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Figure 2: Power Profile: The power profile represents the
relative power of the signal coming along different spatial
directions.

We introduce R2-F2, a system that does exactly that – i.e.,

it can infer the RF channels on one band by observing them

on a different band. Before we dive into R2-F2, let’s explain

why wireless channels vary across frequency bands in the

first place. RF signals are waves whose phase changes with

time and frequency. The wireless channels are the result of

those waves traversing multiple paths, reflecting off walls

and obstacles, then combining at the receiver. Due to their

frequency-dependent phases, RF waves that combine to re-

inforce each other on one frequency may cancel each other

on another frequency. As a result, wireless channels could

look quite different at different frequencies.

R2-F2 infers wireless channels across frequencies by

leveraging a simple observation: while the channels change

with frequencies, the underlying physical paths traversed by

the signal stay the same. Hence, R2-F2 operates by identify-

ing a transform that allows it to map the observed channels

to the underlying paths, then map them back to the channels

at a different frequency, as shown in Fig. 1.

But how do we identify a frequency-invariant transform

for mapping channels to paths? It is natural to look into

past work on RF-based localization systems since, like us,

they need to relate RF channels to the underlying paths. Lo-

calization systems [53, 27, 4, 29, 28] exploit the MIMO

antennas on a base station to create a power profile that

shows the spatial directions of the incoming signal, as il-

lustrated in Fig. 2. Each peak in the profile is, then, asso-

ciated with the direction of an underlying path. Unfortu-

nately, these localization power profiles are unsuitable for

our purpose. While they reveal information about the direc-

tion of the signal, they lack information about the exact dis-

tance travelled by the signal and whether the path is direct

or reflected off a wall. Such missing parameters introduce

frequency-dependent phase variations in RF waves travelling

along different spatial paths, and hence, change the channel

values. Furthermore, in §4, we show that, due to window-

ing and superposition effects, the power profiles change with

frequency and deviate from the spatial directions of the un-

derlying paths. Our empirical results in §8 demonstrate that

using the localization power profiles for recovering the un-

derlying channels eliminates 60% of MIMO SNR gains.

R2-F2 builds on the insights learned from RF-localization,

but it is the first to enable LTE base stations to infer the

downlink channels without any feedback, and at an accu-

racy suitable for MIMO techniques. In §5, we explain how

we design a channel-to-path transform that incorporates the

information needed to predict channels across frequencies.

We further embed this transform in a full system that over-

comes additional practical challenges, including accounting

for: (1) frequency offset between the user and the base sta-

tion; (2) hardware differences in transmit and receive chains;

and (3) packet detection delay — all of which affect wireless

channels differently at different frequency bands.

We built R2-F2 in USRP radios and integrated it with LTE

OFDM. Our testbed emulates a small cell setting with a 5-

antenna LTE base station. We deploy our base station within

a few meters from one of the LTE base stations on our cam-

pus. Since we cannot transmit in the cellular spectrum, we

operate our testbed on the 640-690 MHz white space fre-

quency band, which is in the vicinity of the Verizon LTE

band (only 30 MHz away). Our results reveal the following:

• For an uplink-downlink frequency separation equal to that

in AT&T and Verizon networks, the channels computed

by R2-F2 deliver accurate MIMO beamforming within

0.7 dB of the beamforming obtained with the ground-

truth channels. The resulting SNR increase has improved

the average data rates in our testbed by 1.7×. This result

shows that R2-F2 can be used by MIMO solutions to de-

liver LTE throughput gain while eliminating channel feed-

back overhead.

• R2-F2 can also be used to eliminate interference at cell

edges and improve spatial reuse. In our testbed, R2-F2 re-

duced the SNR of the interfering signal from 9 dB to only

0.9 dB.

• The quality of R2-F2’s inferred channels remains high

across frequencies separated by up to 40 MHz, which is

larger than the LTE uplink-downlink separation in most

US LTE deployments. Further, the degradation of SNR

with uplink-downlink separation is less than 0.2 dB per

10MHz.

To our knowledge, R2-F2 is the first system that demon-

strates the practicality of inferring LTE downlink channels

from uplink channels using reciprocity and without channel

feedback. This result contributes a better understanding of

reciprocity in FDD systems, and a solution to one of the im-

portant challenges facing future 5G MIMO networks.

