Characterization of Secure Multiparty Computation Without Broadcast

[TCC'16]

Ran Cohen Iftach Haitner Eran Omri Lior Rotem

(Bar-Ilan University)(Tel-Aviv University)(Ariel University)(Hebrew University)

Secure multiparty computation

Ideal world

Simulation-based security

Notions of security

• Full security: no abort

Notions of security

- Full security: no abort
- Fairness: abort before obtaining output

Notions of security

- Full security: no abort
- Fairness: abort before obtaining output
- Security with abort: abort after obtaining output

Communication Model

Communication model

- Point-to-point (P2P) model
 - Secure channels
 - Authenticated channels

- Broadcast model
 - Additional broadcast channel

Settings

 $n \geq 3, t \geq n/3$

n -# of parties t -(bound on) # of corrupted parties

Full security in the P2P model (without setup)

Static malicious adversaries

Stand-alone security

- 1) Honest majority:
 - All-powerful adversaries (statistical security)
 - Secure channels
- 2) No honest majority:
 - Efficient adversaries (computational security)
 - Authenticated channels

Known results (w/o setup)

Broadcast

- \cdots t < n/2
 - − $\forall f$ full security [RB'89, CDDHR'99]
- $t \ge n/2$
 - − ∃f without fairness [Cleve'86]
- - $\forall f$ security with abort [GMW'87]
 - $\exists f$ with full security [GK'09]
 - − Full security \Leftrightarrow fairness [CL'14]

(*) assuming OT

Point-to-Point

- $\cdot \cdot t < n/3$
 - − $\forall f$ full security [BGW'88, CCD'88]

− ∃f without full security [PSL'80,CL'14]

🙂 t < n/2

− $\forall f$ fairness [FGMR'02]

 $\underbrace{!!}{!!} t < n (*)$

- $\forall f$ security with abort [FGHHS'02]
- $\exists f$ with full security [FGHHS'02 ,CL'14]

Question #1

In the P2P model, for $n \ge 3$, $t \ge n/3$, and **w/o** setup, which functions can be computed with full security?

	t < n/2	<i>t</i> < <i>n</i>
Byzantine agreement	X	×
Three-party majority	×	×
Weak Byzantine agreement	 Image: A start of the start of	~
Boolean OR	 Image: A start of the start of	\
Boolean XOR	?	×
$\max(x_1, \dots, x_n)$ over \mathbb{Z}	?	?

• Open even for n = 3 and t = 1

Our result #1 - full security

Def: f is k-dominated, if \exists efficiently computable y^* , s.t. every k inputs can determine the output y^*

Example: Boolean OR is 1-dominated (with $y^* = 1$) $f(x_1, ..., x_n) = (y, ..., y)$

Theorem 1: Let $n \ge 3$ and f symmetric n-party functionality

1) Honest majority $(n/3 \le t < n/2)$:

f has *t*-full-security (in P2P model)

f is (n - 2t)-dominated

2) No honest majority $(n/2 \le t < n)$:

f has *t*-full-security (in P2P model)

f is 1-dominated
 f has *t*-full-security (with broadcast)

Consequences (1)

	<i>t</i> < <i>n</i> /2	<i>t</i> < <i>n</i>
Byzantine agreement	X	×
Three-party majority	X	×
Weak Byzantine agreement	~	>
Boolean OR	 Image: A start of the start of	>
Boolean XOR	X	X
$\max(x_1, \dots, x_n)$ over \mathbb{Z}	X	X

Consequences (2)

Consider the 2-dominated function

 $f(x_1, ..., x_6) = 1 \Leftrightarrow \exists$ at least two non-zero inputs

- Honest majority (t = 2) f has full security (n - 2t = 6 - 4 = 2)
- No honest majority (t ≥ 3)
 f does not have full security (not 1-dominated)

Our result #2 - coin flipping (CF)

Theorem 1 \Rightarrow No fully secure CF with $t \ge n/3$

Def: α -bias coin flipping. All honest parties agree on common bit that is α -close to uniform

Broadcast model: [Cleve'86] $\exists 1/p$ -bias CF secure $\forall t < n$, for every poly p

