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Abstract

Range-trees are a data structure for solving the bi-dimensional orthogonal range query prob-

lem: given a set of points in the plane, efficiently find the points which lie inside any given

rectangle. This paper gives a complete description of the data structure, and investigates what

is the most efficient way to implement it. Methods to improve the performance of the data

structure when ran on a multi-core machine are also investigated. The performance of several

versions of the structure is analyzed on a practical data set.

Introduction

Given a set of points, the d-dimensional orthogonal range searching problem is the problem of

finding the points inside a specified d-dimensional hypercube. For d = 2, this equates to finding

the points that lie inside a given rectangle. Of interest is the repetitive version of the problem, in

which many range queries must be resolved.

We restrict our attention to the bi-dimensional, static version of the problem, in which all the

points lie in the plane and are known a priori. This version of the problem is widely useful to solve

in practice; applications of this problem arise in database searches, geography, statistics, design

automation ([1]). In this static framework, we have the opportunity to pre-process the data to

build a data structure that allows efficient resolution of range queries.

Range-trees are a data structure for this problem that is optimal in terms of the query time:

a query runs in O(log n + k) time, where n is the number of points and k is the answer size (the

number of points inside the query rectangle). We have seen a high-level presentation of range-trees

in class; in this project, I attempt to work out the details of efficient implementations of this data

structure. I also investigate improvements in the preprocessing and query running times using

parallelization on a dual-core platform.

I will first present a precise description of range-trees and the refinement that leads to optimal

query time. I will then describe the details of the most efficient implementations I was able to achieve

- along with mentions of some of the attempts that have failed to improve the data structure. I

will then present modifications that allow improved performance on a dual-core platform. Finally,

I will present the comparative performance of several chosen implementation versions.

1 Range Trees

Range trees are the extension of a unidimensional data structure called the segment tree. I will

first describe the segment tree, and then discuss how to extend it to the multi-dimensional case. I
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acquired much of the information in these descriptions from Shamos and Preparata’s book ([1]).

1.1 Segment Trees

The segment tree was introduced by J.L. Bentley [2]. It is a data structure for intervals on the

real line whose extremes belong to a fixed set of N abscissae. For simplicity, we will assume that

this set of abscissae is formed by the N integers between 1 and N . It will become obvious how to

extend it for arbitrary sets of coordinates - in theory, this is not even necessary, as we can always

“normalize” coordinates of incoming queries using binary searches.

The segment tree is a binary tree, in which each node is responsible for a range of coordinates. In

particular, the root of the tree is responsible for the entire [1, N ] range, whereas a leaf is responsible

for an elementary interval of the form [x, x]. The tree is defined recursively: if a node is responsible

for the range [l, r], then its left child is responsible for the range
[
l, b l+r2 c

]
, while its right child is

responsible for the range
[
b l+r2 c+ 1, r

]
. The tree is balanced and has height dlog2Ne.

The useful feature of this tree is that any given subinterval [a, b] ⊂ [1, N ] can be broken up

in O(logN) intervals for which nodes in the tree are responsible. This is achieved by a simple

recursive search down the tree, stopping whenever the interval of the current node is entirely inside

[a, b]. To see why the number of nodes in which the search finishes is small, imagine we color in red

all the terminal nodes of the search - the nodes which make up the interval [a, b]. Then, on each

level of the tree, the red nodes will form a contiguous subset of the nodes on that level (imagining

the tree drawn left-to-right). Then, if there are more than two red nodes, two of the red nodes will

inevitably share the same parent, which is a contradiction because the search would have finished

at the parent (if both children are completely contained in [a, b], so is the parent). Thus, there are

at most 2 terminal search nodes on each level, and thus the search takes O(logN) time.

Note that if N = 2k for some integer k, the segment tree is a complete binary tree of depth k.

The tree breaks up the interval [0, 2k) into what are called dyadic intervals: intervals of the form

[j2i, (j + 1)2i), for 0 ≤ i ≤ k and 0 ≤ j < 2k−i.

