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Abstract

Validation of the dependability of distributed systems via fault injection is gaining impor-

tance, because distributed systems are being increasingly used in environments with high de-

pendability requirements. The fact that distributed systems can fail in subtle ways that depend on

the state of multiple parts of the system suggests that a global-state-based fault injection mecha-

nism should be used to validate them. However, global-state-based fault injection is challenging,

since it is very difficult in practice to maintain the global state of a distributed system at runtime

with minimal intrusion into the system execution. This paper presents Loki, a global-state-based

fault injector, which has been designed with the goals of low intrusion, high precision, and high

∗This material is based on work supported by NSF under ITR Contract 0086096. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views
of NSF.
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flexibility. Loki achieves these goals by utilizing the ideas of partial view of global state, opti-

mistic synchronization, and offline analysis. In Loki, faults are injected based on a partial view

of the global state of the system, and a post-runtime analysis is performed to place events and

injections into a single global timeline and to discard experiments with incorrect fault injec-

tions. Finally, the experiments with correct fault injections are used to estimate user-specified

performance and dependability measures. A flexible measure language has been designed that

facilitates the specification of a wide range of measures.

Index Terms: Distributed Systems, Reliable Systems, System Evaluation, Fault Injection, Par-

tial View of Global State, Off-line Clock Synchronization, Measure Estimation.

1 Introduction

The increasing use of distributed systems in applications with high availability and reliability re-

quirements, ranging from commercial web servers to air traffic control systems, makes it necessary

to develop techniques to validate the dependability of these systems. Fault injection has been among

the most practical and effective of these techniques, and can be defined as a way to test a fault-tolerant

system with respect to a class of inputs specific to such a system, i.e., the faults [2].

Since failures in a distributed system can depend on its global state, it is important that fault

injections in a distributed system be triggered based on its global state. Global-state-based triggers

are useful for both fault removal and system evaluation. Global-state-based triggers are useful for

fault removal because they make it possible to introduce faults at very precise points in the execution

of the system and observe the effects in detail. Since system evaluation requires the fault injection

profile to be representative of reality, it may not be obvious why sophisticated global-state-based

triggers are needed for evaluation. However, there are three important reasons why such triggers are

useful. First, since global-state-based triggers can be used to drive a distributed system into certain

global states that can be hard to reach otherwise, they are useful in exercising and evaluating hard-

to-reach parts of the system. Second, distributed systems are evolving to the point that both the fault

models and the measures needed to describe their dependability properties are dependent on their

state. For example, software faults are part of an increasingly important class of faults that may need
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certain preconditions in order to manifest themselves. Global triggers can be used both to drive the

system into the states where these preconditions are true, and to inject faults only when they are.

Third, global-state-based fault triggers can be used to obtain conditional system measures, which can

then be used with models to get system measures for large classes of workloads.

Global-state-based fault injection of a distributed system is inherently difficult, because individ-

ual nodes in the system may not be aware of the current global state of the entire system at any

point in time. Past research in fault injection has focused on stand-alone systems (e.g., [21, 20, 24]),

distributed systems with local-state-based triggers (e.g., [12, 9, 22]), and centralized simulation of

faults in distributed systems [1]; very little work has been done in global-state-based fault injection of

distributed systems. Existing work on determining the global state of a distributed system includes

techniques such as snapshot algorithms [7], distributed debugging [18], and distributed monitor-

ing [16, 4]. Those methods log the local states of nodes in the system for post-processing, and are

useful for performance monitoring or fault monitoring. Because of the offline nature of those tech-

niques, it is not possible to create the required fault injector simply by extending them with triggering

mechanisms so that they can inject faults. Similarly, synchronizing the system at every state change

and performing the required fault injections will not work, since it is very intrusive to system execu-

tion and could change the behavior of the system in an undesired way. Thus, a new mechanism is

needed that will perform global-state-based fault injection in distributed systems.

Loki is a distributed system fault injector that has been developed to fill this need. We believe that

the key requirements for a fault injector are low intrusion, high precision, and high flexibility; Loki

has been designed to meet these requirements in the context of global-state-based fault injection. A

few key ideas have shaped Loki’s design so as to make this possible. Those ideas include the concepts

of (a) state machine abstraction, (b) optimistic synchronization, and (c) separation of mechanism

from policy in fault injection, as well as the observations that (d) fault triggers depend only on a part

of the global state and that (e) offline analysis is sufficient for system evaluation.

Items (b), (d), and (e) help in decreasing the intrusion and increasing the precision of fault in-

jection using Loki. Observation (d) implies that, in general, the triggers for fault injections in a
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particular node depend on the state of only a few other nodes. Loki makes use of this observation

to optimize the amount of state update traffic on the network by sending state change notifications

only between the required nodes, and by tracking only the required part of the global state at each

of the nodes. Observation (e) suggests that since fault injection is a process of evaluation, it does

not need online synchronization. Loki utilizes this observation and performs offline analysis, thus

decreasing the runtime intrusion. With respect to (b), while checking fault triggers and performing

fault injections, Loki optimistically assumes that the nodes are correctly synchronized due to the

state change notifications, i.e., the locally available view of the global state is assumed to be right.

However, this assumption could result in fault injections in the wrong global states. We remedy that

during the offline analysis by verifying each fault injection and discarding experiments with incorrect

fault injections. This loose coupling among the components of Loki decreases its runtime intrusion

and improves its scalability; thus, Loki performs well as long as the relevant state changes are not

too rapid. In addition, Loki uses hardware clocks whenever possible to further decrease runtime

intrusion [13] and record experiment data with precision.

In the past, many fault injectors have been built for specific systems, and it was non-trivial to

extend them to evaluate other systems. In contrast, Loki has been built to be flexible so that it can

be used for evaluating different kinds of systems with varying fault types. This has been achieved

through use of item (c), i.e., separation of the mechanism used to carry out a fault injection (namely,

application-independent tasks such as running of experiments, collection of measurements, clock

synchronization, analysis of results, and obtaining of measures) from the policy of fault injection

(namely, application-specific tasks such as state machine specification, types of faults, and specifica-

tion of fault triggers). Additionally, Loki provides flexibility in the kinds of measures that the user

can obtain from experiment data. Most previous fault injectors do not provide such flexible means to

process the data collected. An extensive graphical user interface has been developed for Loki to assist

the user in the specification of fault injection campaigns, execution of the campaigns, and obtaining

desired measures from the results of the campaigns. In addition to being the management console for

the Loki fault injector, the graphical interface performs important runtime functions. A description
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of Loki’s graphical user interface and other operational details of the Loki tool are described in the

attached Appendix A.

In this paper we present proof-of-concept results from experiments in which Loki was used to

inject faults in a simple leader election protocol. The results verify the Loki fault injection tool’s

functionality. However, Loki has also been used in two case studies involving experimental evalua-

tion of large-scale distributed systems. The first case study is an experimental evaluation of unavail-

ability due to the group membership protocol in the Ensemble group communication system [14].

The second case study is an experimental evaluation of some of the protocols used to provide high

availability in the Coda distributed file system [17]. Both case studies demonstrate the efficacy of

Loki in evaluating complex distributed systems.

2 Loki Concepts and Terminology

• State and state machine specification: The concept of state is fundamental to Loki. The user

has to choose the abstraction of states for each component of the distributed system and define

a state machine to track the component’s state at that level of abstraction. The execution of

the component generates local events that trigger transitions in the state machine. The current

state of any component is called its local state, and the vector of the local states of all the

components in the system is the global state.

