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Abstract

The general problem of obtaining a useful succinct representation (sketch) of some piece of
data is ubiquitous; it has applications in signal acquisition, data compression, sub-linear space
algorithms, etc. In this thesis we focus on sparse recovery, where the goal is to recover sparse
vectors exactly, and to approximately recover nearly-sparse vectors. More precisely, from the
short representation of a vector x, we want to recover a vector x∗ such that the approximation
erorr ‖x− x∗‖ is comparable to the “tail” minx′ ‖x− x′‖ where x′ ranges over all vectors with at
most k terms. The sparse recovery problem has been subject to extensive research over the last
few years, notably in areas such as data stream computing and compressed sensing.

We consider two types of sketches: linear and non-linear. For the linear sketching case, where
the compressed representation of x is Ax for a measurement matrix A, we introduce a class of
binary sparse matrices as valid measurement matrices. We show that they can be used with the
popular geometric “ℓ1 minimization” recovery procedure. We also present two iterative recovery
algorithms, Sparse Matching Pursuit and Sequential Sparse Matching Pursuit, that can be used
with the same matrices. Thanks to the sparsity of the matrices, the resulting algorithms are
much more efficient than the ones previously known, while maintaining high quality of recovery.
We also show experiments which establish the practicality of these algorithms.

For the non-linear case, we present a better analysis of a class of counter algorithms which
process large streams of items and maintain enough data to approximately recover the item fre-
quencies. The class includes the popular Frequent and SpaceSaving algorithms. We show
that the errors in the approximations generated by these algorithms do not grow with the fre-
quencies of the most frequent elements, but only depend on the remaining “tail” of the frequency
vector. Therefore, they provide a non-linear sparse recovery scheme, achieving compression rates
that are an order of magnitude better than their linear counterparts.

Thesis Supervisor: Piotr Indyk
Title: Associate Professor
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Chapter 1

Introduction

Data compression is the process of encoding information using a smaller number of bits

than a regular representation requires. Compression is a fundamental problem in informa-

tion technology, especially given the enormous amounts of data generated and transmitted

today. From high-resolution sensors to massive distributed systems, from bioinformatics

to large-scale networking, it is becoming increasingly clear that there is truth behind the

popular saying “Data expands to fill the space available for storage.”

While the general problem of data compression has been very well studied, there are spe-

cific situations which require new frameworks. In this thesis we focus on novel approaches

for performing lossy data compression. Such compression is achieved by throwing away

some - hopefully unimportant - information, and creating an acceptable approximation of

the original data. Lossy compression allows us to obtain highly efficient encodings of the

data that are often orders of magnitude smaller than the original data.

Our compression frameworks utilize the concept of sparse approximation ([Don04,

CRT06, GSTV07, Gro06]). We define this concept in the following section1.

1.1 Sparse approximations

We can denote any discrete signal or data as a real vector x in a high dimensional space.

A k-sparse signal is a vector which has at most k non-zero components (see A.1.2). The

simplest guarantee for a sparse recovery framework entails that x can be recovered from

1See appendix A for an overview of the basic mathematical notations we use in this thesis.
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Figure 1-1: Example of a signal and its optimal 6-sparse, 4-sparse, 2-sparse approximations

its succinct representation if it is k-sparse, for a certain value of k. The value of k depends

on the size of the signal as well as on the size of the sketch. This type of guarantee allows

us to easily test the performance of algorithms in practice: one can compress signals with

different sparsities and check for correct recovery.

In practice signals are rarely sparse; however, they are often “nearly” sparse in that

most of their weight is distributed on a small number of components. To extend the

guarantee for these vectors, we must allow some error in the recovery; the allowed error

must be at least as much as the small components - from the “tail” of the vector - amount

to. To quantify this notion, we let x(k) be the k-sparse vector which is closest to x, i.e.

x(k) = argmin
k−sparse x′

‖x− x′‖p

Regardless of the norm p, the optimum is always achieved when x(k) retains the largest

(in absolute value) k components of x. An example is shown in figure 1-1. Note that

x(k) is not necessarily unique, however we are not interested in x(k) itself but in the error

‖x− x(k)‖p.

In spite of its simplicity, the concept of sparse approximations is very powerful. The

key to making use of this concept lies in the manner in which we choose to represent our

data as a signal vector x. In many cases the trivial representation of a signal is not useful;

however, an adequate transform associates nearly-sparse vectors to real-world data. For

example, figure 1-2 shows the result of a wavelet transform on an image. Other examples

include the JPEG image format, where only the largest values in the Discrete Cosine

Transform representation are retained; and the MP3 music format which discards the less

important Fourier frequencies in sounds. In all these examples, sparse approximations (as

11
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defined by the above guarantees) yield useful results; the sparse approximation framework

formally captures the general concept of lossy data compression.

1.2 Sparse recovery

The goal of sparse recovery is to obtain, from the compressed representation of a vector x,

a “good” sparse approximation to x, i.e. a vector x∗ such that the recovery error ‖x−x∗‖

is “close” to the optimal sparse approximation error ‖x − x(k)‖. This can be formalized

in several ways. In the simplest case of the ℓp/ℓp guarantee, we require that, for some

constant C

‖x− x∗‖p ≤ C‖x− x(k)‖p

12



Sometimes, for technical reasons, we aim to achieve a mixed ℓp/ℓ1 guarantee, where we

require that

‖x− x∗‖p ≤
C

k1−1/p
‖x− x(k)‖1

Notice that the term k1−1/p is similar to the term in the ℓ1/ℓp norm inequality (equation

A.1). In general, the above guarantees do not imply that the recovered vector x∗ must be

sparse.

The guarantees we usually see in practice are ℓ1/ℓ1, ℓ2/ℓ2, and ℓ1/ℓ2. They are not in

general directly comparable to each other (see appendix A.1.4 for a discussion). However,

all sparse approximation guarantees imply the exact recovery guarantee when x is k-sparse:

in this case the minimum error ‖x − x(k)‖ is 0 and any of the above guarantees implies

x∗ = x.

1.3 Types of representations and our results

The manner in which a succinct representation of the signal is acquired or computed

depends strongly on the particular application. The method of linear measurements - in

which the compressed representation is a linear function of the vector - is useful for most

applications and will be the main focus of the thesis; in addition, we also present a class

of results for a specialized problem in which non-linear measurements can be used with

better results.

The results presented in this thesis were published as [BI08, BGI+08, BIR08, BI09] and

[BCIS09].

1.3.1 Linear compression

When the measurements are linear, the representation, or sketch of x is simply b = Ax,

where A is the m × n measurement matrix. The number of measurements, and thus the

size of the sketch, is m. A solution to the problem of recovering a sparse approximation

from linear sketches entails describing an algorithm to construct the matrix A and a

corresponding recovery algorithm that given A and b = Ax can recover either x or a

sparse approximation of x - i.e. a vector x∗ that satisfies one of the sparse approximation

guarantees above.

13



In this thesis we introduce measurement matrices which are: binary - they contain only

values of 1 and 0 - and sparse - the overwhelming majority of elements are 0. The main

advantage of sparse matrices is that they require considerably less space and allow for

faster algorithms. We show that these matrices allow sparse recovery using the popular

“geometric” recovery process of finding x∗ such that Ax∗ = Ax and ‖x∗‖1 is minimal.

We also present two iterative recovery algorithms - Sparse Matching Pursuit (SMP) and

Sequential Sparse Matching Pursuit (SSMP) - that can be used with the same matrices.

These algorithms are important because they - along with the EMP algorithm [IR08] - are

the first to require an asymptotically optimal number of measurements as well as near-

linear decoding time. In addition, we present experimental results which establish the

practicality of these methods. Our results in linear sketching are discussed in chapter 2.

Linear sketching finds use in many varied applications, in fields from compressed sensing

to data stream computations. Some relevant examples are described in section 1.4.

1.3.2 Non-linear compression

We also present a result outside of the linear sketching realm, which applies to a class of

counter algorithms; such algorithms process large streams of items and maintain enough

data to approximately recover the item frequencies. The class includes the popular Fre-

quent and SpaceSaving algorithms; we show that the errors in the approximations

generated by these algorithms do not grow with the frequencies of the most frequent el-

ements, but only depend on the remaining “tail” of the frequency vector. This implies

that these heavy-hitter algorithms can be used to solve the more general sparse recovery

problem. This result is presented in chapter 3.

1.4 Sample applications

To illustrate how the problem of recovering sparse approximations can be useful in prac-

tice we briefly discuss some specific applications from streaming algorithms, compressed

sensing, and group testing.

14



1.4.1 Streaming algorithms: the network router problem

The ability to represent signals in sublinear space is very useful in streaming problems,

in which algorithms with limited memory space process massive streams of data (see the

surveys [Mut03, Ind07] on streaming and sublinear algorithms for a broad overview of

the area). We discuss the simple example of a network router that needs to maintain

some useful statistics about past packets, such as the most frequent source or destination

addresses, or perhaps the most frequent source-destination pairs. The total number of

packets routed, as well as the number of distinct source-destination pairs, grows quickly

to an unmanageable size, so a succinct way of representing the desired statistics is needed.

Of course, in order to achieve significantly smaller space requirements we must settle for

non-exact results (approximation) and/or some probability of failure (randomization).

This problem fits our framework if we are to represent the statistic by a high-dimensional

vector x; for example xu can be the number of packets from source address u. A packet

that arrives from source i corresponds to the simple linear operation x← x + ei, where ei

is the i-th row of the n× n identity matrix. If we are interested in the most traffic-heavy

sources, our aim is to obtain (approximately) the heaviest elements of x. When a small

number of sources are responsible for a large part of the total traffic - which might be the

useful case in practice - this is achieved by recovering a sparse approximation to vector x.

Because of the linearity of the update operation, the method of linear sketches is a great

match for this problem. If the sketch of x is Ax, the sketch of x+ei is A(x+ei) = Ax+Aei.

Thus we can directly update the sketch with each operation; note that Aei is simply the

i-th column of A. The sparsity of the matrix A is critical to the performance of the

algorithm: if only a small fraction of the values of Aei are non-zero, the update step can

be performed very quickly. Note that in this setting, there is the additional requirement

that we must be able to represent or generate A’s columns using limited space: A has n

columns, so storing A explicitly would defeat the purpose of using less than O(n) space).

While this problem is a good witness to the versatility of linear sketching, there exist

better counter algorithms that solve this specific problem. These algorithms maintain a

small set of potentially frequent elements along with counters which estimate their frequen-

cies. Such algorithms and our new analysis of their approximation quality are described

15



Figure 1-3: The single pixel camera concept

in chapter 3.

1.4.2 Compressed sensing: the single-pixel camera

The problem of sparse recovery is central to the field of compressed sensing, which chal-

lenges the traditional way of acquiring and storing a signal (e.g. a picture) - which involves

sensing a high-resolution signal and then compressing it - inherently throwing away part of

the sensed data in the process. Instead, compressed sensing attempts to develop methods

to sense signals directly into compressed form. Depending on the application, this can lead

to more efficient or cost-effective devices.

One such application is the single-pixel-camera developed at Rice University

[TLW+06, DDT+08, Gro08], shown in figure 1-3. The camera uses a Digital Micromirror

Device, which is a small array of microscopic mirrors; each mirror corresponds to a pixel

of the image, and can be quickly rotated to either reflect the light towards a lens (“on”

state) or away from it (“off” state). Such devices are currently used to form images in

digital projectors; in our case, the mirrors are used to direct only a subset of pixels towards

a single sensor, which reports the cumulated light level. Note that the micromirrors can

turn on and off very quickly, and thus one pixel can be partially reflected as determined

by the ratio between the on and off time (pulse-width-modulation) - much in the same

way a projector is able to generate many shades of gray. In effect, the described process

16



results in a linear measurement x · u of the (flattened) image vector x, where u represents

the setting of the mirrors; by repeating this process a number of times, we can sense a

number of measurements that constitute a linear sketch Ax of the signal x. Note that for

each measurement, the setting of the micromirrors u is directed by the corresponding line

of the measurement matrix A.

In practice, building such a device can be advantageous if arrays of high-resolution

sensors (as used in regular digital cameras) are not available for the given application;

this can be the case with some ranges of the non-visible light spectrum, such as terahertz

radiation.

1.4.3 Group testing

Another application of sparse recovery is group testing [GIS08, Che09, DH93]; the problem

is to devise tests that efficiently identify members of a group with a certain rare property.

The earliest example of group testing was used in World War II to identify men who carry

a certain disease [Dor43]: the idea was to avoid individual testing of all candidates by

pooling up blood from multiple individuals and testing the group sample first.

Recovering the sparse vector identifying special members is thus exactly what group

testing aims. Depending on the exact setting, the tests can yield more than a binary

result - e.g. the amount of disease in a sample, or the fraction of defect items; this allows

us to take linear measurements. The density of the measurement matrix is again relevant

as a sparse matrix ensures that only a relatively small number of items are grouped for a

test (which might be critical for practical reasons).

17



Chapter 2

Linear Measurements: Sparse

Matrices

2.1 Introduction

In this chapter we present results that fit the linear measurements framework, in which the

aim is to design measurement matrices A and algorithms to recover sparse approximations

to vectors x from the linear sketch Ax. Linear sketching exhibits a number of useful

properties:

• One can maintain the sketch Ax under coordinate increases: after incrementing the

i-th coordinate xi, the sketch becomes A(x + ei) = Ax + Aei

• Given the sketches of two signals x and y, one can compute the sketch of the sum

x + y directly, since A(x + y) = Ax + Ay

• One can easily make use of sparsity in any linear basis: if B is a change of base

matrix such that sparse approximations to Bx are useful, one can combine B with

a measurement matrix A and use the matrix AB for sketching. Sparse recovery

algorithms can then be used to recover sparse approximations y′ to y = Bx from the

sketch ABx, and finally useful approximations x′ = B
−1y′ for the initial signal. In

practice B can represent for example a Fourier or wavelet basis. Figure 1-2 shows

an example of how sparse approximations in a wavelet basis can be very useful for

images.

18



• In some applications, linearity of measurements is inherent to the construction of a

device, and thus linear sketching is the only usable method.

These and other properties enable linear sketching to be of interest in several areas,

like computing over data streams [AMS99, Mut03, Ind07], network measurement [EV03],

query optimization and answering in databases [AMS99], database privacy [DMT07], and

compressed sensing [CRT06, Don06]; some particular applications are discussed in section

1.4.

2.2 Background

The early work on linear sketching includes the algebraic approach of [Man92]

(cf. [GGI+02a]). Most of the later algorithms, however, can be classified as either combi-

natorial or geometric. The geometric approach utilizes geometric properties of the mea-

surement matrix A, which is traditionally a dense, possibly random matrix. On the other

hand, the combinatorial approach utilizes sparse matrices, interpreted as adjacency ma-

trices of sparse (possibly random) graphs, and uses combinatorial techniques to recover

an approximation to the signal. The results presented in this thesis constitute a uni-

fication of these two approaches - each of which normally has its own advantages and

disadvantages. This is achieved by demonstrating geometric properties for sparse matri-

ces, enabling geometric as well as combinatorial algorithms to be used for recovery. We

obtain new measurement matrix constructions and algorithms for signal recovery, which

compared to previous algorithms, are superior in either the number of measurements or

computational efficiency of decoders. Interestingly, the recovery methods presented use

the same class of measurement matrices, and thus one can use any or all algorithms to

recover the signal from the same sketch.

Geometric approach

This approach was first proposed in [CRT06, Don06] and has been extensively investigated

since then (see [Gro06] for a bibliography). In this setting, the matrix A is dense, with

at least a constant fraction of non-zero entries. Typically, each row of the matrix is

independently selected from an n-dimensional distribution such as Gaussian or Bernoulli.
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The key property of the matrix A that allows signal recovery is the Restricted Isometry

Property [CRT06]:

Definition 1 (RIP). A matrix A satisfies the Restricted Isometry Property property with

parameters k and δ if for any k-sparse vector x

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ ‖x‖2

Intuitively, the RIP property states that the matrix approximately preserves lengths

for sparse signals. The main result in geometric algorithms is the following: if the matrix

A satisfies the RIP property, a sparse approximation for the signal can be computed from

the sketch b = Ax by solving the following convex program:

min ‖x∗‖1 subject to Ax∗ = b. (P1)

This result is somewhat surprising, as we are finding the vector with smallest ℓ1 norm

among all vectors in the subspace. The convex program (P1) can be recast as a linear

program (see [CDS99]). The method can be extended to allow measurement errors or

noise using the convex program

min ‖x∗‖1 subject to ‖Ax∗ − b‖2 ≤ γ (P1-noise)

where γ is the allowed measurement error.

The advantages of the geometric approach include a small number of necessary mea-

surements O(k log(n/k)) for Gaussian matrices and O(k logO(1) n) for Fourier matrices,

and resiliency to measurement errors; in addition the geometric approach resulted in the

first deterministic or uniform recovery algorithms, where a fixed matrix A was guaranteed

to work for all signals x1. In contrast, the early combinatorial sketching algorithms only

guaranteed 1−1/n probability of correctness for each signal x.2. The main disadvantage is

the running time of the recovery procedure, which involves solving a linear program with

n variables and n+m constraints. The computation of a sketch Ax can be performed effi-

ciently only for some matrices (e.g. Fourier), and an efficient sketch update is not possible

1Note that a uniform guarantee does not prohibit the matrix A to be chosen randomly; the uniform guarantee
can be of the form “a random matrix A, with good probability, will uniformly be able to recover an approximation
for any vector”. Contrast this with “given a vector, a random matrix A will, with good probability, recover an
approximation to the vector.”