This data structure is very versatile: many update/query problems can be solved by adding

data in the nodes of this tree resulting in updates and query that take time O(log n) (plus the size

of the query output where relevant). A few examples are:

• Maintain a vector Ai for 1 ≤ N .

UPDATE(a, b, x): Ai ← Ai + x, for all a ≤ i ≤ b.
QUERY(a, b):

∑b
i=aAi.

• Same as above, except update is: Ai ← x for a ≤ i ≤ b.
• Maintain a set of intervals over [1, N ].

INSERT(a, b): insert interval [a, b].

DELETE(a, b): delete interval [a, b].

QUERY(x): the intervals (or the number of intervals) spanned by coordinate x.

• Maintain a set of points over [1, N ].

INSERT(p, px): insert point p at coordinate px.

DELETE(p): delete point p

QUERY(a, b): the points (or the number of points) inside interval [a, b].
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Note that the last problem is the orthogonal range problem in one dimension. Also observe that

to allow arbitrary fixed sets of coordinates, we can simply pre-sort the coordinates inside an array

Ai of size N ; then a node in the tree will correspond to interval [Al, Ar] rather than [l, r] above.

1.2 Extending segment trees to range trees

To build a data structure that allows 2D range searching, we use the segment tree to reduce the

2D problem to a number of instances of 1D problems. More precisely, we build a segment tree that

ignores all the y coordinates of the points; inside each node v of the segment tree with corresponding

interval [av, bv ], we build a second-level structure Y (v) which contains all the points with the x

coordinate inside this horizontal interval [an, bn]. We can think of each node in the segment tree as

corresponding to a vertical “slice” of the plane. Y (v) stores all the points in this slice; it ignores

the x coordinates of the points and allows binary searching of y coordinates. In general, Y (v) can

be any such data structure; for simplicity (as well as efficiency), we simply use a static array in

which the points are sorted by increasing y coordinate. The resulting tree is called a range-tree.

Assuming we have built such a structure, we can solve queries of the form [x1, x2] × [y1, y2]

in the following way: perform a search for [x1, x2] on the main level tree; for each node v of the

O(log n) nodes that make up [x1, x2], perform two binary searches for y1 and y2 inside Y (v) to find

the (contiguous) sequence of points contained inside [y1, y2]. Report or count all these points. The

query involves O(log n) binary searches, as well as processing each point in the answer. The query

time is thus O(log2 n+ k), where k is the number of returned points. Note that if we only want to

count the number of points inside the query rectangle, the query only takes O(log2 n) time.

We can build this structure easily by noticing that for any node v in the main tree, with left and

right children vl and vr, the points which should be stored in Y (v) are exactly the points stored in

Y (vl) and Y (vr). If Y (vl) and T (vr) have already been built, we can build Y (v) by merging the two

arrays. The result is an algorithm which is very similar to merge-sort, with the difference that the

partial sorted sub-arrays are stored inside nodes of the segment tree. This takes O(n log n) time.

The space requirement is also O(n log n) because for every point, there is a copy of that point in

each of the Θ(log n) nodes on the path from the root to the leaf corresponding to the point’s x

coordinate.

Note that we assume that each point has a unique x coordinate and thus the points in the

secondary structures are spread out evenly. In practice, even if some of the points share the same

x coordinates, the unbalance is not significant unless the data set is very unnatural. Even so, we

can apply infinitesimal random shifts to the points to enforce the condition.

1.3 The Willard-Lueker refinement

There is some redundancy in the work we do on a query as described above; we do O(log n)

independent binary searches as if the secondary data structures were completely unrelated. Willard

[3] and Lueker [4] independently discovered how to improve the query time using the relationship

between the secondary data structures.

Let us restrict our attention to the bottom line of the query rectangle y1. Let LowerBound(y1, Y (v))

for some node v be the element p of Y (v) with minimal ordinate py such that py ≥ y1. Assuming
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that for a node v we know where y1 would “land” inside Y (v) - more precisely, we know Lower-

Bound(y1, Y (v)) - can we quickly find where y1 would land inside Y (v′) for a child v′ of v? The

key observation is that Y (v′) ⊂ Y (v); then if p = LowerBound(y1, Y (v)),

LowerBound (y1, Y (v′)) = LowerBound (py, Y (v′))

This is the case because either both expressions evaluate to p or if the left side evaluates to some

other p′, we know that y1 ≤ py ≤ p′y from the definition of point p, which implies that the right

side also evaluates to p′.