• Node: The user should divide his/her distributed application into a set of basic components,

each of which has a state machine specification and a fault trigger specification. Each of these

basic components, combined with the Loki runtime code, is called a node. All fault injections

and recordings of the state change and fault injection times are performed at the node level.

• Fault trigger: A fault trigger specifies the conditions under which a particular fault is to be

injected into a node. It is defined as a Boolean expression over the global state of the system

under study. Variables of the expression are represented by (state machine, state) pairs. A fault

is injected into the node if the fault trigger transitions from a false to a true because of a global
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state change. An example trigger is ((SM1:ELECT)&(SM2:FOLLOW)), which indicates

that the corresponding fault is to be injected when the system transitions from a global state

in which the trigger is not satisfied to a global state in which the state machine SM1 is in

state ELECT and state machine SM2 is in state FOLLOW. Note that Loki does not place any

restriction on the type of fault (e.g., random bit-flip or message corruption). This gives the user

considerable flexibility in choosing the faults best suited for the system under study.

• Partial view of global state: To inject faults into a node based on the node’s fault triggers,

it is sufficient to track the “interesting” portion of the global state that is necessary for fault

injection at that node, i.e., the vector of the local states of the nodes on which the fault triggers

depend. This interesting portion is called the partial view of global state at that node.

• Fault injection campaign, study, and experiment: The process of fault injection of a distributed

system using Loki consists of one or more fault injection campaigns. Each campaign consists

of one or more studies. For each study, the user defines the nodes for his/her system. Although

the division of the fault injection process into campaigns and studies is left to the user’s discre-

tion, it is desirable for a study to consist of a set of similar fault injections and for a campaign

to consist of a set of correlated studies. That is so the user can obtain meaningful results from

his/her experiments using Loki’s measure estimator, which is described in Section 5. To ob-

tain statistically accurate measures, several runs of each study are performed along with the

associated fault injections. Each of these runs is called an experiment.

• Fault Injection Process: Loki’s fault injection process comprises a specification process and a

campaign evaluation process. During the specification process, the user provides the system’s

state abstraction, fault details, and measures to be computed, and prepares the system under

study for fault injection. The campaign evaluation process then makes use of this specification.

The campaign evaluation process is subdivided into a runtime phase to execute the fault injec-

tion campaign, an analysis phase to check for proper fault injections, and a measure estimation

phase to obtain desired measures from global timelines created in the analysis phase.
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Figure 1: The Loki Runtime Architecture

3 The Runtime Phase

During the runtime phase, fault injection campaigns are executed. The runtime phase consists of

executing the specified number of experiments in every study in a campaign, performing the required

fault injections, and recording the required experiment data. The Loki runtime is the module of the

Loki fault injection tool that manages the runtime phase of the fault injection campaigns.

The Loki runtime architecture is illustrated in Figure 1, with four nodes on three hosts. In this ar-

chitecture, one portion of the Loki runtime is attached to each of the nodes in the system; the node’s

runtime performs fault-injection-related operations. Each node’s runtime consists of several com-

ponents, namely the state machine, state machine transport, parser, probe, recorder, and heartbeat

provider. All of the components except the probe are independent of the system under study; the

user is responsible for the probe implementation. The runtime also contains one local daemon per

host and one central daemon for the entire runtime system. The daemons keep track of the dynamic

information regarding the current nodes in the system, and facilitate routing of messages between
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nodes even when nodes are dynamically exiting and entering the system.

The main function of a state machine1 is to keep track of the partial view of global state necessary

for fault injection into its node. Even if multiple nodes share the same executable code, each node

has a separate state machine with a unique name. To keep track of the partial view of global state

of a node, the node’s state machine has to track both its local state and the state of the required

remote nodes. To keep track of the local state, the state machine uses the state machine specification

provided by the user along with the node’s local event notifications. When the state machine receives

a local event notification, it computes its new state based on both its old state and the local event.

To keep track of the state of remote nodes, the state machines send only the required state change

notifications to each other, in accordance with the specification. The ideas of maintaining only the

required partial view of global state and transmitting only the required state change notifications both

help to decrease the intrusion to the application.

The state machines use their respective state machine transports to send notification messages to

each other. The state machine transports abstract the underlying communication system, and provide

a simple interface for sending and receiving notification messages. To do so, the state machine

transports maintain communication routes to their respective local daemons.

On every change in the partial view of global state of a node, its state machine notifies its fault

parser. The fault parser uses the partial view of global state to check whether any local fault trig-

gers have transitioned from false to true. If they have, the parser instructs its probe to inject the

corresponding faults.

The probe is the only system-dependent component of the Loki runtime, and performs two main

functions: notifying its state machine of any local events, and performing the actual fault injection

into the node when instructed to do so by the fault parser. Since the probe is system-dependent, the

user has to implement it as part of the instrumentation of the distributed application, as discussed in

Section A.2.2 of the Appendix.

The function of a node’s recorder is to record information regarding local state changes and fault

1The implementation of the system-independent state machine component of the runtime is referred to as the state
machine, while the system-dependent description of the state machine is referred to as the state machine specification.
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injections, along with their occurrence times, to a local timeline. To improve precision and decrease

intrusion, the recorder uses hardware clocks [13]. Finally, the heartbeat provider sends “I am alive”

messages to its node’s local daemon. This aids the local daemon in detecting crashes.

The main functions of the local daemon are to co-ordinate the experiment execution on its host,

start new nodes at the beginning of an experiment, route the notification messages between hosts,

monitor the nodes on its host for crashes, and manage node crashes and restarts. To perform these

operations, the local daemons coordinate with each other and with the central daemon using reliable,

ordered communication links (currently TCP). Each local daemon communicates with the nodes on

its host using IPC (currently shared memory with semaphores).

The central daemon manages the runtime phase of the campaigns. That phase includes starting

up all the components required for each experiment, aborting experiments if there are abnormal

situations (such as local daemon crashes or experiment hangs), and determining when experiments

have completed. The central daemon coordinates with the local daemons to perform these functions.

Nodes, local daemons, and the central daemon are all single processes. Though a node consists

of many components, it has only three Loki runtime threads in addition to the application threads.

The three runtime threads are the state machine transport thread, parser thread, and heartbeat thread.

The state machine component of the runtime executes in the application threads. The Loki front end

functions as the central daemon; for more details regarding its implementation, refer to Section A.2

of the Appendix. A detailed description of the operation of the runtime can be found in Section A.1

of the Appendix.

4 The Analysis Phase

By the time the runtime phase of the fault injection campaign has completed, a large amount of

timeline data has been recorded during the running of experiments. This data has to be processed

before meaningful conclusions can be drawn about the system under study. The processing consists

of two phases: an analysis phase and a measure estimation phase. The analysis phase, described in

this section, consists of two steps, namely the conversion of local timelines in each experiment into



10

a single global timeline for that experiment, and the verification of the correctness of fault injections

in each experiment. Experiments in which fault injections occurred in incorrect global states are

discarded. Note that “analysis” in this context refers only to the process of computing a correct global

timeline from raw measurement data. It does not include the analysis of the application behavior or

detected faults; that analysis can be done by the user based on the estimated measures and global

timeline after the measure estimation phase.

4.1 Conversion to Global Timeline

Loki uses an offline clock synchronization algorithm to calibrate the clocks on the multiple machines

on which the fault injector operates, so that all the local timelines of an experiment can be combined

into a single global timeline [13]. One machine’s clock is taken as the reference, and the offset and

drift rate of every other machine’s clock are estimated relative to the reference clock. These offsets

and drift rates are then used to place all the local times onto a single global timeline.