2. RELATED WORK

Related work falls under two broad categories.

(a) Channel Estimation in Cellular Networks: Much

prior work has reported the excessive overhead associ-

ated with channel estimation and feedback in cellular net-

works [9, 54, 22, 52, 44]. Even in today’s networks, which

have a relatively small number of antennas, the feedback

overhead can be prohibitive – as much as 4.6 Mb/s of sig-

nalling traffic per user in a 4×2 system [22, 3]. All recent

LTE releases recognize this challenge [3, 2, 1]. To miti-

gate the problem, the standard allows for either sending full

channel information, or compressing the information using

a codebook of limited values. Unfortunately, neither option

is satisfactory since the former causes excessive overhead,
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whereas the latter leads to poor channel resolution that im-

pedes the gains of MIMO techniques [34, 14, 25]. As a re-

sult, only point-to-point MIMO is common in today’s LTE

networks (in the US), and more advanced techniques, such

as MU-MIMO have yet to gain deployment traction [13].

This problem is increasingly critical with the advent of 5G

networks which rely on large MIMO systems (e.g., massive

MIMO) to increase spectral efficiency [30, 45].

Past work on addressing this problem has focused on vari-

ous techniques for compressing channel feedback [9, 54, 40,

45]. R2-F2 is motivated by the same desire of learning down-

link channels with minimal overhead, but it aims to eliminate

channel feedback altogether, and replace it with passive in-

ference of channel values.

A few papers study reciprocity in the context of FDD sys-

tems. In particular, Hugl et. al [19] observe that the chan-

nels at two cellular FDD bands are correlated and hence

postulate that one can infer downlink channels from uplink

channels. Some papers [18, 20, 36, 37] propose theoretical

models that use large antenna arrays to infer channels on the

downlink from those on the uplink. Their models are either

based on long-term channel statistics and do not account for

fast variations, or are based on the angle of arrival power

profile (used in RF localization), which we show in §8 to

yield poor performance in practice. Further, they do not ac-

count for practical challenges in system design such as the

limited LTE bandwidth (typically 10MHz), carrier frequency

offset (CFO) and detection delay. In contrast, R2-F2 does not

need long-term statistics and is empirically demonstrated in

a testbed deployment. R2-F2 achieves this through a new de-

sign that relates the channels to frequency-invariant param-

eters (e.g., path lengths), compensates for frequency depen-

dent parameters (e.g., path phases), and accounts for distor-

tion factors (e.g., window effect).

(b) Related Work Outside Cellular Networks: R2-F2 is

related to the problem of channel quality estimation. Some

applications aim to infer channel quality on a particular fre-

quency band, but do not need the exact channel values. For

example, two WiFi nodes may want to select the best quality

WiFi channel for their connection without actively running

measurements on all WiFi channels [10, 42]. The same ap-

plies to cognitive radios in the White Spaces [38]. These sys-

tems observe the channel on one or more bands and use that

information to infer the SNR of the channel on a different

band –i.e., the channel quality. In contrast, R2-F2 needs to

infer the full channel values–i.e., it needs both the phase and

the magnitude of the channel for every OFDM sub-carrier

and every antenna.

R2-F2 is also related to past work that focuses on esti-

mating the channels across a large band of spectrum by sub-

sampling the frequencies in that band. For example, the work

in [6] subsamples the spectrum and uses compressive sens-

ing to recover the channel values at the missed bands. This

approach does not apply to LTE networks since the observed

uplink channels do not satisfy the sampling requirements of

compressive sensing (i.e. the uplink channel is only available

on one contiguous band).

There is also a large body of work that aims to predict

wireless channels in the future based on their values in the

past [51, 8, 12]. This work does not predict channels across

frequency bands. R2-F2 is complementary to this work in

that it estimates wireless channels at different values of fre-

quency as opposed to different points in time.

Finally, we note that R2-F2 is related to a wide range

of systems for the TV whitespaces that aim to predict oc-

cupancy [7, 43] or interference [55] by hopping between a

minimal number of frequency bands. R2-F2 complements

these systems by estimating the wireless channel at any tar-

get frequency band based on sampling the channel at one

other band.

3. BACKGROUND

In this section, we list a few known results in modeling

wireless channels, which are important for the rest of the

exposition. Note that the mathematical expressions refer to

the transmission frequency by the corresponding wavelength

λ.