2Note however that the papers [GSTV06, GSTV07] showed that combinatorial algorithms can achieve deter-
ministic or uniform guarantees as well.
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(as it is with sparse matrices). In addition, the problem of finding an explicit construction

of efficient matrices satisfying the RIP property is open [Tao07]; the best known explicit

construction [DeV07] yields Ω(k2) measurements.

Combinatorial approach

In the combinatorial approach, the measurement matrix A is sparse and often binary.

Typically, it is obtained from the adjacency matrix of a sparse bipartite random graph. The

recovery algorithms iteratively identifies and eliminates “large” coefficients of the vector.

Examples of combinatorial sketching and recovery algorithms include [GGI+02b, CCFC02,

CM04, GKMS03, DWB05, SBB06b, SBB06a, CM06, GSTV06, GSTV07, Ind08, XH07] and

others.

The typical advantages of the combinatorial approach include fast recovery (often sub-

linear in the signal length n if k ≪ m), as well as fast and incremental (under coordinate

updates) computation of the sketch vector Ax. In addition, it is possible to construct

efficient - albeit suboptimal - measurement matrices explicitly, at least for simple type of

signals. For example, it is known [Ind08, XH07] how to explicitly construct matrices with

k2(log log n)O(1)
measurements, for signals x that are exactly k-sparse. The main disadvantage

of the approach is the suboptimal sketch length.

Connections

Recently, progress was made towards obtaining the advantages of both approaches by

decoupling the algorithmic and combinatorial aspects of the problem. Specifically, the

papers [NV09, DM08, NT08] show that one can use greedy methods for data compressed

using dense matrices satisfying the RIP property. Similarly [GLR08], using the results

of [KT07], show that sketches from (somewhat) sparse matrices can be recovered using

linear programming.

The state-of-the art results (up to O(·) constants) are shown in table 2.13. We present

only the algorithms that work for arbitrary vectors x, while many other results are known

3Some of the papers, notably [CM04], are focused on a somewhat different formulation of the problem. However,
it is known that the guarantees presented in the table hold for those algorithms as well. See Lecture 4 in [Ind07]
for a more detailed discussion.
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for the case where the vector x itself is always exactly k-sparse; e.g., see [TG05, DWB05,

SBB06b, Don06, XH07]. The columns describe:

- citation,

- whether the recovery is Deterministic (uniform) or Randomized,

- sketch length,

- time to compute Ax given x,

- time to update Ax after incrementing one of the coordinates of x,

- time4 to recover an approximation of x given Ax,

- approximation guarantee, and

- whether the algorithm is robust to noisy measurements.

The approximation error column shows the type of guarantee: ℓp ≤ Aℓq means that

recovered vector x∗ satisfies ‖x − x∗‖p ≤ A‖x(k) − x‖q. The parameters C > 1, c ≥ 2

and a > 0 denote absolute constants, possibly different in each row. The parameter ǫ

denotes any positive constant. We assume that k < n/2. Some of the running times of

the algorithms depend on the “precision parameter” R, which if is always upper-bounded

by the norm of the vector x if its coordinates are integers.

2.3 Expanders, sparse matrices, and RIP-1

An essential tool for our constructions are unbalanced expander graphs. Consider a bipartite

graph G = (U, V, E). We refer to U as the “left” part, and refer to V as the “right”

part; a vertex belonging to the left (respectively right) part is called a left (respectively

right) vertex. In our constructions the left part will correspond to the set {1, 2, . . . , n} of

coordinate indexes of vector x, and the right part will correspond to the set of row indexes

of the measurement matrix. A bipartite graph is called left-d-regular if every vertex in the

left part has exactly d neighbors in the right part.

For a set S of vertices of a graph G, the set of its neighbors in G is denoted by ΓG(S).

The subscript G will be omitted when it is clear from the context, and we write Γ(u) as a

shorthand for Γ({u}).

4In the decoding time column LP=LP(n, m,T ) denotes the time needed to solve a linear program defined by
an m × n matrix A which supports matrix-vector multiplication in time T . Heuristic arguments indicate that
LP(n, m,T ) ≈ √

nT if the interior-point method is employed.
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Paper R/D Sketch length Encoding time Sparsity/ Decoding time Approximation Noise
Update time error

[CCFC02, CM06] R k logd n n logd n logd n k logd n ℓ2 ≤ Cℓ2
R k log n n log n log n n log n ℓ2 ≤ Cℓ2

[CM04] R k logd n n logd n logd n k logd n ℓ1 ≤ Cℓ1
R k log n n log n log n n log n ℓ1 ≤ Cℓ1

[CRT06, RV06] D k log n
k

nk log n
k

k log n
k

LP ℓ2 ≤ C

k1/2
ℓ1 Y

D k logd n n log n k logd n LP ℓ2 ≤ C

k1/2
ℓ1 Y

[GSTV06] D k logd n n logd n logd n k logd n ℓ1 ≤ C log nℓ1 Y

[GSTV07] D k logd n n logd n logd n k2 logd n ℓ2 ≤ ǫ

k1/2
ℓ1

[GLR08] D k(log n)d log log log n kn1−a n1−a LP ℓ2 ≤ C

k1/2
ℓ1

(k “large”)

[DM08] D k log n
k

nk log n
k

k log n
k

nk log n
k

log R ℓ2 ≤ C

k1/2
ℓ1 Y

[NT08] D k log n
k

nk log n
k

k log n
k

nk log n
k

log R ℓ2 ≤ C

k1/2
ℓ1 Y

D k logd n n log n k logd n n log n log R ℓ2 ≤ C

k1/2
ℓ1 Y

[IR08] D k log n
k

n log n
k

log n
k

n log n
k

ℓ1 ≤ (1 + ǫ)ℓ1 Y

Sec. 2.4 [BGI+08] D k log n
k

n log n
k

log n
k

LP ℓ1 ≤ Cℓ1 Y

Sec. 2.5 [BIR08] D k log n
k

n log n
k

log n
k

n log n
k

log R ℓ1 ≤ Cℓ1 Y

Sec. 2.6 [BI09] D k log n
k

n log n
k

log n
k

n log n
k

log n log R ℓ1 ≤ Cℓ1 Y

Table 2.1: Summary of sparse recovery results. Last entries correspond to results presented in this thesis
(section numbers are indicated).

Definition 2. A bipartite, left-d-regular graph G = (U, V, E) is a (k, d, ǫ)-unbalanced

expander if any set S ⊂ U of at most k left vertices has at least (1− ǫ)k|S| neighbors.

Intuitively, the graph must “expand well” in that any small-enough set of left vertices

has almost as many distinct neighbors as it is theoretically possible. Since expander

graphs are meaningful only when |V | < d|U |, some vertices must share neighbors, and

hence the parameter ǫ cannot be smaller than 1/d. Using the probabilistic method (see

A.1.5) one can show that there exist (k, d, ǫ)-expanders with d = O(log(|U |/k)/ǫ). and

|V | = O(k log(|U |/k)/ǫ2).

In practice, randomly generated graphs with the above parameters will be, with good

probability, expanders. For many applications one usually prefers an explicit expander,

i.e., an expander that can be generated in polynomial time by a deterministic algo-
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rithm. No explicit constructions with the aforementioned (optimal) parameters are known.

However, it is known [GUV07] how to explicitly construct expanders with left degree

d = O
(

((log |U |)(log s)/ǫ)1+1/α
)

and right set size (d2s1+α), for any fixed α > 0. For the

results presented, we will assume expanders with the optimal parameters.

Consider the m × n adjacency matrix A of an unbalanced expander. Notice that A

is binary and sparse, as its only nonzero values are d values of 1 on each column. Our

methods use such matrices as measurement matrices for linear sketches. Traditionally, the

geometric methods use matrices that exhibit the Restricted Isometry Property (definition

1). The sparse matrices described do not exhibit this property for the ℓ2 metric; however,

if we generalize the definition of RIP to other metrics, we can show that these matrices do

exhibit the similar property for the ℓ1 metric.

Definition 3 (RIPp,k,δ). A matrix A satisfies the RIPp,k,δ property if for any k-sparse

vector x

(1− δ)‖x‖p ≤ ‖Ax‖p ≤ ‖x‖p

We loosely denote RIPp,k,δ by RIP-p. Note that technically most matrices must be

scaled with a proper factor to satisfy the above inequality. While dense Gaussian or

Fourier matrices satisfy RIP-2, the following theorem from [BGI+08] establishes that sparse

expander matrices satisfy RIP-1:

Theorem 1 (expansion =⇒ RIP-1). Consider any m×n matrix A that is the adjacency

matrix of a (k, d, ǫ)-unbalanced expander G = (U, V, E), |U | = n, |V | = m such that 1/ǫ,

d are smaller than n. Then the scaled matrix A/d satisfies the RIP1,k,2ǫ property.

Proof. Let x ∈ R
n be a k-sparse vector. Without loss of generality, we assume that the

coordinates of x are ordered such that |x1| ≥ . . . ≥ |xn|.

We order the edges et = (it, jt), t = 1 . . . dn of G in a lexicographic manner. It is

helpful to imagine that the edges e1, e2 . . . are being added to the (initially empty) graph.

An edge et = (it, jt) causes a collision if there exists an earlier edge es = (is, js), s < t,

such that jt = js. We define E ′ to be the set of edges which do not cause collisions, and

E” = E − E ′. Figure 2-1 shows an example.
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Figure 2-1: Example graph for proof of theorem 1: no-collision edges in E′ are (dark) black, collision edges
in E′′ are (lighter) red

Lemma 1. We have
∑

(i,j)∈E”

|xi| ≤ ǫd‖x‖1

Proof. For each t = 1 . . . dn, we use an indicator variable rt ∈ {0, 1}, such that rt = 1 iff

et ∈ E ′′. Define a vector z ∈ R
dn such that zt = |xit |. Observe that

∑

(i,j)∈E”

|xi| =
∑

et=(it,jt)∈E

rt|xit| = r · z

To upper bound the latter quantity, observe that the vectors satisfy the following

constraints:

• The vector z is non-negative.

• The coordinates of z are monotonically non-increasing.

• For each prefix set Pi = {1 . . . di}, i ≤ k, we have ‖r|Pi
‖1 ≤ ǫdi - this follows from the

expansion properties of the graph G.

• r|P1 = 0, since the graph is simple.

It is now immediate that for any r, z satisfying the above constraints, we have r · z ≤

‖z‖1ǫ. Since ‖z‖1 = d‖x‖1, the lemma follows.

Lemma 1 immediately implies that ‖Ax‖1 ≥ d‖x‖1(1 − 2ǫ). Since for any x we have

‖Ax‖1 ≤ d‖x‖1, the theorem follows.
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This proof can be extended to show that the matrix not only satisfies RIP1,k,2ǫ but in

fact satisfies RIPp,k,O(ǫ) for all 1 ≤ p ≤ 1 + 1/ logn (see [BGI+08]).

Interestingly, there is a very tight connection between the RIP-1 property and expan-

sion of the underlying graph. The same paper [BGI+08] shows that a binary matrix A

with d ones on each column5 which satisfies RIP-1 must be the adjacency matrix of a

good expander. This is important because without significantly improved explicit con-

structions of unbalanced expanders with parameters that match the probabilistic bounds

(a long-standing open problem), we do not expect significant improvements in the explicit

constructions of RIP-1 matrices.

2.4 ℓ1-minimization with sparse matrices

The geometric approach involves solving (P1) via linear programming (LP). The main re-

sult presented in this section is that sparse matrices can be used within this solution: a ma-

trix that satisfies RIP-1 allows recovery of sparse approximations via the ℓ1-minimization

program (P1). We thus show that sparse matrices are in this respect comparable with

dense matrices (like those with elements chosen from the Gaussian distribution). In ad-

dition, the experimental section will show that in practice their performance is virtually

indistinguishable from that of dense matrices.

We reproduce the proof, which appeared in [BGI+08] and [BI08]. The first part of the

proof establishes that any vector in the nullspace of a RIP-1 matrix is “smooth”, i.e. a

large part of its ℓ1 mass cannot be concentrated on a small subset of its coordinates. An

analogous result for RIP-2 matrices and with respect to the ℓ2 norm has been used before

(e.g., in [KT07]) to show guarantees for LP-based recovery procedures. The second part

of the proof establishes decodability via ℓ1 minimization.

L1 Uncertainty Principle

Let A be the m × n adjacency matrix of a (2k, d, ǫ)-unbalanced expander G. Let α(ǫ) =

(2ǫ)/(1− 2ǫ). For any n-dimensional vector y, and S ⊂ {1 . . . n}, we use yS to denote an

5Note that for any binary matrix to have the RIP-1 property, it must have roughly the same number of ones
on each column.
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|S|-dimensional projection of y on coordinates in S. Sc is the complement of S (e.g. so

that y = yS + ySc).

Lemma 2. Consider any y ∈ R
n such that Ay = 0, and let S be any set of k coordinates

of y. Then we have

‖yS‖1 ≤ α(ǫ)‖y‖1

Proof. Without loss of generality, we can assume that S consists of the largest (in mag-

nitude) coefficients of y. We partition coordinates into sets S0, S1, S2, . . . St, such that (i)

the coordinates in the set Sl are not-larger (in magnitude) than the coordinates in the set

Sl−1, l ≥ 1, and (ii) all sets but St have size k. Therefore, S0 = S. Let A
′ be a submatrix

of A containing rows from Γ(S), the neighbors of S in the graph G.

By the RIP1,2k,2ǫ property of the matrix A/d (as per theorem 1) we know that

‖A′yS‖1 = ‖AyS‖1 ≥ d(1 − 2ǫ)‖yS‖1. At the same time, we know that ‖A′y‖1 = 0.

Therefore

0 = ‖A′y‖1 ≥ ‖A′yS‖1 −
∑

l≥1

∑

(i,j)∈E,i∈Sl,j∈Γ(S)

|yi|

≥ d(1− 2ǫ)‖yS‖1 −
∑

l≥1

|E(Sl : Γ(S))| min
i∈Sl−1

|yi|

≥ d(1− 2ǫ)‖yS‖1 −
∑

l≥1

|E(Sl : Γ(S))| · ‖ySl−1
‖1/k

From the expansion properties of G it follows that, for l ≥ 1, we have |Γ(S ∪ Sl)| ≥

d(1−ǫ)|S∪Sl|. It follows that at most dǫ2k edges can cross from Sl to Γ(S), and therefore

0 ≥ d(1− 2ǫ)‖yS‖1 −
∑

l≥1

|E(Sl : Γ(S))| · ‖ySl−1
‖1/k

≥ d(1− 2ǫ)‖yS‖1 − dǫ2k
∑

l≥1

‖ySl−1
‖1/k

≥ d(1− 2ǫ)‖yS‖1 − 2dǫ‖y‖1

It follows that d(1− 2ǫ)‖yS‖1 ≤ 2dǫ‖y‖1, and thus ‖yS‖1 ≤ (2ǫ)/(1− 2ǫ)‖y‖1.

LP recovery

The following theorem establishes the result if we apply it with u = x and v = x∗, the

solution of the ℓ1-minimization program (P1); notice that Av = Au, ‖v‖1 ≤ ‖u‖1, and
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‖uSc‖1 = ‖x− x(k)‖1.

Theorem 2. Consider any two vectors u, v such that for y = v− u we have Ay = 0, and

‖v‖1 ≤ ‖u‖1. Let S be the set of k largest (in magnitude) coefficients of u. Then

‖v − u‖1 ≤ 2/(1− 2α(ǫ)) · ‖uSc‖1

Proof. We have

‖u‖1 ≥ ‖v‖1 = ‖(u + y)S‖1 + ‖(u + y)Sc‖1

≥ ‖uS‖1 − ‖yS‖1 + ‖ySc‖1 − ‖uSc‖1

= ‖u‖1 − 2‖uSc‖1 + ‖y‖1 − 2‖yS‖1

≥ ‖u‖1 − 2‖uSc‖1 + (1− 2α(ǫ))‖y‖1

where we used Lemma 2 in the last line. It follows that

2‖uSc‖1 ≥ (1− 2α(ǫ))‖y‖1

We can generalize the result to show resilience to measurement errors: we allow a

certain ℓ1 error γ in the measurements so that ‖Ax− b‖1 ≤ γ, and use the following linear

program:

min ‖x∗‖1 subject to ‖Ax∗ − b‖1 ≤ γ (P1”)

Note that 2γ is an upper bound for the resulting sketch difference β = ‖Ax−Ax∗‖1. As

before, the following theorem is applied with u = x and v = x∗, the solution to (P1”)

above.

Theorem 3. Consider any two vectors u, v such that for y = v − u we have

‖Ay‖1 = β ≥ 0, and ‖v‖1 ≤ ‖u‖1. Let S be the set of k largest (in magnitude) coef-

ficients of u. Then

‖v − u‖1 ≤ 2/(1− 2α(ǫ)) · ‖uSc‖1 +
2β

d(1− 2ǫ)(1− 2α(ǫ))

Proof. We generalize Lemma 2 to the case when ‖Ay‖1 = β yielding

‖yS‖1 ≤
β

d(1− 2ǫ)
+ α(ǫ)‖y‖1
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The proof is identical, noticing that ‖A′y‖1 ≤ β.