The idea is then that for each element of a node array, we only need to know where that

element would land in each of the node’s children arrays. We can simply pre-compute and store

this information inside the arrays; for each element p in an array Y (v), we also maintain two pointers

lbridge(p) and rbridge(p), so that lbridge(p) points to LowerBound(py , Y (vl)) and rbridge(p) points

to LowerBound(py , Y (vr)).

Given these bridge pointers, we can solve a query in the following way: first, do two binary

searches on the array stored in the root node r to find (the positions of) p1 = LowerBound(y1, Y (r))

and p2 = LowerBound(y2 + ε, Y (r)), for some sufficiently small value of ε. Then proceed with the

segment tree search procedure: whenever the search goes down a node v’s (left or right) child w,

access the (left or right) bridge pointers for p1 and p2 to find the new points/positions in the child

node’s array (the new values for p1 and p2). This takes constant time. Whenever the search reaches

a terminal node, report (or count) the points in the array between the current p1 and p2 positions

(including p1 but excluding p2). The query runs in O(log n+ k) time (or O(log n) if we only count

points).

The storage space is increased by a constant factor. Given our merge-based building procedure,

the bridge pointers are easy to compute from the merging step. Suppose we merge Y (vl) and Y (vr)

to obtain Y (v); whenever we add a merged element to Y (v), the two bridge pointers correspond to

the current positions inside Y (vl) and Y (vr) (one bridge will point to the element currently being

copied to Y (v), and the other bridge will point to the first yet-not-merged element in the other

array).

We thus obtain an O(n log n) preprocessing time and storage space data structure that solves 2D

range queries in O(log n+ k) time. Note that these results can be extended to arbitrary dimension

d by recursively applying the same dimensionality reduction idea: for example, the nodes of a

3D range-tree stores 2D range-trees as second-level data structures. This results in O(n logd−1 n)

storage space and preprocessing time and O(logd−1 n+ k) query time.

2 Implementation details

I will first discuss certain aspects that are relevant in practice; then I will move on to describing

the exact implementations.
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2.1 Notes

The implementations have been developed on an AMD Athlon 64 X2 CPU with 2Gb of DDR2

RAM, under Windows XP x64, using Microsoft Visual C++ 2003; the boost::threads library was

used for the multi-threading functionality. In hindsight, this was not the perfect choice as the

MSVC compiler proved inconsistent in optimizing code and sometimes required a lot of fine tuning.

2.1.1 Output sensitivity

When implementing and testing these data structures, the O(k) factor in the query time is domi-

nant unless we restrict to small queries. For this reason, when measuring the performance of any

implementation, the reporting of the results is disabled, and the queries are restricted to counting

the points inside the query rectangle. But the capability to also report the points without any

overhead is retained at all times; in practice, this framework can be useful in situations where we

do want to report the resulting points, but only if they are not too many (in which case we would

still want the total count). Or similarly, we might want the output, but only up to some fixed

number of points. This is important because there exist data structures that solve the counting

problem more efficiently while giving up the ability to report the points (see [10]).

2.1.2 Data

Tests used two types of data: random points uniformly distributed in some range of coordinates,

as well as real geographical data, derived from the TIGER database. TIGER/Line maintains

cartographic information and includes complete coverage of United States. Using this data, I have

compiled test sets using points corresponding to street intersections in California. The database

contains about 4.5 million such intersections; subsets of these points are obtained by restricting the

points to a certain smaller longitude range. The points are given as longitude and latitude, with

6 digits of precision, and are represented as fixed-point integers: a point’s x coordinate is equal to

its longitude multiplied by 106, the y coordinate is the latitude multiplied by 106. Note that this

results in a precision of about 4 inches. The data is useful as it is the kind of data that might be

used in mapping applications; for example if we have many interest points in cities (hotels, bars,

banks, etc.), we expect their distribution to resemble the distribution of street intersections - the

more dense the street intersections, the more crowded an urban area is.

