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Abstract. We present an analysis framework for large studies of mul-
timodal clinical quality brain image collections. Processing and analysis
of such datasets is challenging due to low resolution, poor contrast, mis-
aligned images, and restricted field of view. We adapt existing registration
and segmentation methods and build a computational pipeline for spa-
tial normalization and feature extraction. The resulting aligned dataset
enables clinically meaningful analysis of spatial distributions of relevant
anatomical features and of their evolution with age and disease progres-
sion. We demonstrate the approach on a neuroimaging study of stroke
with more than 800 patients. We show that by combining data from sev-
eral modalities, we can automatically segment important biomarkers such
as white matter hyperintensity and characterize pathology evolution in
this heterogeneous cohort. Specifically, we examine two sub-populations
with different dynamics of white matter hyperintensity changes as a func-
tion of patients’ age. Pipeline and analysis code is available at
http://groups.csail.mit.edu/vision/medical-vision/stroke/.

1 Introduction

We present a framework to summarize and quantify large multimodal collections
of clinical images in population studies of neurological disease. We use registra-
tion and segmentation algorithms to build robust computational pipelines that
handle variable image quality and large image set sizes. Large population studies
with clinical quality multimodal images present many challenges, including poor
resolution, varying slice acquisition directions and orientations across modali-
ties, poor contrast, limited field of view, and misalignment of scans of different
modalities. In this work, we develop insights for adapting existing algorithms to
clinical images, and use these insights to build a robust and scalable framework.
We demonstrate the application of the methods on a preliminary study of over
800 patients with the goal of expanding the study by an order of magnitude in
the near future by including images from multiple sites.
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Our work is motivated by a large scale imaging study of stroke. The brain scans
are acquired within a few hours of stroke onset, which limits scanning time and re-
quires fast imaging protocols. Due to the acquisition constraints, scans of different
modalities are not only low resolution (with greater than 5mm slice thickness), but
are also anisotropic in different directions as illustrated in Figure 1. Distinguishing
betweenwhite and graymatter is challenging in the resultingT1 images, even for an
expert, due to poor tissue contrast.To assess susceptibility to cerebral ischemia (in-
sufficient bloodflow to the brain) andpredict stroke severity, image features such as
white matter hyperintensity (WMH) [17] and stroke lesions were labeled manually
in T2-FLAIR and DWI scans respectively. WMH burden is found to be higher in
patients who develop a cerebral infarct compared to those with less damaging tran-
sient ischemic attacks, and is also associated with small vessel stroke subtypes [18].
The segmentation and analysis of WMH is therefore important for understanding
mechanisms underlying stroke. Manual segmentation by an expert takes 10 to 30
minutes per patient. Segmentation of 1089 patients in the study took over three
years. With the project poised to receive thousands more scans from other partic-
ipating sites in the near future, the need for automatic segmentation and analysis
tools is clear.

Fig. 1. T1 (top), T2-FLAIR (middle),
and DWI (bottom) images from a pa-
tient in the stroke study. Three orthog-
onal slices are shown for each modality;
in plane slices are highlighted in blue.
Note the cropped field of view and large
slice thickness.

Enabled by increasingly more afford-
able imaging technology and collaborative
acquisition efforts [7,16], the trend of large
scale multimodal multi-site clinical stud-
ies with lower quality images is bound to
continue. Population genetics studies that
typically require large patient cohorts are
starting to include imaging data, creating
large scale imaging datasets. In contrast
to high quality research scans in studies
that commonly motivate method devel-
opment, such as ADNI [29] and Predict-
HD [14], we focus on lower quality clinical
images. As our results demonstrate, exist-
ing algorithms can be adapted to handle
clinical quality scans by carefully investi-
gating the properties of the input images
and using the insights to optimize the ap-
plication of the methods.

Our framework consists of three main
components: registration, segmentation,
and analysis. Our ultimate goal is in-

depth analysis of disease progression in large clinical datasets, which will deliver
insights into the structural and functional changes associated with a disorder
from noisy, low quality images. Accurate registration is a critical prerequisite for
such analysis, as it brings all imaging modalities into a common coordinate frame
and enables data fusion across subjects and modalities [19]. Quantifying regions
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Fig. 2. A flowchart of our computational pipeline. Registration of all modalities for all
patients into a common space and segmentation of clinical features enable large scale
population analysis.

of interest requires accurate segmentation. Manual segmentation is infeasible for
larger datasets with thousands of images, motivating the development of au-
tomatic methods. Population analysis of heterogeneous data requires improved
models to capture trends, variability, and statistics. In this paper, we present
steps and insights toward the goal of large scale analysis for clinical studies.

