Fairness Versus Guaranteed Output Delivery in Secure Multiparty Computation

Ran Cohen(BIU)Yehuda Lindell(BIU)

Online Poker

Online Poker

Secure multiparty computation

A set of distrusting parties wish to securely compute a joint function of their inputs

- Elections
- Auctions
- Private database search
- Coin flipping

Security should hold facing an external adversary that controls a subset of the parties

Secure multiparty computation

Security requirements typically include:

- Privacy: only the function output is learned
- Correctness: parties obtain correct output
- And more ...
- Captured by Real/Ideal paradigm
- Hierarchy of security definitions:
 - Security with abort: abort after obtaining output
 - Security with fairness: abort before obtaining output
 - Security with guaranteed output delivery: no abort

No Fairness

Adversary may obtain output **BEFORE** the honest parties

In case it is losing – the adversary can abort

Adversary can decide to prematurely abort **BASED ON ITS OUTPUT**

No Fairness

Fairness

Adversary may obtain output BEFORE the honest parties	One party obtains output ⇒ all parties obtain output
In case it is losing – the adversary can abort	In case it has a bad hand – the adversary can abort
Adversary can decide to prematurely abort BASED ON ITS OUTPUT	Adversary can decide to prematurely abort BASED ON ITS INPUT ALONE

No Fairness	Fairness	G.O.D.
Adversary may obtain output BEFORE the honest parties	One party obtains output ⇒ all parties obtain output	All parties obtain output
In case it is losing – the adversary can abort	In case it has a bad hand – the adversary can abort	Adversary cannot abort under any circumstances
Adversary can decide to prematurely abort BASED ON ITS OUTPUT	Adversary can decide to prematurely abort BASED ON ITS INPUT ALONE	Denial of Service attacks are NOT POSSIBLE

Fairness vs. G.O.D.

- Protocols normally achieve both fairness & G.O.D. or do not achieve neither fairness nor G.O.D.
- G.O.D. ⇒ fairness
- Two parties: fairness \Rightarrow G.O.D.
 - In case of (fair) abort, the honest party can locally compute the function using a default input value
 - The corrupted party does not learn anything

Main Question

Does fairness imply G.O.D.?

- Are there functions that can be computed with fairness but not with G.O.D.?
- Under which conditions on the network/function does fairness ⇒ G.O.D.?

Communication Models

Point-to-Point (P2P)

Authenticated communication lines between every pair of parties

Broadcast channel

When a party sends a message *m*:

- All honest parties receive the same message m'
- If the sender is honest, then m = m'

Feasibility of MPC

Broadcast

- t < n/2
 → f G.O.D. (IT) [RB'89]
- $t \ge n/2$
 - $\exists f$ no fairness [Cleve'86]
 - Coin flipping
- t < n
 - $\forall f$ security with abort [GMW'87]
 - ∃*f* G.O.D. [GK'09]
 - Boolean OR
 - Three-party majority

Point-to-Point

- *t* < *n*/3
 ∀*f* G.O.D. (IT) [BGW'88,CCD'88]
- $t \ge n/3$
 - − ∃*f* no G.O.D. [PSL'80]
 - Byzantine agreement
- t < n/2

 → f fairness [FGMR'02]
- t < n
 - $\forall f$ security with abort [FGHHS'02]
 - ∃*f* G.O.D. [FGHHS'02]
 - Weak Byzantine agreement

Starting Point

The broadcast functionality separates fairness and G.O.D.

- Can be computed with G.O.D. $\Leftrightarrow t < n/3$ [PSL'80]
- Can be computed with fairness $\forall t < n$ [FGHHS'02]
 - 1) Compute PKI every party can abort
 - 2) If abort, fairness is retained no party learns anything
 - 3) Else, run authenticated broadcast using the PKI
- However, broadcast is an atypical functionality
 - There is no meaning to privacy
 - Given a secure setup there is no need for cryptography Can be computed $\forall t < n$ information theoretically [PW'92]

trivial in the sense of [Kilian'91]

Our Results

- Fairness ⇔ G.O.D. in the P2P model (non-trivially)
 - $-\exists f$ can be computed with fairness but not with G.O.D.
- Fairness ⇔ G.O.D. in the broadcast model
- Broadcast is not necessary for G.O.D.
 - $-\exists f$ can be computed with G.O.D. in P2P model
- Role of Broadcast:
 - − Fairness in broadcast model ⇔ Fairness in P2P model
 - G.O.D. in broadcast model ⇔ G.O.D. in P2P model