For random data, the query rectangles were formed by randomly choosing two corners of the

rectangle in the range of coordinates spanned by the points. For real data, a more elaborate scheme

was used: a set of sizes (in miles) was selected, as well as a plausible probability distribution for

these sizes; a random query is built by randomly choosing the size of the query rectangles according

to the distribution; then, a random point is uniformly sampled from all the points, and the rectangle

is randomly positioned such that it includes this point. The idea behind this is that in a mapping

application, we expect proportionally more queries in crowded areas than in uninhabited areas;

thus, the more crowded an area, the more points are in that area, and the more likely a query is

to hit that area.

It is important to note that in practice, range-trees proved insensitive to the distribution of
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input points. They are somewhat sensitive to the distribution of queries relative to the points,

in that smaller query rectangles result in slightly better query times (explained by the fact that

for small x intervals, the main tree search touches a smaller number of nodes); for this reason,

random queries in random data, which implies very big rectangles on average, result in about 10%

to 30% worse performance than the more natural mapping queries in the geographical data. Note

that in geographical data, generating queries by uniformly choosing two corners actually results

in better performance than the more natural queries, because many such query rectangles, despite

being large, span sparsely inhabited areas. In any case (and most importantly), the choice of data

and queries did not significantly influence the relative performance of any two compared range-tree

implementations.

2.1.3 On space-performance trade-offs

Many times a trade-off between space and query performance has to be made. One can imagine

many applications where the space usage of the data structure is very important (e.g. the data

structure must fit in one computer’s memory); but there are also situations in which the space usage

is not critical. For example, consider a multi-server environment where we have N machines and

want to use these machines to answer as many queries as possible; suppose the space requirement

of the data structure is so that the dataset must be split into M (with M � N) pieces in order for

each piece to fit on one machine. In the worst case, if one machine is able to answer q queries per

second (on average), we can answer q NM queries per second - and trading off space for query time

does not seem to make sense. But if we split our data wisely, for example each of the M pieces

correspond to disjoint “slices” or regions of the plane, then we might be able to assume (depending

on the application) that most queries will only need to go to one (or a small) number of machines.

Then the average query performance of the system is proportional to qN , and we might afford to

trade large amounts of space for even small increases of query time, as M is not important anymore.

With these arguments in mind, I will present a few chosen implementations with different space-

to-query-performance ratios. More precisely, I will describe a middle-ground implementation which

implements the Willard-Lueker refinement in its described form; I will also describe a solution with

a slightly better query time, but worse space requirement, as well as a small-space version which

uses the O(log2 n) data structure to cut space usage.

2.1.4 The memory wall

While implementing these data structures, it became obvious that the bottleneck in query perfor-

mance is not processing time, but memory bandwidth and latency; in this particular application,

we have hit the memory wall. The memory wall refers to the growing gap between memory and

processors: statistics show that from 1986 to 2000, the CPU speed improved at an annual rate of

about 60%, while memory improved at only 10% ([6]). The disparity is thus huge today compared

to what it was 20 years ago. While working on the project, I became gradually more aware of this

problem as optimizations that should normally speed up programs were not helping.

The memory wall is the reason why the arguments and ideas presented in this paper revolve

more around efficient cache usage rather than total number of operations. Note that it is probably

6



worthwhile to move away from range-trees and to investigate the range searching problem in a

different model in order to build cache-oblivious or cache-aware data structures; however, the scope

of this project will remain limited to range-trees.

2.2 The Willard-Lueker implementation

The nodes of the segment tree contain:

1. the information necessary to deduce the intervals of the child nodes (two “middle” x coordi-

nates).