The proof of the theorem is then similar to that of Theorem 2. The extra term appears

when we apply the lemma:

‖u‖1 ≥ ‖u‖1 − 2‖uSc‖1 + ‖y‖1 − 2‖yS‖1

≥ ‖u‖1 − 2‖uSc‖1 + (1− 2α(ǫ))‖y‖1 −
2β

d(1− 2ǫ)

which implies

‖y‖1 ≤
2

1− 2α(ǫ)
‖uSc‖1 +

2β

d(1− 2ǫ)(1− 2α(ǫ))

The factor 1
d

suggests that increasing d improves the error bound; this is misleading as

β is the absolute sketch error, and we expect sketch values to increase proportionally with

d6. If we instead consider that the ℓ1 measurement error is at most some fraction ρ of the

total ℓ1 norm of the sketch, i.e. ‖Ax− b‖1 ≤ ρ‖Ax‖1 then β ≤ 2ρ‖Ax‖1 ≤ d‖x‖1 and the

above guarantee becomes

‖x∗ − x‖1 ≤
2

1− 2α(ǫ)
‖x− x(k)‖1 +

4ρ

(1− 2ǫ)(1− 2α(ǫ))
‖x‖1

Thus the resulting fraction of induced ℓ1 noise in the recovered vector is within a constant

factor of the fraction of ℓ1 noise in the sketch (regardless of d).

We have established that expander matrices can be used with linear programming-

based recovery. The experimental results in section 2.7.2 show that the method is of

practical use; in our experiments, sparse matrices behave very similarly to dense matrices

in terms of sketch length and approximation error.

6For example, this is exactly true for positive vectors x+ as ‖Ax+‖1 = d‖x+‖1
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Algorithm 1: SMP

x0 ← 0;
for j = 1 . . . T do

c← b−Axj−1 ; /* Note: c = A(x− xj−1) + µ */

foreach i ∈ {1 . . . n} do
u∗

i ← median(cΓ(i)) ;

uj ← H2k[u∗] ; /* From Lemma 3 we have ‖uj − (x− xj−1)‖1 ≤ ‖x− xj−1‖/4 + Cη */

xj ← xj−1 + uj ; /* Note: ‖x− xj‖1 ≤ ‖x− xj−1‖/4 + Cη */

xj ← Hk[xj ] ; /* From Lemma 6 we have ‖x− xj‖1 ≤ ‖x− xj−1‖/2 + 2Cη */

Figure 2-2: The Sparse Matching Pursuit algorithm

2.5 Sparse Matching Pursuit

The Sparse Matching Pursuit algorithm [BIR08] is presented in figure 2-2; it provides an

ℓ1/ℓ1 guarantee. At each iteration it improves upon an estimate, using a subroutine similar

to the Count-Min sketch [CM04]. Each iteration runs in time O(nd), linear in the number

of non-zeros in the matrix. The number of iterations is a logarithmic factor.

Consider any n-dimensional vector x that is k-sparse. The sketching matrix A is a

m × n matrix induced by a (s, d, ǫ)-expander G = ({1 . . . n}, {1 . . .m}, E), for s = O(k)

and a sufficiently small ǫ. Let µ be the m-dimensional “noise” vector, and let b = Ax + µ

be the “noisy measurement” vector. Also, denote η = ‖µ‖1/d.

Theorem 4. For any k-sparse signal x and noise vector µ and given b = Ax + µ, SMP

recovers x∗ such that ‖x−x∗‖1 = O(‖µ‖1/d). The algorithm runs in time O(nd log d‖x‖1

‖µ‖1
).

For general vectors x, notice that Ax + µ = Ax(k) + [µ + A(x − x(k))], and

‖A(x − x(k))‖1 ≤ d‖x − x(k)‖1; then Theorem 4 immediately implies the following more

general statement:

Corollary 1. For any parameter k, any vector x and noise vector µ, given b = Ax + µ,

SMP recovers x∗ such that ‖x− x∗‖1 = O(‖µ‖1/d + ‖x− x(k)‖1).

2.5.1 Main Lemmas

Lemma 3. For any 2k-sparse u, let c = Au + µ and η = ‖µ‖1/d. Then

‖H2k[u
∗(c)]− u‖1 ≤ O(ǫ)‖u‖1 + O(η)
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The above lemma is in fact a simplification of Theorem 5 in [IR08]. However, [BIR08]

presents the following self-contained proof, which is very different from the combinatorial

argument used in [IR08].

Proof. For the purpose of analysis, we assume that |u1| ≥ . . . ≥ |un|. Note that since u is

2k-sparse, we have u2k+1 = . . . = un = 0. Let S = {1 . . . 2k}. The proof of Lemma 3 relies

on the following two lemmas, whose proof is deferred to the next section.

Lemma 4.

‖(u∗ − u)S‖1 = O(ǫ)‖u‖1 + O(η)

Lemma 5. Let B ⊂ S be a set of coordinates of size at most 2k. Then

‖u∗
B − uB‖1 = ‖u∗

B‖1 = O(ǫ)‖u‖1 + O(η)

Let T be the coordinates of the 2k largest in magnitude coefficients of u∗. Then:

‖H2k[u
∗]− u‖1 = ‖u∗

T − u‖1

= ‖(u∗ − u)S∩T‖1 + ‖u∗
T−S‖1 + ‖uS−T‖1

≤ ‖(u∗ − u)S∩T‖1 + ‖u∗
T−S‖1 + ‖u∗

S−T‖1 + ‖(u∗ − u)S−T‖1

= ‖(u∗ − u)S‖1 + ‖u∗
T−S‖1 + ‖u∗

S−T‖1

To bound ‖u∗
S−T‖1, observe that for any i ∈ S−T and i′ ∈ T −S, we have |u∗

i | ≤ |u
∗
i′|.

Since |T − S| = |S − T |, it follows that ‖u∗
S−T‖1 ≤ ‖u

∗
T−S‖1. Hence, for B = T − S, it

follows from Lemmas 4 and 5 that

‖H2k[u
∗]− u‖1 ≤ ‖(u

∗ − u)S‖1 + 2‖u∗
B‖1 = O(ǫ)‖u‖1 + O(η)

Lemma 6. For any k-sparse vector x, and any vector x′ we have

‖Hk[x
′]− x‖1 ≤ 2‖x′ − x‖1

Proof. Observe that Hk[x
′] is the closest k-sparse vector to x. Thus, we have

‖Hk[x
′]− x′‖1 ≤ ‖x− x′‖1. The lemma follows from triangle inequality.
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2.5.2 Proofs of Lemmas 4 and 5

We start from some basic observations.

Decomposition. For the analysis, it is convenient to decompose the vector Au into a

sum v + v′′. The vector v is such that vj = ui(j) where i(j) is the index i′ from Γ(j) with

the largest value of |ui′|.

Fact 1. Let v′′ = Au− v. Then ‖v′′‖1 ≤ 2ǫd‖u‖1.

The proof of this fact is virtually identical to the proof of theorem 1.

It follows that the vector c = Au + µ can be represented as c = v + v′, where ‖v′‖1 ≤

O(ǫ)d‖u‖1 + ‖µ‖1.

Composing quantiles. In the proof we will compute bounds on the medians of vectors

|cB|, where B are subsets of coordinates. In light of the above decomposition, it would

make sense to compute separate bounds for medians of |vB| and |v′
B|, and then combine

them. Unfortunately, it is in general not true that median(u+v) ≤ median(u)+median(v),

even for positive vectors u, v. Fortunately, we can overcome this problem by using lower

quantiles. Specifically, for any non-negative n-dimensional vector u, and any α ∈ (0, 1)

such that αn is an integer, we define quantα(u) to be the αn-th largest element of u. Then

we have the following fact.

Fact 2. For any vectors u, v ≥ 0 of dimension n divisible by 4, we have

quant1/2(u + v) ≤ quant1/4(u) + quant1/4(v)

Proof. Let U = quant1/4(u) and V = quant1/4(v). There are at most n/4−1 elements of u

(v, resp.) that are greater than U(V , resp.). Therefore, there are at least n−2(n/4−1) =

n/2 +2 elements of u + v that are not greater than U + V , which concludes the proof.

Telescoping trick. Consider two sequences: a = a1, . . . , as and b = b1, . . . bt of positive

numbers, such that {a1, . . . , as} ⊂ {b1, . . . bt}. In addition, we assume b1 ≥ b2 ≥ . . . ≥

bt = 0. The two sequences are related in the following way. For each bi, define c(i) to be

the cardinality of the set C(i) = {j : aj ≥ bi}, i.e., the number of times an element from

{b1 . . . bi} appears in the sequence a; we assume c(0) = 0. The following claim states that
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if this number is bounded, then the sum of the elements of a is only a fraction of the sum

of elements in b.

Claim 1. Assume that c(i) ≤ αi for some α > 0. Then ‖a‖1 ≤ α‖b‖1.

Proof. For simplicity of exposition, we assume that all terms in b are distinct. First, observe

that for each i, the number of times the value bi occurs in a is equal to c(i) − c(i − 1).

Thus

∑

j

aj =
t
∑

i=1

[c(i)− c(i− 1)]bi

≤
t
∑

i=1

c(i)bi −
t
∑

i=2

c(i− 1)bi−1 +

t
∑

i=2

c(i− 1)(bi−1 − bi)

≤ αtbt +

t
∑

i=2

α(i− 1)(bi−1 − bi)

≤
t
∑

i=2

α(bi−1 − bt)

≤ α‖b‖1

Proof of Lemma 4

Recall that u∗
i = median(vΓ(i) + v′

Γ(i)). Therefore, we need to bound

‖(u∗ − u)S‖1 =
∑

i∈S

|median(vΓ(i) + v′
Γ(i))− ui|

=
∑

i∈S

|median(vΓ(i) − ud
i + v′

Γ(i))|

≤
∑

i∈S

median(|vΓ(i) − ud
i |+ |v

′
Γ(i)|)

where ud
i is a vector of dimension d containing as coordinates d copies of ui. For any

i ∈ S, let wi = vΓ(i) − ud
i . Then, it suffices to bound

∑

i∈S

median(|wi|+ |v′
Γ(i)|) ≤

∑

i∈S

quant1/4(|w
i|) +

∑

i∈S

quant1/4(|v
′
Γ(i)|)
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We bound the second term using the following claim.

Claim 2. Let P be any set of at most s coordinates. Then

∑

i∈P

quant1/4(|v
′
Γ(i)|) = O(‖v′‖1/d)

Proof. For each v′
j, let c(j) be the number of i ∈ P having at least d/4 neighbors in the set

{1 . . . j}. From the expansion properties of the graph G it follows that c(j)(d/4− ǫd) ≤ j.

Thus c(j) ≤ 8j/d. Applying Claim 1 finishes the proof.

Therefore, the contribution of the second term is at most O(‖v′‖1/d) = O(ǫ‖u‖1)+O(η).

To bound the first term, we proceed as follows. Recall that we assumed that the

entries |u1|, |u2|, . . . appear in the non-increasing order. Partition S into the union of S+

and S− = S − S+, where S+ = {i ∈ S : |Γ(i) ∩ Γ({1 . . . i − 1})| < d/4}. We will bound

the first term separately for elements in S+ and S−.

Observe that for each i ∈ S+ the number of non-zero elements in wi is smaller than

d/4. Therefore,
∑

i∈S+ quant1/4(|w
i|) = 0.

To take care of the elements in S− we need to bound

∑

i∈S−

quant1/4(|vΓ(i) − ud
i |) ≤

∑

i∈S−

quant1/4(|vΓ(i)|) (2.1)

For any r ∈ S, consider the set Sr containing indices i ∈ S− such that |Γ(i) ∩

Γ({1 . . . r})| ≥ d/4. Our goal is to show that |Sr| is relatively small, and therefore few

elements of the sum in equation 2.1 can be large.

We partition Sr into S<
r = Sr ∩ {1 . . . r} and S>

r = Sr − S<
r . From the expansion

properties of G it follows that

d(1− ǫ)(r + |S>
r |) ≤ dr + 3/4 · d|S>

r |

Therefore we have |S>
r | ≤

ǫ
1/4−ǫ

r ≤ 8ǫr.

To bound S<
r , we observe that from the definition of S− and the expansion of G it

follows that

d(1− ǫ)r ≤ d(r − |S<
r |) + 3/4 · d|S<

r |

Therefore we have |S>
r | ≤ 4ǫr and |Sr| = |S

>
r | + |S

<
r | ≤ 12ǫr. That is, for any r, at most

12ǫr terms in the sum in equation 2.1 can be greater than |ur|. From Claim 1 it follows
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that the total value of the sum is at most O(ǫ)‖u‖1.

Putting all terms together concludes the proof of Lemma 4.

Proof of Lemma 5

We need to bound

‖(u∗)B‖1 =
∑

i∈B

|median(vΓ(i) + v′
Γ(i))|

≤
∑

i∈B

| quant1/4(vΓ(i))|+
∑

i∈B

| quant1/4(v
′
Γ(i))|

Using Claim 2 we can bound the second term by O(ǫ)‖u‖1 + O(η). To bound the first

term we proceed as follows. For each r ∈ S we define Br = {i ∈ B : |Γ(i)∩ Γ({1 . . . r})| ≥

d/4}. From expansion of the graph G and the fact that B ∩ S = ∅ it follows that

(1− ǫ)d(r + |Br|) ≤ dr + 3/4 · d|Br|

It follows that |Br| ≤ 8ǫr. From Claim 1 we conclude that the first term is bounded by

O(ǫ)‖u‖1.

We have presented the SMP algorithm and proved that it recovers sparse approxima-

tions. Section 2.7.3 shows how the algorithm behaves in practice; while the quality of the

approximations is not as good as that obtained with ℓ1-minimization, SMP is a very fast

algorithm, orders of magnitude faster than LP-based methods.
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Algorithm 2: SSMP

x0 ← 0;
for j = 1 . . . (T = O(log(d‖x‖1/‖µ‖1))) do

xj ← xj−1;
for step = 1 . . . (S = (c− 1)k) do

find a coordinate i and increment z that minimizes ‖A(xj + zei)− b‖1;
xj ← xj + zei;

/* From Corollary 3 we have ‖x− xj‖1 ≤ ‖x− xj−1‖1/4 + C‖µ‖1/d */

xj ← Hk[xj ] ; /* From Lemma 6 we have ‖x− xj‖1 ≤ ‖x− xj−1‖1/2 + 2C‖µ‖1/d */

Figure 2-3: The Sequential Sparse Matching Pursuit algorithm

2.6 Sequential Sparse Matching Pursuit

The Sequential Sparse Matching Pursuit algorithm is presented in figure 2-3. It is similar

to SMP, except that the estimate is improved one coordinate at a time. As with SMP,

consider a k-sparse vector x and a noise vector µ. The m × n measurement matrix A is

the adjacency matrix of an ((c + 1)k, d, ǫ/2)-unbalanced expander G; note that this implies

that A/d has the RIP1,(c+1)k,ǫ property. The algorithm consists of two nested iterations:

the inner one and the outer one. The goal of the inner iteration is to reduce the residual

error ‖Axj − b‖1 by a constant factor, unless the error is already smaller than cl‖µ‖1.

This is done in S = (c− 1)k update steps, where each step reduces the residual error by a

factor (1− cu/k) or better. In each update step, the algorithm finds a coordinate i and an

increment z such that ‖A(xj + zei)− b‖1 is minimized. For a given i, the value of z that

minimizes the expression is equal to the median of the vector (Axj − b)N , where N = Γ(i)

is the set of neighbors of i in G.

In each step of the outer loop, the inner loop is executed, and then the vector xj is

re-sparsified by keeping the largest (in the absolute value) k coordinates of xj . As in SMP,

this step approximately preserves the error of xj .

The algorithm can be efficiently implemented in the following way. For each i, we

maintain the optimum increment z = zi, together with the resulting change Di to the L1

error norm. The Di’s are stored in a priority queue (e.g. in a heap), which enables finding

the largest value of Di, as well as update the value of each Di in time O(logn). When a

value of some (say the i-th) coordinate of xj is modified, this affects the values of d entries

l of the vector Axj − b. In turn, each entry l can affect the values Di′ of all O(dn/m)
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neighbors i′ of l. For each such i′ we will need to recompute the median in O(d) time, and

update the heap. Thus, each coordinate update takes O(d2n/m(d+log n)) time. Therefore,

the total running time of the algorithm is at most O(log(d‖x‖1/‖µ‖1) ·d
2nk/m(d+log n)),

which simplifies to O(log(d‖x‖1/‖µ‖1) · dn(d + log n)) since m = Θ(kd).

A formal statement of the result follows.

Theorem 5. For any k-sparse signal x and noise vector µ and given b = Ax + µ, SSMP

recovers x∗ such that ‖x− x∗‖1 = O(‖µ‖1/d).

As with SMP, we can generalize this theorem for all vectors x: since Ax+µ = Ax(k) +

[µ + A(x− x(k))], and ‖A(x− x(k))‖1 ≤ d‖x− x(k)‖1, we have the following corollary:

Corollary 2. For any parameter k, any vector x and noise vector µ, given b = Ax + µ,

the SSMP algorithm recovers x∗ such that ‖x− x∗‖1 = O(‖µ‖1/d + ‖x− x(k)‖1).

The correctness proof is outlined in the remarks in the algorithm description (figure

2-3). The key part of the argument is to show that if the residual error is at least cl‖µ‖1,

then each update step reduces it by a factor (1 − cu/k) or better. Specifically, we show

the following lemma.