Prior work in registration, segmentation, and population analysis has often fo-
cused on high quality images. Registration of clinical images is often constrained
to rigid or affine alignment to atlas reference frames such as Talairach coor-
dinates [23]. However, accurate alignment of relevant brain structures requires
nonlinear deformations [2,26]. For example, atrophy of the cortex and growth of
the ventricles are of interest in many neuroimaging studies. In stroke imaging,
white matter hyperintensity is typically found close to the ventricles. There-
fore, an accurate deformable registration of the white matter near the ventricles
is important for spatial analysis of white matter hyperintensity distribution in
the population. Although recent registration algorithms have enjoyed success in
many medical imaging applications, a better understanding of the interactions
between the algorithms and relevant properties of images is essential for such
algorithms to function properly on large, challenging clinical datasets. We build
on the work of Klein et al. [12], which evaluates a variety of different registration
algorithms on high resolution scans of slice thicknesses below 1.5mm with no vis-
ible pathologies. Methods for segmentation and analysis of medical images have
been researched in depth [1,20], but their utility for large scale clinical studies
of pathology is yet to be fully characterized. Previous work in population anal-
ysis has often focused on higher quality datasets [6,20], while analysis of larger
datasets has been näıve [21]. In this paper, we address the key challenges of
building a robust computational pipeline for registration and segmentation in a
common reference frame, enabling analysis and summary of a pilot study of over
800 patients. We employ regression mixture modeling [8,15] and kernel regres-
sion for imaging [4,13,28] to identify and characterize different modes of white
matter hyperintensity evolution as a function of age. Fig. 2 presents a flowchart
of the proposed computational framework.
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The remainder of this paper is organized as follows. In Section 2, we introduce
our approach to registration of images within each patient in a study and to spatial
alignment of all patients into a common coordinate frame. In Section 3, we discuss
the challenges of automatic segmentation and outline our solutions. In Section 4,
we describe the population analysis methods in further detail. Section 5 illustrates
our approach on a cohort of stroke patients. We conclude with a discussion of di-
rections for future research suggested by our experience and results.

2 Registration

Given a multimodal set of scans for a patient, we aim to align all patient images
into the common anatomical space of an atlas. In this section, we briefly review
image registration, and motivate the necessity of proper initialization, brain
masking, and intensity correction for successful registration of clinical images.
We perform spatial normalization into the atlas space using T1 images, followed
by alignment of all other modalities (T2-FLAIR, DWI, etc.) via intra-patient
multimodal registration. However, the methods we describe can be used with
any atlas modality that enables accurate anatomical alignment.

Image registration techniques have been widely studied, and generally include
a distance or similarity metric, a transformation model, and an optimization
procedure [5,19,27]. Three of the most popular metrics used in registration are
sum of squared differences (SSD), cross correlation (CC), and mutual informa-
tion (MI). SSD and CC are used when the intensity distributions are directly
comparable between the two images. MI is typically used for multimodal regis-
tration when the intensity profiles differ between scans (e.g., when registering
a T1-weighted image to a T2-weighted image) [27]. Optimizing over nonrigid
transformations is usually only effective after an accurate initialization based
on simpler rigid or affine alignment. Registration between clinical images of pa-
tients and an atlas image is difficult in large, potentially multi-site studies for two
main reasons. First, the patient images contain many irrelevant structures: our
goal is brain analysis, but the images include the skull and large portions of the
neck, and may even crop structures of interest, as illustrated in Fig. 1. The opti-
mization procedure treats all regions uniformly, and aligning these bright, highly
variable structures may drive the registration and result in an inaccurate trans-
formation of the brain. Second, since images in large clinical studies are often
acquired at multiple sites with different scanners and different acquisition pa-
rameters, the range of values and the intensity distributions across tissue classes
varies greatly across images of the same modality. We address these challenges
by proposing general strategies for each registration step. Algorithm 1 summa-
rizes the steps of our registration pipeline. All registration steps are performed
using the ANTS [2] software package.

Intra-modal initialization with MI. When registering images of the same
modality, the standard practice of first computing an initial rigid registration
(i.e., rotation and translation only) is relatively insensitive to the problem of
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Algorithm 1. Registration pipeline of Section 2

1: Initial rigid registration: Rigidly register the atlas T1 image to the patient
T1 image, using MI as a metric to handle intensity profile differences.

2: Approximate brain mask propagation: Use the estimated rigid transformation
from Step 1 to transfer the brain mask from the atlas space to the patient T1 space
to use for intensity correction and to guide nonrigid registration.

