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Abstract. Motivated by the goal of improving the concrete efficiency of
secure multiparty computation (MPC), we revisit the question of MPC
with only two rounds of interaction. We consider a minimal setting in
which parties can communicate over secure point-to-point channels and
where no broadcast channel or other form of setup is available.
Katz and Ostrovsky (Crypto 2004) obtained negative results for such
protocols with n = 2 parties. Ishai et al. (Crypto 2010) showed that
if only one party may be corrupted, then n ≥ 5 parties can securely
compute any function in this setting, with guaranteed output delivery,
assuming one-way functions exist. In this work, we complement the above
results by presenting positive and negative results for the cases where
n = 3 or n = 4 and where there is a single malicious party.
When n = 3, we show a 2-round protocol which is secure with “selective
abort” against a single malicious party. The protocol makes a black-box
use of a pseudorandom generator or alternatively can offer unconditional
security for functionalities in NC1. The concrete efficiency of this protocol
is comparable to the efficiency of secure two-party computation protocols
for semi-honest parties based on garbled circuits.
When n = 4 in the setting described above, we show the following:

– A statistical VSS protocol that has a 1-round sharing phase and 1-
round reconstruction phase. This improves over the state-of-the-art
result of Patra et al. (Crypto 2009) whose VSS protocol required 2
rounds in the reconstruction phase.

– A 2-round statistically secure protocol for linear functionalities with
guaranteed output delivery. This implies a 2-round 4-party fair coin
tossing protocol. We complement this by a negative result, showing
that there is a (nonlinear) function for which there is no 2-round
statistically secure protocol.

– A 2-round computationally secure protocol for general functionalities
with guaranteed output delivery, under the assumption that injective
(one-to-one) one-way functions exist.
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– A 2-round protocol for general functionalities with guaranteed out-
put delivery in the preprocessing model, whose correlated randomness
complexity is proportional to the length of the inputs. This protocol
makes a black-box use of a pseudorandom generator or alternatively
can offer unconditional security for functionalities in NC1.

Prior to our work, the feasibility results implied by our positive results
were not known to hold even in the stronger MPC model considered by
Gennaro et al. (Crypto 2002), where a broadcast channel is available.

Keywords: Secure multiparty computation, round complexity, efficiency.

1 Introduction

Suppose that two or more parties wish to compute some function on their sensi-
tive inputs while hiding the inputs from each other to the extent possible. One
solution would be to employ an external trusted server. Such a trust assumption
gives rise to the following minimalist protocol: each party sends its input to the
server, who computes the result and sends only the output back to the parties.

However, trusting an external server has several drawbacks, such as being sus-
ceptible to server breaches. To eliminate the single point of failure, the parties
may employ a secure multiparty computation (MPC) protocol for distributing
the trust between the parties. When replacing the external trusted server with
an MPC protocol, a major practical disadvantage is that we lose the minimal-
ist structure of the earlier protocol. Indeed, MPC protocols that offer security
against malicious parties typically require a substantial amount of interaction.
For instance,

– Implementing broadcast (a special case of MPC) over secure point-to-point
channels generally requires more than two rounds [13].

– Even if broadcast is given for free, 3 or more rounds are necessary for gen-
eral MPC protocols that tolerate t ≥ 2 malicious parties and guarantee
fairness [16].

Fortunately, neither of the above limitations rules out the possibility of obtain-
ing 2-round MPC protocols secure against a single malicious party. This was
exploited in the work of Ishai et al. [20], who showed that if only one party can
be corrupted, then n ≥ 5 parties can securely compute any function of their
inputs, with guaranteed output delivery, by using only two rounds of interac-
tion over secure point-to-point channels, and without assuming broadcast or any
additional setup. Since a similar result can be ruled out in the case of n = 2
parties [24], the work of [20] leaves open the corresponding question for n = 3
and n = 4.

