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Information Sharing

• A terrorist threat over the world

• Several intelligence agencies try to stop it

• Each agency has secret data – can’t stop attack alone

• If the agencies join forces – they can stop the attack

• The terrorists have double agents in some agencies

Can the attack be stopped in time?



Secure Multiparty Computation



Ideal World
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• Security with abort: abort after obtaining output

• Fairness: abort before obtaining output

• Full security (guaranteed output delivery): 
no abort
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Identifiable Abort

• Security with id-abort: honest parties identify 
a corrupted party in case of abort
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• Fairness with id-abort

no output

no output

no output

no output 𝑃1 is 
cheating

𝑃1 is 
cheating

𝑃1 is 
cheating

𝑃1 is 
cheating



Known Results (w/o setup)
Broadcast Point-to-Point

∗
assuming OT

𝑡 < 𝑛/3

𝑡 < 𝑛/2

𝑡 < 𝑛

∀𝑓 full security 
[RB’89, CDDHR’99]

∃𝑓 without fairness 
[Cleve’86]

∀𝑓 id-abort [GMW’87]

∃𝑓 with full security 
[Gordon,Katz’09]

∀𝑓 full security 
[BGW’88, CCD’88]

∃𝑓 without full security 
[PSL’80,CL’14]

∀𝑓 fairness [FGMR’02]

∀𝑓 security with abort
[FGHHS’02]

∃𝑓 with full security 
[CL’14, CHOR’16]

∃𝑓 without id-abort [CL’14]

∃𝑓 without fairness 
[Cleve’86]

∃𝑓 fair without full [CL’14]



Known Results (w/o setup)
Broadcast Point-to-Point

∗
assuming OT

𝑡 < 𝑛/3

𝑡 < 𝑛/2

𝑡 < 𝑛

∀𝑓 full security 
[RB’89, CDDHR’99]

∃𝑓 without fairness 
[Cleve’86]

∀𝑓 id-abort [GMW’87]

∃𝑓 with full security 
[Gordon,Katz’09]

∀𝑓 full security 
[BGW’88, CCD’88]

∃𝑓 without full security 
[PSL’80,CL’14]

∀𝑓 fairness [FGMR’02]

∃𝑓 without id-abort [CL’14]

∀𝑓 security with abort 
[FGHHS’02]

∃𝑓 with full security 
[CL’14, CHOR’16]

∃𝑓 without fairness 
[Cleve’86]

∃𝑓 fair without full [CL’14]



Security Hierarchy

abort

id-abort fair

full

id-fair



Security Hierarchy

abort

id-abort fair

full

id-fair

𝑡 < 𝑛
𝑡 + 1 calls



Id-Fair to Full Security (𝑡 < 𝑛)

Player-Elimination Technique

• Execute 𝑡 + 1 times

– Compute 𝑓 with fairness & id-abort

– If obtained output, halt

– Otherwise, eliminate identified corrupted party



Security Hierarchy

abort

id-abort fair

full

id-fair

𝑡 < 𝑛
𝑡 + 1 calls

𝑡 < 𝑛
[GMW, Pass, IOZ]

𝑡 < 𝑛
[CL’14]



Abort to Id-Abort (𝑡 < 𝑛)

GMW Paradigm

– Generate committed randomness (augmented CF)

– Commit to input

– Prove honest behavior in zero knowledge 

[GMW’87] [Pass’04] [Ishai,Ostrovsky,Zikas’14]

OWF

𝑂 𝑛 rounds

TDP & CRH

𝑂 1 rounds

Information theoretic 
(correlated randomness)

𝑂 1 rounds

[C,Lindell’14] fair to id-fair
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Security Hierarchy
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Abort to Fairness (𝑡 < 𝑛/2)
• Main tool: Error-Correcting Secret Sharing

– 𝑠1, … , 𝑠𝑛 ← Share 𝑠

– Any set of 𝑡 shares is independent of 𝑠

– 𝑠 ← Recon 𝑠1, … , 𝑠𝑛 , even if 𝑡 shares are incorrect

• Security with abort of 𝑆𝑆𝑜𝑢𝑡 𝑓 ⇒ Fairness of 𝑓

𝑓 𝑥1, … , 𝑥𝑛=𝑦

𝑠1 𝑠2 𝑠𝑛…
(𝑛/2, 𝑛) ECSS

𝑆𝑆𝑜𝑢𝑡 𝑓



Security Hierarchy

abort

id-abort fair

id-fair

full

𝑡 < 𝑛/2
call 𝑆𝑆𝑜𝑢𝑡 𝑓

𝑡 < 𝑛/2
call 𝑆𝑆𝑜𝑢𝑡 𝑓

𝑡 < 𝑛
[GMW, Pass, IOZ]

𝑡 < 𝑛
[CL’14]

𝑡 < 𝑛
𝑡 + 1 calls

High overhead for 
large-scale MPC

Can we do better?