Wireless channels describe how the signal changes as it

propagates from transmitter to receiver. They are a direct

function of the paths along which the signal propagates as

well as the transmission frequency. In particular, the chan-

nel of a narrowband signal traversing a single path is given

by [47]:

h = ae−j2π d
λ
+jφ (1)

where λ is the wavelength, a is the path attenuation, d is the

distance the path traverses, and φ is a frequency-independent

phase that captures whether the path is direct or reflected.

Since the signal travels along multiple paths, say N, the

channel at a receive antenna can be written as:

h =

N
∑

n

ane−j2π
dn
λ
+jφn , (2)

which is the sum of the channel components over all paths

that the signal takes between transmitter and receiver.

Finally, we note that base-stations have multiple antennas,

so they obtain one channel per antenna. For a K antenna base

station, the set of channels, hi on antenna i is:

hi =

N
∑

n

(

ane−j2π
dn
λ
+jφn

)

e−j2π
ilcosθn
λ , (3)

where θn is the angle-of-arrival of the signal along path n, dn

is the distance travelled by the signal along path n to the first

antenna and l is the pairwise separation between antennas on

the base station. Note that the above equation depends both

on frequency and all underlying signal propagation paths.

4. INTUITION UNDERLYING R2-F2

R2-F2’s primary objective is to infer wireless channels on

a target frequency band, given the wireless channels on a

different frequency band. In order to achieve this objective,

R2-F2 relies on the observation that the channels are the di-

rect result of the signal paths. While the channels change
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convolution of the sincs with Pn
1 as Pn

2, then Pn
2 is given by

Pn
2(ψ) = {ane

−j
2πdn
λ1

+jφnδ(ψ − ψn)} ∗
L

λ1

sinc

(

Lψ

λ1

)

(5)

where ∗ denotes convolution operation. Thus, Pn
2(ψ)

refers to the graphs in Figs. 3(c) and (c’).

• Superposition: In case of multiple paths, the perceived

path profile is simply the sum of individual path profiles.

Thus, the overall profile P3(ψ), can be computed as:

P3(ψ) =

N−1
∑

n=0

Pn
2(ψ). (6)

This equation mathematically represents Fig. 3(d)-(d’).

• Discrete Fourier Transform: Finally, the channel mea-

surements at the antennas are just the Fourier transform

of the signal arriving along spatial directions. In order to

represent this mathematically, observe that equation 6 can

be simplified as follows:

P3(ψ) =

N−1
∑

n=0

{ane
−j

2πdn
λ1

+jφnδ(ψ − ψn)} ∗
L

λ1

sinc

(

Lψ

λ1

)

(7)

=

N−1
∑

n=0

ane
−j

2πdn
λ1

+jφn ×
L

λ1

sinc

(

L(ψ − ψn)

λ1

)

(8)

Equation 7 follows from equation 8 by using the convolu-

tion property of the delta function.

The above four transformations can be summarized suc-

cinctly as a sequence of matrix operations. Specifically,

given that the antennas are positioned at K discrete loca-

tions in space, we can now represent the Fourier transform

by a matrix multiplication. Let us define F to be the K × K

Fourier matrix, such that Fij′ = e
−j

2πilj′ψ′

λ1 , where ψ′ defines

the discretization on the variable ψ (ψ′ = 2
K

).4 Further, de-

fine S to be the K × N matrix where Sij denote the value of

the sinc function corresponding to the jth path at ψ = iψ′.

Specifically, Sij =
L
λ1

sinc
(

L(iψ′−ψj)
λ1

)

. Finally, define ~a′
1 to

be the N dimensional vector such that the ith component is

aie
−j

2πdi
λ1

+jφi . Then, the channel measurements at the anten-

nas, represented by ~h1 can be given by:

~h1 = FS~a′
1 (9)

Note that, ~h1 is the K dimensional vector such that the kth

element represents the channel measurement at antenna k.

Observe that, in the vector notation, the ith component of S~a′1
is nothing but P3(iψ

′). In summary, we now have a transform

that maps signal paths to channels.

4When the antenna separation, l, is not equal to λ1

2
, the

Fourier matrix is replaced by the non-uniform Fourier ma-

trix and ψ′ = λ
L

, where L = Kl is the total antenna array
aperture.