2. the number of points in the secondary data structure

3. a pointer to an array storing the points

4. a pointer to an array storing Willard-Lueker bridge pointers (indices)

The tree does not need child pointers, as nodes are stored inside an array in BFS-order (like

heaps), although as we shall see later, this hardly makes a difference in query performance (or

space usage). The tree building is performed in the following way: first, all points are sorted by

increasing x coordinate (as per the observation about segment trees and arbitrary abscissae sets in

section 1.1). Let Pi be this sorted array, so that Pi is the ith point in the plane from left to right.

A recursive BuildNode function is used to create the actual tree. The function takes two indices

l, r in the sorted points array and creates a node responsible for all points Pl to Pr. If all these

points share the same coordinates (or l = r), a leaf is created - the secondary arrays are built and

re-sorted by the y coordinate. Otherwise, the points are split at a midpoint m = b l+r2 c, and the

two children are built recursively for points in the ranges [l,m] and [m+1, r], respectively. The two

child arrays are merged into the node’s secondary arrays, process which also computes the bridge

pointers.

Note that we can very cheaply obtain the points in sorted order of increasing y coordinate as a

side-effect from the build procedure. We do this to create a top-level array which only stores the y

coordinates of the points in increasing order. A query [x1, x2]× [y1, y2] proceeds as following: first,

two binary searches are used to obtain the positioning of y1 and y2 in the top-level array of sorted

y coordinates - i.e. we find the indices of LowerBound(y1, Y (root)) and LowerBound(y2, Y (root)).

Using these left and right indices we can start the range tree search; inside a node, we perform two

lookups in the bridge array using these indices, obtaining the corresponding indices for the child

nodes. In terminal nodes (whose x interval is completely inside [x1, x2]), we simply report/count

the nodes between the two indices.

2.2.1 Improvements

The figures I will mention are obtained from datasets of size on the order of 1 to 4 millions of

points. The figures are similar for both the random and the geographical data.

The first important fact is that less than 15% of the query time is spent doing the preliminary

binary searches 1. A simple improvement tried was to perform both binary searches at the same

1An interesting fact is the way we measure this: if we simply disable the range tree search part of the program, the
program (for large enough dataset and number of queries), runs in less than 5% of the time it usually does. However,
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time, in hope that both binary search paths share a common prefix, but this resulted in no per-

formance gain (probably because the cache usage pattern is not improved). We could improve the

binary searches by replacing the arrays with a more cache-friendly data structure, like the CSS-

trees in [7]. I did not implement this, because even if we manage to achieve a 100% speedup in the

binary searches (which is about what [7] claims for datasets of a few million items), we would still

only get 7% speedup in the total query time.

Thus most of the time is spent in the range-tree search. I have tried many different ways to

change the structure of the main tree to speed up this search, most of which have failed. I enumerate

a successful attempt along with some of the more notable failed attempts below; I then explain

why most methods for optimizing the range tree do not work.

Fat leaves

A simple worthwhile optimization is to limit the height of the tree: the lower levels are used to

separate a small number of points; it is cheaper to pack more nodes into leaves in order to decrease

the depth of the tree. During searches, if we reach a leaf which is not completely contained in the

query interval, we know the range of points in the arrays which are between y1 and y2, but we do

not know which of them are between x1 and x2, so we have to check them. We can place a packed

array in leaves containing the x coordinates of the points in the leaf arrays, so that performing

the x-coordinate checks is very cheap (cache-wise). Surprisingly, in practice this works well for

packing as much as 8 extra levels (meaning that we pack 256 points in every leaf!); the reason is

probably that in practice we don’t necessarily reach many leaves, and when we do the subinterval

is considerably less than 256. We also get space benefits, since we are omitting many copies of the

points (together with their bridge arrays).

This improvement results in a small (5-10%) improvement in the average query time, but also

a considerable improvement in space usage (30-40%) and in pre-processing time (50-60%). These

figures are for datasets of 2 to 4 million points. Note though that as the dataset size increases,

these improvement factors diminish - we save O(1) node operations and O(n) space, out of totals

of O(log n) and O(n log n), respectively.

Packed nodes

Most of the data in the range-tree nodes is not used when processing non-terminal nodes of

the search (e.g. the point array, the number of points). A failed attempt to improve the query

time was to ship off all this data away from the nodes; the reasoning was that more compact nodes

would allow better cache-coherency (as more data would fit in the same number of cache lines).