3: Patient T1 intensity correction: Use the approximate brain mask from Step 2
to estimate the white matter intensity mode in the patient T1 image. Scale patient
T1 intensities so that the mode of white matter intensity matches that of the atlas,
enabling the use of intensity-based metrics in registration.

4: Nonrigid T1 registration: Nonrigidly register the atlas T1 image to the
intensity-corrected patient T1 image from Step 3 using CC as a metric, with
the transformation from Step 1 for initialization and the approximate brain mask
from Step 2 to restrict the region where the metric is computed.

5: Brain mask propagation: Use the estimated nonrigid transformation from Step 4
to obtain a more accurate brain mask in the patient T1 space.

6: Multimodal registration: Rigidly register the patient T2-FLAIR/DWI images
to the T1 image of the same patient using MI as a metric, with the final brain
mask from Step 5 to restrict the region where the metric is computed.

extraneous structures. Inconsistent intensity distributions in images of the same
modality in clinical datasets render the usual intra-modality metrics such as
CC and SSD ineffective for alignment since the assumption of direct intensity
matching for the same tissue type across different images is violated. Standard
methods for matching intensity profiles, such as histogram equalization, cannot
be used either, since they would be dominated by non-brain regions such as the
neck. We employ MI in performing this rigid registration since the difference
of tissue intensities between these images is more similar to the difference of
tissue intensities between images of different modalities. We build on this initial
registration to solve the problems of inconsistent field of view and intensity
profiles described above.

Skull stripping and brain masking. Since we are typically only interested
in the brain in neuroimaging studies, we seek an accurate transformation in
the brain, and restrict the region where the registration metric is evaluated ac-
cordingly. In research-quality images, skull stripping or brain mask extraction is
achieved via watershed methods that assume that the brain consists of a single
connected component separated from the skull and dura by CSF [22]. Unfor-
tunately, such techniques are highly dependent on image quality, and require
high resolution and reliable contrast. As a result, they often fail when applied
to clinical images. Instead, we propagate a brain mask from the atlas via the
estimated rigid transformation. While not a perfect brain mask, it enables in-
tensity correction and constrains the final nonrigid registration to a region that
reasonably approximates the brain.
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Intensity correction. In our experiments with clinical images of stroke pa-
tients, MI failed when used in nonrigid registration, resulting in inconsistent
deformations that did not match the images. Differences in intensity profiles of
patient images prevent us from using intensity-based measures such as CC and
SSD directly. Using the approximate brain mask, we adjust the intensity sepa-
rately for each image to solve this problem. Histogram equalization still cannot
be used due to the approximate nature of the brain mask and variable inten-
sity profiles (see Fig. 3). We choose to restrict our intensity correction to global
scaling. Specifically, we match the intensity of the white matter while not alter-
ing the shape of the intensity profiles. As one of the largest structures in the
brain, the white matter is important to match well between the two images in
registration. We estimate the mode of white matter intensity for each patient as
the mode of the component with higher intensity in a two-component mixture
model for intensity values within the brain mask.
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Fig. 3. Voxel intensity histograms from three
different patients (shown in three different col-
ors), illustrating typical differences in inten-
sity distributions within the approximate brain
mask obtained via rigid registration from the
atlas. The inset highlights the difference at the
high end of intensity values.

Final non-rigid registration.
Once the image intensity distribu-
tion of the patient image has been
matched to that of the atlas im-
age, non-rigid registration can then
be performed with CC as a met-
ric. In order to prevent non-brain
structures from dominating the op-
timization, we continue to use the
approximate brain mask in comput-
ing this registration. Once the regis-
tration is concluded, we propagate
a more accurate mask of the brain
to be used for multimodal registra-
tion within each patient.

Intra-patient multimodal registration. In order to align other modalities
(such as T2-FLAIR and DWI in the stroke study) into the atlas coordinate sys-
tem, we first estimate the rigid transformation to the atlas-modality image (in
our case, this is T1) using MI, and compose it with the final nonrigid transfor-
mation between the patient and the atlas.

Evaluating registration quality. Since visual inspection is not feasible for
thousands of patients, we employ automatically computed measures of registra-
tion quality to detect when registration failed. We construct a (voxelwise) median
image of registered patients for each modality in the atlas space, compute SSD of
each intensity-corrected patient image from this median image within the brain
mask, and isolate patients whose measures are substantially higher than the rest
using the Tukey fence (more than 1.5 times the interquartile range above the
third quartile) [24].
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3 White Matter Hyperintensity (WMH) Segmentation

WMH is characterized by high intensity in T2-FLAIR MRI, but so are other
brain structures such as the ventricle lining (ependyma) and the skull. Stroke le-
sions, both acute and chronic, can sometimes appear bright in T2-FLAIR as well.
As a result, manual segmentation of WMH is typically performed via threshold-
ing followed by expert editing to restrict the segmentation to the relevant regions
of white matter and exclude areas with stroke lesions.