This question may be highly relevant to real world situations where the num-
ber of parties is small and the existence of two or more corrupted parties is
unlikely. Indeed, the only real world deployment of MPC that we are aware of is
for the case of n = 3 and t = 1 (cf. [6, 7]). Furthermore, in settings where secure
computation between multiple servers involves long-term secrets, such as cryp-
tographic keys or sensitive databases, it may be preferable to employ three or
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more servers as opposed to two for the purpose of recovery from faults. Indeed,
in secure 2-server solutions the long-term secrets are lost forever if one of the
servers malfunctions. Finally, the existence of a strict honest majority allows for
achieving stronger security goals, such as fairness and strong forms of compos-
ability, that are provably unrealizable in the two-party setting, and moreover it
gives hope for designing leaner protocols that use weaker cryptographic assump-
tions and have better concrete efficiency. Thus, we believe that positive results
in this regime (i.e., 2-round protocols for n = 3 and n = 4) may have strong
relevance to the goal of practically efficient secure computation.

Our interest in this problem is motivated not only by the quantitative goal
of minimizing the amount of interaction, but also by qualitative advantages of
2-round protocols over protocols with more rounds. For instance, as pointed out
in [20], the minimal interaction pattern of 2-round protocols makes it possible to
divide the secure computation process into two non-interactive stages of input
contribution and output delivery. These stages can be performed independently
of each other in an asynchronous manner, allowing clients to go online only when
their inputs change, and continue to (passively) receive periodic outputs while
inputs of other parties may change.

Our results. We obtain several results on the existence of 2-round MPC pro-
tocols over secure point-to-point channels, without broadcast or any additional
setup, which tolerate a single malicious party out of n = 3 or n = 4 parties.

Three-party setting. In an information-theoretic setting without a broadcast
channel, the broadcast functionality itself is unrealizable for n = 3 and t = 1 [25].
Therefore, even if we wish to obtain secure computation protocols with per-
fect/statistical security, but with guaranteed output delivery, then we have to
assume a broadcast channel. In the computational setting, broadcast is realiz-
able in two rounds using digital signatures (assuming a public key infrastruc-
ture setup). Further, assuming indistinguishability obfuscation and a CRS setup,
there exist 2-round protocols which tolerate an arbitrary number of corruptions
t < n [14, 2]. These protocols guarantee fairness when t = 1 and n = 3 (more
generally, when t < n/2), and also have nearly optimal communication complex-
ity. However, the above computationally secure protocols require a trusted setup
and, perhaps more importantly, they rely on strong cryptographic assumptions
and have poor concrete efficiency.

Fortunately, as we show, it turns out that a further relaxation of this notion,
referred to as “security-with-selective-abort,” allows us to obtain statistical secu-
rity even without resorting to the use of a broadcast channel or a trusted setup.
This notion of security, introduced in [18], differs from the standard notion of
security-with-abort in that it allows the adversary (after learning its own out-
puts) to individually decide for each uncorrupted party whether this party will
obtain its correct output or will abort with the special output “⊥”. Our main
result in this setting is the following:

There exists a 2-round, 3-party general MPC protocol over secure point-to-
point channels, that provides security-with-selective-abort in the presence
of a single malicious party. The protocol provides statistical security for
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functionalities in NC1 and computational security for general functionalities
by making a black-box use of a PRG.1

The above protocol is very efficient in concrete terms. There is a large body of
recent work on optimizing the efficiency of 2-party protocols based on garbled cir-
cuits. A recent work of Choi et al. [9] considered the 3-party setting, but required
security against 2 malicious parties and thus did not offer better efficiency than
that of 2-party protocols. Our work suggests that settling for security against
a single party can lead to better overall efficiency while also minimizing round
complexity. In particular, our 3-party protocol is roughly as efficient as 2-party
semi-honest garbled circuit protocols. See discussion in Section 3.

Four-party setting. Gennaro et al. [15] show the impossibility of 2-round per-
fectly secure protocols for secure computation for n = 4 and t = 1, even assuming
a broadcast channel. Ishai et al. [20] show a secure-with-selective-abort protocol
in this setting over point-to-point channels. Their protocol does not guarantee
output delivery. We complete the picture in several different ways. We start by
focusing on the simpler question of designing verifiable secret sharing (VSS) pro-
tocols. Prior to our work, for the case when n = 4 and t = 1, it was known that
(1) there exists a 1-round sharing and 2-round reconstruction statistical VSS
protocol [29], and (2) there exists a 2-round sharing and 1-round reconstruction
statistical VSS protocol [1]. We improve the state-of-the-art by showing that:

There exists a 4-party statistically secure VSS protocol over point-to-point
channels that tolerates a single malicious party and requires one round in
the sharing phase and one round in the reconstruction phase.