Real/Ideal Paradigm

1. Parties send input to T

1. Parties send input to T

- 1. Parties send input to T
- T replaces invalid inputs with default input values

- 1. Parties send input to T
- T replaces invalid inputs with default input values
- 3. *T* sends output to parties

1. Parties send input to T

- 1. Parties send input to T
- 2. If \mathcal{T} received *abort*, send \perp to parties

- 1. Parties send input to T
- 2. If \mathcal{T} received *abort*, send \perp to parties

- 1. Parties send input to T
- 2. If \mathcal{T} received *abort*, send \perp to parties
- 3. Otherwise, *T* sends output to parties

- 1. Parties send input to T
- 2. If \mathcal{T} received *abort*, send \perp to parties
- 3. Otherwise, *T* sends output to parties

- 1. Parties send input to T
- 2. If \mathcal{T} received *abort*, send \perp to parties
- 3. Otherwise, *T* sends output to parties

Fairness with identifiable abort: \mathcal{A} can send (*abort*, i^*) and parties output (\bot , i^*)

Fairness \Rightarrow **G.O.D.**

Fairness & broadcast

Lemma: fairness with broadcast ⇔ fairness in P2P model Proof:

- Let π be a fair protocol for f in the broadcast model
- Protocol with fairness for *f* in the P2P model:
 - 1) Compute PKI with abort as in [FGHHS'02]
 - 2) Run π with authenticated broadcast instead of broadcast
- Step (1) is independent of the inputs, so abort is fair
- Every abort in Step (2) is fair because π is fair

Separating fairness & G.O.D.

Goal: $\exists f$ non-trivial with fairness without G.O.D.

Idea: find a non-trivial *f* that

- Can be computed with fairness in P2P model
- Computing f with G.O.D. \Rightarrow broadcast exists ($t \ge n/3$)
- No broadcast \Rightarrow *f* cannot be computed with G.O.D.

Three-party majority

 $f_{maj}(x_1, x_2, x_3) = (x_1 \land x_2) \lor (x_1 \land x_3) \lor (x_2 \land x_3)$

- Fair with broadcast $[GK'09] \Rightarrow$ Fair in P2P model
- Non-trivial: 3-party $f_{maj} \Rightarrow 2$ -party OT [Kilian'91]

- Consider \mathcal{T} that computes f_{maj} with G.O.D.
- Broadcast protocol in P2P model with *T*:

- Consider \mathcal{T} that computes f_{maj} with G.O.D.
- Broadcast protocol in P2P model with *T*:
 - 1. Sender sends $x \in \{0,1\}$ to all parties

- Consider \mathcal{T} that computes f_{maj} with G.O.D.
- Broadcast protocol in P2P model with *T*:
 - 1. Sender sends $x \in \{0,1\}$ to all parties
 - 2. Each party sends its value to T

- Consider \mathcal{T} that computes f_{maj} with G.O.D.
- Broadcast protocol in P2P model with T:
 - 1. Sender sends $x \in \{0,1\}$ to all parties
 - 2. Each party sends its value to T
 - 3. Each party gets $y \in \{0,1\}$ from \mathcal{T}

- Consider \mathcal{T} that computes f_{maj} with G.O.D.
- Broadcast protocol in P2P model with *T*:
 - 1. Sender sends $x \in \{0,1\}$ to all parties
 - 2. Each party sends its value to T
 - 3. Each party gets $y \in \{0,1\}$ from \mathcal{T}
 - 4. Sender outputs x, receivers output y

Intuition for the proof:

- Corrupted receiver: can send \bar{x} to \mathcal{T} This doesn't affect the output of f_{maj}

- Corrupted receiver: can send \bar{x} to \mathcal{T} This doesn't affect the output of f_{maj}
- Two corrupted receivers: can determine the value y
 This doesn't affect the sender (always outputs x)

- Corrupted receiver: can send \bar{x} to \mathcal{T} This doesn't affect the output of f_{maj}
- Two corrupted receivers: can determine the value y
 This doesn't affect the sender (always outputs x)
- Corrupted sender: can send different bits Both receivers obtain consist output y from T

- Corrupted receiver: can send \bar{x} to \mathcal{T} This doesn't affect the output of f_{maj}
- Two corrupted receivers: can determine the value y
 This doesn't affect the sender (always outputs x)
- Corrupted sender: can send different bits Both receivers obtain consist output y from T
- Corrupted sender & receiver:
 No effect on honest receiver

Separating fairness & G.O.D.

 f_{maj} is fair without G.O.D. in P2P model $\forall t < 3$

We present a sufficient condition for f with G.O.D. \Rightarrow broadcast

• Functions satisfying this condition are complete:

If such f can be computed with G.O.D., then every fair function can be computed with G.O.D.