We create an expert-defined region of interest for WMH in the atlas space
and take advantage of the registration pipeline to propagate this region to the
patient’s T2-FLAIR image. We employ MAP classification to label WMH voxels
within the region of interest. Given intensity I(x) at voxel x, we choose label
L(x) ∈ {H, H̄} (where H represents WMH and H̄ represents healthy tissue) to
maximize the posterior probability of the label p(L(x)|I(x)):

L∗(x) = argmax
L∈{H,H̄}

p(L | I(x)) = argmax
L∈{H,H̄}

p(I(x) | L) p(L). (1)

We use 10 patient images to construct the likelihood models p(I|L = H) and
p(I|L = H̄) as histograms of intensity. These training images were visually in-
spected to have accurate manual segmentations. As T2-FLAIR scans also suffer
from inconsistent intensity profiles, we match the T2-FLAIR white matter in-
tensities for all patients via linear global scaling before segmentation, similar to
the intensity correction step described in the previous section. We exclude acute
stroke lesion voxels by using manual stroke segmentations derived from DWI
scans, which are aligned to T2-FLAIR scans as part of the registration pipeline.
To estimate the prior p(L), we use the proportion of voxels in the 10 training
images with the corresponding label within the region of interest specified in the
atlas space.

As with training data, we use DWI stroke lesion segmentations to exclude
acute stroke voxels when performing WMH labeling in new patients. Future
directions of research include developing automatic methods for stroke lesion
segmentation.

4 Progression of WMH Spatial Distribution

WMH burden and its evolution with respect to clinical variables, such as age, is
important for understanding cerebrovascular mechanisms related to stroke [17,18].
While the overall WMH volume of each patient can be compared and analyzed
from just the manual segmentations for each patient, we use the registration
framework to evaluate and visually inspect the spatial distribution of WMH and
to understand its evolution across the brain as a function of age. Since WMH
volume varies dramatically across different patients, we choose to first cluster
the patients into more homogeneous sub-populations and then investigate the
change of WMH distribution with age separately in each sub-population.

We use a two-component regression mixture model to capture variability in
WMH volume growth [8,15]. Each component is characterized by a different
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Fig. 4. Distances from patient images to median image for T2-FLAIR and DWI modal-
ities, ranked in descending order. Outliers are shown in red, and are removed from
subsequent analysis.

dependency of WMH burden on age. To determine the assignment of patients
to sub-populations associated with components, we alternate between assigning
the cluster membership of each patient and estimating the regression coefficients
for WMH volume as a function of age in each cluster, until convergence.

Formally, let vi and zi be the scalar total WMH volume and cluster assignment
of patient i (i ∈ {1, . . . , N}) respectively. We let Xi be a p-dimensional feature
vector associated with patient i. Specifically, we use age and a constant to account
for the intercept (i.e., p = 2). Let v be the vector of all volume values and
X be the N × p matrix of features. We assume i.i.d. multinomial priors for
cluster membership. Given p-dimensional regression coefficient vectors βc for
each cluster c and fixed variance σ2, we assume that WMH volume vi in patient
i is normally distributed with mean Xiβc and fixed variance σ2:

vi = Xiβc + εi, where εi ∼ N (0, σ2).

In order to estimate the parameters β, we use a hard-assignment EM vari-
ant, alternating until convergence between the E-step that computes the cluster
assignments:

zi = argmin
c

||vi −Xiβc||22 , (2)

and the M-step that solves for each βc using standard least-squares linear
regression:

βc = (XTZcX)−1XTZcv, (3)

where Zc is a diagonal binary matrix; Zc(i, i) = 1 if zi = c. The resulting
algorithm is similar to k-means clustering.
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(a) Agreement between manual
and automatic segmentation vol-
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(b) A typical segmenta-
tion result.
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Fig. 5. Left: comparison of automatic and manual WMH segmentation volumes. Right:
example segmentations. Manual segmentation (translucent red), automatic segmenta-
tion (yellow), and overlap (orange) are overlaid on axial slices.

Within each cluster, we use Nadaraya-Watson kernel regression [4,13,28] on
the WMH label maps to visualize representative images Ic(t) for each cluster c:

Ic(t) =

∑N
i=1 Zc(i, i)Kh(t− ti)Ii

∑N
i=1 Zc(i, i)Kh(t− ti)

, (4)

where t is the age of interest, N is the number of patients, Ii is the WMH
label map of patient i warped into atlas space, and Kh(·) is a Gaussian kernel
function with standard deviation h and mean 0. Intuitively, a representative
WMH image is a weighted average of all WMH label maps, with patients close
to age t contributing more to the average. Visualizing representative images helps
understand the progression of the disease with age.