Loki assumes that the drifts of the processor clocks of the different machines in the distributed

system are linear [11]. Therefore, if there are m machines in the system, numbered 1 to m, we have

the following relation between the processor clock time Ci(t) on machine i and the processor clock

time Cj(t) on machine j:

Cj(t) ≈ αij + βijCi(t), i, j = 1, . . . , m (1)

where αij is the offset between the clocks of machine i and machine j at t = 0, and βij is the drift

(or skew) of the clock of machine j with respect to the clock of machine i.

If a machine r is chosen as the reference machine, the calibration of the clocks of the machines

in the system is reduced to a computation of αri and βri, for i = 1, . . . , m. (It can be easily seen that

αrr = 0 and βrr = 1.) To compute these values, synchronization messages are passed between the

reference machine and all the other machines, before and after each experiment or study, during the

runtime phase. During this process, local timestamps are recorded for each message at the sender

and receiver. The synchronization messages are passed between, not during, experiments, so that the
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intrusion into application execution is reduced.

Figure 2(a) gives a graphical illustration of these timestamps for hypothetical messages between

machine i and machine r. The x-axis is the local time, Cr(t), on machine r, and the y-axis, Ci(t),

is the local time on machine i. Each point represents a message, whose coordinates are the local

send or receive timestamps at machines r and i. Note that since we are interested only in the times

of occurrences of events relative to each other, the timeline axes can be translated as desired. In

particular, the axes can be translated so that the point corresponding to the first synchronization

message falls on either of the axes or on both. The line L ≡ Ci(t) = αri + βriCr(t) is the exact

relation between local times on machine r and machine i. If the message delays in the network are

zero, then all the points would lie on L. However, since in practice message delays are not zero,

the points are separated from L by a distance equal to their message delay. All the points above

L (represented by unfilled circles) represent messages from machine r to machine i, and the points

below L (represented by filled circles) represent messages from machine i to machine r. So, for

example, in the absence of delays, the message represented by point x would actually have been at

x′, and the transmission delay from machine r to i for this message is the vertical distance between
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x and x′.

The question is how to determine L given only the points (representing messages) in the figure.

If the message delays are fixed (or known in some other way), then it is a trivial matter to compute

L from the points. However, in a general distributed system, message delays are variable, so the

exact determination of L becomes impossible. It is, however, possible to estimate bounds on L, i.e.,

to estimate the bounds on αri ([α−
ri, α

+
ri]) and βri ([β−

ri, β
+
ri]). To do so, observe that L1 ≡ Ci(t) =

α−
ri + β+

riCr(t) and L2 ≡ Ci(t) = α+
ri + β−

riCr(t) are the two extreme estimates of L, because they

satisfy L’s property of dividing the points represented by filled and unfilled circles. Therefore, Loki

uses L1 and L2 to compute the lower and upper bounds of αri and βri, namely α−
ri, α

+
ri, β

−
ri, and β+

ri.

L1 and L2 themselves are computed by first taking the convex hulls for the upper and lower sets of

points and then joining their “edge” points, as illustrated in Figure 2(a).

Further details regarding Loki’s analysis algorithm can be found in [13]. Note that [α−
ri, α

+
ri] and

[β−
ri, β

+
ri] are not confidence intervals for αri and βri. With confidence intervals, a value has only a

high probability of being in a certain interval, but in this situation, the correct values of αri and βri

are always in the intervals [α−
ri, α

+
ri] and [β−

ri, β
+
ri], respectively (even though their exact values are

unknown). Methods for increasing the accuracy of the estimates of αri and βri include increasing

the number of synchronization messages, increasing the duration of synchronization messages, and

increasing the duration of each experiment by adding delays before and after the experiment.

As mentioned in Section 3, the occurrence times of every local state change and fault injection

in a node are recorded in its local timeline. The times used in the local timeline are the local times

of the node’s machine. During the conversion of the local timelines of all the nodes into a single

global timeline, the occurrence times of all the events and fault injections have to be projected onto a

single (reference) timeline. This is done as follows: suppose an event occurred on machine i at local

time Ci(T ). Then, from Eqn. (1), we have the reference clock time as Cr(T ) = Ci(T )−αri

βri

. However,

since only the bounds (and not the exact values) for αri and βri are known, only the upper and lower

bounds of Cr(T ) can be found using Cr(T )− =
Ci(T )−α+

ri

β+

ri

and Cr(T )+ =
Ci(T )−α−

ri

β−
ri

.

Therefore, an event occurring at local time Ci(T ) on machine i corresponds to an event occurring
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between time bounds Cr(T )− and Cr(T )+ on the reference machine r. Using this method, Loki

projects all the events in the local timeline of all the nodes in the system onto a (reference) global

timeline. Graphically, all the Cr(T )− fall on the line L′, and all the Cr(T )+ fall on the line L′′,

where L′ and L′′ are as shown in Figure 2(a). L′ is parallel to L1 and L′′ is parallel to L2, with

L′ ≡ Ci(t) = α+
ri + β+

riCr(t)
−, and L′′ ≡ Ci(t) = α−

ri + β−
riCr(t)

+.

A valid point of concern here is ∆, the size of the interval [Cr(T )−, Cr(T )+]; ∆ is the inaccuracy

in the computed global time, and determines the precision of all events in the system, including

fault injections. In Figure 2(a), for any local time Ci(t), ∆ is the horizontal distance between lines

L′ and L′′ at Ci(t). Obviously, it is desirable that ∆ be as small as possible. It can be seen from

the figure that ∆ increases linearly with increasing Cr(t). The maximum inaccuracy, ∆max, occurs

at the end of a study. As illustrated in the figure, ∆max can be decomposed into ∆1, ∆2, and ∆3,

where ∆1 =
α+

ri
−α−

ri

β+

ri

, ∆3 =
α+

ri
−α−

ri

β−
ri

., and ∆2 is less than twice the maximum message delay (as

measured in global time). Without loss of generality, it can be assumed that the last filled circle has

a larger Ci(t) than the last unfilled circle, and that ∆2 is measured along the horizontal line passing

through the last unfilled circle (as shown in Figure 2(a)). Then it is easy to see that the delays of

messages corresponding to the last unfilled and filled circles (d1 and d2 respectively) are less than the

maximum message delays, and hence ∆2 is less than twice the maximum message delay. Figure 2(b)

shows the first messages during a synchronization phase. As shown in the figure, we ensure in our

implementation that machine i sends the first synchronization message a to the reference machine,

and the reference machine sends its first message b immediately after it receives a. Hence it can be

observed that (α+
ri − α−

ri) is bounded by the maximum message delay. Since both β−
ri and β+

ri are

constants (because of the linear drift assumption), this means that both ∆1 and ∆3 are bounded by

a constant factor of maximum message delay. Hence ∆max is bounded by a constant factor of the

maximum message delay. Also, it is possible to decrease ∆ by increasing the accuracy of estimates

on αri and βri as described above, and by decreasing message delay (which increases accuracy of

αri).
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4.2 Verification of Fault Injections

After the conversion to the global timeline, the fault injections are checked to determine whether they

were proper, i.e., they occurred in the correct global state as specified in the fault specification. For the

purposes of this discussion we refer to the event that caused a fault injection predicate to become true

as the entry event for the corresponding fault, and the event that caused the fault injection predicate

to become false as the exit event for the fault.

Improper fault injections are removed via a check that determines whether the time interval be-

tween the upper and lower global-time bounds of a fault injection completely lies within the time

interval between the upper and lower global-time bounds of the fault’s entry event and exit event.