Lemma 7. If x′ is ck-sparse and ‖Ax′ − b‖1 ≥ cl‖µ‖1, then there exists an index i such

that

‖A(x′ − eix
′
i + eixi)− b‖1 ≤ (1− cu/k)‖Ax′ − b‖1

To relate the improvement in the residual error to the reduction in approximation error,

we use the following claim:

Claim 3.

d(1− ǫ)‖x′ − x‖1 ≤ ‖Ax′ − b‖1 + ‖µ‖1 ≤ d‖x− x′‖1 + 2‖mu‖1

Proof. From the RIP1,(c+1)k,ǫ property of matrix A/d:

d(1− ǫ)‖x′ − x‖1 ≤ ‖Ax′ −Ax‖1 ≤ ‖Ax′ − (Ax + µ) + µ‖1

≤ ‖Ax′ − b‖1 + ‖µ‖1 = ‖A(x′ − x)− µ‖1 + ‖µ1‖

≤ d‖x− x′‖1 + 2‖µ‖1
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Using this claim, we obtain the following corollary to Lemma 7:

Corollary 3. There exist constants c and C such that, after the j-th inner loop, we have

‖x− xj‖1 ≤ ‖x− xj−1‖1/4 + C‖µ‖1/d

The sparsification step is handled by Lemma 6 which states that for any k-sparse vector

x, and any vector x′ we have

‖Hk[x
′]− x‖1 ≤ 2‖x′ − x‖1

Theorem 5 now follows from the above two lemmas.

2.6.1 Proof of Lemma 7

Let ∆ = x′ − x. Since b = Ax + µ, the thesis of the theorem can be rewritten as

‖A(∆− ei∆i)− µ‖1 ≤ (1− cu/k)‖A∆− µ‖1

First, observe that, by triangle inequality, the assumption ‖Ax′− b‖1 ≥ cl‖µ‖1 implies

that ‖Ax′ −Ax‖1 ≥ (cl − 1)‖µ‖1. By the RIP1,(c+1)k,ǫ property of A/d this implies

‖∆‖1 = ‖x′ − x‖1 ≥ (1− ǫ)(cl − 1)‖µ‖1/d (2.2)

Let T = supp(∆). Clearly, |T | ≤ (c+1)k. Consider any i ∈ T , and let Ni = Γ(i) be the

set of neighbors of i in the graph G. The key idea in the proof is to split the neighborhood

set Ni into a union of N+
i and N−

i . This is done by proceeding as in the proof of theorem

1. First, w.l.o.g., we reorder the coordinates so that |∆1| ≥ |∆2| ≥ . . . ≥ |∆n|. Then, we

enumerate the edges (i, j) of the graph G in lexicographic order. If (i, j) is the first edge

from any vertex to the vertex j, then j is included in N+
i , otherwise it is included in N−

i .

Note that the sets N+
i are pairwise disjoint.

From the expansion property of G, it follows that for any prefix of p first vertices i,

we have
∑p

i=1 |N
−
i | ≤ ǫdp. This in turn implies several other properties. In particular,

for a constant cp > 1, define T+ ⊂ T to contain all indices i such that |N−
i | ≤ cpdǫ. The

following claim states that the coordinates in T+ contain most of the “L1 mass” of ∆.

Claim 4.
∑

i∈T+

|∆i| ≥ (1− 1/cp)‖∆‖1
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Proof. Let T− = T \ T+. Consider all the indices u1, u2, . . . in T− so that u1 < u2 < . . .;

by definition |N−
ui
| > cpdǫ for all i. For any k ≥ 1 consider the k-th index uk. Then

kcpdǫ <

k
∑

j=1

|N−
uj
| ≤

uk
∑

i=1

|N−
i | ≤ ukdǫ

It follows that uk > kcp. Thus there are at least k(cp − 1) indices in T+ ∩ {1 . . . uk} for

all k. This allows us to partition T+ in the following way: for any k let Sk be the set

containing the smallest cp − 1 elements of (T+ ∩ {1 . . . uk}) \
(

⋃k−1
i=1 Si

)

.

Notice that sets Sk are by construction disjoint. For any index uk in T−, we have a

set of cp − 1 unique indices in T+, all of which are smaller than uk; hence for any v ∈ Sk,

|∆v| ≥ |∆uk
|. Since

‖∆‖1 ≥
∑

uk∈T−

(

|∆uk
|+

∑

v∈Sk

|∆v|

)

≥
∑

uk∈T−

cp|∆uk
|

it follows that
∑

i∈T+ |∆i| ≥ (1− 1/cp)‖∆‖1.

The above claim implies

∑

i∈T+

‖(A∆iei)N+
i
‖1 ≥ d

∑

i∈T+

∆i|N
+
i |/d ≥ (1− 1/cp)(1− cpǫ)‖∆‖1 (2.3)

The next claim concerns the amount of the L1 mass contributed to a coordinate j of

the vector A∆ by the coordinates i ∈ T such that j ∈ N−
i . We can think about this mass

as “noise” contributed by the coordinates of ∆ itself (as opposed to µ). Again, from the

edge enumeration process, it follows that this contribution is low overall. Specifically:

Claim 5.
∑

i∈T+

‖(A(∆−∆iei))N+
i
‖1 ≤ dǫ‖∆‖1

Proof. Since sets N+
i are disjoint

∑

i∈T+

‖(A(∆−∆iei))N+
i
‖1 ≤

∑

i∈T+

∑

j∈N+
i

∑

i′|j∈N−

i′

|∆i′ |

≤
∑

j

∑

i|j∈N−

i

|∆i| ≤
n
∑

i=1

|∆i| · |N
−
i |
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Define the value sp = pdǫ−
∑p

i=1 |N
−
i |. We know that all sp ≥ 0.

n
∑

i=1

|∆i| · |N
−
i | = dǫ|∆1| − s1|∆1|+

n
∑

i=2

|∆i| · |N
−
i |

≤ dǫ|∆1| − s1|∆2|+
n
∑

i=2

|∆i| · |N
−
i |

≤ dǫ(|∆1|+ |∆2|)− s2|∆2|+
n
∑

i=3

|∆i| · |N
−
i |

≤ dǫ(|∆1|+ |∆2|)− s2|∆3|+
n
∑

i=3

|∆i| · |N
−
i |

≤ · · · ≤ dǫ

p
∑

i=1

|∆i| − sp|∆p|+
n
∑

i=p+1

|∆i| · |N
−
i | ≤ · · ·

≤ dǫ

n
∑

i=1

|∆i| − sn|∆n| ≤ dǫ‖∆‖1

Now we proceed with the main part of the proof. Define

gaini = ‖A∆− µ‖1 − ‖A(∆− ei∆i)− µ‖1

Observe that, equivalently, we have

gaini = ‖(A∆− µ)Ni
‖1 − ‖(A(∆− ei∆i)− µ)Ni

‖1

Therefore

gaini = ‖(A∆− µ)Ni
‖1 − ‖(A(∆− ei∆i)− µ)Ni

‖1

= ‖(A∆− µ)N+
i
‖1 − ‖(A(∆− ei∆i)− µ)N+

i
‖1+

+
[

‖(A∆− µ)N−

i
‖1 − ‖(A(∆− ei∆i)− µ)N−

i
‖1
]

≥ ‖(A∆− µ)N+
i
‖1 − ‖(A(∆− ei∆i)− µ)N+

i
‖1 − ‖(Aei∆i)N−

i
‖1

≥ ‖(A∆)N+
i
‖1 − ‖(A(∆− ei∆i))N+

i
‖1 − 2‖µN+

i
‖1 − ‖(Aei∆i)N−

i
‖1

≥ ‖(Aei∆i)N+
i
‖1 − 2‖(A(∆− ei∆i))N+

i
‖1 − 2‖µN+

i
‖1 − ‖(Aei∆i)N−

i
‖1

≥

(

1−
cpǫ

1− cpǫ

)

‖(Aei∆i)N+
i
‖1 − 2‖(A(∆− ei∆i))N+

i
‖1 − 2‖µN+

i
‖1
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Aggregating over all i ∈ T+, we have

∑

i∈T+

gaini ≥
∑

i∈T+

(

1−
cpǫ

1− cpǫ

)

‖(Aei∆i)N+
i
‖1 − 2‖(A(∆− ei∆i))N+

i
‖1 − 2‖µN+

i
‖1

From Claims 4 and 5, and the fact that the sets N+
i are pairwise disjoint, we have

∑

i∈T+

gaini ≥ d

(

1−
cpǫ

1− cpǫ

)

(1− 1/cp)(1− cpǫ)‖∆‖1 − 2dǫ‖∆‖1 − 2‖µ‖1

= d

[(

1−
cpǫ

1− cpǫ

)

(1− 1/cp)(1− cpǫ)− 2ǫ− 2/((1− ǫ)(cl − 1))

]

‖∆‖1

= dC‖∆‖1

where C is a positive constant as long as ǫ is small enough; we have used Equation (2.2)

to relate ‖∆‖1 and ‖µ‖1. It follows that there exists a coordinate i ∈ T+ such that

gaini ≥
dC

|T+|
‖∆‖1 ≥

dC

(c + 1)k
‖∆‖1

At the same time

d‖∆‖1 ≥ ‖A(x′ − x)‖1 ≥ ‖Ax′ −Ax− µ‖1 − ‖µ‖1 ≥ ‖Ax′ − b‖1 −
d‖∆‖1

(1− ǫ)(cl − 1)

Therefore

gaini ≥
C

(c + 1)k
‖Ax′ − b‖1/

(

1 +
1

(1− ǫ)(cl − 1)

)

and we are done.

We have presented the SSMP algorithm and proved that it recovers sparse approxima-

tions. The experiments in section 2.7.4 show that in practice, SSMP results in considerably

better approximations than SMP at the cost of increased recovery time.
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2.7 Experiments

In this section we show how the presented algorithms behave in practice. Section 2.7.1

describes the testing method; section 2.7.2 shows that in practice sparse matrices behave

very similar to dense Gaussian matrices when used with the ℓ1-minimization program.

Sections 2.7.3 and 2.7.4 present the behavior of the SMP and SSMP algorithms. Finally,

section 2.7.5 shows comparisons between the three methods.

2.7.1 Methodology

We generate random sparse matrices one column at a time, randomly choosing k positions

from the set {1 . . .m}. If, for a column, the d values contain duplicates, we repeat the

process for that column.

Our experiments fall into two categories: exact recovery of sparse vectors, and approx-

imate recovery of non-sparse vectors.

Sparse signals

For sparse signals we use synthetic data; the presented experiments use signals generated

by randomly choosing k coordinates and setting each to either −1 or +1. For many

experiments we also tried signals with different values for the k peaks (e.g. Gaussians) but

the results were very similar.

We seek perfect recovery of sparse signals; thus an experiment is either a success if the

vector was recovered correctly or a failure otherwise. We can characterise the behavior of

an algorithm using a sparse recovery plot: a signal length n is fixed, and the sparsity of

the signal k and the number of measurements m are swept over sensible ranges. For each

set of parameters m and k, the probability of correct recovery is estimated by randomly

choosing a measurement matrix and repeatedly attempting recovery of different sparse

vectors; the fraction of successful recoveries is noted. We can generate similar plots by

keeping the sparsity k fixed and varying m and n. For all plots, we show the resolution

(number of different values for the two variable parameters) as well as the number of trials

per data point.
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Approximately sparse signals - images

We also present experiments with recovery of natural images in the spirit of [CRT06, BI08,

APT09, BI09]. For a given image, we perform measurements on the vector containing

the image’s Daubechies-2 wavelet coefficients and use our algorithms on the sketch to

reconstruct the image.

We use two 256 × 256 grayscale images: the boat image in [CRT06, BI08] and the

peppers image in [APT09]. We use the Daubechies-2 wavelet basis (as in [APT09]). See

figure 1-2 for the peppers image and the usefulness of sparse approximations to the db2

wavelet coefficients.

We evaluate the quality of each recovery by computing the ℓ1 norm of the approximation

error in the wavelet basis as well as the peak signal-to-noise ratio (PSNR). For two u× v

monochrome images I(x, y) and J(x, y), with I(x, y), J(x, y) ∈ [0, 1], the peak signal-to-

noise ratio is

PSNR = −10 log10

(

1

uv

u
∑

x=1

v
∑

y=1

(I(x, y)− J(x, y))2

)

In our case, if w is the wavelet coefficient vector and w∗ is the recovered vector, the PSNR

is equivalent to

PSNR = −10 log10

(

1

uv
(‖w − w∗‖2)

2

)

This is because the ℓ2 approximation error is the same in both the wavelet and the original

(image) bases. We use the PSNR in comparisons because it is the generally preferred metric

to compare image compression quality; however, since our algorithms provide ℓ1/ℓ1 sparse

recovery guarantees, we also show the ℓ1 approximation error ‖w − w∗‖1 for many of the

image experiments.
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2.7.2 ℓ1-minimization and sparse matrices

The result in section 2.4 was that sparse matrices can be used with the LP decoder (P1).

It is thus natural to attempt to compare them experimentally with dense random matrices.

This section shows that in practice, sparse matrices perform very similarly to dense random

matrices such as Gaussians, both in terms of number of measurements required and in

terms of the approximation errors. Note that additional sparse and Gaussian matrix

experiments can be found in [BI08].

All the experiments in this section are performed with LP reconstruction via (P1),

using the ℓ1-Magic package for Matlab (see [CR05]). The basic operations performed by

this interior point method are vector multiplications with the measurement matrix A and

its transpose A
T ; since multiplication time is in general proportional to the sparsity of the

matrix, recovery is an order of magnitude faster when sparse matrices are used.

Sparse signals

For exact recovery of sparse signals, we show sparse recovery plots for Gaussian matrices

and sparse matrices. Figure 2-4 shows how Gaussian and sparse matrices with d = 8

behave in practice when the input signal is sparse (has k peaks of values ±1). We can see

that the number of measurements required by the two types of matrices is very similar for

all n, k pairs.

In figure 2-5 (plot originally in [BGI+08]), we overlay our experimental results for

sparse matrices with the analytic results for Gaussian matrices presented in [DT06]. The

figure shows through level curves the probability of correct signal recovery with signals

x ∈ {−1, 0, 1}n and positive signals x ∈ {0, 1}n. The probabilities were estimated by par-

titioning the domain into 40×40 data points and performing 50 independent trials for each

data point, using random sparse matrices with d = 8. The thick curve shows the threshold

for correct recovery with Gaussian matrices showed in [DT06]. The empirical behavior for

binary sparse matrices is thus consistent with the analytic behavior for Gaussian random

matrices.

For the purpose of comparing LP decoding with other sparse matrix algorithms like

SMP and SSMP, figure 2-6 shows a plot similar to the top-left plot in figure 2-4 but with
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Figure 2-4: Sparse vector recovery experiments with sparse (left) and Gaussian (right) matrices. The top
plots are for constant signal length n and varying sparsity k; the bottom plots are for constant
sparsity k and varying length n.

larger signal size n. A similar plot for Gaussians was not generated because the recovery

using dense matrices becomes too slow for larger signal sizes.
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Figure 2-5: Sparse matrix recovery experiments: probability of correct signal recovery of a random k-
sparse signal x ∈ {−1, 0, 1}n (left) and x ∈ {0, 1}n (right) as a function of k = ρm and m = δn,
for n = 200. The thick curve is the threshold for correct recovery with Gaussian matrices (see
[DT06])
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Figure 2-6: Sparse experiments with LP decoding using sparse matrices (d = 8) with constant signal
length n = 20000
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Image recovery

Gaussian matrices are impractical for image recovery experiments because of the large

space and multiplication time requirements. Instead, we use a heuristic construction - the

real-valued scrambled Fourier ensemble; it is obtained from the Fourier transform matrix

by randomly permuting the columns, selecting a random subset of rows, and separating

the real and complex values of each element into two real values (see [CRT06]). In practice,

with good probability for a given signal, the scrambled sine and cosine functions in the

ensemble rows are effectively similar to Gaussian white noise; the ensemble requires only

O(n) space and O(n log n) multiply time. Experiments with smaller signals in [BI08] show

that the ensemble behaves almost as good as real Gaussian matrices.

We compare the approximation error of sparse matrices and scrambled Fourier ensem-

bles on the boat and peppers images. Figure 2-7 shows the resulting ℓ1 error in the wavelet

basis (left side, logarithmic plot) as well as the peak signal-to-noise ratio (right side) with

varying number of measurements. The sparsity used was d = 8, but other sparsities like

d = 4 or d = 16 yield very similar results.

While in theory the method of decoding via ℓ1-minimization has no parameters, in

practice linear programming algorithms do. In the case of ℓ1-Magic, the program itera-

tively improves the solution until either it detects that the optimum is found or until the

maximum number of iterations is reached. For non-sparse signals like images, the latter

case is usual in practice; thus the maximum number of iterations is a relevant parameter.