This attempt actually increased the query time because of the overhead (indicating that the cache

misses of node accesses are not really the issue).

van Emde Boas layout

Another attempt was to restructure the range-tree using a van Emde Boas layout (see [8]); a

tree of height h is split at level h/2, resulting in a tree for the top part and 2h/2 trees in the bottom

part. These trees are laid out recursively, first the top tree, then the bottom trees in left-to-right

when measured with a code profiler, we get a number closer to 15%. This shows how important the L2 cache usage
pattern is: we get 10% slowdown in the binary searches when the other accesses cause data relating to these arrays
to be evicted from the cache.

8



order. I have used the idea in [8] to create a function normToBoas which converts indices in the

BFS-ordered layout into indices in the van Emde Boas layout. More precisely, the function takes

an index i; in the BFS-ordered (heap) linearization of a binary tree, i corresponds to a certain node

in the binary tree (e.g. i = 1 is the root of the tree, i = 3 is the right child of the root, etc.).

The function returns an index i′ which is the position of where this node should go if the tree is

linearized using the van Emde Boas layout (i.e. how many nodes are laid out before this node in

the v.E.B. layout). The function is a very good idea as it applies the layout transparently: the

algorithm works as if the tree is stored in BFS order, except that whenever we read a node, we

use the normToBoas function to “redirect” the access. The function performs O(log log n) simple

arithmetic operations. The hope is that the number of cache lines touched in a tree search is

significantly decreased, and the benefit outweighs the extra computing cost of the function.

Unfortunately, when using this function we actually get a significant slowdown in the query

times, again suggesting that the cache-coherency of the range tree is not the problem. This is

surprising, as surely the memory must be the bottleneck in a data structure in which everything

seems “precomputed” in some sense. The explanation of this is that the L2 cache does a good job

with the range-tree nodes anyway: the L2 cache is very fast (on modern processors it usually runs

at full CPU speed), and is pretty large (1-4Mb). Since the nodes in the top levels of the range

tree are frequently visited, it is reasonable to expect that they are always in the L2 cache. The

L2 cache is big enough to hold quite a few levels of the range-tree; also, in the range-tree searches

we can expect part of the terminal nodes to be on the higher levels of the tree, and thus only a

fraction of the O(log n) visited nodes result in cache misses when accessing the range-tree node.

Thus, improving the cache-efficiency of the range-tree does not really help the query times, as most

accessed node data is already readily accessible. The same argument explains why the preliminary

binary searches are so fast: the middle points chosen by the binary searches also form an implicit

tree, and we can expect the top part of this tree to be readily available in the L2 cache.

This hypothesis was confirmed using a code profiling program, AMD CodeAnalyst, which is

capable of detecting L2 cache miss rates. Profiling showed that most of the query time is spent

when reading the bridge pointers, due to L2 cache misses. This makes a lot of sense, since the bridge

pointers form the bulk of the space used; the accesses are non-local, because we access entries for

both the query rectangle bottom y1 and top y2 which are far away in the arrays, and then we move

to a new node for which we do a similar access in an entirely different array.

2.3 A slightly faster version

It is clear now that our efforts should go towards improving the cache-coherency of the bridge

pointer accesses. Because y1 and y2 change with each query, it is hard to see how we could arrange

our structure so that at each level, the bottom (y1) and top (y2) bridge pointers are somehow close

to each other. So let us restrict our attention to only one of the two paths of jumps through bridge

pointers. The bridges define an acyclic graph between the elements of the arrays; we observe that

once we have accessed an element e, the next accessed element (if the search continues down that

path) must be an element e′ towards which e has a bridge. Unfortunately, the bridges do not form

a tree structure, as we have at least two bridges pointing to any element; it is very hard to design

a cache-friendly layout for this graph.
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However, we can implement an improvement based on a particular case of the observation above.