Main Question

The setting:

– Large-scale MPC

– Constant fraction of honest parties
𝑡 = 𝛽𝑛 for 0 < 𝛽 < 1

What is the cost (rounds) of transforming 
fair computation to fully secure computation?



Main Results

abort

id-abort fair

id-fair

full

𝑡 < 𝑛/2
call 𝑆𝑆𝑜𝑢𝑡 𝑓
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𝑡 < 𝑛

𝑡 < 𝑛

𝑡 < 𝑛
𝑡 + 1 calls

restricted 
id-fair

𝑡 < 1 − 𝜀 𝑛
𝑆𝑆𝑖𝑛 𝑓

𝑡 < 1 − 𝜀 𝑛
𝜔 log 𝑛 calls (no input)
𝜔 1 calls (deter.) or 𝑡 < 1/2 − 𝜀 𝑛

𝑡 < 1/2 − 𝜀 𝑛
𝑆𝑆𝑖𝑛−𝑜𝑢𝑡 𝑓

𝑡 = 𝑂 𝑛
𝑡 + 1 calls

restricted 
abort

𝑡 < 𝑛/2
𝑆𝑆𝑖𝑛−𝑜𝑢𝑡 𝑓

𝑂 1



Rest of the talk
• Randomized functionalities without inputs

– Fair to full in 𝜔 log𝑛 rounds

– Application: coin-flipping protocols

• Functionalities with inputs

– Fair to full in 𝜔 1 rounds

– Application: multiparty Boolean OR

• Lower bound

– No fair to full in 𝑂 1 rounds



Randomized Functionalities 
Without Input



Thm1: Fairness to Full security (No Input)

• Let 𝑓 be a no-input function

▪ 𝑓𝑛 is the 𝑛-party version (𝑛 copies of the output)

▪ 𝑛′ = 𝜔 log 𝑛

▪ 𝑡 = 𝛽𝑛 and 𝑡′ = 𝛽′𝑛′ where 0 < 𝛽 < 𝛽′ < 1

• If 𝑓𝑛
′

is 𝑡′-comp. w/ fairness in 𝑟′ rounds, then 
𝑓𝑛 is 𝑡-comp. w/ full security in O 𝑡′ ⋅ 𝑟′ rounds

𝜋 comp. 𝑓𝑛

𝑟 = O 𝑡′ ⋅ 𝑟′ -round 
Fully secure for 𝑡 corrupt

𝜋′ comp. 𝑓𝑛
′

𝑟′-round 
Fair for 𝑡’ corrupt



Application: Coin Flipping

𝜹-bias coin flipping: the common output is 𝛿-close 
to uniformly random bit, facing 𝑡 corruptions

[Cleve’86] 𝛿-bias CF requires Ω 1/𝛿 rounds

[ABCGM’85] 𝑡 < 𝑛 O 𝑡/𝛿2 rounds

[MNS’09] 
[BOO’10] [HT’14] 
[AO’16] [BHLT’17] 

𝑛 < log log 1/𝛿 ෩O 1/𝛿 rounds

[BOO’10] 𝑡 = 𝛽𝑛, 1/2 < 𝛽 < 1 𝑂 𝑡 + 1/𝛿2 rounds

This work 𝑡 = 𝛽𝑛, 1/2 < 𝛽 < 1 𝑂 𝐥𝐨𝐠 𝒏 𝐥𝐨𝐠∗ 𝒏 + 1/𝛿2
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Main Idea