Figure 2-8 shows how changing the maximum number of iterations affects the quality of

the recovery. The decoding time is of course proportional to the number of iterations. Note

that each run is with a different random matrix which causes small random variations in

the results. Other LP experiments shown in this section were performed with the default

setting of 50 iterations.
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Figure 2-7: Recovery quality with LP on peppers (top) and boat (bottom) images (d = 8, ξ = 0.6)
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Figure 2-8: Changing the number of iterations in ℓ1-Magic (peppers image, m = 17000, d = 8)
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2.7.3 SMP

Sparse signals

Figure 2-9 shows sparse recovery experiments with SMP. The left-side plot is obtained by

keeping the signal length n fixed and varying the sparsity k; the right-side plot keeps k

fixed and varies n. SMP is run with T = 10 iterations. Increasing T beyond this value

didn’t result in a significant improvement. An interesting thing to note is that SMP works

as well even when the recovery sparsity is higher than the actual sparsity of the signal,

i.e. the k in SMP (figure 2-2) can be higher than the actual k by some factor, with very

similar results.

Image recovery

In practice, the SMP algorithm diverges for non-sparse signals if the parameters (most

notably the sparsity k and number of measurements m) fall outside the theoretically

guaranteed region. The algorithm can be forced to converge by limiting the size of the

update vector uj. The modified algorithm, shown in figure 2-10, performs much better in

practice for non-sparse signals like images.

Figure 2-11 shows the recovery quality of SMP on the two images with varying sketch

length m. The top plots are for the peppers image, the bottom plots are for the boat

image. The left-side plots show the ℓ1 error on a logarithmic axis. The right-side plots
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Figure 2-9: Sparse vector recovery experiments with SMP (d = 8)
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Algorithm 3: SMP-controlled

x0 ← 0;
for j = 1 . . . T do

c← b−Axj−1;
foreach i ∈ {1 . . . n} do

u∗

i ← median(cΓ(i)) ;

uj ← H2k[u∗];
if j > 1 and ξ‖xj−1‖1/‖u

j‖1 < 1 then

uj ← uj · ξ‖xj−1‖1/‖uj‖1 ; /* Convergence control */

xj ← xj−1 + uj ;
xj ← Hk[xj ];

Figure 2-10: The Sparse Matching Pursuit algorithm, with convergence control (parameter ξ)

show the peak signal to noise ratio. The recovery sparsities k were chosen as a fraction of

m. The two best choices - as determined through experimentation - are shown: one choice

equal to 2.5% of m is better for lower m values, the other choice equal to 7.5% of m is

better for higher values of m. We also show two choices of T since the speed of recovery

depends heavily on T (see figures 2-16 and 2-17 for recovery time plots).

Figure 2-12 attempts to show how the three parameters (number of iterations T , recov-

ery sparsity k, and convergence control ξ) affect the quality of the recovered image7. For

each plot, one parameter is fixed to a sensible value while the other two parameters are var-

ied over a range. The tests are run on the peppers image, with m = 17000 measurements

(chosen so that the SNRs can be compared to those for the same image in [APT09]). As

expected, the recovery quality grows with more iterations (up to a certain point). Conver-

gence control parameter ξ values in the range 0.5− 0.6 are suitable for all instances. The

best choice for the recovery sparsity k is harder to predict: the recovery quality depends

heavily on it, and the correct choice varies with the number of of measurements m.

The last plot of figure 2-12 shows the running time of the recovery algorithm, which

depends entirely on the total number of iterations T . The algorithm is very fast, requiring

a few seconds or even fractions of a second for one image recovery.

Note that we have used d = 8 in all experiments but other choices such as d = 16 yield

similar results in terms of quality.

7Note that each instance is with a different random matrix so small variations exist
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Figure 2-11: Recovery quality of SMP on peppers (top) and boat (bottom) images (d = 8, ξ = 0.6)
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Figure 2-12: Experimental characterisation of SMP (peppers image, m = 17000, d = 8)
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2.7.4 SSMP

Sparse signals

Figure 2-13 shows sparse recovery experiments with SSMP. The left-side plot is obtained

by keeping the signal length n fixed and varying the sparsity k; the right-side plot keeps

k fixed and varies n. SSMP is run with S = 4k inner steps and only T = 1 iteration. For

sparse signals more iterations are not needed; even the sparsification step xj ← Hk[x
j ] (see

figure 2-3) - and thus parameter k - can be removed with similar results.

Image recovery

Figure 2-14 shows the recovery quality of SSMP on the two images with varying sketch

length m. The top plots are for the peppers image, the bottom plots are for the boat

image. The left-side plots show the ℓ1 error on a logarithmic axis. The right-side plots

show the peak signal to noise ratio. The recovery sparsities k were chosen as a fraction

of m. Three choices are shown for k: 5% of m, 10% of m, and 15% of m. Each choice

is optimal for a certain range of m values. For each choice of k, two settings for S, T are

used, a faster instance with S = 16000, T = 16 and a slower, better quality instance with

S = 32000, T = 64. Note that figures 2-16 and 2-17 show recovery times for SSMP as well

as the other methods presented.

Similarly to the SMP plot, figure 2-15 shows how varying two parameters affects the
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Figure 2-13: Sparse vector recovery experiments with SSMP (d = 8)
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Figure 2-14: Recovery quality of SSMP on peppers (top) and boat (bottom) images (d = 8)

recovery quality; note that small random variations exist as each experiment uses a dif-

ferent random matrix. As with SMP, the choice of k is important in retrieving the best

approximation. Increasing the number of inner steps S beyond a small multiple of k does

not lead to significant improvement; on the other hand, increasing the number of iterations

T generally increases the quality of the recovery. Comparing the SNR values with those

in figures 2-8, 2-12, we see that SSMP can achieve significantly higher recovery quality

than SMP, in many instances achieving SNRs very close to LP. The running times are, as

expected, proportional to the total number of steps S · T (see bottom-right plot of figure

2-15). Varying k does not affect the running time significantly.
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Figure 2-15: Experimental characterisation of SSMP (peppers image, m = 17000, d = 8)
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2.7.5 Comparisons

The presented sparse recovery plots for LP (figure 2-6 and 2-4), SMP (figure 2-9) and SSMP

(figure 2-13) are designed to be directly comparable. They show the necessary number of

measurements to recover sparse vectors, with the same signal lengths and sparsities. SMP

requires about 5 times more measurements than LP decoding, but the decoding process

is very fast. SSMP falls between the two, requiring about 2-3 times more measurements

than LP. SSMP is generally slower than SMP and faster than LP; for the particular case

of strictly sparse signals however, SSMP is at least as fast as SMP as only one iteration is

sufficient (T = 1).

For image recovery, we show plots comparing the ℓ1 recovery error, the signal-to-noise

ratio, and the decoding time for LP, SMP, and SSMP. We run SMP with ξ = 0.6 and two

possibilities for k: k = 0.25m and k = 0.75m, exactly as in plot 2-11; each data point

corresponds to the better of the two recoveries (in terms of SNR). Similarly, we run SSMP

with k = 0.05m, k = 0.1m and k = 0.15m as in plot 2-14, and we show the data point

corresponding to the best recovery. The results are shown in figure 2-16 for the peppers

image and in figure 2-17 for the boat image. SMP results in the lowest recovery quality,

but it is the fastest algorithm. SSMP is slower, but the quality is very good, exceeding

that of LP decoding for high values of m.

In addition, the values shown in 2-8, 2-12, and 2-15 are also directly comparable.

Appendix B.1 contains a collection of actual recovered images corresponding to different

instances pictured in these plots. They all use the same number of measurements m =

17000, and are meant to be comparable with each other as well as with the images in

[APT09], where other algorithms are compared. Notice in particular that when SSMP is

run with a smaller number of inner steps S and iterations T , it achieves decoding times

and recovery errors similar to SMP. SSMP is very versatile: one is able to choose the

trade-off between decoding time and recovery error over a large range, effectively “filling

the gap” between the fast SMP algorithm and the high-quality LP method.
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Figure 2-16: Comparison between SMP, SSMP, and LP recovery on the peppers image (d = 8)
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Figure 2-17: Comparison between SMP, SSMP, and LP recovery on the boat image (d = 8)
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Chapter 3

Non-linear Measurements: Counters

3.1 Introduction

The results presented in this chapter are relevant for data stream algorithms [Ind07,

Mut05]; such algorithms aim to process huge streams of updates in a single pass and store

a compact summary from which properties of the input can be discovered, with strong

guarantees on the quality of the result. This approach has found many applications in large

scale data processing and data warehousing [HSST05, BR99, FSGM+98, HPDW01], as

well as in other areas, such as network measurements [ABW03, CKMS03, DOM02, EV01],

sensor networks [BGS01, SBAS04] and compressed sensing [GSTV07, CRT06].

Finding the “heavy hitters” is one of the quintessential problems in data stream algo-

rithms. Given a stream of items (possibly with weights attached), find those items with the

greatest total weight. This is an intuitive problem, that applies to many natural questions:

given a stream of search engine queries, which are the most frequently occurring terms?

Given a stream of supermarket transactions and prices, which items have the highest total

dollar sales? Further, this simple question turns out to be a core subproblem of many more

complex computations over data streams, such as estimating the entropy [CCM07], and

clustering geometric data [Ind04]. Therefore, it is of high importance to design efficient

algorithms for this problem, and understand the performance of existing ones.

The problem can be formalized into one of estimating item frequencies. In this problem

we are given a stream of N elements from some universe; the goal is to compute, for each

universe element i, an estimator f̂i that approximates fi, the number of times the element
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Algorithm Type Space Error bound

Frequent [DOM02, MG82, KSP03] Counter O(1/ǫ) |fi − f̂i| ≤ ǫF1

Frequent [BKMT03] Counter O(1/ǫ) |fi − f̂i| ≤ ǫF
res(1)
1

LossyCounting [MM02] Counter O(1/ǫ log(ǫF1)) |fi − f̂i| ≤ ǫF1

SpaceSaving [MAA05] Counter O(1/ǫ) |fi − f̂i| ≤ ǫF1

Count-Min [CM04] Sketch O((k/ǫ) · log n) |fi − f̂i| ≤ ǫ/k · F
res(k)
1

Count-Sketch [CCFC02] Sketch O((k/ǫ) · log n) (fi − f̂i)
2 ≤ ǫ/k · F

res(k)
2

Presented results [BCIS09] Counter O(k/ǫ) |fi − f̂i| ≤ ǫ/k · F
res(k)
1

Table 3.1: Previously known bounds of frequency estimation algorithms.

F1 is the sum of all frequencies; F
res(k)
1 is the sum of all but the top k frequencies; F

res(k)
2 is the sum of

the squares of all but the top k frequencies; n is the size of the domain from which the stream elements

are drawn.

i occurs in the data stream (or the sum of associated weights in a weighted version).

Such estimators provide a succinct representation of the data stream, with a controllable

trade-off between description size and approximation error.

An algorithm for frequency estimation is characterized by two related parameters: the

space1 and the bounds on the error in estimating the fis. The error bounds are typically

of the “additive” form, namely we have |fi − f̂i| ≤ ǫB, for a B (as in “bound”) that is

a function of the stream. The bound B is equal either to the size of the whole stream

(equivalently, to the quantity F1, where Fp =
∑

i(fi)
p for p ≥ 1), or to the size of the

residual tail of the stream, given by F
res(k)
1 , the sum of the frequencies of all elements

other than the k most frequent ones (heavy hitters) 2. The residual guarantee is more

desirable, since it is always at least as good as the F1 bound. More strongly, since streams

from real applications often obey a very skewed frequency distribution, with the heavy

hitters constituting the bulk of the stream, a residual guarantee is asymptotically better.

In particular, in the extreme case when there are only k distinct elements present in the

stream, the residual error bound is zero, i.e. the frequency estimation is exact.

Algorithms for this problem have fallen into two main classes: (deterministic) “counter”

algorithms and (randomized) “sketch” algorithms (like those presented in chapter 2). Ta-

ble 3.1 summarizes the space and error bounds of some of the main examples of such algo-

rithms. As is evident from the table, the bounds for the counter and sketching algorithms

are incomparable: counter algorithms use less space, but have worse error guarantees than

1We measure space in memory words, each consisting of a logarithmic number of bits.
2In this chapter we use a different notation which is more common with streaming algorithms; relating this to

the notation of chapter 2, we have F
res(k)
1 = ‖f − f (k)‖1 and Fp = ‖f‖p

p, in particular F1 = ‖f‖1.
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sketching algorithms. In practice, however, the actual performance of counter-based algo-

rithms has been observed to be appreciably better than of the sketch-based ones, given the

same amount of space [CH08]. The reason for this disparity has not previously been well

understood or explained. This has led users to apply very conservative bounds in order

to provide the desired guarantees; it has also pushed users towards sketch algorithms in

favor of counter algorithms since the latter are not perceived to offer the same types of

guarantee as the former.

Presented results We present the results published in [BCIS09], in which we show that

the good empirical performance of counter-based algorithms is not an accident: they

actually do satisfy a much stronger error bound than previously thought. Specifically:

• We identify a general class of Heavy-Tolerant Counter algorithms (HTC), that con-

tains the most popular Frequent and SpaceSaving algorithms. The class cap-

tures the essential properties of the algorithms and abstracts away from the specific

mechanics of the procedures.

• We show that any HTC algorithm that has an ǫF1 error guarantee in fact satisfies

the stronger residual guarantee.

We conclude that Frequent and SpaceSaving offer the residual bound on error,

while using less space than sketching algorithms. Moreover, counter algorithms have small

constants of proportionality hidden in their asymptotic cost compared to the much larger

logarithmic factors of sketch algorithms, making these space savings very considerable in

practice. We also establish through a lower bound that the space usage of these algorithms

is within a small constant factor of the space required by any counter algorithm that offers

the residual bound on error.

The new bounds have several consequences beyond the immediate practical ramifi-

cations. First, we show that they provide better bounds for the sparse approximation

problem, as defined in chapter 1. This problem is to find the best representation f ∗ of

the frequency distribution, so that f ∗ has only k non-zero entries. Such a representation

captures exact stream statistics for all but ‖f − f ∗‖1 stream elements. We show that

using a counter algorithm to produce the k largest estimated frequencies f̂i yields a good
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solution to this problem. Formally, let S be the set of the k largest entries in f̂ , generated

by a counter algorithm with O(k/ǫ) counters. Let f ∗ be an n-dimensional vector such that

f ∗
i is equal to f̂i if i ∈ S and f ∗

i = 0 otherwise. Then we show that under the Lp norm,

for any p ≥ 1, we have

‖f − f ∗‖p ≤
εF

res(k)
1

k1−1/p
+ (F res(k)

p )1/p

This is the best known result for this problem in a streaming setting; note that the error

is always at least (F
res(k)
p )1/p. The best known sketching algorithms achieve this bound

using Ω(k log n
k
) space (see [BGI+08, BIR08, IR08]); in contrast, our approach yields a

space bound of O(k). By extracting all m approximated values from a counter algorithm

(as opposed to just top k), we are able to show another result. Specifically, by modifying

the algorithms to ensure that they always provide an underestimate of the frequencies, we

show that the resulting reconstruction has Lp error (1 + ǫ)(ǫ/k)1−1/pF
res(k)
1 for any p ≥ 1.

As noted above, many common frequency distributions are naturally skewed. We show

that if the frequencies follow a Zipfian distribution with parameter α > 1, then the same

tail guarantee follows using only O(ǫ−1/α) space. Lastly, we also discuss extensions to

the cases when streams can include arbitrary weights for each occurrence of an item;

and when multiple streams are summarized and need to be merged together into a single

summary. We show how the algorithms considered can be generalized to handle both of

these situations.

3.1.1 Related Work

There is a large body of algorithms proposed in the literature for heavy hitters problems

and their variants; see [CH08] for a survey. Most of them can be classified as either counter-

based or sketch-based. The first counter algorithm is due to Misra and Gries [MG82], which

we refer to as Frequent. Several subsequent works discussed efficient implementation

and improved guarantees for this algorithm [DOM02, BKMT03]. In particular, Bose et al.

showed that it offers an F
res(1)
1 guarantee [BKMT03]. Our main result is to improve this

to F
res(k)
1 , for a broader class of algorithms.

A second counter algorithm is the LossyCounting algorithm of Manku and Mot-

wani. This has been shown to require O(1/ǫ) counters over randomly ordered streams
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to give an ǫF1 guarantee, but there are adversarial order streams for which it requires

O(1/ǫ log ǫn) [MM02]. Our results hold over all possible stream orderings.

The most recent counter solution is the SpaceSaving algorithm due to Metwally et

al. [MAA05]. The algorithm is shown to offer an F1 guarantee, and also analyzed in the

presence of data with Zipfian frequency distribution. Here, we show an F
res(k)
1 bound, and

demonstrate similar bounds for Zipfian data for a larger class of counter algorithms.

Sketch algorithms are based on linear projections of the frequency vector onto a smaller

sketch vector, using compact hash functions to define the projection. Guarantees in terms

of F
res(k)
1 or F

res(k)
2 follow by arguing that the items with the k largest frequencies are

unlikely to (always) collide under the random choice of the hash functions, and so these

items can effectively be “removed” from consideration. Because of this random element,

sketches are analyzed probabilistically, and have a probability of failure that is bounded

by 1/nc for a constant c (n is the size of the domain from which the stream elements are

drawn). The Count-Sketch requires O((k/ǫ) log n) counters to give guarantees on the sum

of squared errors in terms of F
res(k)
2 [CCFC02]; the Count-Min sketch uses O((k/ǫ) log n)

counters to give guarantees on the absolute error in terms of F
res(k)
1 [CM04]. These two

guarantees are incomparable in general, varying based on the distribution of frequencies. A

key distinction of sketch algorithms is that they allow both positive and negative updates

(where negative updates can correspond to deletions, in a transactional setting, or simply

arbitrary signal values, in a signal processing environment). This, along with the fact

that they are linear transforms, means that they can be used to solve problems such as

designing measurements for compressed sensing systems [GSTV07, CRT06]. So, although

our results show that counter algorithms are strictly preferable to sketches when both are

applicable, there are problems that are solved by sketches that cannot be solved using

counter algorithms.