More specifically, the upper bound of the entry event and lower bound of the fault injection time

are used to determine whether the fault was injected after the state was entered. Likewise, the lower

bound of the exit event and upper bound of the fault injection time are used to determine whether

the fault was injected before the state was exited. If both the criteria are met, the fault was injected

as intended. This procedure is repeated for each injection that should have been made in the experi-

ment; the experiment is marked as successful only if all the injections in the experiment were done

correctly. The unsuccessful experiments are discarded and not used for measure computation.

5 The Measure Estimation Phase

Measure estimation is a key component of performance and dependability assessment using fault

injection. The measures to be obtained from a fault injection study are highly system- and user-

dependent. For example, computing the system’s coverage of a fault depends on the user’s definition

of a failure and recovery. Hence, any mechanism for measure estimation in fault injection should be

flexible. To this end, a flexible mechanism for measure estimation has been developed in Loki.

5.1 Overview of Measure Estimation in Loki

Measure estimation consists of two steps: measure specification and measure computation. During

measure specification the user specifies the measures he/she wants to compute, and Loki uses these
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specifications to perform the measure computation. Loki provides the user with a flexible measure

specification language, and uses statistical techniques to compute estimators from the data collected.

Measures in Loki are at two levels: the study level and the campaign level. As mentioned in

Section 2, a study consists of similar fault injections, and a campaign generally consists of corre-

lated studies. Measure estimation at both levels consists of both measure specification and measure

computation. A study-level measure is specified for a particular study and is computed from the data

collected during execution of the experiments in that study. A campaign-level measure is specified

for a particular campaign and is computed by combining study-level measures of a subset of its stud-

ies. The measures language is split into two levels to allow computation of measures, such as fault

coverage, that may involve several types of faults. For example, a user can conduct multiple studies

(one for each fault type), define study-level measures on each study to compute coverage for its fault

type, and then combine the results via a campaign-level measure to compute overall coverage for

several probable fault type distributions.

5.2 Study-Level Measures

A study-level measure is computed using the global timelines of the experiments in the correspond-

ing study. Informally, a study-level measure consists of (a) a sequence of filters that eliminate all

the experiments of the study whose global timelines do not satisfy certain conditions, and (b) the

computation of a function using the global timelines of the remaining experiments, whose output is

a sample for the study-level measure. More formally, a study-level measure is based on the concepts

of predicate, observation function, and subset selection. The above three concepts may be described

as follows:

• Predicate: Predicates in Loki are Boolean expressions used to test the global timeline to iden-

tify whether certain conditions are satisfied by querying the different attributes of the state

machines (i.e., states, events, and times), and are either true or false as a function of time.

Predicates combine state machine queries with the Boolean operators. Queries can test for the

occurrence of a specific state or a specific event in a particular machine in specified intervals of
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Global Timeline

State Machine Begin State Event Time

StateMachine1 State0 Event1 12.4
StateMachine1 State1 Event2 18.9
StateMachine3 State3 Event3 22.3
StateMachine1 State4 Event4 26.3
StateMachine2 State0 Event5 32.3
StateMachine2 State2 Event6 35.6

10 20 30 40

1

Global Time

Figure 3: Predicate Value Timeline Example

time. An example of a predicate is ((StateMachine1, State1, 10 < t < 20) |

(StateMachine2, Event5, 30 < t < 40)). This predicate is only true during any

time between 10 and 20 ms when StateMachine1 is in State1, and during any time between 30

and 40 ms when Event5 occurs in StateMachine2. The outcome of a predicate at a particular

time is called a predicate value. The predicate applied to the global timeline generated in the

analysis phase results in a Boolean-valued function of time called the predicate value timeline.

The obtained predicate value timeline contains a combination of impulses and steps. Figure 3

gives an example of a global timeline and shows the predicate value timeline obtained upon

application of the above predicate to the global timeline. For more examples of predicates,

refer to Section 6.1.

• Observation function: For each defined predicate, the user must specify an observation func-

tion. The observation function is used to extract a single value from the predicate value time-

line. The input to an observation function is a predicate value timeline, and the output is

an observation function value. Loki provides the functions count, outcome, duration,

instant, and total duration, which extract information about the predicate value time-

line. The observation function can be specified as any C function that uses the above functions

along with any mathematical functions and returns a numerical value. An example of an obser-

vation function is total duration(True, 10, 35). This returns the total duration for

which the predicate timeline was true between 10 and 35 ms. Its value for the predicate value

timeline of Figure 3 is 6.5. For more examples of observation functions, refer to Section 6.1.
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• Subset selection: After obtaining the previous predicate value timelines and the associated ob-

servation function values, a user might be interested in estimating a measure from a subset

of experiments of the study. Loki provides the user with the ability to select a subset of ex-

periments based on the observation function values. Using standard mathematical functions

that can be compiled with a standard C compiler and observation function values, the user can

define a subset function that returns true or false. The first subset selection is predefined to

include all experiments. An example of a subset selection is all the experiments with positive

observation function values.

Formally, a study-level measure is specified as an ordered sequence of tuples: ((subset selection1,

predicate1, observation function1), . . ., (subset selectionn, predicaten, observation functionn)), where

n ≥ 1. The subset selection1 function is always true. A study-level measure is computed as follows.

Since subset selection1 is always true, predicate1 and observation function1 are computed on the

global timelines of all the experiments in the study. The output value of observation function1 for

each of these experiments is checked to determine whether it satisfies the subset selection2. If it does

not, then the experiment is eliminated from further consideration. The global timelines of the ex-

periments that survive this filtering are used to compute predicate2 and observation function2. This

process of filtering is continued for all the tuples in the sequence, when the global timelines of the

unfiltered experiments are used to compute predicaten and observation functionn. The output of ob-

servation functionn for each remaining experiment, is called the final observation function value for

that experiment, and is a sample for the study-level measure.

5.3 Campaign-Level Measures

Loki processes final observation function values to obtain a study-level measure, and combines study-

level measures to obtain the campaign measure estimation. The campaign measure could be com-

pletely characterized if its probability distribution could be obtained. However, in practice, the dis-

tribution cannot be calculated. Therefore, for all practical purposes, knowledge of the moments is

equivalent to knowledge of the distribution function, in the sense that it is theoretically possible to
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exhibit all the properties of the distribution in terms of the moments [23] (pp. 108-109). In practice,

the properties obtained when calculating the first four moments are very close to the properties of the

real distribution. That is the approach that Loki takes. There are three types of campaign measures,

which are described below.

Simple Sampling Measures are used when the user does not want to differentiate among the final

observation function values of different study-level measures. Simple sampling measures are

obtained by considering all the selected study-level measures to be similar such that all of their

final observation function values are contained in a single sample, i.e., they are all instances of

the same random variable.

Stratified Weighted Measures are used when study-level measures need to be combined using a

user-specified linear weighted function, e.g., ax + by. The moments for such measures are

determined by computing the moments for each constituent study-level measure, weighting

them using the user-defined weights, and summing them. This computation assumes that the

powers of random variables representing the final observation function values are independent

across studies. There are several reasons for focusing on stratified weighted measures when

evaluating fault tolerance mechanisms. For example, one important parameter is the coverage

of a fault tolerance mechanism [5]. When several independent studies are being considered,

the overall coverage of the fault tolerance mechanism is defined by a linear weighted function

across studies [19].