The above result is somewhat unexpected in light of the results from [29, 1], and
the corresponding protocol is significantly more involved than other 1-round
VSS protocols. Our 1-round VSS protocol implies statistically secure 2-round
protocols for fair coin-tossing and simultaneous broadcast over point-to-point
channels. More generally, we show that:

There exists a 2-round 4-party statistically secure MPC protocol for lin-
ear functionalities (that compute a linear mapping from inputs to outputs)
over secure point-to-point channels, providing full security against a single
malicious party.

We complement the above positive result by proving the following negative re-
sult:

There exists a nonlinear function which cannot be realized by a protocol as
above.

Taken together, the two results above showcase a unique provable separation be-
tween the round complexity of linear functionalities (which capture coin-tossing
and secure multicast as special cases) and that of higher degree functions. Next,
we show that settling for computational security allows us to beat the previous
negative result.

1 Our information-theoretic protocols are limited to NC1 like all known constant-
round protocols, even in the semi-honest model. However, settling for computational
security, all our protocols apply to general circuits by using any PRG as a black box.
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Assuming the existence of injective (one-to-one) one-way functions, there
exists a 2-round 4-party computationally secure MPC protocol for general
functionalities over secure point-to-point channels, providing full security
against a single malicious party.

None of our previous results require a setup assumption. A natural question is
whether it is possible to obtain statistical security (at least for functionalities in
NC1) in the same setting by relying on some form of setup. Several prior works [5,
10, 11, 19, 8] obtain information-theoretic security in a so-called preprocessing
model, where the parties are given access to a source of correlated randomness
before the inputs are known. However, these protocols either have a higher round
complexity, or alternatively make use of correlated randomness whose size grows
exponentially with the input length [19, 4]. We present a protocol in this setting
where the size of correlated randomness is exactly the length of the inputs.
Formally, we show in Appendix G that:

Assuming a correlated randomness setup, there exists a 2-round 4-party
MPC protocol over secure point-to-point channels, providing full security
against a single malicious party. The protocol provides statistical security for
functionalities in NC1 and computational security for general functionalities
by making a black-box use of a PRG. The size of the correlated randomness
is linear in the input size.

Prior to our work, our positive results in either the 3-party or 4-party settings
were not known to hold even in the setting considered where a broadcast channel
is available, which was studied in the line of work originating from [15, 16].
Moreover, our protocols are secure against adaptive and rushing adversaries.
Finally, while we analyze our protocols in the standalone setting, they are in
fact composable (in particular, none of our simulators is rewinding). Table 1
(Appendix A) summarizes our results.

Technical overview. We now give a very brief and high level overview of some
of our results. The main primitives that we use in our protocols are private
simultaneous message (PSM) protocols [12] and 1-private secret sharing schemes
(cf. Section 2). Our high level strategy is similar to the one used in [20]. The
parties secret share their inputs among other parties in the first round. Then
in the second round they make use of PSM subprotocols to reconstruct parties’
inputs from the shares, and also to evaluate a function on the reconstructed
inputs. Given the above, there are still two main issues that need to be resolved:
(1) a malicious PSM client may supply inconsistent shares of honest parties
inputs inside the PSM, and (2) a malicious party may supply inconsistent shares
of its own input to honest parties. Thus different PSM instances may reconstruct
different inputs thereby generating different outputs all of which seem correct.

Ishai et al. [20] get around (1) & (2) by using (n − 2)-client PSM. Note
that for n ≥ 5 there are at least two honest clients and these two clients hold
all the shares of all parties. Thus, it is easy to detect inconsistent input shares
inside the PSM, and it is possible to either apply a “correction” inside the PSM
or easily ensure that incorrect PSM outputs are discarded. In our setting, i.e.,
n ∈ {3, 4}, we have to deal with 2-client PSMs. This is obviously necessary when
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n = 3. We can use 3-client PSM when n = 4, but this PSM cannot be expected
to deliver output since a malicious client can simply abort this PSM. For these
reasons, techniques from [20] do not work when n ∈ {3, 4}. We can no longer
apply corrections inside the PSM or easily identify incorrect PSM outputs.