We summarize the main properties of these algorithms, along with the correspond

results based on our analysis, in Table 3.1.
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Algorithm 4: Frequent(m)

T ← ∅;
foreach i do

if i ∈ T then
ci ← ci + 1;

else if |T | < m then
T ← T ∪ {i};
ci ← 1;

else forall j ∈ T do
cj ← cj − 1;
if cj = 0 then

T ← T \{j};

Algorithm 5: SpaceSaving(m)

T ← ∅;
foreach i do

if i ∈ T then
ci ← ci + 1;

else if |T | < m then
T ← T ∪ {i};
ci ← 1;

else
j ← argminj∈T cj ;
ci ← cj + 1;
T ← T ∪ {i}\{j};

Figure 3-1: Pseudocode for Frequent and SpaceSaving algorithms

3.2 Preliminaries

We introduce the notation used throughout this chapter. The algorithms maintain at

most m counters which correspond to a “frequent” set of elements occurring in the input

stream. The input stream contains elements, which we assume to be integers between 1

and n. We denote a stream of size N by u1, u2, . . . uN . We use ux...y as a shorthand for the

partial stream ux, ux+1, . . . , uy.

We denote frequencies of elements by an n-dimensional vector f . For ease of notation,

we assume without loss of generality that elements are indexed in order of decreasing

frequency, so that f1 ≥ f2 ≥ . . . ≥ fn. When the stream is not understood from context,

we specify it explicitly, e.g. f(ux...y) is the frequency vector for the partial stream ux...y.

We denote the sum of the frequencies by F1; we denote the sum of frequencies except

the largest ones by F
res(k)
1 , and we generalize the definition to sums of powers of the

frequencies:

F res(k)
p =

n
∑

i=k+1

f p
i , Fp = F res(0)

p

The algorithms considered in this chapter can be thought of as adhering to the following

form. The state of an algorithm is represented by an n-dimensional vector of counters

c. The vector c has at most m non-zero elements. We denote the “frequent” set by

T = {i | ci 6= 0}, since only this set needs to be explicitly stored. The counter value of

an element is an approximation for its frequency; the error vector of the approximation is

denoted by δ, with δi = |fi − ci|.
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We demonstrate our results with reference to two known counter algorithms: Fre-

quent and SpaceSaving. Although similar, the two algorithms differ in the analysis

and their behavior in practice. Both maintain their frequent set T , and process a stream of

updates. Given a new item i in the stream which is stored in T , both simply increase the

corresponding counter ci; or, if i /∈ T and |T | < m, then i is stored with a count of 1. The

algorithms differ when an unstored item is seen and |T | = m: Frequent decrements all

stored counters by 1, and (implicitly) throws out any counters with zero count; Space-

Saving finds an item j with smallest non-zero count cj and assigns ci ← cj + 1, followed

by cj ← 0, so in effect i replaces j in T . Pseudocode for these algorithms is presented in

Figure 3-1

These algorithms are known to provide a “heavy hitter” guarantee on the approxima-

tion errors of the counters:

Definition 4. An m-counter algorithm provides a heavy hitter guarantee with constant

A > 0 if, for any stream,

δi ≤

⌊

A
F1

m

⌋

∀i

More precisely, they both provide this guarantee with constant A = 1. Our result is

that they also satisfy the following stronger guarantee:

Definition 5. An m-counter algorithm provides a k-tail guarantee with constants (A, B),

with A, B > 0 if for any stream

δi ≤

⌊

A
F

res(k)
1

m−Bk

⌋

∀i

Note that the heavy hitter guarantee is equivalent to the 0-tail guarantee. Our general

proof (which can be applied to a broad class of algorithms) yields a k-tail guarantee with

constants A = 1, B = 2 for both algorithms (for any k ≤ m/2). However, by considering

particular features of Frequent and SpaceSaving, we prove a k-tail guarantee with

constants A = B = 1 for any k < m following appropriate analysis (see 3.3.1, 3.3.2).

The lower bound proved in 3.8 establishes that any counter algorithm that provides an

error bound of
F

res(k)
1

m−k
must use at least (m − k)/2 counters; thus the number of counters

Frequent and SpaceSaving use is within a small factor (3 for k ≤ m/3) of the optimal.
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3.3 Specific proofs

We begin with specific proofs for the Frequent and SpaceSaving algorithms (see 3-1).

3.3.1 Tail guarantee with constants A = B = 1 for Frequent

We can interpret the Frequent algorithm in the following way: each element in the

stream results in incrementing one counter; in addition, some number of elements (call

this number d) also result in decrementing m+1 counters (we can think of the d elements

incrementing and later decrementing their own counter). The sum of the counters at the

end of the algorithm is ‖c‖1. We have

‖c‖1 = ‖f‖1 − d(m + 1)

Since there were d decrement operations, and each operation decreases any given counter

by at most one, it holds that the final counter value for any element is at least fi − d. We

restrict our attention to the k most frequent elements. Then

‖c‖1 = ‖f‖1 − d(m + 1) ≥
k
∑

i=1

(fi − d)

‖f‖1 − d(m + 1) ≥ −dk +

k
∑

i=1

fi

n
∑

i=k+1

fi ≥ d(m + 1− k)

d ≤
F

res(k)
1

m + 1− k

Since the error in any counter is at most d, this implies the k-tail guarantee with A = B =

1.

3.3.2 Tail guarantee with constants A = B = 1 for SpaceSaving

The tail guarantee follows almost immediately from the following claims proven in [MAA05]:

Lemma 3 in [MAA05]: If the minimum non-zero counter value is ∆, then δi ≤ ∆ for all

i.
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Theorem 2 in [MAA05]: Whether or not element i (i.e. i-th most frequent element)

corresponds to the i-th largest counter, the value of this counter is at least fi, the frequency

of i.

If we restrict our attention to the k largest counters, the sum of their values is at least
∑k

i=1 fi. Since in this algorithm the sum of the counters is always equal to the length of

the stream, it follows that:

∆ ≤
‖f‖1 −

∑k
i=1 fi

m− k

thus by Lemma 3

δi ≤
F

res(k)
1

m− k
∀i

which is the k-tail guarantee with constants A = B = 1.

3.4 Residual Error Bound

In this section we state and prove our main result on the error bound for a class of heavy-

tolerant counter algorithms. We begin by formally defining this class.

Definition 6. A value i is x-prefix guaranteed for the stream u1...s if after the first x < s

elements of the stream have been processed, i will stay in T even if some elements are

removed from the remaining stream (including occurrences of i). Formally, the value i is

x-prefix guaranteed if 0 ≤ x < s and ci(u1...xv1...t) > 0 for all subsequences v1...t of u(x+1)...s,

0 ≤ t ≤ s− x.

Note that if i is x-prefix guaranteed, then i is also y-prefix guaranteed for all y > x.

Definition 7. A counter algorithm is heavy-tolerant if extra occurrences of guaranteed

elements do not increase the estimation error. Formally, an algorithm is heavy-tolerant

if for any stream u1...s, given any x, 1 ≤ x < s, for which element i = ux is (x−1)-prefix

guaranteed, it holds that

δj(u1...s) ≤ δj(u1...(x−1)u(x+1)...s) ∀j

Theorem 6. Algorithms Frequent and SpaceSaving are heavy-tolerant.
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Theorem 7. If a heavy-tolerant algorithm provides a heavy hitter guarantee with constant

A, it also provides a k-tail guarantee with constants (A, 2A), for any k, 1 ≤ k < m/2A.

3.4.1 Proof of Heavy Tolerance

Intuitively, this is true because occurrences of an element already in the frequent set only

affect the counter value of that element; and, as long as the element never leaves the

frequent set, the value of its counter does not affect the algorithm’s other choices.

of Theorem 6. Denote v1...t = u(x+1)...(x+t), with t ≤ s − x. We prove by induction on t

that for both algorithms

c(u1...xv1...t) = c(u1...(x−1)v1...t) + ei

where ei is the i-th row of In, the n× n identity matrix; this implies that

δ(u1...xv1...t) = δ(u1...(x−1)v1...t)

Base case at t = 0: By the hypothesis: ci(u1...(x−1)) 6= 0, hence when element ux =

i arrives after processing u1...x, both Frequent and SpaceSaving just increase i’s

counter:

c(u1...x) = c(u1...(x−1)) + ei

Induction step for t > 0: We are given that

c(u1...xv1...(x−1)) = c(u1...(x−1)v1...(t−1)) + ei

Note that since i is (x−1)-prefix guaranteed, these vectors have the same support.

Case 1: cvt
(u1...xv1...(t−1)) > 0. Hence cvt

(u1...(x−1)v1...(t−1)) > 0. For both streams, vt’s

counter just gets incremented and thus

c(u1...xv1...t) = c(u1...xv1...(t−1)) + evt

= c(u1...(x−1)v1...(t−1)) + evt
+ ei

= c(u1...(x−1)v1...t) + ei

Case 2: cvt
(u1...xv1...(t−1)) = 0. Note that vt 6= i since i is x-prefix guaranteed and

cvt
(u1...(x−1)v1...(t−1)) = 0. By the induction hypothesis, both counter vectors have the
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same support (set of non-zero entries). If the support is less than m, then the algorithm

adds evk
to the counters, and the analysis follows Case 1 above. Otherwise, the two

algorithms differ:

• Frequent algorithm: In this case all non-zero counters will be decremented. Since

both counter vectors have the same support, they will be decremented by the same

m-sparse binary vector γ = χ(T ) =
∑

j:cj 6=0 ej .

• SpaceSaving algorithm: The minimum non-zero counter is set to zero. To avoid

ambiguity, we specify that SpaceSaving will pick the counter cj with the smallest

identifier j if there are multiple counters with equal smallest non-zero value. Let

j = argmin
j∈T (u1...xv1...(t−1))

cj(u1...xv1...(t−1))

and

j′ = argmin
j′∈T (u1...(x−1)v1...(t−1))

cj′(u1...(x−1)v1...(t−1))

Since i is x-prefix guaranteed, its counter can never become zero, hence j 6= i, j′ 6= i.

Since

ci′(u1...xv1...(t−1)) = ci′(u1...(x−1)v1...(t−1))

for all i′ 6= i, it follows that j = j′ and

cj(u1...xv1...(t−1)) = cj′(u1...(x−1)v1...(t−1)) = M.

Hence both streams result in updating the counters by subtracting the same difference

vector γ = Mej − (M + 1)evt

So each algorithm computes some difference vector γ irrespective of which stream it is

applied to, and updates the counters:

c(u1...xv1...t) = c(u1...xv1...(t−1))− γ

= c(u1...(x−1)v1...(t−1)) + ei − γ

= c(u1...(x−1)v1...t) + ei
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3.4.2 Proof of k-tail guarantee

Let Remove(u1...s, i) be the subsequence of u1...s with all occurrences of value i removed,

i.e.

Remove(u1...s, i) =



















empty sequence if s = 0

(u1, Remove(u2...s, i)) if u1 6= i

Remove(u2...s, i) if u1 = i

Lemma 8. If i is x-prefix guaranteed and the algorithm is heavy-tolerant, then

δj(u1...s) ≤ δj(u1...xv1...t) ∀j

where v1...t = Remove(u(x+1)...s, i), with 0 ≤ t ≤ s− x.

Proof. Let x1, x2, . . . , xq be the positions of occurrences of i in u(x+1)...s, with x < x1 <

x2 < . . . < xq. We apply the heavy-tolerant definition for each occurrence; for all j:

δj(u1...s) ≤ δj(u1...(x1−1)u(x1+1)...s)

≤ δj(u1...(x1−1)u(x1+1)...(x2−1)u(x2+1)...s)

≤ . . .

≤ δj(u1...xv1...t)

Note in particular that δi(u1...p), the error in estimating the frequency of i in the original

stream, is identical to δi(u1...xv1...q), the error of i on the derived stream, since i is x-prefix

guaranteed.

Definition 8. An error bound for an algorithm is a function ∆ : N
n → R

+ such that for

any stream u1...s

δi(u1...s) ≤ ⌊∆(f(u1...s))⌋ ∀i

In addition, ∆ must be “increasing” in the sense that for any two frequency vectors f ′ and

f ′′ such that f ′
i ≤ f ′′

i for all i, it holds that ∆(f ′) ≤ ∆(f ′′).

Lemma 9. Let ∆ be an error bound for a heavy-tolerant algorithm that provides a heavy

hitter guarantee with constant A. Then the following function is also an error bound for
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the algorithm, for any k, 1 ≤ k < m/A:

∆′(f) = A
k∆(f) + k + F

res(k)
1

m

Proof. Let u1...s be any stream. Let D = 1 + ⌊∆(f(u1...s))⌋. We assume without loss of

generality that the elements are indexed in order of increasing frequency.

Let k′ = max {i | 1 ≤ i ≤ k and fi(u1...s) > D}.

For each i ≤ k′ let xi be the position of the D-th occurrence of i in the stream. We

claim that any i ≤ k′ is xi-prefix guaranteed: let v1...t be any subsequence of u(xi+1)...s; it

holds for all j that

δj(u1...xi
v1...t) ≤ ⌊∆(f(u1...xi

v1...t))⌋ < D

and so cj(u1...xi
v1...t) ≥ fj(u1...xi

v1...t)− δj(u1...xi
v1...t) > D −D = 0.

Let i1, i2, . . . ik′ be the permutation of 1 . . . k′ so that xi1 > xi2 > . . . > xik′
. We can

apply Lemma 8 for i1 which is xi1-prefix guaranteed; for all j

δj(u1...s) ≤ δj(u1...xi1
v1...sv

)

where v1...sv
= Remove(u(xi1

+1)...s, i1).

Since x2 < x1, i2 is x2-prefix guaranteed for the new stream u1...xi1
v1...sv

and we apply

Lemma 8 again:

δj(u1...s) ≤ δj(u1...xi1
v1...sv

) ≤ δj(u1...xi2
w1...sw

) ∀j

where w1...sw
= Remove(u(xi2

+1)...xi1
v1...sv

, i2). Since the xij values are decreasing, we can

continue this argument for i = 3, 4, . . . , k′. We obtain the following inequality for the final

stream z1...sz

δj(u1...s) ≤ δj(z1...sz
) ∀j

where z1...sz
is the stream u1...s with all “extra” occurrences of elements 1 to k′ removed

(“extra” means after the first D occurrences). Thus

‖f(z1...sz
)‖1 = k′D +

n
∑

i=k′+1

fi(u1...s)

Either k′ = k, or k′ < k and fi(u1...s) ≤ D for all k′ < i ≤ k; in both cases we can replace
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k′ with k:

‖f(z1...sz
)‖1 ≤ kD +

n
∑

i=k+1

fi(u1...s)

We now apply the heavy hitter guarantee for this stream; for all j:

δj(u1...s) ≤ δj(z1...sz
)

≤

⌊

A
kD +

∑n
i=k+1 fi(u1...s)

m

⌋

≤

⌊

A
k∆(u1...s) + k + F

res(k)
1

m

⌋

We can now prove theorem 7.

of Theorem 7. We start with the initial error bound given by the heavy hitter guarantee

∆(f) = A‖f‖1

m
and apply Lemma 9 to obtain another error bound ∆′. We can continue

iteratively applying Lemma 9 in this way. Either we will eventually obtain a new bound

which is worse than the previous one, in which case this process halts with the previous

error bound; or else we can analyze the error bound obtained in the limit (in the spirit of

[BKMT03]). In both cases, the following holds for the best error bound ∆:

∆(f) ≤ A
k∆(f) + k + F

res(k)
1

m

and so ∆(f) ≤ A
k + F

res(k)
1

m− Ak
.

We have shown that for any stream u1...p,

δi(u1...p) ≤

⌊

A
k + F

res(k)
1

m− Ak

⌋

∀i

We show that this implies the guarantee

δi(u1...p) ≤

⌊

A
F

res(k)
1

m− 2Ak

⌋

∀i

Case 1: AF
res(k)
1 < m− 2Ak. In this case both guarantees are identical: all errors are

0.
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Case 2: AF
res(k)
1 ≥ m− 2Ak:

A2kF
res(k)
1 ≥ Ak(m− 2Ak)

A(m− Ak)F
res(k)
1 ≥ A(m− 2Ak)

(

k + F
res(k)
1

)

A
F

res(k)
1

m− 2Ak
≥ A

k + F
res(k)
1

m− Ak

3.5 Sparse Recoveries

The k-sparse recovery problem is to find a representation f ′ so that f ′ has only k non-zero

entries (“k-sparse”), and the Lp norm ‖f − f ′‖p = (
∑n

i=1 |fi − f ′
i |

p)1/p is minimized. A

natural approach is to build f ′ from the heavy hitters of f , and indeed we show that this

method gives strong guarantees for frequencies from heavy tolerant counter algorithms.

3.5.1 k-sparse recovery

To get a k-sparse recovery, we run counter algorithm that provides a k-tail guarantee with

m counters and create f ′ using the k largest counters. These are not necessarily the k

most frequent elements (with indices 1 to k in our notation), but we show that they must

be “close enough”.