Stratified User Measures are used when study-level measures need to be combined using a user-

defined function other than a linearly weighted function. Unfortunately, statistical features are

not computed for these measures, since the calculation of the first four moments is not a trivial

task for any arbitrary function that combines final observation function values of the various

studies. Hence, Loki does not combine final observation function values individually, but rather

combines the means of the final observation function values for each study-level measure.
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Figure 4: State Machine Specification for a Simple Leader Election Protocol

For the simple sampling and stratified weighted measures, the important statistical properties,

such as the first four moments, the skewness coefficient, the kurtosis coefficient, and the percentiles

for various α-levels, are computed by Loki as described in [6]. For stratified user measures, only the

single value returned by the user-defined function is computed.

6 Sample Application: A Simple Election Protocol

In this section, we describe the instrumentation of a sample distributed application, as a proof-of-

concept of Loki’s capabilities. Loki has also been used in two case studies involving experimental

evaluation of complex distributed systems [14, 17]. The sample application, described here, is a

simple leader election protocol, in which n processes elect a leader from among themselves. To do

so, each process chooses a random number and sends it to the remaining n−1 processes. The process

that chose the highest number is elected as the leader. In case of ties, the arbitration is repeated until

a leader is selected. Process failures are detected by other processes via socket connection closure.

If the leader fails, then the remaining processes re-elect a new leader using the same protocol but

with one fewer node. In this simple protocol, we assume that only one node fails at a time and that a

leader re-election is completed between two successive node failures.

For this application, all nodes use the same state machine specification, which is shown in Fig-

ure 4. The nodes in the state machine are labeled with state names corresponding to the phases of

the application, and the edges are labeled with transition names corresponding to local event noti-

fications. We use a simple crash failure fault model to illustrate the fault-triggering and measure
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Node Fault Name Fault Expression

corvette cleadfault (corvette:LEAD)
corvette celectfault (nsx:ELECT) & (corvette:ELECT) & (xj220:ELECT)
nsx nleadfault (nsx:LEAD)
nsx nelectfault (nsx:ELECT) & (corvette:ELECT) & (xj220:ELECT)
xj220 xleadfault (xj220:LEAD)

Table 1: Fault Expressions for the Simple Leader Election Protocol

estimation capabilities of Loki, and to measure Loki’s runtime efficiency. We implemented this fault

model simply by writing to a null pointer dereference, thus causing a crash. However, as mentioned

in Section 2, the fault model supported by Loki is flexible and can be arbitrarily complex depending

on the application and type of evaluation. The fault triggers for the example are shown in Table 1.

6.1 Measures

Using Loki’s measure language, we were able to compute several interesting measures for the elec-

tion protocol application. These measures are shown below, along with their definitions in the

Loki measure language. Complete details of the functions used in the measure language are given

in [6]. For the purposes of the example, the functions total duration(TRUE, t1, t2) and

count(UP, STEP, t1, t2) return the amount of time the predicate timeline was TRUE and the

number of low-to-high step transitions on the predicate timeline between times t1 and t2, respec-

tively. START TIME and END TIME refer to the experiment start time and experiment end time, re-

spectively. Tuples for the predicate timelines are shown in the format (statemachine, state)

or (statemachine, event), as appropriate.

• Availability for this application can be defined as the fraction of the total execution time for

which there is a functional leader (i.e., leader is in the LEAD state). It can be defined in Loki

via a single tuple with the predicate function (nsx, LEAD)|(corvette, LEAD)|(xj220,

LEAD) and the observation function total duration(TRUE, START TIME, END TIME)

/ (END TIME - START TIME).

• An important global state in this application is the one in which any surviving node is in the
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ELECT state. Since we assume that crashes do not occur when an election is in progress, such a

state can be expressed using the following predicate function: (nsx, ELECT)|(corvette,

ELECT)|(xj220, ELECT).

Based on that, a few interesting measures can be computed. In particular, we can compute the

number of elections per run by counting the number of times this global state was entered; the

observation function is count(UP, STEP, START TIME, END TIME).

We can also compute the amount of time spent per election by dividing the time spent by the

system in this global state by the number of times this global state was entered. The observa-

tion function for this is total duration(TRUE, START TIME, END TIME)/ count(UP,

STEP, START TIME, END TIME).

• We can also compute the total number of crashes that occurred. To do so, we can use the fact

that Loki automatically detects a node crash and generates a special CRASH event that corre-

sponds to the crash in the timeline. We can simply count the number of these crash events

to get the required measure. The counting is done via a single tuple consisting of the pred-

icate function (nsx, CRASH)|(corvette, CRASH)|(xj220, CRASH) and the observa-

tion function count(UP, IMPULSE, START TIME, END TIME).

6.2 Performance Evaluation

Two important metrics for evaluating the performance of a tool such as Loki are intrusiveness and

injection efficiency. Intrusiveness is the amount of perturbation in the application’s execution caused

by the process of fault injection. Injection efficiency is the probability of correct fault injection (i.e.,

in the correct global state) by Loki under various conditions. It is important because it ultimately de-

termines the granularity at which faults can be injected. We present some results regarding these met-

rics in the following sections. Note that the results presented below only measure the overhead of the

Loki runtime (i.e., intrusiveness specific to global-state-based fault triggering). Any probe-specific or

fault-model-specific intrusiveness would be in addition to the intrusiveness results presented below.
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6.2.1 Injection Efficiency

In order to understand the factors on which the injection efficiency of Loki depends, we make the

following observation. As described in Section 4.2, fault injections must be discarded by the post-

runtime analysis only if the bounds for the fault injection event overlap the bounds for the entry event

or the exit event. The probability that such overlap will occur depends primarily on two factors.

The first factor is the precision of the fault injection mechanism, where precision refers to the

time between the entry event and the actual fault injection. Although a lower numerical value for

precision indicates a responsive injection mechanism, it increases the probability that experiments

containing correctly injected faults will be thrown away by the post-runtime analysis. To understand

why, we define the interval between the upper and lower bounds associated with each event on

the global timeline as the uncertainty interval. We cannot resolve the time of event occurrence

to be any narrower than this interval. The lower the numerical value of the precision of the fault

injector, the closer the fault injection event will be to the entry event, and the higher the probability

that the injection will be discarded because the uncertainty intervals for these two events overlap.

The probability also increases with the length of the uncertainty intervals. To improve the injection

efficiency, it is possible to decrease the uncertainty interval by decreasing the value of ∆ in the

analysis phase, as explained in Section 4.1.

The second factor that influences the injection efficiency is the overlap of the injection event

with the bounds for the exit event. The amount of time spent by the system in the global state in

which the injection is to occur determines whether such an overlap occurs. We refer to this time

as the state-holding time. Clearly, the smaller the state-holding time, the higher the probability

that an overlap will occur and the fault will be injected incorrectly. It is important to note that the

holding time required for successful injection depends on both the precision of the fault injection

mechanism and the uncertainty interval (the longer the uncertainty interval, the higher the minimum

holding time). However, one important difference between the first factor and the second is that the

minimum holding time requirement affects the injection efficiency only for short-lived states, while

the overlap between uncertainty intervals for the fault injection event and the entry event interval
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affects the efficiency of all fault injections.

To measure the uncertainty interval, we ran four studies of the election protocol, each with 25,

50, 100, and 200 experiments respectively. The runs were performed on 1GHz Pentium III machines

running Linux connected to a switched 100 Mbps Ethernet network. Figure 5(a) shows the uncer-

tainty interval for the experiments in each study. The duration of each experiment was between 1.5

and 2 seconds, with 3 seconds between experiments. Due to the nature of the clock synchronization

algorithm, the uncertainty intervals rise as the studies progress, but the maximum value of uncer-

tainty is the same for all studies irrespective of the number of experiments in them. This follows

from the proof of bounded uncertainity intervals in Section 4.1, which shows that the maximum

value is dependent on only the network latency.