To get around (1), we use a novel “view reconstruction” technique (cf. Sec-
tion 3). When n = 3, this technique suffices, together with some additional ideas,
to get around both (1) & (2). To get around (2) when n = 4, we use information-
theoretic MACs for secure linear function evaluation and non-interactive com-
mitments for general secure function evaluation. Additional complications arise
when using MACs inside the PSM and we overcome these by employing a cut-
and-choose technique (cf. Section 4).

2 Preliminaries

In this section, we provide definitions of verifiable secret sharing and private
simultaneous message protocols. We also give descriptions of secret sharing
schemes we use. We refer to Appendix B for more details.

Verifiable secret sharing (VSS). In this work, we focus on the statistical
variant of verifiable secret sharing. We give the general definition below, but will
construct protocols for the specific case of n = 4 and t = 1.

Definition 1. Let σ be a statistical security parameter. A two-phase protocol
for parties P = {P1, . . . , Pn}, where a distinguished dealer D ∈ P holds initial
input s ∈ F, is a statistical VSS protocol tolerating t malicious parties if the
following conditions hold for any adversary controlling at most t parties:

Privacy If the dealer is honest at the end of the first phase (the sharing phase),
then at the end of this phase the joint view of the malicious parties is inde-
pendent of the dealer’s input s.

Correctness Each honest party Pi outputs a value si at the end of the second
phase (the reconstruction phase). If the dealer is honest, then except with
probability negligible in σ, it holds that si = s.

Commitment Except with probability negligible in σ, the joint view of the honest
parties at the end of the sharing phase defines a value s′ such that si = s′

for every honest Pi. ♦

The PSM model. A private simultaneous messages (PSM) protocol [12] is a
non-interactive protocol involving m parties P1, . . . , Pm, who share a common
random string r = rpsm, and an external referee who has no access to r. In such
a protocol, each party Pi sends a single message to the referee based on its input
xi and r. These m messages should allow the referee to compute some function
of the inputs without revealing any additional information about the inputs. Our
definitions below are taken almost verbatim from [20].

Formally, a PSM protocol π for a function f : {0, 1}`×m→{0, 1}∗ is defined
by R(`), a randomness length parameter, m message algorithms A1, . . . , Am and
a reconstruction algorithm Rec, such that the following requirements hold.
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Correctness: for every input length `, all x1, . . . , xm ∈ {0, 1}`, and all r ∈
{0, 1}R(`), we have Rec(A1(x1, r), . . . , Am(xm, r)) = f(x1, . . . , xm).

Privacy: there is a simulator Stransπ such that, for all x1, . . . , xm of
length `, the distribution Stransπ (1`, f(x1, . . . , xm)) is indistinguishable from
(A1(x1, r), . . . , Am(xm, r)).

We consider either perfect or computational privacy, depending on the notion
of indistinguishability. (For simplicity, we use the input length ` also as security
parameter, as in [17]; this is without loss of generality, by padding inputs to the
required length.)

A robust PSM protocol π should additionally guarantee that even if a subset
of the m parties is malicious, the protocol still satisfies a notion of “security with
abort.” That is, the effect of the messages sent by corrupted parties on the output
can be simulated by either inputting to f a valid set of inputs (independently
of the honest parties’ inputs) or by making the referee abort. This is formalized
as follows.

Statistical robustness: For any subset T ⊂ [m], there is an efficient (black-
box) simulator Sextπ which, given access to the common r and to the messages
sent by (possibly malicious) parties P ∗i , i ∈ T , can generate a distribution x∗T
over xi, i ∈ T , such that the output of Rec on inputs AT (x∗T , r), AT (xT , r) is
statistically close to the “real-world” output of Rec when receiving messages
from the m parties on a randomly chosen r. The latter real-world output is
defined by picking r at random, letting party Pi pick a message according
to Ai, if i 6∈ T , and according to P ∗i for i ∈ T , and applying Rec to the m
messages. We allow Sextπ to produce a special symbol ⊥ (indicating abort)
on behalf of some party P ∗i , in which case Rec outputs ⊥ as well.