5.2 From Wireless Channels to Paths

Now that we understand, how the channels are derived

from the underlying physical paths, the goal is to find a way

to invert this mechanism. In other words, given channel mea-

surements, ~h1 on wavelength λ1, we need to identify the un-

derlying physical paths. We do so by inverting the individual

components of the transform – the Fourier Transform, win-

dowing and super-position and phase variations.

Inverting the Fourier Transform: The first step is to in-

vert the effect of the Fourier transform, which is simply the

inverse Fourier transform on the channel measurements, ~h1.

This can be achieved by multiplying ~h1 by F−1.

Inverting Windowing and Superposition: Next, we need

to invert the superposition effect, stated in equation 6 and

the windowing effect from equation 5. These two effects are

jointly represented by the matrix multiplication, S~a′1 in equa-

tion 9. The goal is to infer S and ~a′1, given the perceived

signal paths, F−1 ~h1. Observe that, S depends solely on the

directions of the underlying paths (ψn). Thus, in order to

compute S, we need to find {ψn}
N−1
n=0 for each of the N sinc

functions that sum up to yield this profile. We pose this prob-

lem as an L-2 norm minimization problem. We optimize for

{a′1,n}
N−1
n=0 and {ψn}

N−1
n=0 such that ||F−1 ~h1 − S~a′1||

2 is mini-

mized. Let us write this objective function as:

O({a′1,n,ψn}
N−1
n=0 ) = ||F−1 ~h1 − S~a′

1||
2 (10)

where a′1,n denotes the nth element of ~a′
1

In order to simplify the problem, observe that, if we know

S, the optimization problem becomes a linear optimization

problem and can be solved for ~a′1 in the closed form. In

particular, the minimum value can be attained by setting

~a′1 = S†F−1 ~h1, where S† denotes the pseudo-inverse of S.

Thus, the objective function in equation 10 can be re-

framed as:

O({ψn}
N−1
n=0 ) = ||F−1 ~h1 − SS†F−1 ~h1||

2 (11)

We have, now, reduced the problem to identifying the di-

rections of the signal paths that contribute to the directional

signal profile. This objective function, however, is non-linear

and non-convex. We discuss in §5.3 how we find a solution

to this optimization problem.

Accounting for Phase Variation: Finally, in order to in-

fer channels at a different wavelength, λ′, we need to fit in

another missing piece. Recall that the phase of a′1,n inferred

at wavelength, λ1 for each of the paths, is dependent on the

wavelength (since a′1,n = ane
−j

2πdn
λ1

+jφn ). In order to infer the

frequency-dependent component of a′1,n, we leverage the fact

that for cellular systems, the wireless signal is transmitted

at multiple frequencies, called the OFDM subcarriers. This

gives us access to channel measurements on multiple fre-

quencies. Thus, we add the distance dn for each of the paths

as a parameter of the optimization problem given in equation

10. This allows us to solve the optimization problem jointly

for multiple subcarriers and adds constraints to the solutions

returned by the optimization at different frequencies.
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In particular, let us denote the channel measurements at

wavelength, λi, by ~hi, i = 0, 1, . . . , I − 1. We define ~Pi =

F−1~hi, and Si to be the matrix S corresponding to wave-

length λi. Let, Di be the N × N diagonal matrix such that

Di(k, k) = e
−j

2πdk
λi and ~a be the N dimensional vector such

that ith element is aie
jφi . Let ~P denote the IK dimensional

vector formed by the concatenation of the vectors ~Pi and S

be the IK × N matrix formed by the concatenation of the

matrices SiDi. Specifically:

~P =













~P1

~P2

.

.
~PK













S =











S1D1

S2D2

.

.

SKDK











(12)

Thus, the modified objective function can be written as:

O({ψn, dn, an}
N−1
n=0 ) = ||~P − S~a||2 (13)

This objective function is similar to equation 10. Like be-

fore, we can replace ~a = S† ~P . Thus, the objective function

reduces to:

O({ψn, dn}
N−1
n=0 ) = ||~P − SS† ~P||2 (14)

5.3 Solving the Optimization

In this section, we describe how we solve the optimization

problem that transforms channels to paths. Our goal is to find

the values of {ψn, dn}
N−1
n=0 , such that:

{ψn, dn}
N−1
n=0 = arg min

ψn,dn

O({ψn, dn}
N−1
n=0 )

s.t. − 1 ≤ψn ≤ 1 ∀n ∈ {0, 1, . . . , N − 1}
(15)

This optimization problem is non-convex and constrained.