Figures 5(b) and 5(c) demonstrate the minimum holding time properties of Loki. To get those

plots, we ran a set of 400 runs of the election protocol. In different runs, we varied the amount of time

the three nodes spent in the ELECT state by artificially inducing a delay inside that state. The delay

induced was between 1 and 20 ms in increments of 1 ms (a constant induced delay per study). Then

we tried to inject the fault nelectfault into node nsx. nelectfault is triggered when all three

nodes are in the ELECT state. Its definition is given in Table 1. Figure 5(b) shows the number of

experiments for each value of actual time spent by all three nodes in the ELECT state. As seen, this

distribution of the actual time spent is not uniform, even though the induced delays were. We believe

this is due to OS scheduler artifacts. Figure 5(c) shows a plot of the fraction of faults successfully

injected (injection efficiency) versus the actual time spent by all nodes in the ELECT state rounded

to the nearest millisecond. It can be seen that the injection efficiency is nearly 100% for all state-

holding times above 5 ms. For lower state-holding times, the 10 ms OS scheduler timeslice causes

the injection efficiency to drop. However, the efficiency is still greater than 60% for all holding times

above 1 ms.

6.2.2 Intrusiveness

Intrusiveness is another important metric for any instrumentation tool. It is important to minimize

intrusiveness as much as possible in order to get the most accurate measurements possible. Since
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Figure 5: Loki Performance Results

the Loki runtime attaches itself to the application being instrumented, it might be argued that Loki is

more intrusive to the application than a tool that monitors the application while running as a separate

process. However, we claim that this is not so. Even if an instrumentation tool runs as a separate

process, the OS would have to schedule its threads. Those threads would compete for the same

CPU resources that Loki threads now compete for; hence, the situation would not be any different.

The only other ways that the application interacts with Loki are through the notifyEvent and

injectFault methods. The injectFault method is invoked by the fault parser and runs in

a different thread from the application, and hence does not contribute to intrusiveness beyond the

competition for CPU resources mentioned above. However, the notifyEvent call is made by
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the application thread and does affect the intrusiveness. Hence, for purposes of the current Loki

implementation, we characterize intrusiveness by the amount of time it takes a notifyEvent call

to return. We call this time the notification penalty.

We measured the distribution of the notification penalty for node nsx during the execution of the

election protocol application, as described in the previous section. Figure 5(d) shows the distribution

for four different event notifications in the election protocol. It can be seen that these distributions

are fairly narrow in width, but tend to have long tails. However, the peaks are different for different

events. This is explained as follows. The INIT event notification initializes the state machine and

is the first event notification that the node sends to indicate that it is functional. This INIT event

notification also informs all other components of the runtime about the new state machine that has

come up. Therefore, it is seen to take more time than other events. The LEADER and FOLLOWER

events do not need any remote notifications. These state transitions are completely local, requiring

no IPC, and represent the best case for normal notifications. The INIT_DONE event requires that

notifications be sent to the other two state machines. Its notification therefore requires more time than

those of LEADER and FOLLOWER events, since IPC is involved. More importantly, each of the four

notifications takes between 30 µs in the best case to approximately 280 µs in the worst case. Hence,

it can be argued that the notification penalty, and thus intrusiveness due to Loki, are reasonably low.

7 Limitations of Loki

The Loki fault injector, as it is currently implemented, has some limitations. First, Loki has been

implemented in C/C++ on Linux on an x86 architecture, and the Loki library has to be linked into

the application code. Availability of application sources makes this easier. However, instrumentation

of applications that have been written in languages other than C++, or for which source code is

unavailable is possible through use of a C++ wrapper, as we did for the Ensemble case study [14].

Second, Loki has been designed for injecting faults at the granularity of hundreds of microsec-

onds. In its current form, it cannot inject faults at a finer granularity. Third, the linear clock drift

assumption made by Loki may not hold if experiments are very long (running into months), or if
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there are significant changes in temperature during the experiment. Finally, Loki does not currently

have a pre-built library of probes for different fault models. A user must therefore build such probes

himself/herself.

8 Related Work

Many of the earlier fault injectors were developed with specific systems and fault types in mind.

Fault injection and evaluation tools for stand-alone systems include MESSALINE [3], FIAT [20],

FERRARI [15], and FTAPE [24]. The fault injection techniques used in those tools encompass

hardware-implemented fault injection (e.g., MESSALINE) and software-implemented fault injec-

tion (e.g., FIAT). Though it would be non-trivial to extend those tools to evaluate other systems

(particularly distributed systems), they served their intended purposes well.

Past research work in monitoring and measurement of distributed systems is also interesting, and

is related to the work in this paper. JEWEL [16] is a measurement system that performs online

monitoring, evaluation, and visualization, as well as offline analysis, of distributed systems. SPI [4]

provides a flexible framework for distributed system evaluation and visualization, and is based on the

event-action programming model, in which “ea-machines” observe events in the system and execute

actions. Although both of those tools can be extended for fault injection, they do not have the required

flexibility, and cannot ensure that faults have been injected in the correct global states.

Several of the existing fault injectors have been targeted specifically towards distributed systems,

and are well-suited for their intended applications. However, they do not have all the requirements

necessary for global-state-based distributed system fault injection. In CESIUM [1], the distributed

execution of the processes in the system is simulated in a single address space, and fault injection is

performed within the simulation. Though this approach gives the user a great deal of control over

his/her distributed system, it cannot fully mirror the operation of the system in a real environment.

DOCTOR [12] injects memory, CPU, or communication faults probabilistically or based on past his-

tory, and has an integrated workload generator. EFA [10] was designed for system verification, and

generates random fault cases, user-defined fault cases, and/or fault cases derived from an analysis of
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the source program of the system. It allows the user to express fault locations and types using a spe-

cial language, and provides support for controlling the sequence of concurrent events in a distributed

system. The Orchestra fault injector [9] was developed for fault injection in protocol stacks, and

integrates into the system under study as a layer in the protocol stack. NFTAPE [22] was designed

with flexibility and portability in mind, and is divided into system-independent and system-dependent

parts. The system-independent part executes the experiments, monitors the system, and collects ob-

servations. The actual fault injection is done by lightweight fault injectors that are system-dependent

and are similar in concept to the probes in Loki. NFTAPE uses a modular triggering mechanism and

supports a variety of triggers, such as time-based triggers and event-based triggers. NFTAPE has

been used to inject various types of faults into systems, including hardware-based, software-based,

and simulation-based faults.

All of the tools described above have been successfully applied to many systems. However, to

the best of our knowledge, none of the earlier fault injectors have all the capabilities desired for

global-state-based fault injection, namely flexibility in fault types, fault injection based on global

state, verification that the injections were correct, and accurate computation of a wide range of user-

specified measures. Loki has been designed with those capabilities in mind, and we believe that this

makes Loki a unique tool for global-state-based fault injection in distributed systems.

9 Conclusions

The Loki fault injection tool has tackled the challenging problem of global-state-based distributed

system fault injection by tying together fault injection based on a partial view of the global state,

optimistic synchronization, and offline analysis. A flexible measure language, statistical estimation

of user-specified performance and dependability measures, and an easy-to-use user interface have

also been designed and developed as part of the fault injection tool.