Restricting the adversary’s ability to abort

1) Define restricted id-abort

2) Fairness & restricted id-abort ⇒ full security

3) Fairness ⇒ fairness & restricted id-abort

𝜋 comp. 𝑓𝑛

𝑟 = O 𝑡′ ⋅ 𝑟′ -round 
Fully secure for 𝑡 corrupt

𝜋′ comp. 𝑓𝑛
′

𝑟′-round 
Fair for 𝑡’ corrupt
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Restricted Id-Abort
A designated subset of the parties 𝒞 (committee) 

• If 𝒞 is fully honest: no abort

• If 𝒞 has corrupted party: id-abort in 𝒞

• If 𝒞 is fully corrupted: adversary determines the output



Restricted Id-Fair to Full
1) Committee election [Feige’s lightest-bin protocol]

Elect committee 𝒞 of size 𝑛′ = 𝜔 log 𝑛

𝒞 has at most 𝛽 + 𝜀 𝑛′ corrupted parties, except negl prob
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Restricted Id-Fair to Full
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1) Committee election [Feige’s lightest-bin protocol]

Elect committee 𝒞 of size 𝑛′ = 𝜔 log 𝑛

𝒞 has at most 𝛽 + 𝜀 𝑛′ corrupted parties, except negl prob

2) Player elimination

𝜷 + 𝜺 𝒏′ + 𝟏 iterations of 𝑓 with fairness & 𝒞-id-abort



Obtaining Restricted Id-Fair

Committee members compute over broadcast:

1) Augmented coin flipping, security with id-abort

2) The function 𝑓𝑛′, fairness with id-abort

3) Broadcast output and prove correctness 
[Pass’04]



Functions With Input



Thm 2: Functions With Input

Let 𝑓 be a 𝑛-party function, let 𝑡 = 𝛽𝑛, 
and let 𝑛′ = 𝜔 log 𝑛

If 𝑆𝑆𝑖𝑛(𝑓) is 𝑛′ − 1 -computed w/ fairness
in parallel in 𝑟 rounds, then 𝑓 is 𝑡-computed 
w/ full security in O 𝑟 ⋅ log∗ 𝑛 rounds

any 𝜔 1 funtion



Application: Boolean OR

𝑓 𝑥1, … , 𝑥𝑛 = 𝑥1 ∨ ⋯∨ 𝑥𝑛

• [Gordon,Katz’09] Fully secure Boolean OR 
facing 𝑡 < 𝑛 with O 𝑛 rounds

• This work: Fully secure Boolean OR 
facing 𝑡 = 𝛽𝑛 with O 𝐥𝐨𝐠∗ 𝒏 rounds



Restricted Id-Abort (With Input)
Multiple committees 𝒞1, … , 𝒞ℓ

• If ∃ fully corrupted 𝒞𝑖 : 𝒜 lerans all inputs & determines output
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Restricted Id-Fair to Full in 𝜔 1
1) Committee election

Elect committee 𝒞 of size 𝑚 = 𝜔 log 𝑛

2) Fix sub-committees
All subsets 𝒞1, … , 𝒞ℓ ⊆ 𝒞 of size 𝑛′ = 𝑚 − 𝑛′′

3) Player elimination
Compute 𝑓 with fairness & 𝒞1, … , 𝒞ℓ -id-abort

Lemma: Let 𝜑 𝑛 ∈ 𝜔 1
For 𝑚 = log 𝑛 ⋅ 𝜑 𝑛 and 𝑛′′ = log 𝑛/𝜑 𝑛

– No 𝒞𝑖 is fully corrupted (except negl. probability)

– There are poly-many 𝒞𝑖’s

– if 𝒜 aborts, 𝑛′′ parties are identified

⇒ Full security in 𝑚/𝑛′′ = 𝜑 𝑛 2 iterations



Obtaining Restricted Id-Fair
Problem:

How to send inputs to committee

Solution: 

Each party 𝑛′-out-of-𝑛′ secret shares its input

Another Problem:

Bad committee members might change shares

Solution: 

Functionality 𝑆𝑆𝑖𝑛 𝑓 will verify shares

More Problems:

• Identify corrupted members before learning output

• Corrupted committee members don’t blame honest

Doesn’t follow 
from fairness



Computing Over Shared Inputs

Each party 𝑃𝑖:

1) Compute 𝑥𝑖 = 𝑠1 ⊕⋯⊕ 𝑠𝑛′

2) ∀𝑗 ∈ 𝑛′ broadcast 𝑐𝑗 = Com 𝑠𝑗; 𝑟𝑗

3) ∀𝑗 ∈ 𝑛′ broadcast Enc𝑝𝑘𝑗 𝑠𝑗 , 𝑟𝑗

4) Prove honest behavior

Each committee member ෩𝑃𝑗:

1) Obtain relevant decommitments

2) Use the decommitments as inputs to 𝑆𝑆𝑖𝑛 𝑓

Perfectly binding 



The Functionality 𝑆𝑆𝑖𝑛 𝑓

Parameters: commitments sent by the parties

Input: ∀𝑗 ∈ 𝑛′ , 𝑛-vector of decommitments 

Verify all commitments open properly

– If ∃𝑗 ∈ 𝑛′ that doesn’t open the commitment

• Output ⊥, 𝑗

– If all commitments open

• Reconstruct 𝑥1, … , 𝑥𝑛

• Output 𝑦 = 𝑓 𝑥1, … , 𝑥𝑛



Lower Bound



The Setting (1)

Fully secure coin-flipping protocol
Hybrid: a TTP computes CF with fairness and 
restricted id-abort, for any 𝒞 ⊆ 𝑛



The Setting (2)

Parallel calls: parties can invoke TTP in parallel 
for different committees 𝒞1, … , 𝒞ℓ ⊆ [𝑛] at the 
same functionality round



The Setting (3)

Rushing: if ∃𝒞𝑖 that is fully corrupted, 
𝒜 decides to abort 𝒞𝑖 after seeing the output 
of all other computations in the round



Thm 3: The Lower Bound

Let 𝜋 be a coin-flipping with a constant number of 
functionality rounds, and let 1/2 < 𝛽 < 1

Then, ∃ PPT fail-stop adversary that by corrupting  
𝛽 ⋅ 𝑛 parties, can bias the output of 𝜋

Thm 1: ∃ CF in this model (using 𝜔 log 𝑛 rounds)



Proof Idea

𝑛-party CF 𝜋 in 
hybrid model 2-party CF 𝜓 in 

standard model

Attack on 𝜓Attack on 𝜋

Cleve

Small committees 
𝑂 log 𝑛



Proof Idea

𝑛-party CF 𝜋 in 
hybrid model 2-party CF 𝜓 in 

standard model

Attack on 𝜓Attack on 𝜋

Cleve

Large committees
𝑂 1 func. rounds



Case I : No Large Committees

All committees have size at most 𝑐 ⋅ log 𝑛
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Case I : 2-Party Coin Flipping

• Split the parties to 2 sets
• Alice controls one set, Bob the other
• Bob controls trusted party

Alice Bob𝛽𝑛 1 − 𝛽 𝑛
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Case I : Dealing with Abort

Alice Bob𝛽𝑛 1 − 𝛽 𝑛

𝒞 is small 
⇒ for a random linear 𝒯, 𝒯 ∩ 𝒞 = ∅
⇒ in 𝜋 committee 𝒞 is fully corrupted

𝒯

𝒞



Case II : Arbitrary Committees

Main idea:

• The adversary aborts all large committees

• Reduces to the no-large committees case

• For random disjoint linear subsets 𝒥1, … , 𝒥𝑠, 
all large committees in round 𝑖 intersect 𝒥𝑖 (whp)

• The adversary has “budget” only for a constant 
number of rounds



Case II : 2-Party Coin Flipping

• Bob controls the subsets 𝒥1, … , 𝒥𝑠
• Emulates TTP in the 𝑖’th round only 

for committees 𝒞 s.t. 𝒞 ∩ 𝒥𝑖 = ∅

Alice Bob

𝒥1 𝒥3𝒥2



Summary
What did we see

• Fair to Full, 𝑡 = 𝛽𝑛, no input, 𝜔 log 𝑛

• Fair to Full, 𝑡 = 𝛽𝑛, with input, 𝜔 1

• No Fair to Full coin flipping, 𝑡 = 𝛽𝑛, 𝑂 1

What didn’t we see

• Fair to Full, 𝑡 = 𝛽𝑛, HM, 𝜔 1 - BB & info-theoretic

• Abort to Full, 𝑡 = 𝑂 𝑛 , no identifiability

What’s open

• No input, gap between feasibility 𝜔 log 𝑛 and 
lower bound 𝑂 1