In order to solve this optimization problem, we use the well-

known interior-point method. However, since the function

is non-convex, the optimization is prone to convergence to

a local minimum, which is not the global minimum. Thus,

a good initialization is important to ensure that the correct

solution is determined.

• Initialization: R2-F2 computes an approximate solution

in order to initialize the minimization of the objective

function described in equation 14. We compute an approx-

imate probability distribution, P such that P(d,ψ) indi-

cates the probability of the existence of a path from direc-

tion ψ and distance d. A natural candidate to do so is the

power of the inverse Fourier transform of the channel it-

self (akin to Fig. 3(c)-(c’)), which while prone to the win-

dowing and superposition effects provides an approximate

understanding of where signal paths emerge from. Gen-

eralizing the inverse Fourier transform to operate across

both distance and angle-of-arrival, we define P to be:

P(d,ψ) = ||
∑

i=1,...,I;k=1,...,K

hi,ke
j

2π(d+klψ)
λi ||2

where hi,k denotes the channel measured at antenna k and

wavelength λi and l is the inter-antenna separation on the

antenna array. Once, P has been computed for different

values of d and θ, we pick the N largest peaks to initialize

the optimization problem with N paths.

• Stopping Criterion: So far, we have assumed that we

know the number of paths, N, a priori. However, that is

not the case in practice. Notice that, as we increase the

number of paths, N, in our objective function, the mini-

mum value attained on the objective function decreases.

In other words, the algorithm keeps finding a better fit.

However, after certain number of paths, we start to over-

fit, i.e., the additional paths being found do not correspond

to physical paths, but to signal noise. This could lead to

decrease in the accuracy of our channel estimation algo-

rithm. In order to avoid overfitting and yet achieve a good

fit, we incrementally add paths to the solution till one of

the two conditions is met. Either, the value of the objec-

tive function drops below a threshold,ǫ5 or decrease in the

value of the objective function is small. When that hap-

pens, we select that value of N as the number of paths.

• Conditioning: When the number of paths, N, is greater

than 1, the optimization can find solutions, such that

(ψi, di) is very close to (ψj, dj) for i 6= j, i.e. two paths

come from nearly the same angle and distance. In that

case, the matrix S becomes ill-conditioned and can lead to

poor solutions. In such cases, R2-F2 rejects one of these

paths and reduces the number of paths by 1. This improves

the condition number of the matrix and avoids overfitting.

6. INTEGRATING R2-F2 WITH THE LTE ARCHI-

TECTURE

This section describes R2-F2’s end-to-end system design,

and how it interacts with the LTE protocol. R2-F2 takes as

inputs wireless channels measured on the uplink at the base

station for a particular user. It outputs the estimated wire-

less channels at the downlink frequency band for that user.

These channels can then be used to perform beam-steering

for advanced MIMO techniques (coherent beamforming, in-

terference nulling, etc.).

The following steps summarize R2-F2’s approach: (1) R2-

F2 runs an iterative algorithm to find a representation of sig-

nal paths that fit the observed uplink channels. This is done

by solving the optimization in Eqn. 14 as described in §5.3.

(2) R2-F2 use the recovered 4-tuple signal paths to map the

uplink channels to the frequency used on the downlink chan-

nel (Eqn. 9). (3) Now that it has the values of the uplink chan-

nels for the downlink frequency, R2-F2 applies standard reci-

procity [16] to infer the downlink channels.6 Fig. 5 presents

an overview of R2-F2’s architecture.

We next discuss a couple of issues that arise when inte-

grating the above steps with LTE cellular systems.