Flexibility, in regards to the choice of fault types and the type of system under study, has been one

of the main philosophies of Loki. The experimental results presented in this paper indicate that Loki’s

fault injection efficiency is high. We believe that the low intrusion and high efficiency of global-
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state-based fault injection in Loki, combined with its flexibility and statistical measure estimation

capabilities, will make it an invaluable tool in distributed system evaluation. The usefulness of the

Loki fault injector has been illustrated in two case studies involving the evaluation of real-life, mature

distributed systems.
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A Operational Details

This appendix contains many operational details of Loki that are supplemental to the rest of this

paper. These details include the operation of the Loki runtime and an explanation of how Loki is

used to evaluate a system.

A.1 Operation of the Loki Runtime

This section describes in detail how the Loki components fit together and how they coordinate to

achieve the desired functionality of the runtime. We describe normal operation, operation during the

crash and restart of nodes during an experiment, and experiment completion.

A.1.1 Normal Operation

At the beginning of an experiment, the central daemon starts one local daemon per host. The local

daemons connect to each other and to the central daemon using TCP. The central daemon then in-

structs the local daemons to start the nodes that the user specified should be started at the beginning

of an experiment. After the initial nodes are started, new nodes can enter the system or existing nodes

can leave the system at any time during the experiment.

When a node starts up, its state machine transport sends an IPC connection request to its local

daemon. The daemon creates a new IPC channel for communication with the node, and spawns

a new thread to service the new channel. To send a notification message to a set of remote state

machines, a state machine transport forwards it through its local daemon. To do so, it sends its local

daemon the state change notification along with the list of state machines to be notified. The daemon

looks up the local daemons of each of the recipient state machines and forwards the notification to

them using TCP. These daemons in turn forward the notification to the state machine transports of the

recipient state machines using IPC. If there is a notification for a state machine that is currently not

executing, the notification is discarded with a warning message in the experiment log2. Note that the

local daemon of the sending state machine needs to send only one notification to the local daemon on

2The log is different from the local timelines and is useful for debugging.
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a remote host, even if multiple state machines on the host are receiving it. Also, notifications between

state machines on the same host do not require the TCP step, and hence have a lower latency, thus

increasing Loki’s precision.

At every change in the partial view of global state of a node, its parser checks all the fault triggers

and instructs the probe to inject the required faults into the node. Also, the node’s recorder records

every local state change and fault injection, along with their occurrence times, to the local timeline.

When the node exits normally, its local daemon and all the other state machines are notified of its

exit.

A.1.2 Node Crash and Restart

When a node crashes, the Loki runtime detects the crash in one of two ways. First, the IPC channel

between the node and its local daemon is deleted and the local daemon detects this event3. Second,

the local daemon functions as a watchdog and monitors all its nodes for heartbeats. If one of the

nodes times out, the local daemon considers it crashed. The user is allowed to choose the timeout

value suitable for his/her application. After a node crash is detected in either way, the local daemon

writes a crash event to the local timeline of the node, and notifies all the other local daemons of the

crash.

When a node crashes, the distributed application under study could restart it, possibly on a differ-

ent host. To distinguish between a new node and a restarted node, the node’s state machine checks its

local timeline as soon as it starts up to see whether it is new or restarted. The local timeline is stored

on a distributed file system to facilitate restarting on a different host. If a node has been restarted, its

state machine writes a restart event to the local timeline. Its state machine transport then connects

to the local daemon, and the local daemon notifies all the other local daemons that the node has

restarted. The restarted node obtains state updates from all the other nodes to reconstruct its partial

view of global state. After that, the node executes like a normal one.

3Note that since the deletion is performed by the signal handler for the node, the user should be careful if he/she has
overridden the signal handler in his/her application.
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A.1.3 Experiment Completion

The problem of detection of experiment completion relates to the problem of distributed quiescence

detection (or distributed termination detection) [8]. In general, it is impossible for the Loki runtime to

automatically detect experiment completion (without any help from the application), because it might

be that not all of the components of the application are instrumented with the runtime. Thus, even

if all the local daemons simultaneously observe that there are no nodes of the application running

and hence decide that the experiment is complete, there might be other uninstrumented components

running that could restart some instrumented components after the daemons’ decision. Such situa-

tions can be avoided if all the application components whose execution is considered necessary for

the experiment (including those that restart other application components) are instrumented with the

Loki runtime. That would prevent the daemons from incorrectly concluding that the experiment is

complete when crucial application components are in fact still running, and also prevent “restart mes-

sages” in transit from causing application components to restart after the daemons have determined

that the experiment has completed.

If the system is so instrumented, then the detection of experiment completion can be done as

follows. When a local daemon observes that all the nodes in its host have either crashed or exited,

it sends an “experiment complete” message to the central daemon; the central daemon deems the

experiment complete if all the local daemons have reported that the experiment is complete. The

current Loki runtime implements this mechanism to detect experiment completion.

At the end of an experiment, the central daemon shuts down all the local daemons and starts the

next experiment. Loki allows the user to specify timeout values for experiments, to avoid problems

when a distributed application fails to terminate itself. Thus, the central daemon keeps a timer on the

length of an experiment. If a timeout value is reached, the central daemon instructs the local daemons

to kill the nodes, and concludes the experiment. Of course, as is the case for any timeout-based

fault detection mechanism, the user has to choose a timeout value reasonable for his/her particular

application.
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(a) Loki Manager (b) State Machine Editor

Figure 6: Some Screen Shots from Loki’s Graphical User Interface

A.2 Using Loki to Evaluate a System

A user must take several steps in order to evaluate a system using Loki. They include campaign

specification, system instrumentation, measure specification, campaign execution, and offline pro-

cessing. An extensive front end was developed for Loki to guide the user through the specification

and campaign evaluation processes involved in Loki’s fault injection process. The main window of

the front end is shown in Figure 6(a). It contains a button for each step that must be performed while

conducting a fault injection campaign using Loki. In addition, during the execution of campaigns,

the front end provides the central daemon functionality described in Section 3.

A.2.1 Campaign Specification

The first step in the specification of a campaign is to name it and divide it into studies as discussed in

Section 2. After giving a study a name, the user defines it by setting several parameters, registering

local daemons, and dividing his/her system into nodes. The parameters include the number of exper-

iments to be conducted for the study, the time to wait between experiments, an application timeout
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value, and a port number that local daemons use to contact the central coordinating daemon. After

setting the parameters, the user registers local daemons for each host that might run an instrumented

node from the system under study. Registration simply requires a host name, the host’s processor

clock speed (to convert timelines from clock ticks to µs), and a port number that the daemon should

use for communication.

The user must also divide his/her system into nodes. Each node is associated with some param-

eters, a state machine specification, and a fault specification. The parameters include a host name,

application name, application arguments, and heartbeat timeout value. The host name indicates a

host on which Loki should launch the node at the start of an experiment. The host name is omitted if

Loki is not responsible for starting the node. The application name identifies the node’s executable

that is instrumented with the Loki runtime. The application arguments that the user gives are passed

to the node when it starts. Lastly, the heartbeat timeout is used by a local daemon to determine if the

node is alive.

The front end’s State Machine Editor, shown in Figure 6(b), allows the user to define a node’s

state abstraction, which is then translated into a specification that the Loki runtime uses when tracking

the partial view of global state required by the study. On the State Machine Editor’s canvas, states

are represented by vertices. Each state is named, and a list of state machines (to be notified when the

state machine enters the state) are selected. The list helps Loki maintain the partial view of global

state. States are connected with directed connection lines identifying event-triggered transitions.