Theorem 8. If we run a counter algorithm which provides a k-tail guarantee with constants

(A, B) using m = k(3A
ε

+ B) counters and retain the top k counter values into the k-sparse

vector f ′, then for any p ≥ 1 :

‖f − f ′‖p ≤
εF

res(k)
1

k1−1/p
+ (F res(k)

p )1/p

Proof. Let K = {1, . . . , k} be the set of the k most frequent elements. Let S be the set of

elements with the k largest counters. Let R = {1, . . . , n} \ (S ∪K) be the set of all other

remaining elements. Let k′ = |K \ S| = |S \K|.

Let x1 . . . xk′ be the k′ elements in S \K, with cx1 ≥ cx2 ≥ . . . ≥ cxk′
. Let y1 . . . yk′ be

the k′ elements in K \ S, with cy1 ≥ cy2 ≥ . . . ≥ cyk′
. Notice that cxi

≥ cyi
for any i: cyi

is

the ith largest counter in K \S, whereas cxi
is the ith largest counter in (K ∪S) \ (S ∩K),
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a superset of K \ S. Let ∆ be an upper bound on the counter errors δ. Then for any i

fyi
−∆ ≤ cyi

≤ cxi
≤ fxi

+ ∆ (3.1)

Hence fyi
≤ fxi

+ 2∆. Let f ′ be the recovered frequency vector (f ′
xi

= cxi
and zero

everywhere else). For any p ≥ 1, and using the triangle inequality ‖a + b‖p ≤ ‖a‖p + ‖b‖p

on the vector fi restricted to i ∈ R∪S and the vector equal to the constant 2∆ restricted

to i ∈ S \K:

‖f − f ′‖p =





∑

i∈S

(ci − fi)
p +

∑

i∈R∪K\S

(fi)
p





1/p

≤





k
∑

i=1

∆p +
∑

i∈K\S

(fi)
p +

∑

i∈R

(fi)
p





1/p

≤ k1/p∆ +

(

k′

∑

i=1

(fyi
)p +

∑

i∈R

(fi)
p

)1/p

≤ k1/p∆ +

(

k′

∑

i=1

(fxi
+2∆)p +

∑

i∈R

(fi)
p

)1/p

≤ 3k1/p∆ +





∑

i∈R∪S\K

(fi)
p





1/p

≤ 3k1/p∆ + (F res(k)
p )1/p

If an algorithm has the tail guarantee with constants (A, B), by using m = k(3A
ε

+ B)

counters we get

‖f − f ′‖p ≤
εF

res(k)
1

k1−1/p
+ (F res(k)

p )1/p (3.2)

Note that (F
res(k)
p )1/p is the smallest possible Lp error of any k-sparse recovery of f .

Also, if the algorithm provides one-sided error on the estimated frequencies (as is the case

for Frequent and SpaceSaving), it is sufficient to use m = k(2A
ε

+ B) counters, since

now fyi
≤ fxi

+ ∆.

Estimating F
res(k)
1 . Since our algorithms give guarantees in terms of F

res(k)
1 , a natural
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question is to estimate the value of this quantity.

Theorem 9. If we run a counter algorithm which provides a k-tail guarantee with constants

(A, B) using (Bk + Ak
ε

) counters and retain the largest k counter values as the k-sparse

vector f ′, then:

F
res(k)
1 (1− ε) ≤ F1 − ‖f

′‖1 ≤ F
res(k)
1 (1 + ε)

Proof. To show this result, we rely on the definitions and properties of sets S and K from

the proof of Theorem 8. By construction of sets S and K, fxi
≤ fyi

for any i. Using

equation (3.1) it follows that

fyi
−∆ ≤ cxi

≤ fyi
+ ∆

So the norm of f ′ must be close to the norm of the best k-sparse representative of f , i.e.

(F1 − F
res(k)
1 ). Summing over each of the k counters yields

F1 − F
res(k)
1 − k∆ ≤ ‖f ′‖1 ≤ F1 − F

res(k)
1 + k∆

F
res(k)
1 − k∆ ≤ F1 − ‖f

′‖1 ≤ F
res(k)
1 + k∆

The result follows when setting m = k(Ak
ε

+ B) so the upper bound ensures ∆ ≤ ε
k
F

res(k)
1 .

3.5.2 m-sparse recovery

When the counter algorithm uses m counters, it stores approximate values for m elements.

It seems intuitive that by using all m of these counter values, the recovery should be even

better. This turns out not to be true in general. Instead, we show that it is possible

to derive a better result given an algorithm which always underestimates the frequencies

(ci ≤ fi). For example, this is true in the case of Frequent.

As described so far, SpaceSaving always overestimates, but can be modified to

underestimate the frequencies. In particular, the algorithm has the property that error

is bounded by the smallest counter value, i.e. ∆ = min{cj|cj 6= 0}. So setting c′i =

max{0, ci − ∆} ensures that c′i ≤ fi. Because fi + ∆ ≥ ci ≥ fi, fi − c′i ≤ ∆ and thus c′

satisfies the same k-tail bounds with A = B = 1 (as per 3.3.2). Note that in practice,

slightly improved per-item guarantees follow by storing ǫi for each non-zero counter ci as
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the value of ∆ when i last entered the frequent set, and using ci−ǫi as the estimated value

(as described in [MAA05]).

Theorem 10. If we run an underestimating counter algorithm which provides a k-tail

guarantee with constants (A, B) using (Bk + Ak
ε

) counters and retain the counter values

into the m-sparse vector f ′, then for any p ≥ 1:

‖f − f ′‖p ≤ (1 + ε)
(ε

k

)1−1/p

F
res(k)
1

Proof. Set m = k(A
ε

+ B) in Definition 5 to obtain

‖f − f ′‖p =

(

k
∑

i=1

(fi − ci)
p +

n
∑

i=k+1

(fi − ci)
p

)1/p

≤

(

k
εp

kp
(F

res(k)
1 )p +

n
∑

i=k+1

(fi − ci)
εp−1

kp−1
(F

res(k)
1 )p−1

)1/p

≤

(

εp

kp−1
(F

res(k)
1 )p +

εp−1

kp−1
(F

res(k)
1 )p

)1/p

≤ (1 + ε)
(ε

k

)1−1/p

F
res(k)
1

3.6 Zipfian Distributions

Realistic data can often be approximated with a Zipfian [Zip49] distribution; a stream of

length F1 = N , with n distinct elements, distributed (exactly) according to the Zipfian

distribution with parameter α has frequencies

fi = N
1

iαζ(α)
where ζ(α) =

n
∑

i=1

1

iα

The value ζ(α) converges to a small constant when α > 1. Although data rarely obeys

this distribution exactly, our first result requires only that the “tail” of the distribution

can be bounded by a (small constant multiple of) a Zipfian distribution. Note that this

requires that the frequencies follow this distribution, but the order of items in the stream

can be arbitrary.
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Theorem 11. Given Zipfian data with parameter α ≥ 1, if a counter algorithm that

provides a k-tail guarantee with constants (A, B) for k =
(

1
ε

)1/α
is used with m = (A +

B)
(

1
ε

)1/α
counters, the counter errors are at most εF1.

Proof. The k-tail guarantee with constants (A, B) means

∆ = A
F

res(k)
1

m− Bk
≤ A

N

ζ(α)

∑n
i=k+1 i−α

m−Bk

Then
n
∑

i=k+1

1

iα
≤

∫ n

k

1

xα
dx =

1

kα−1

∫ n/k

1

1

xα
dx ≤

ζ(α)

kα−1

∆ ≤ A
ζ(α)

kα−1

N

ζ(α)(m− Bk)
=

N

kα
A

k

m− Bk

by setting k =
(

1
ε

)1/α
, m = (A + B)k,

∆ ≤
N

kα
= εN

A similar result is proved for SpaceSaving in [MAA05] under the stronger assumption

that the frequencies are exactly as defined by the Zipfian distribution.

3.6.1 Top-k

In this section we analyze the algorithms in the context of the problem of finding top k

elements, when the input is Zipf distributed.

Theorem 12. Assuming Zipfian data with parameter α > 1, a counter algorithm that

provides a k′-tail guarantee for k′ = Θ
(

k
(

k
α

)1/α
)

can retrieve the top k elements in correct

order using O
(

k
(

k
α

)1/α
)

counters. For Zipfian data with parameter α = 1, an algorithm

with k′-tail guarantee for k′ = Θ(k2 ln n) can retrieve the top k elements in correct order

using O(k2 ln n) counters.

Proof. To get the top k elements in the correct order we need

∆ <
fk − fk+1

2
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fk − fk+1 =
N

ζ(α)

(

1

kα
−

1

(k + 1)α

)

=
N

ζ(α)

(k + 1)α − kα

(k + 1)αkα

<
N

ζ(α)

αkα−1

(k + 1)αkα
=

N

ζ(α)

α

(k + 1)αk

Thus we need error rate

ε =
α

2ζ(α)(k + 1)αk
=







Θ(α/k1+α) for α > 1

Θ(1/(k2 lnn)) for α = 1

The result then follows from Theorem 11.

3.7 Extensions

3.7.1 Real-Valued Update Streams

So far, we have considered a model of streams where each stream token indicates an arrival

of an item with (implicit) unit weight. More generally, streams often include a weight for

each arrival: a size in bytes or round-trip time in seconds for Internet packets; a unit

price for transactional data, and so on. When these weights are large, or not necessarily

integral, it is still desirable to solve heavy hitters and related problems on such streams.

In this section, we make the observation that the two counter algorithms Frequent

and SpaceSaving naturally extend to streams in which each update includes a positive

real valued weight to apply to the given item. That is, the stream consists of tuples ui,

Each ui is a tuple (ai, bi) representing bi occurrences of element ai where bi ∈ R
+ is a

positive real value.

We outline how to extend the two algorithms to correctly process such streams. For

SpaceSaving, observe that when processing each new item ai, the algorithm identifies a

counter corresponding to ai and increments it by 1. We simply change this to incrementing

the appropriate counter by bi to generate an algorithm we denote SpaceSavingR. It is

straightforward to modify the analysis of [MAA05] to demonstrate that SpaceSavingR

achieves the basic Heavy Hitters guarantee (Definition 4). This generalizes SpaceSaving,

since when every bi is 1, then the two algorithms behave identically.
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Defining FrequentR is a little more complex. If the new item ai ∈ T , then we can

simply increases ai’s counter by bi; and if there are fewer than m−1 counters then one can

be allocated to ai and set to bi. But if ai is not stored, then the next step depends on the

size of cmin, the smallest counter value stored in T . If bi ≤ cmin, then all stored counters

are reduced by bi. Otherwise, all counters are reduced by cmin, and some counter with

zero count (there must be at least one now) is assigned to ai and given count bi − cmin.

Following this, items with zero count are removed from T . Then FrequentR achieves

the basic Heavy Hitter guarantee by observing that every subtraction of counter values

for a given item coincides with the same subtraction to m − 1 others, and all counter

increments correspond to some bi of a particular item. Therefore, the error in the count

of any item is at most F1/m.

We comment that a similar analysis to that provided in Section 3.4 applies, to demon-

strate that these new counter algorithms give a tail guarantee. The main technical chal-

lenge is generalizing the definitions of x-prefix guaranteed and heavy tolerant algorithms

in the presence of arbitrary real updates. We omit the detailed analysis from this presen-

tation, and instead we state in summary:

Theorem 13. FrequentR and SpaceSavingR both provide k-tail guarantees with A =

B = 1 over real-valued non-negative update streams.

3.7.2 Merging Multiple Summaries

A consequence of sparse recovery is the fact that multiple summaries of separate streams

can be merged together to create a summary of the union of the streams. More formally,

consider ℓ streams, defining frequency distributions f (1) . . . f (ℓ) respectively. Given a sum-

mary of each stream produced by (the same) algorithm with m counters, the aim is to

construct an accurate summary of f =
∑ℓ

j=1 f (j).

Theorem 14. Given summaries of each f (j) produced by a counter algorithm that provides

a k-tail guarantee with constants (A, B), a summary of f can be obtained with a k-tail

guarantee with constants (3A, B + A).

Proof. We construct a summary by first building a k-sparse vector f ′(j) from the summary

of f (j), with the guarantee of equation (3.2). By generating a stream corresponding to this
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vector for each stream, and feeding this into the counter algorithm, we obtain a summary

of the distribution f ′ =
∑ℓ

j=1 f ′(j). Now observe that from this we have an estimated

frequency for any item i as ci so that

|ci − fi| ≤ ∆ = ∆f ′ +

ℓ
∑

j=1

∆j

where each ∆j is the error from summarizing f (j) by f ′(j), while ∆f ′ is the error from

summarizing f ′. For the analysis, we require the following bound:

Lemma 10. For any n-dimensional vectors x and y,

|F
res(k)
1 (x)− F

res(k)
1 (y)| ≤ ‖x− y‖1

Proof. Let X denote the set of k largest entries of x, and Y the set of k largest entries of

y. Let π(i) determine any bijection from i ∈ Y \X to π(i) ∈ X\Y . Then

F
res(k)
1 (x)− F

res(k)
1 (y) =

∑

i6∈X

xi −
∑

i6∈Y

yi

≤
∑

i∈Y \X

xπ(i) −
∑

i∈X\Y

yi +
∑

i6∈(X∪Y )

|xi − yi|

=
∑

i6∈Y

|xi − yi| ≤
∑

i

|xi − yi| ≤ ‖x− y‖1

Interchanging the roles of x and y gives the final result.

This lets us place an upper bound on the first component of the error:

∆f ′ ≤
A

m− Bk
F

res(k)
1 (f ′) ≤

A

m−Bk
(F

res(k)
1 (f) + ‖f − f ′‖1)

where, by the triangle inequality and the proof of Theorem 8,

‖f − f ′‖1 ≤
ℓ
∑

j=1

‖f (j) − f ′(j)‖1 ≤
ℓ
∑

j=1

(3k∆j + F
res(k)
1 (f (j)))

Since ∆j ≤ AF
res(k)
1 (f (j))/(m− Bk), the total error obeys

∆ ≤
A

m−Bk

(

F
res(k)
1 (f) +

ℓ
∑

j=1

(3k∆j + 2F
res(k)
1 (f (j)))

)
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We observe that

ℓ
∑

j=1

F
res(k)
1 (f (j)) ≤ F

res(k)
1

(

ℓ
∑

j=1

f (j)

)

= F
res(k)
1 (f)

since
∑ℓ

j=1 F
res(k)
1 (f (j)) ≤

∑ℓ
j=1

∑

i6∈T f (j) for any T such that |T | = k. So

∆ ≤
A

m−Bk

(

3F
res(k)
1 (f) + 3k

A

m−Bk

(

F
res(k)
1 (f)

)

)

=
3A

m−Bk

(

1 +
Ak

m−Bk

)

F
res(k)
1 (f)

This can be analyzed as follows:

(m− Bk)2 − (Ak)2 ≤ (m−Bk)2

(m−Bk + Ak)(m− Bk − Ak) ≤ (m−Bk)2

1 +
Ak

m− Bk
≤

(m− Bk)

m− (A + B)k

3A

m−Bk

(

1 +
Ak

m−Bk

)

≤
3A

m− (A + B)k

Hence, we have a (3A, A + B) guarantee for the k-tail estimation.

In particular, since the two counter algorithms analyzed have k tail guarantees with

constants (1, 1), their summaries can be merged in this way to obtain k tail summaries

with constants (3, 2). Equivalently, this means to obtain a desired error ∆, we need to

pick the number of counters m to be at most a constant factor (three) times larger to give

the same bound on merging multiple summaries as for a single summary.

3.8 Lower bound

The following theorem establishes a lower bound for the estimation error of any counter

algorithm.

Theorem 15. For any deterministic counter algorithm with m counters, for any k, 1 ≤

k ≤ m, there exists some stream in which the estimation error of an element is at least
F

res(k)
1

2m

Proof. The proof is similar to that of Theorem 2 in [BKMT03]. For some integer X,

consider two streams A and B. The streams share the same prefix of size X(m+k), where
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elements a1 . . . am+k occur X times each. After the counter algorithm runs on this first

part of each stream, only m elements can have non-zero counters. Assume without loss of

generality that the other k elements are a1 . . . ak.

Then stream A continues with elements a1 . . . ak, while stream B continues with k other

elements z1 . . . zk distinct from a1 . . . am+k. Both streams thus have total size X(m+k)+k.

For both streams, after processing the prefix of size X(m + k), the algorithm has no

record of any of the elements in the remaining parts of either of the streams. So the two

remaining parts look identical to the algorithm and will yield the same estimates. Thus,

for 1 ≤ i ≤ k, cai
(A) = czi

(B). But fai
(A) = X + 1 while fzi

(B) = 1. The counter

error for one of the two streams must be at least X/2. Note that F
res(k)
1 (A) = Xm and

F
res(k)
1 (B) = Xm + k; then the error is at least

X

2
≥

F
res(k)
1

2m + 2k/X

As X →∞, this approaches our desired bound.

Thus an algorithm that provides an error bound of
F

res(k)
1

m−k
must use at least (m− k)/2

counters.
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Chapter 4

Conclusions and open problems

In chapter 2 we introduced binary sparse matrices as valid measurement matrices for linear

sketching. We showed that they work with the ℓ1-minimization method; in addition, we

introduced two faster iterative algorithms that use the same matrices. Finally, we presented

experiments showing that these methods have practical value.