6.1 Measuring the Uplink Channels

5We set ǫ to 0.01 × IK, where IK is the number of elements
in h.
6Standard reciprocity infers the forward channels from the
reverse channels by multiplying by calibrated reciprocity
constants, which are computed once for the lifetime of the
device as described in [16].
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Figure 7: Microbenchmark: R2-F2 measures wireless channels on the uplink at 650 MHz and predicts the downlink channels
on 680 MHz. The directional power profile for the uplink channel in a particular measurement is shown in (a). We also plot
the downlink profile, obtained using ground truth measurements for reference. As explained in §4, these profiles appear very
different. The paths inferred by R2-F2 are plotted in (b). A ‘+’ sign next to a path indicates presence of two paths being plotted
as one due to the plotting resolution. R2-F2 uses these paths to predict channels on 680 MHz. The absolute value of the ratio
of the estimated channels to the ground truth channels is plotted in (c), while (d) plots the phase of this ratio.

plots the Fourier transform of the channel measurements on

uplink and downlink channels. The Fourier transform is plot-

ted with a super resolution factor of 20, (i.e., the Fourier ma-

trix has 5 columns that correspond to the 5 channels and 100

rows). The figure shows that the Fourier Transforms, and

hence, the corresponding channels differ significantly from

the downlink channels and their Fourier Transform, despite

that the uplink and downlink are separated by only 30MHz.

Note that, the figure shows the uplink and downlinks for the

same OFDM subcarrier on each frequency band.

R2-F2 uses the measured channels on the uplink to infer

the underlying physical paths. The inferred paths are shown

in Fig. 7(b). The R2-F2 algorithm infers 6 different paths

(two sets of two paths are clustered together due to the plot-

ting resolution and are marked by a ‘+’ sign in the figure).

The downlink channels inferred from these paths strongly

match the ground truth channels measured at the client. The

ratio of the downlink channels estimated by R2-F2 and the

channels measured by the client is shown in Fig. 7(c) and

Fig. 7(c). Notice that the absolute value of the ratio (Fig. 7(c)

is very close to 1. Moreover, the phase error in the channel

ratio (Fig. 7(d) is close to zero. Thus, this example shows that

the model in §4 captures the RF propagation in the testbed.

8.2 Effectiveness of Beamforming

Beamforming is the key function underlying all MIMO

solutions such as MU-MIMO, massive MIMO, etc. Thus, we

would like to examine whether R2-F2 can deliver the same

beamforming gain as ground truth channels.

As before, we run our experiments in the testbed in Fig. 6.

We repeat the experiment for different client locations, and

for each client location, we collect 10 measurements. The

clients were placed at distances of up to 75 meters from the

base station. We measure the ground truth channels as be-

fore. We also measure the signal-to-noise ratio at the client

for signals received from the base station across these exper-

iments.

We compare the results for three different schemes: (1)

Beamforming using the channels inferred by R2-F2; (2)

Beamforming using the ground truth channels; and (3)

Transmission in the absence of beamforming.

Fig. 8(a) depicts the CDF of the signal-to-noise ratio of

these three schemes across experiments. This figure shows

multiple interesting results. First, beamforming using R2-F2

provides almost the same SNR gains as beamforming using

the ground truth channels. In fact, the average difference in

the SNR of these two schemes is only 0.7dB. This demon-

strates that R2-F2 can deliver accurate beamforming without

any channel feedback, and using a completely passive chan-

nel estimation process.

Second, transmitting without beamforming reduces the

SNR by an average of 6.5 dB. This result matches expec-

tation since the theoretical gain of 5-antenna MIMO beam-

forming is 10 log10 5 = 6.98dB. The gains are lower at low

SNR –i.e., SNR less than 3 dB. This is because channel es-

timation at such low SNR does not work well. This is true

for both the ground truth measurement at the client and the

uplink measurements at the base station.

In order to evaluate the throughput improvement, we plot

the data rates associated with the SNRs for all three schemes

in Fig. 8(b). The figure shows that R2-F2 can double or trip-

ple throughput in our testbed. The average throughput in-

crease is 1.7x. The throughput gains are large at low to mod-

erate SNRs but are less at higher SNR. This is expected since

the rate is the log of the SNR. Also, at SNR more than 20dB,

the highest data rate is achieved and beamforming doesn’t

help in increasing the rate. Similar to Fig. 8(a), the beam-

forming gains are low at SNR less than 3 dB. This is because

at such low SNR, channel measurements become noisy, giv-

ing R2-F2 a noisy input.