Let the bridge array (for a node v) be v.bridges, so that the left bridge for p is v.bridges(p).left

and the right bridge is v.bridges(p).right. Let vl and vr be the left and right child nodes of node

v. We know that after accessing some v.bridges(p), the next access is (if the search continues

down the tree) either vl.bridges(v.bridges(p).left) or vr.bridges(v.bridges(p).right).

The idea is then to trade off space and place copies of these two entries inside v.bridges(p), so

that two levels of the bridge pointers are accessible directly. When we are searching down the tree,

we then only need to access the entry when we are at an odd level; we pass the next level bridge

indices to the recursive search function so that at even levels they are already available.

Observe that we can then drop all arrays at even levels of the tree. We can build this data

structure in the same way as before; at odd levels we simply do a traversal of the two child arrays

and copy the entries to the current array, and then we deallocate the child arrays to free up the

memory. The array entries are three times bigger (they store three entries instead of one), but we

only store them at odd levels of the tree. The space usage should then increase by 50%. In practice,

the space usage increase is only about 35%, because of the fat leaves optimization.

One would expect that with this optimization, the number of cache misses would be roughly

halved; in practice, this does not happen. The speedup in query time is about 18%. It is probable

that the extra data stored results in a less efficient use of the L2 caches; there is also some extra

overhead in the search function, as many indices must now be passed around recursively.

2.4 A compact version

As a different space-query time trade-off, I have also implemented the slower O(log2 n) algorithm in

order to reduce space usage. In practice, this data structure is only a small number of times slower

than the O(log n) version. The details are simple: every node has an array of pointers to points;

the search procedure performs two binary searches in each terminal node array. Note the extra

level of indirection which slows down the query, but saves significant amounts of space. Fat leaves

are used in this version as well. The results of this implementation can be seen in the performance

figures in section 4.

3 Improvements for a dual-core platform

The platform available to me for this project was based on an Athlon 64 X2 5200+, 2.6Ghz, dual-

core CPU; unfortunately, I had no access to a machine with more cores. I attempted to use multi-

threading to take advantage of the two CPUs and improve build and query times of the structures.

The attempt was successful with respect to the preprocessing time. Query throughput can also

be increased by processing multiple queries in parallel. However, it turned out to be practically

impossible to parallelize the work done by a single query in order to reduce the latency of the

query. I will show some artificial tests designed to give a better understanding of the platform,

which support the conclusion that the query latencies cannot be improved. I will then shortly

describe how parallelizing of the pre-processing step is implemented. Experimental results of the

described implementations can be seen in section 4.
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3.1 An investigation of the dual-core platform

The experiments in this section are designed to show how the dual-core platform behaves when

both cores are running memory-intensive applications. The setup is the following: we create two

huge arrays A and B of size N containing 32-bit integers; I chose N = 226, so that the size of one

such array 256Mb. We attempt to compute the sum of these integers.

We choose two methods of processing an array: one is by cache-friendly linear access, in which

the elements are accessed in order; the other is random access, in which elements are accessed in

a “random” order: the order is given by the function f(x) = (x + k) mod N with k = 1137341 a

large odd number, so that the order is x, f(x), f(f(x)), . . . for some random starting x; note that

each element is touched exactly once.

Each method is implemented in serial mode, where first A is processed, and then B is processed,

as well as in parallel mode, in which both arrays are processed at the same time, in different threads.

The results of this experiment are shown in the table below, as running times in seconds:

Mode \ Method Linear Random

Serial 0.22s 9.14s

Parallel 0.12s 5.63s

The experiments are promising: even though the two cores share the same memory, the program

scales well: for linear access we get a 45% reduction in the running time, and for random access we

get a 40% reduction.

This data does not explain the2 inability of reducing the query times using parallelization;

however, we have not taken into account the data exchange between the two cores when we are

trying to move some computation to a different core (which is what must be done during a query,

which initially starts running on a single core). We implement the parallel method in a more

complicated way: we split the N accesses in slices of size K. For each piece, the main thread passes

the information about the current slice to a worker thread. The worker thread busy-waits on a

variable until the main thread changes it; the thread then starts doing the K computations on

array B. After setting this up, the main thread does the K computations for the current slice on

array A. It then busy-waits on another variable (if necessary) until the worker thread changes it

to signal its work is done.