In chapter 3 we showed strong error bounds for counter algorithms. While they are

not as versatile as linear sketching - finding application in a number of specific problems -

these algorithm are efficient and space-optimal, using only O(k) space to recover k-sparse

approximations.

We discuss open problems and possible directions for future research. First, a faster

way of implementing SSMP would be of importance; the current implementation yields

good recoveries, but at the cost of increased running time compared to SMP. Second, the

algorithms would be cleaner and more practical if they would not need an explicit sparsity

parameter k, the best choice of which many times involves guesswork.

An interesting fact to notice is that any one of the presented methods can be used

to recover a signal from the same linear sketch; the measurement matrix can be chosen

without a priori knowledge of which algorithm will be used. A possible research direction

is to find ways of combining two distinct methods (perhaps using the results of one as a

starting point for the other) in order to obtain better recovery quality.

An important open problem is, of course, that of finding an explicit representation

for expanders with optimal parameters. However, this has been a very studied problem;

a solution would be a breakthrough with consequences in many other fields, like error
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correcting codes or design of computer networks.

A related problem is that of finding an implicit expander representation which requires

sublinear space; more precisely, one needs to be able to compute the neighbors of a ver-

tex without explicitly maintaining this data for all vertices. This is imperative if linear

sketching is to be used in data stream algorithms (e.g. the problem described in section

1.4.1) where by definition any solution must use sublinear space. An example of a possible

construction one might use in practice is the following: generate d 2-independent hash

functions hi : {1 . . . n} → {1 . . . m
d
} with 1 ≤ i ≤ d and let the i-th neighbor of a left

vertex v be m
d
(i−1)+hi(v). In practice, this construction appears to work as well as fully

random matrices; however there is no theoretic basis for it.

Finally, while the linear programming method yields very good approximations, how

much it can be improved even further is an interesting open problem. For example, the

reweighting method of [CWB09] achieves better results by running the linear program

multiple times. Message passing algorithms inspired from error correcting codes (see for

example [APT09]) also have the potential to achieve better approximations than the linear

programming method, even with decreased recovery times.
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Appendix A

Mathematical facts and notations

In this appendix we introduce some of the mathematical notation used throughout this

document.

A.1 Mathematical facts

A.1.1 Vector Norms

Let x be a vector in n-dimensional real space, x ∈ R
n. The ℓp norm of vector x is defined

as:

‖x‖p :=

(

n
∑

i=1

|xi|
p

)1/p

The ℓ2 norm is thus the usual Euclidean distance. The ℓ1 norm is simply the sum of

the absolute values of the elements of x. Two related definitions are those of the ℓ0 and

ℓ∞ norms:

‖x‖0 := lim
p→0
‖x‖pp =

n
∑

i=1

x0
i (under the definition 00 = 0)

‖x‖∞ := lim
p→∞
‖x‖p = max(|x1|, . . . , |xn|)

The ℓ0 norm of x is the number of non-zero elements of x, while the ℓ∞ norm is the

maximum absolute value of a coordinate of x.
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A.1.2 Sparsity

In general, sparse vectors are vectors for which most of their components are zero. To

quantitatively describe this, for an integer k we call a vector k-sparse if at most k of its

components are non-zero. Formally,

Definition. A vector x ∈ R
n is k-sparse iff ‖x‖0 ≤ k.

A.1.3 Norm inequalities

Theorem. For any 0 < p < q ≤ ∞ it holds that ‖x‖p ≥ ‖x‖q.

A useful inequality is an upper-bound on higher norms relative to the ℓ1 norm:

Theorem. For any vector x and any norm p it holds that

‖x‖1 ≤ ‖x‖p · ‖x‖
1−1/p
0 (A.1)

Proof. We use Hölder’s inequality: for 1 ≤ p, q ≤ ∞ such that 1
q

+ 1
p

= 1, for any vectors

f, g it holds that ‖fg‖1 ≤ ‖f‖p ·‖g‖q. We use this inequality with vectors g = x and vector

f where fi is 1 if xi 6= 0 or 0 otherwise, and the norm inequality follows directly.

A.1.4 Sparse approximation guarantees

The ℓp/ℓp guarantee for a sparse approximation x∗ to a vector x is

‖x− x∗‖p ≤ C‖x− x(k)‖p

The mixed ℓp/ℓ1 guarantee is

‖x− x∗‖p ≤
C

k1−1/p
‖x− x(k)‖1

We discuss a few facts about the relationship between these guarantees.

Fact 3. The ℓp/ℓ1 and ℓp/ℓp guarantees are not directly comparable.

This fact was pointed out in [CDD06]; we reproduce the proof here:

Proof. Note that in both guarantees the same term ‖x− x∗‖p is bounded.
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Let a ∈ (0, 1) be a constant; consider two vectors u and v as follows. Vector u has the

first k coordinates equal to 1, coordinate k + 1 equal to a, and the rest of coordinates 0.

Vector v has the first k coordinates 1, and the rest of coordinates all equal to a.

For vector u, ‖u−u(k)‖p = ‖u−u(k)‖1 = a and the bound given by the ℓp/ℓ1 guarantee

is smaller than the bound given by the ℓp/ℓp guarantee by a factor of k1−1/p.

On the other hand, for vector v, ‖v − v(k)‖1 = (n− k)a and ‖v − v(k)‖p = (n− k)1/pa.

In this case, the ℓp/ℓ1 bound is larger than the ℓp/ℓp bound by a factor of
(

n−k
k

)1−1/p
.

Fact 4. The ℓ1/ℓ1 and ℓp/ℓp guarantees with p > 1 are not directly comparable.

Proof. Consider the same u and v vectors as in the above proof.

For u, ‖u− u(k)‖1 = ‖u− u(k)‖p = a so for this vector the ℓ1/ℓ1 guarantee implies the

ℓp/ℓp guarantee with the same constant since the right-hand sides of the guarantees are

identical and ‖u− u∗‖p ≤ ‖u− u∗‖1 for any vector (u− u∗).

For v, ‖v− v(k)‖1 = (n− k)a and ‖v− v(k)‖p = (n− k)1/pa. The norm inequality (A.1)

states that ‖v − v∗‖1 ≤ ‖v − v∗‖1 · ‖v − v∗‖
1−1/p
0 . Thus for recovered vectors v∗ such that

(v−v∗) is at most (n−k)-sparse, then the ℓp/ℓp guarantee implies the ℓ1/ℓ1 guarantee with

the same constant. For general vectors v∗, the ℓp/ℓp guarantee with constant C implies

the ℓ1/ℓ1 guarantee with constant C
(

n
n−k

)1−1/p
≈ C when k ≪ n.

Fact 5. If the recovered signal x∗ is O(k) sparse, then the ℓp/ℓ1 guarantee with constant

C implies the ℓ1/ℓ1 guarantee with constant O(C).

Proof. Assume that x∗ is Ak-sparse. Let S be the set which includes the nonzero coordi-

nates of x∗ as well as the top k (in absolute value) coordinates of x, with k ≤ |S| ≤ (A+1)k.

We use Sc for the complement of set S and xS for the vector obtained from x by keeping

only the coordinates in S. Let e = x− x∗. The ℓp/ℓ1 guarantee states that

‖e‖p ≤
C

k1−1/p
‖x− x(k)‖1

From this and the norm inequality (A.1)

‖eS‖1 ≤ ‖eS‖p((A + 1)k)1−1/p ≤ ‖e‖p((A + 1)k)1−1/p ≤ C(A + 1)1−1/p‖x− x(k)‖1
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Notice that since S includes the top k coordinates of x

‖eSc‖1 = ‖xSc‖1 ≤ ‖x− x(k)‖1

We then have

‖e‖1 = ‖eS‖1 + ‖eSc‖1 ≤ (1 + C(A + 1)1−1/p)‖x− x(k)‖1

which is the ℓ1/ℓ1 guarantee with constant (1 + C(A + 1)1−1/p).

Fact 6. The ℓ2/ℓ2 guarantee cannot be obtained deterministically (for all signals x simul-

taneously) unless the number of measurements is linear, i.e. m = Ω(n).

This was proved in [CDD06].

A.1.5 Proof that random graphs are expanders

Theorem 16. There exist graphs G = (U, V, E) that are (k, d, ǫ)-expanders with d =

O(log(|U |/k)/ǫ) and |V | = O(k log(|U |/k)/ǫ2).

Proof. Consider graphs G = (U, V, E) with |U | = n and |V | = m. Let d = ln(ne2/k)/ǫ

and m = e2k ln(ne2/k)/ǫ2. We show that a random graph G is with constant proba-

bility a (k, d, ǫ)-unbalanced expander1. A random graph is generated by randomly and

independently choosing d neighbors for each left vertex.

Consider any of the
(

n
s

)

left-vertex sets of size s ≤ k. The s vertices have d neighbors

each; consider a sequence containing the ds vertex indices. For G to fail to be an expander

on this set, at least ǫds of these values must be “repeats”, i.e. identical to some earlier

value in the sequence. The probability that a given neighbor is a repeat is at most ds
m

.

By the union bound, the probability that G fails to expand at least one of these sets is at

most
(

n

s

)(

ds

ǫds

)(

ds

m

)ǫds

≤
(ne

s

)s (e

ǫ

)ǫds ( sǫ

ke2

)ǫds

≤
(ne

s

)s ( s

ek

)ǫds

≤

(

ne

s
e−ǫd

( s

k

)ǫd
)s

≤

(

ne

s

k

ne2

( s

k

)ǫd
)s

≤

(

1

e

( s

k

)ǫd−1
)s

≤ e−s

1Note that this analysis is not tight in terms of constants or success probability.
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Thus the probability that G is not a (k, d, ǫ)-expander is at most

k
∑

s=1

e−s <
1

e

∞
∑

s=0

e−s =
1

e

1

1− 1/e
=

1

e− 1
< 0.59

A.2 Common notation

We reproduce some of the notation frequently used throughout this paper:

ei : the vector with all components zero except the i-th component which is 1; equiv-

alently, the i-th line of an identity matrix. The size of the vector is usually understood

from context.

Hk[x] : thresholding operator, the result of which is a k-sparse vector which retains

only the k largest (in absolute value) components of x.

x(k) = argmink−sparse x′ ‖x − x′‖p : the best k-sparse approximation of x. While the

solution might not be unique, x(k) = Hk[x] is always one optimal solution (regardless of

the norm p).

xS : the |S|-dimensional projection of x on coordinates in S ⊂ {1 . . . n}, i.e. the vector

obtained from x by zeroing out all coordinates except those in set S.

Sc : the complement of set S, so that x = xS + xSc .

ΓG(S) : the set of neighbors in graph G of nodes in set S. For a single vertex u, we

use Γ(u) as a shorthand for Γ({u}).

We use the following notations in chapter 3:

F1 =
∑

fi = ‖f‖ : sum of all frequencies, i.e. total number of elements in the stream.

Fp =
∑

i f
p
i = ‖f‖pp : sum of frequencies to the p-th power.

F
res(k)
1 = ‖f −Hk[f ]‖1 = ‖f − f (k)‖1 : sum of all but top k frequencies.
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Appendix B

Sample recovered images

B.1 Peppers image, m = 17000

Original LP

SNR: 23.22 time: 284s

SMP

T =4, k=1000, ξ=0.6

SNR: 20.82 time: 0.09s

SMP

T =8, k = 1000, ξ=0.6

SNR: 21.51 time: 0.31s

SMP

T =16, k = 1250, ξ=0.6

SNR: 21.90 time: 0.66s

SMP

T =64, k = 1250, ξ=0.6

SNR: 22.07 time: 2.38s
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SSMP

S =4000, T =4, k=1700

SNR: 21.86 time: 1.59s

SSMP

S=8000, T =4, k=1700

SNR: 22.16 time: 2.70s

SSMP

S =8000, T =16, k=1700

SNR: 22.60 time: 11.17s

SSMP

S=16000, T =32, k=1750

SNR: 23.10 time: 48.14s

SSMP

S =16000, T =64, k=1750

SNR: 23.26 time: 102s

SSMP

S=32000, T =256, k=1700

SNR: 23.56 time: 671s
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B.2 Boat image, m = 10000

Original LP

SNR: 20.66 time: 295s

SMP

T =4, k=250, ξ=0.6

SNR: 18.56 time: 0.13s

SMP

T =8, k = 250, ξ=0.6

SNR: 18.68 time: 0.23s

SMP

T =16, k = 250, ξ=0.6

SNR: 18.63 time: 0.53s

SMP

T =64, k = 500, ξ=0.6

SNR: 19.09 time: 2.36s
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SSMP

S =4000, T =4, k=500

SNR: 19.00 time: 2.98s

SSMP

S =8000, T =4, k=500

SNR: 18.97 time: 5.47s

SSMP

S =8000, T =16, k=500

SNR: 19.43 time: 21.53s

SSMP

S =16000, T =32, k=500

SNR: 19.22 time: 83.92s

SSMP

S =16000, T =64, k=500

SNR: 19.43 time: 172s

SSMP

S=32000, T =256, k=500

SNR: 19.48 time: 1314s
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B.3 Boat image, m = 25000

Original LP

SNR: 25.38 time: 333s

SMP

T =4, k=1875, ξ=0.6

SNR: 22.14 time: 0.13s

SMP

T =8, k = 1875, ξ=0.6

SNR: 23.05 time: 0.19s

SMP

T =16, k = 1875, ξ=0.6

SNR: 23.67 time: 0.50s

SMP

T =64, k = 1875, ξ=0.6

SNR: 23.13 time: 2.27s

94



SSMP

S =4000, T =4, k=1875

SNR: 24.11 time: 1.36s

SSMP

S=8000, T =4, k=2500

SNR: 24.36 time: 2.48s

SSMP

S =8000, T =16, k=2500

SNR: 25.25 time: 10.02s

SSMP

S=16000, T =32, k=2500

SNR: 25.63 time: 37.45s

SSMP

S =16000, T =64, k=3750

SNR: 25.98 time: 72.36s

SSMP

S=32000, T =256, k=3750

SNR: 26.37 time: 552s
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[DOM02] E. Demaine, A. López Ortiz, and J. Munro. Frequency estimation of inter-
net packet streams with limited space. Proceedings of the 10th ESA Annual
European Symposium on Algorithms, pages 348–360, 2002.

[Don04] D. L. Donoho. Compressed sensing. Unpublished manuscript, Oct. 2004.

[Don06] D. L. Donoho. Compressed Sensing. IEEE Trans. Info. Theory, 52(4):1289–
1306, Apr. 2006.

[Dor43] R. Dorfman. The detection of defective members of large populations. The
Annals of Mathematical Statistics, 1943.

[DT06] D. L. Donoho and J. Tanner. Thresholds for the recovery of sparse solutions
via l1 minimization. Proc. of the 40th Annual Conference on Information
Sciences and Systems (CISS), 2006.

[DWB05] M. F. Duarte, M. B. Wakin, and R. G. Baraniuk. Fast reconstruction of
piecewise smooth signals from random projections. In Proc. SPARS05, 2005.

[EV01] C. Estan and G. Verghese. New directions in traffic measurement and ac-
counting. ACM SIGCOMM Internet Measurement Workshop, 2001.

[EV03] C. Estan and G. Varghese. New directions in traffic measurement and ac-
counting: Focusing on the elephants, ignoring the mice. ACM Transactions
on Computer Systems, 2003.

[FSGM+98] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. Ullman.
Computing iceberg queries efficiently. Proceedings of the 24th ACM VLDB
International Conference on Very Large Data Bases, pages 299–310, 1998.

[GGI+02a] A. Gilbert, S. Guha, P. Indyk, M. Muthukrishnan, and M. Strauss. Near-
optimal sparse Fourier representations via sampling. STOC, 2002.

[GGI+02b] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. J.
Strauss. Fast, small-space algorithms for approximate histogram maintenance.
In ACM Symposium on Theoretical Computer Science, 2002.

[GIS08] A. C. Gilbert, M. A. Iwen, and M. J. Strauss. Group testing and sparse signal
recovery. 42nd Asilomar Conference on Signals, Systems, and Computers,
Monterey, CA, 2008.

[GKMS03] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. One-Pass
Wavelet Decompositions of Data Streams. IEEE Trans. Knowl. Data Eng.,
15(3):541–554, 2003.

[GLR08] V. Guruswami, J. Lee, and A. Razborov. Almost Euclidean subspaces of l1
via expander codes. SODA, 2008.

98



[Gro06] Rice DSP Group. Compressed sensing resources. Available at:
http://www.dsp.ece.rice.edu/cs/, 2006.

[Gro08] Rice DSP Group. Rice single-pixel camera project. Available at:
http://dsp.rice.edu/cscamera/, 2008.

[GSTV06] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin. Algorithmic
linear dimension reduction in the ℓ1 norm for sparse vectors. Submitted for
publication, 2006.

[GSTV07] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. Vershynin. One sketch
for all: fast algorithms for compressed sensing. In ACM STOC 2007, pages
237–246, 2007.

[GUV07] V. Guruswami, C. Umans, and S. P. Vadhan. Unbalanced expanders and
randomness extractors from Parvaresh-Vardy codes. In IEEE Conference on
Computational Complexity (CCC 2007), pages 96–108, 2007.

[HPDW01] J. Han, J. Pei, G. Dong, and K. Wang. Efficient computation of iceberg
cubes with complex measures. Proceedings of 2001 ACM SIGMOD, pages
1–12, 2001.

[HSST05] J. Hershberger, N. Shrivastava, S. Suri, and C. D. Tóth. Space complex-
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