8.3 Performance as a Function of Channel Separation

We study R2-F2’s performance as a function of the sep-

aration between the uplink and downlink channels. We re-

peat our experiments by changing the separation between

uplink and downlink frequency bands between 10 MHz and

40 MHz within the whitespace band of frequencies. Lim-

itations of our white space license do not let us go be-

yond the 40 MHz separation. We measure R2-F2’s SNR

gain due to beamforming, for users at different randomly

chosen locations in the testbed. Fig. 8(c) plots the mean

and standard deviation of gain in SNR using R2-F2’s beam-

forming, across different separations of uplink and down-

link frequency bands. As expected, R2-F2’s gain improves
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Figure 8: Beamforming: We use the channels estimated by R2-F2 to achieve beamforming towards the client. Figure (a)
depicts the CDF of the SNR at the client without beamforming, using beamforming with the channels predicted by R2-F2 and
using beamforming with the true channels measured at the client. R2-F2 achieves ~6 dB SNR gain over no beamforming, which
is just 0.7 dB less than beamforming with ideal channels. Figure (b) depicts the datarates achieved by the different schemes.
R2-F2 enables a median gain of 1.7x in datarate for clients in our testbed. Figure (c) depicts the median gain in SNR due to
beamforming using channels estimated by R2-F2 as a function of frequency separation.
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Figure 9: Nulling interference at Edge Clients: R2-F2 can
reduce inter-cell interference by enabling the base station to
null it’s signal to the clients at the cell edge. R2-F2 reduces
the interference at the edge from a median of 5.5 dB to 0.2
dB and the 90th percentile from 9 dB to 0.9 dB.

with a lower separation, with the highest gain achieved for a

10 MHz separation (6.55 dB). However, we observe that the

SNR reduced very slowly with increase in downlink-uplink

separation. Since the separation between the LTE downlink

and uplink for most of the Verizon and AT&T deployments

are 20MHz and 30MHz respectively, we believe that R2-F2

can be used to eliminate channel feedback in these networks.

A potential cause of the degradation of the performance of

R2-F2 with larger frequency separations is the variation in

reflection properties of materials across frequencies, as ob-

served in [35] in the context of GPS signals.

8.4 Interference Nulling at Edge Clients

Clients at cell edge can suffer a significant amount of in-

terference from neighboring cells which could amount to

10 to 12dB [46]. R2-F2 can be used to reduce interference

at edge-clients located at cell boundaries using interference

nulling. To evaluate this function, we set up our base station

as in Fig. 6, but we move the client to the edge of the cell

to emulate a client from a neighboring cell. We repeat the

experiment from the previous section. However instead of

using the inferred downlink channels to beamform, the base

station uses the channels to perform interference nulling.

Fig. 9 plots a CDF of the interference power before and

after nulling. The figure shows that R2-F2 dramatically re-

duces the interference at edge clients. In particular, the aver-

age INR (interference to noise ratio) is reduced from 5.5 dB

to 0.2 dB, and the 90th percentile from 9 dB to 0.9 dB. This

shows that R2-F2 can be used beyond coherent beamform-

ing, to counter inter-cell interference.

8.5 Comparison with Angle-of-Arrival Power Profile

At this stage, one might wonder if it is possible to achieve

gains similar to R2-F2 by using the angle-of-arrival (AoA)

power profiles similar to the ones shown in Fig. 2 and

Fig. 3(d). In principle, one could use the measured wire-

less channels on one frequency to compute the AoA power

profile using standard AoA equations. Then, this angle-of-

arrival profile can be treated as a signature of the underlying

physical propagation and can be used to compute the chan-

nels at the target frequency band. We conduct experiments on

our testbed to evaluate this approach and compare the gains

achieved by R2-F2 with the gains achieved by the AoA pro-

file.

Beamforming: We compare the beamforming gain achieved

by R2-F2 with the gains achieved with the AoA-based ap-

proach. The CDF of the signal to noise ratios achieved with

the two approaches is compared in Fig. 10(a). While the

AoA approach increases the median SNR of the testbed by

2.8 dB, the gain is much lower than R2-F2 which increases

the SNR of the testbed by 6.3 dB. This is understandable,

given the intuition developed in section 4 and 5. While the

AoA power profiles of the signal have the same underlying

paths, they are inherently dependent on frequency. Thus, us-

ing these profiles directly to estimate channels across fre-

quencies leads to errors in the estimation.

Nulling at Edge Clients: Similar to §8.4, we aim to null the

interference caused by the base station at the edge clients. We

use the channels estimated using the AoA approach to null

the interfering signal at the client. The CDF of the INR (in-
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