• 256 functions $f: \{0,1\}^3 \to \{0,1\}$

G.O.D. Without Broadcast

G.O.D. without broadcast

[GK'09] compute $f_{maj} \& f_{OR}$ in the broadcast model f_{maj} cannot be computed with G.O.D. in the P2P model Is broadcast needed for computing every f with G.O.D? Multiparty Boolean OR

$$f_{OR}(x_1, \dots, x_n) = x_1 \vee \dots \vee x_n$$

 f_{OR} Can be computed with G.O.D. in the P2P model Reason:

- Fair in P2P model (since fair in broadcast model)
- Every party can force the output to be 1

- Consider \mathcal{T} that computes f_{OR} with fairness
- Protocol for f_{OR} with G.O.D. in P2P model & T:

- Consider \mathcal{T} that computes f_{OR} with fairness
- Protocol for f_{OR} with G.O.D. in P2P model & *T*:
 1. P_i sends x_i ∈ {0,1} to *T*

- Consider \mathcal{T} that computes f_{OR} with fairness
- Protocol for f_{OR} with G.O.D. in P2P model & T:
 - 1. P_i sends $x_i \in \{0,1\}$ to \mathcal{T}
 - 2. P_i receives y/\perp from \mathcal{T}

- Consider \mathcal{T} that computes f_{OR} with fairness
- Protocol for f_{OR} with G.O.D. in P2P model & T:
 - 1. P_i sends $x_i \in \{0,1\}$ to \mathcal{T}
 - 2. P_i receives y/\perp from \mathcal{T}
 - 3. If $y \neq \perp$, P_i outputs y, else P_i outputs 1

G.O.D. without broadcast

- If $\mathcal A$ aborts the protocol, honest parties output 1
- In this case, \mathcal{S} sends 1 as input in the ideal world
- This idea works for functions where every party can force the output to be some default output value
- *f* with this property is called 1-dominated
- **Cor:** fairness & 1-dominated \Rightarrow G.O.D.

G.O.D. without broadcast

 f_{OR} has G.O.D. in P2P model $\forall t < n$

- 256 functions $f: \{0,1\}^3 \to \{0,1\}$
 - − 16 are fair and 1-dominated \Rightarrow G.O.D. ($\forall t < 3$)

Conditions for fairness \Rightarrow **G.O.D.**

Fairness & id-abort \Rightarrow **G.O.D.**

Recall Fairness & Identifiable Abort: In case of a premature abort

- $-\mathcal{A}$ does not learn any new information
- Honest parties learn an identity of a corrupted party

From fairness & id-abort to G.O.D.:

- 1) Run the fair protocol
- 2) If abort, eliminate a corrupted party and repeat
- 3) Else, obtain output and halt
- > Termination after at most t + 1 iterations

Fairness & broadcast \Rightarrow G.O.D.

- Use GMW compiler with a tweak
- From fairness to fairness & id-abort:
 - 1) Run π (a fair protocol)

Every message is proven using ZKP (over broadcast)

- 2) If P_i fails to prove a message to P_j the protocol resumes
- When π completes:
 - Either all parties learn the output
 - Or all parties obtain ⊥ and identify a corrupted party

> Broadcast: all parties can agree who is cheating

Fail-stop: fairness \Rightarrow **G.O.D.**

Fail-stop adversary: can stop sending messages

From fairness to fairness & id-abort:

- 1) Run π (fair against fail-stop)
- 2) If P_i didn't send a message to P_j the protocol resumes

When π completes:

- Either all parties learn the output
- Or all parties obtain \perp and P_i identifies P_i as corrupted
- Fail-stop: P_i cannot falsely accuse P_i

Summary

- Fairness ⇔ G.O.D. in P2P model
- Fairness \Leftrightarrow G.O.D.
 - in the broadcast model
 - for 1-dominated functionalities
 - facing fail-stop adversaries

Thank You