Theorem 2: Let $n \ge 3$ and $t \ge n/3$ **No** α -bias CF in P2P model, for any $\alpha < 1/2$

Corollary: Non-trivial **3**-party CF requires broadcast

Main Lemma (lower bound)

Def: π is *t*-consistent, if all honest parties output same value, facing $\leq t$ corrupted parties

Lemma: Let
$$t \ge n/3$$
 and $s = \begin{cases} n - 2t ; t < n/2 \\ 1 ; t \ge n/2 \end{cases}$

Let π be *t*-consistent in the P2P model Then \exists PPT \mathcal{A} that by controlling (any) subset I of *s* parties, can:

- **1)** Announce a value y_I^*
- **2)** Force all honest parties to output y_I^*

* Holds also for **expected** poly-time protocols

The Attack Variant of [Fischer-Lynch-Merritt '85] "Hexagon argument"

Main Lemma (n = 3, t = 1)

Lemma: Let π be 1-consistent 3-party protocol in the P2P model

Then \exists PPT \mathcal{A} that by controlling **any party** P_i can:

- **1)** Announce value y_i^*
- 2) Force all honest parties to output y_i^*

Proof

Let $\pi = (A, B, C)$ be a 3-party, q-round, 1-consistent protocol in the P2P model

Assume (for simplicity) that parties are **input-less**, and use κ random coins

The ring system S

$$\begin{split} S &= (A^1, B^1, C^1, \dots, A^q, B^q, C^q) - q \text{ copies of } \pi\\ S(\boldsymbol{r}) \text{ denotes the execution of } S \text{ on}\\ \boldsymbol{r} &= \left(r_A^1, r_B^1, r_C^1, \dots, r_A^q, r_B^q, r_C^q\right) \in (\{0, 1\}^{\kappa})^{3q} \end{split}$$

Claim 1: S(r) is monochromatic

View of (A^1, B^1) in $S(\mathbf{r})$, for $\mathbf{r} \leftarrow (\{0,1\}^{\kappa})^{3q}$, is view of (A, B) in a **random** interaction of (A, B, C^*) with some C^*

 π is 1-consistent $\Rightarrow A^1$ and B^1 output same value

⇒ each pair of adjacent parties output the same value

Claim 1: S(r) is monochromatic

View of (A^1, B^1) in $S(\mathbf{r})$, for $\mathbf{r} \leftarrow (\{0,1\}^{\kappa})^{3q}$, is view of (A, B) in a **random** interaction of (A, B, C^*) with some C^* .

 π is 1-consistent $\Rightarrow A^1$ and B^1 output same value.

⇒ each pair of adjacent parties output the same value.

Claim 2: A^1 , B^1 messages don't reach $P^* = A^{q/2}$

Proof:

- π ends after at most q rounds
- The distance between (A^1, B^1) and P^* is $\sim \frac{3q}{2} > q$

Attack (step 1): output y^*

- 1. Sample $r \leftarrow (\{0,1\}^{\kappa})^{3q}$
- 2. Output y^* the output of P^* in S(r)

Attack (step 2): force (A, B) output Run S(r) while (A, B) take the role of (A^1, B^1) (without knowing that).

Attack (step 2): force (A, B) output Run S(r) while (A, B) take the role of (A^1, B^1) (without knowing that).

Claim 3: S is monochromatic

Proof:

The execution of S induced by the attack on (honest) (A, B), is that of S(r') for $r' \leftarrow (\{0,1\}^{\kappa})^{3q}$

Claim 4: A and B output y^*

Proof:

The messages of (A, B) do not reach P^* (too far apart) $\Rightarrow P^*$ has the same view in S(r) and S(r') (outputs y^*) (A, B) output the same value as P^* (S monochromatic)

Summary & open question

We considered *t*-consistent *n*-party protocols in the P2P model (for $n \ge 3$ and $t \ge n/3$)

- 1. Characterization of symmetric functionalities with full security
- 2. Coin flipping requires broadcast

Open question: **Non**-symmetric functionalities?

Thank You