calculus [2], an example of
free rectangles would be

a ¥ o(s:FR)[z = 1,y = 2, setx = \(i:int)(s.z<=1)],

and an example of constrained rectangles would be

b ¢(s:CR)[x =1,y = 5.7 + 1, setz = A(i:int)(s.z<=1)],
where in each case s is the self variable and F'R and C'F are
its types respectively. The method setz changes/updates
the value of z in an obvious way. Note in a, the two sides
z and y are both constants and therefore are independent
of each other; in b, the side y depends on the side = in the
sense that the evaluation of y uses/needs the evaluation of
T.

In conventional type systems, such method dependency
information is not considered in object types. As a result,
the type of the free rectangles and the type of the con-
strained rectangles are the same, i.e., FR = C'R in conven-
tional type systems. Consequently, the following problems
may occur.

Suppose we have a function f which works as follows:
f takes a free rectangle as argument, changes its side =

(just z, not y), and does some more stuff, say, f E Alr:
FR)(r.setx(k),....) where k is any constant. Since FR =
CR, f is actually allowed to take as arguments both free
rectangles and constrained ones. While f works just fine for
free rectangles (such as a), it may cause problems when tak-
ing constrained rectangles, for example b: when f changes
the value of side x of b, the value of side y of b is also implic-
itly changed since y depends on x in b. But, the change of
the value of y may not be the intention of f and f may not be
aware of this change. Consequently, if y is used somewhere
in the rest of the code of f, it will inflict subtle and hard-
to-find computational errors, and will burden the program
verification task.

Dually, suppose we have a function g that takes a con-
strained rectangle (specifically, side y depends on side x)

as argument, changes its both sides, and does some more
d

things, say g < A(r : CR)(r.setz(k),....) where k is any
constant. (Here, since g knows that its argument’s side y
depends on the side x, g only needs to change the side x in
order to change both z and y.) Again, because FR = CR,
g is actually allowed to take as arguments both constrained
rectangles and free ones. This time, while g works just fine
for constrained rectangles, it may cause potential problems
when taking a free rectangle as argument, for example a:
when g changes the side z of a, the side y of a is not changed
(although g expects y to be changed). Similarly to the case
of f, if y is used somewhere in the rest of the code of g, it
will create computational bugs and give unwanted burdens
to program verifications.

2. THE IDEA

Based on the problem described above, we attempt to in-
tegrate the method interdependency information in objects
into their types, and thereby propose a new way for object
typing. Specifically, for any object type (in the syntax of
object-calculus)

[l1:01,...,ln:00],

we attache a set L; of method labels to each method I; to
indicate the method interdependency information, with the
following stipulations:

e If L; = (), then it indicates the [; depends on no other
methods.

o If l; € L;, then it indicates that I; depends on [;.

o If l; € L;, then it indicates that [; may depend on [;
and may not depend on [;. (This is the case mod-
eled by the object types in current type systems: i.e.,
for each method (label) I;, we do not know/care if I;
depends on I; for some method [;.)

Roughly speaking, the first two cases give us a means to
further refine the current object types, and the last case
allows us to recapture the notion of current object types.
For example, the types of a and b, under this newly proposed
type representation, would be

A [z(0):int, y(0):int] and B = [2(0):int, y({z}):int],

respectively. Note that the fact that y depends on x in b
is signified by the set {«} after the method (label) y in B.
The following type

C = x(y):int, y(z"):int]

would be a supertype of both A and B. That is, a: A <: C
and b: B <: C.

Due to the newly added information into object types
(and thus the increased complexity) and in order to carry
out the subtyping analysis effectively under the new typ-
ing scheme, we can represent the object types as colored,
directed graphs. For example, the types of a and b just de-
scribed above can be denoted as A and B in Figure 1. Note
that the fact that y depends on z in b is indicated, in graph
B, by an edge colored by byzx.

A B
Figure 1: Object Type Graphs of ¢ and b.

The type C above can be depicted as graph C' in Figure 2.
The fact that = (or y) may and may not depend on y (or)
in an object of this type is shown by the two dotted edges
colored by byx and byy respectively. We expect to have
A<:C,B<:C, A< B,and B £: A (both A and B
are subtypes of C, A is not a subtype of B, and B is not a
subtype of A either.)

Figure 2: Object Type Graph for type C.

As for exactly how to define and conduct a subtyping
analysis under this graphical notation of object types, we
can borrow the techniques established in the are of alge-
braic graph transformations which stared in 1970s and has
gained a tremendous momentum recently [3, 5, 4]. (Most
recent results on graph transformations can be found at the
International Conference on Graph Transformations:
http://www.cs.le.ac.uk/events/icgt2008/.) For example, we
can try to define the notion of graph morphisms among ob-
ject type graphs and then show that these morphisms to-
gether with all object type graphs form a category. From
there, we can examine the properties of pushouts in this cat-
egory to reformulate the graph transformation rules towards
the goal of establishing a desired subtyping relation among
object type graphs.

3. (PREDICATED) PROS AND CONS

At this point, we can foresee that the proposed new typ-
ing scheme increases the flexibility over the current type
systems.

e On the one hand, it allows users to specify more (de-
tailed) types as needed; for example, we can replace
the types FFR and CR in functions f and g by the
new types A and B as shown in Figure 1, then, under
this new typing system, f will not be able to take a
constrained rectangle as argument and g will not be
able to take a free rectangle as argument, and thus the
problem would be easily resolved.

e On the other hand, it retains the abstraction capabil-
ity possessed by the current object type systems. For
example, suppose we would like to write a function
h which takes a rectangle as argument and performs
something that has nothing to do with the interdepen-
dencies between the sides of the rectangle (say, just
print out the values of the two sides), in other words,
the functionality of A does not depend on the interde-
pendencies of two sides of the argument so there is no
need for h to care about the method interdependency
information of its argument. In this case, we can just
specify the type of the parameter of h to be C' (as
shown in Figure 2).

A potential difficulty of this work is that, typically, graphs
are not built, searched, and checked for desired morphisms
(e.g. isomorphism) in linear time. But, in this regard, we
can try to build simpler approximations of the graphs that
can be manipulated in linear time. A successful example
along this line which can be studied is the XDuce projet of
Benjamin Pierce [1].

As a characteristic summary, we might say that the new
typing scheme allows us to assert the following: (1) a free
rectangle is not a constrained rectangle, and (2) a con-
strained rectangle is not a free rectangle either, but (3) both
are rectangles; whereas the current type systems do not al-
low us to do this.

4. REFERENCES

[1] http://www.cis.upenn.edu/ bepierce/papers/index.shitml.

[2] Martin Abadi and Luca Cardelli. A Theory of Objects.
Springer-Verlag, New York, 1996.

[3] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer.
Fundamentals of Algebraic Graph Transformation.
Springer, 2006.

[4] Hartmut Ehrig. Introduction to the algebraic theory of
graph grammars. In Graph-Grammars and Their
Applications to Computer Science and Biology,
volume 73 of LNCS, pages 1-69. Springer-Verlag, 1978.

[5] Hartmut Ehrig, Michael Pfender, and Hans Jiirgen
Schneider. Graph grammars: An algebraic approach. In
IEEE Conference of Automata and Switching Theory,
pages 167-180, 1973.