5 Results

We illustrate our framework in the context of a stroke dataset which currently
includes 1089 patients, with T1 (1× 1mm in-plane, slice thickness 5-7mm), T2-
FLAIR (1×1mm in-plane, slice thickness 5-7mm, PROPELLER sequence some-
times used if the patient moved), and DWI (at least 6 directions, b-value 1000
s/mm2, 1mm × 1mm in-plane, slice thickness 5-7mm). Acquisition TR and TE
varied depending on image protocol. T1 images were bias-field corrected [25]
prior to analysis. In 819 patients, both T1 and manually segmented T2-FLAIR
images were available. In 515 of these, DWI was also available, and in 276 of
these, manual stroke lesion segmentations were available.
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Registration. For atlas-to-patient registration, we use the atlas constructed
from 39 T1-weighted brain MRI scans and corresponding manual delineations
that are part of the Freesurfer brain atlas [3,9,11]. The 39 subjects span a wide
age range, reflect significant anatomical variation, and include some Alzheimer’s
patients.
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Fig. 6. Top: the two-component regression mixture model clusters the patients into
those with high WMH growth as a function of age (red) and those with low WMH
growth as a function of age (blue). The lines show a kernel regression of WMH volume
as a function of age in each cluster. The representative images shown are obtained via
kernel regression of the WMH label maps as a function of age. Bottom: the two sets of
representative images in more detail.

After using our registration pipeline, the quality evaluation procedure identi-
fied 86 of 819 T2-FLAIR scans and 39 of 275 segmented DWI scans as outliers,
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leading us to exclude them from subsequent analysis (Fig. 4). Most outliers con-
tain severe artifacts. We also verified that images that were close to the threshold
but were included in the analysis were accurately registered by the method.

WMH Segmentation. Fig. 5 illustrates the volume agreement between the
automatic and manual WMH segmentation. We observe that in most patients
the automatic segmentation is close to the manual one (Pearson correlation
coefficient r = 0.895). In some cases, our algorithm oversegments relative to
the manual segmentation. Investigating these patients reveals cases like the one
shown in Fig. 5c, where during manual segmentation experts excluded large
regions determined to be attributable to chronic ischemic lesions. Similar to
acute stroke lesions, chronic lesions are hyperintense in FLAIR but should not
be included in WMH volume calculations. Unfortunately, they do not have a
signature in DWI. The insights from this experiment will guide our future work
to improve segmentation by detecting such lesions simultaneously with WMH
voxels.

WMH Progression with Age. Fig. 6 visualizes the progression of the WMH
distributions with age based on the two-component regression mixture model.
The method identified a cluster of patients for whom age has little to no effect
on WMH volume (β1 = 2.27mm3/year), as well as another set of patients for
whom it grows substantially with age (β2 = 8.84mm3/year). For each cluster, we
use the data-driven kernel regression on both the scalar WMH volume values and
the WMH label map separately as a function of age. For the fast-growing WMH
burden cluster, WMH tends to spread throughout the white matter, and most
strongly in the posterior regions of the white matter. In the other, slow-growing
WMH burden cluster, the white matter remains confined near the ventricles, as
expected.

We provide code that implements all steps of our framework at
http://groups.csail.mit.edu/vision/medical-vision/stroke/.

6 Conclusion

We presented a framework for analysis of large-scale studies with highly vari-
able clinical images. We discussed necessary decisions in adapting registration
and building segmentation algorithms for such difficult data, and demonstrated
their application to a population of 819 stroke patients. We further introduced
analysis to characterize WMH progression as a function of age, enabled by the
multimodal registration and segmentation framework. In registration of clinical
images, initialization, choice of cost function, automatic data-driven brain mask-
ing, intensity correction, and automatic evaluation are critical steps which we
discussed in detail.

In the future, we will extend our segmentation methodology to include auto-
matic segmentation of acute stroke lesions from DWI [10], and chronic stroke
lesions from T2-FLAIR. This will enable completely automatic segmentation of

http://groups.csail.mit.edu/vision/medical-vision/stroke/
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white matter hyperintensity and provide more features for the clinical analysis.
Additionally, richer analyses using more sophisticated models and additional
clinical features such as stroke severity promise to lead to interesting clinical
findings.

As large, multimodal, multicenter datasets of highly variable quality come
online, fully automatic data-driven methods become a crucial part of the analysis.
We have demonstrated a robust, scalable framework that enables such analysis
for stroke studies.
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