This implementation is meant to simulate what happens when we parallelize a query: a main

thread decides what computation needs to be done by another thread, and must somehow commu-

nicate with this thread to set up this computation. We have used busy-wait because it is the method

with minimal overhead, faster than using a mutex or barrier. Note that waiting and yielding the

current thread timeslice inside the loop was also tried with identical results. This experiment was

created to show the overhead of passing data between CPU cores; by varying K, we can get an

idea of how small the computation can be before it is cheaper to just run it on a single core. We

show how the running time varies with K for the linear and the random access methods. We first

show some running times for the linear access:

2my
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K 128 256 512 1024

time 0.30s 0.22s 0.19s 0.17s

Notice that for K ≤ 256, the overhead is so big that this version runs slower than the non-

parallelized version! It takes K at least on the order of thousands for this version to get close to

the simple parallel version. The overhead is thus significant - comparable to 256 cache-friendly

memory accesses. For the random access implementation, we get the following results:

K 8 16 32 64

time 9.11s 7.95s 6.92s 6.16s

From these results, we note that for K = 8, we get the running time of the non-parallelized

version, and thus the overhead is comparable to 8 random memory accesses - which are, with very

high probability, L2 cache misses.

It is clear now that the overhead of setting up processing on another core cannot be ignored

when the amount of processing is small. Given that our range queries already run very fast (on the

order of 5 to 10 microseconds), even if there was a way to perfectly balance the workload among

two cores, the scheduling overhead would still consume a major part of the running time and the

improvement in the latency would be very small. In this case query throughput would be close to

the single-thread throughput, which is considerably worse than the throughput obtained by running

queries in parallel in two query threads.

3.2 Improving pre-processing time

As we have mentioned, the build algorithm is very similar to mergesort; it is not surprising that it

can be easily parallelized. First, we need to sort the points. We can use a specialized algorithm, or

for a small number of cores we can simply break the data into pieces, sort the pieces (on different

cores) and merge the results. For two cores, we break up into two pieces; in practice, this results

in a 42% reduction in running time. The rest (and most) of the pre-processing is spent inside the

recursive build function; a very practical and efficient way to parallelize this function is to run

the two recursive calls in different threads. We only need to do this at the top few levels of the

recursion (for dual-core, the first level is sufficient). This leads to an improvement that varies with

how complex the merge operation is. Relevant results are shown in the next section.
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4 Experimental results

The performance of the three described implementations is shown below; the space-efficient simple

range-tree version is reffered to as RT, the regular implementation of the Willard-Lueker improve-

ment is reffered to as WL, and the slightly faster but less space efficient version of Willard-Lueker

is reffered to as WL2. Measurements are taken on the geographic data set restricted (as a vertical

slice) to 1, 2, and 4 million points. Queries are generated as described in 2.1.2.
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Figure 1: The query performance - shown as the time necessary to resolve 106 queries.
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Figure 2: The space occupied by the data structures.
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Figure 3: The time needed to build the data structures.

Conclusions

The experimental results show that the range-tree is capable of solving 105 to 106 queries per second

on mid-range hardware. It is very likely that in most applications, the range-tree searching routine

will not be the bottleneck; it is more likely that a lot of time is spent in transferring the actual

output and/or in generating/gathering queries.

If range-searching is truly the bottleneck of a system, then the next step would be to use a

truly cache-oblivious or cache-aware data structure. Such a data structure is presented in [9]; it

answers queries in O(logB n) memory transfers (where B is the block size of the cache), at the

expense of O(n log2 n) storage space. Note that the increased space requirement might make the

data structure impractical for large datasets - we have seen how even range-trees with O(n log n)

space can use more than 512Mb of memory for a reasonable dataset. See also [10] for a similar

result with a slightly better storage bound O(n log2 n/ log log n).

The results of this project are a nice example of how computer architectures can change over

time and aspects that were insignificant become important in implementing and choosing the right

data structures.
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