These transitions also require the user to identify the event causing the transition. The counterpart to

the State Machine Editor is a Fault-Trigger Specification Editor that registers all the faults that can

be injected in the node. Each fault is registered with a name, a fault trigger, and an indication of

whether the fault should be injected “once” or “always.” As mentioned in Section 2, the fault trigger

is a Boolean expression pertaining to some partial view of the system’s global state into which the

fault should be injected. The final parameter indicates whether the fault should be injected only the

first time the fault trigger transitions from false to true, or every time the trigger transitions.
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A.2.2 System Instrumentation

Once the campaign is fully specified, the system under study is ready to be instrumented. Four major

steps, described below, are required in order to instrument a system for fault injection by Loki. Recall

that nodes are instrumented components of the system under study, into which faults may be injected

and/or from which state must be tracked.

1. Implementation of Faults: The first step is to implement the faults to be injected. For nodes

that require the injection of faults, the injectFault() method of the node’s runtime probe

must be coded with an implementation of those faults. The only input parameter to the

injectFault() method is a fault name from those specified in the node’s fault trigger

specification. The method returns the time at which the fault is injected. This technique of

having the user implement the desired faults provides a high degree of flexibility by separating

the user’s policy from the overall mechanism of fault injection. Implementation of a non-

trivial probe currently requires significant effort. In the future, we plan to ease the process of

implementing faults by providing a library of Loki probes for commonly used faults.

2. Event Notification: The second step is to indicate the occurrence of events that pertain to

transitions in the state machine of a node. This step involves making a call to the probe’s

notifyEvent() method at appropriate places in the system under study to indicate when

events occur. The parameters to notifyEvent() are the name of the event and the time at

which it occurred. Event notification needs to be done only from those nodes whose state must

be tracked.

3. appMain: The next step is to use an appMain() method in place of the standard main()

method so the node’s Loki runtime can initialize before calling appMain().

4. Node Invocation: The final step is to modify the invocation commands for nodes. This change

involves the arguments passed to the nodes. In order for the Loki runtime to identify study

parameters and locate the appropriate local daemon, the arguments to a node must be its corre-

sponding StudyFile and the study’s DaemonContactFile. Both of these files are automatically
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created during the specification of a fault injection campaign by the Loki front end. This

modification is never an issue if the system’s nodes are not dynamically started during an ex-

periment.

The current implementation of the Loki runtime is in C++. For that reason, instrumented nodes

must be either written in C/C++ or interfaced with C++.

A.2.3 Measures Specification

In addition to the campaign specification needed to perform experiments, the user needs to provide a

measures specification to compute desired measures for the campaign. Again, the measures specifi-

cation is managed from the Loki Manager and is composed of both study-level and campaign-level

measure specifications. A user creates a study-level measure by giving it a name and defining its

(subset selection, predicate, observation function) triples as described in Section 5.2. After defining

a study-level measure, Loki compiles it into an executable that computes the values that make up its

sample from the global timelines of the selected experiments. Similarly, each campaign-level mea-

sure is named, defined, and compiled into an executable. In the definition, the user assigns one of

the three campaign-level measure types described in Section 5.3. If the measure is simple sampling,

the user selects study-level measures whose final observation values will be used in the campaign-

level measure’s sample. For stratified weighted measures, the user selects study-level measures and

assigns them weights. Finally, for stratified user measures, the user defines a function that combines

the means of study-level measures. The executable that Loki compiles for a campaign-level measure

takes study-level measure samples as input, and generates appropriate statistical properties as output.

A.2.4 Campaign Execution

Once the user has specified a campaign and its measures, and instrumented the system under study,

the campaign is ready to be executed. Campaign execution is managed from an Experiment Manager

that is launched from the Loki Manager. The user assigns six execution parameters, which pertain

to timestamps for use in clock synchronization, as described in Section 4.1. First, the user is asked

to indicate how many synchronization messages should be passed before and after either studies or
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experiments. The user also specifies the amount of time that should elapse between synchronization

messages, for both before and after messages. The next parameter determines whether before and

after should refer to before and after each study or before and after each experiment. The final

parameter is a port number on which the synchronization messages should be passed. Following

parameter assignment, the user starts automated campaign execution from the Experiment Manager.

Behind the scenes, the Experiment Manager oversees clock synchronization message passing

and performs experiment coordination, daemon management, and experiment monitoring. The pseu-

docode in Algorithm 1 demonstrates the general algorithm that the Experiment Manager follows.

The CampaignExecution() algorithm runs in its own thread, which is referred to by the same

name. Below, lokid is used to refer to local daemons.

Algorithm 1: Pseudocode for campaign execution in the Experiment Manager.

CAMPAIGNEXECUTION()

foreach study
/* Start local daemons phase */
foreach host

EXEC(lokid)
ACCEPT(remote lokid connection)

/* Experiment execution phase */
foreach experiment

if (collect timestamps after every experiment
= true ) or ( experiment = 0)

foreach host
EXEC(getstamps)

foreach lokid
SEND(start experiment msg, lokid )

foreach node
if REQUIRESRUNTIMESTARTUP() =

true
SEND(start node msg, GETLOKID(
node ))

while not (experiment complete) and
(TIME() < app timeout)

PROCESSDAEMONMSGS(daemon msg buffer)
if TIME() > app timeout

foreach lokid
SEND(timeout msg, lokid )

foreach lokid
RECEIVE(experiment complete msg,
lokid )

CHECKFOREXPERIMENTERRORS()

/* Study completion phase */
CHECKFORSTUDYERRORS()
foreach lokid

SEND(kill msg, lokid )
foreach host

EXEC(getstamps)

Three aspects of the algorithm’s implementation that deserve discussion are remote process in-

vocation, communication between the central daemon and local daemons, and experiment and study

error detection. The Experiment Manager makes extensive use of remote process invocation for exe-

cutables such as getstamps and lokid. The ssh secure shell client is used as a remote execution

mechanism for starting processes on remote hosts. The stdout and stderr I/O files of remote
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Figure 7: Measure Results Window

processes are redirected to appropriate log files to be examined by the front end. Although stdout

and stderr I/O files are useful for logging purposes, they are not adequate for all communica-

tion required by the front end. In particular, TCP sockets are needed for communication between

the central daemon and the local daemons. On the central daemon side (the Loki front end), each

socket connection is maintained in a separate thread, called a SocketThread. When messages

arrive from the local daemons, they are tagged with identifying information and queued in a daemon

message buffer. The message buffer has a lock for concurrent access. The CampaignExecution

thread handles the messages as designated in Algorithm 1. Each SocketThread also maintains

a socket lock for an outgoing message buffer. Throughout the campaign execution process, the Ex-

periment Manager must monitor for errors. It does so by examining the log files created by remote

processes, the messages received on sockets, and the status of socket connections. It handles errors

by archiving failed experiments for later examination.
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A.2.5 Offline Processing

After the user has finished campaign execution, the campaign is ready to be processed by Loki. As

described earlier, there are two phases to the offline processing: experiment analysis and measure

computation. Each step is invoked from the Loki Manager. Experiment analysis performs the analy-

sis phase of Loki, as described in Section 4, to create global timelines and determine the correctness

of fault injections from the raw data collected during the campaign’s execution. Following analysis,

the user can examine details such as the α and β values for the clock synchronization, the timing

information on when particular states were entered, the status (correct injection, incorrect injection,

or not injected) and timing information for faults, and the global timeline for the experiment. After

the analysis is performed, measure computation (as described in Section 5) is carried out from the

Loki Manager. Once that has been done, study-level and campaign-level measure executables are

run in order to calculate statistical properties of the desired campaign measures. These properties are

then displayed to the user in the front end’s Measure Result Window, seen in Figure 7. The prop-

erties include the first four central moments, the skewness coefficient, the kurtosis coefficient, and

approximate percentile values.