The following theorem summarizes some known facts about PSM protocols.

Theorem 1 ([12, 20, 28]). (i) For any f ∈ NC1, there is a polynomial-time,
perfectly private, and statistically robust PSM protocol. (ii) For any polynomial-
time computable f , there is a polynomial-time, computationally private, and sta-
tistically robust PSM protocol which uses any PRG as a black box.

Secret sharing. In a t-private n-party secret sharing scheme every t parties
learn nothing about the secret, and every t+ 1 parties can jointly reconstruct it.
A secret sharing scheme is efficiently extendable, if for any subset T ⊆ [n], it is
possible to efficiently check whether the (purported) shares to T are consistent
with a valid sharing of some secret s. Additionally, in case the shares are consis-
tent, it is possible to efficiently sample a (full) sharing of some secret which is
consistent with that partial sharing. In our protocols, we use 2-out-of-2 additive
secret sharing and 1-private 3-party CNF secret sharing.

Additive sharing. In 2-out-of-2 additive sharing over F2, given both shares r1, r2,
we can reconstruct the secret as s = r1⊕r2. On the other hand, given the secret
s and one of the shares r1, we can determine the remaining share r2 = s⊕r1.

CNF sharing [21]. In 1-private 3-party CNF sharing over F2, we choose ran-
dom r1, r2 ∈ F2, compute r3 = s⊕r1⊕r2, and set the CNF shares held by
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P1, P2, P3 as 〈r2, r3〉, 〈r3, r1〉, 〈r1, r2〉 respectively. Given two of the three CNF
shares, say 〈r1, r2〉, 〈r2, r3〉 we can reconstruct the secret s = r1⊕r2⊕r3. Also,
given s and one of the shares say 〈r1, r2〉, we can determine the remaining shares
as 〈r2, s⊕r1⊕r2〉 and 〈s⊕r1⊕r2, r1〉. We say that P1, P2 hold “consistent” CNF
shares if P1, P2 respectively hold 〈r2, r3〉, 〈r′3, r1〉 with r′3 = r3.

Notation. We let n denote the number of parties. Note in this paper n ∈ {3, 4}.
The notation Ti (resp. Ti,j) denotes the set [n] \ {i} (resp. [n] \ {i, j}), where
the value of n is clear from the context. Throughout this paper, the number of
corrupt parties t = 1. Since this is the case, we sometimes abuse notation and
use t as a variable to denote parties’ index (e.g., Pt). We let rpsmi,j = rpsmj,i to
denote the shared randomness for PSM executions involving clients Pi and Pj .

3 2-Round 3-Party Computation with Selective Abort
Security

Recall that in security with selective abort, the adversary is able to deny output
to an honest party (i.e., there is no guaranteed output delivery), and further it
can choose to do so individually for each honest party. We wish to stress that
the abort is dependent only on the inputs/outputs of the corrupt party and is
otherwise (statistically) independent of the inputs/outputs of the honest parties.

A first attempt. Consider the following protocol which makes use of additive
sharing and PSM subprotocols. Each party Pi first additively shares its input
xi into xi,j and xi,k (i.e., xi = xi,j⊕xi,k) and sends xi,j to party Pj and xi,k to
party Pk. In the second round, parties execute pairwise (robust) PSMs that first
reconstruct each party’s input from the additive shares possessed by the PSM
clients, and then compute the output from the reconstructed inputs. It should
be clear that the above yields a secure protocol in the semi-honest setting.

Predictably, things go wrong in the presence of a malicious adversary. Specif-
ically, an adversary that corrupts, say, P1 can carry out the following attack:
Party P1 can use input 0 in the PSM execution where P1 and P2 are the PSM
clients and P3 is the PSM referee. Then, P1 uses a different input, say 1 in the
PSM execution where P1 and P3 are the PSM clients and P2 is the PSM ref-
eree. This results in the undesirable situation where P2 and P3 disagree on the
output and, furthermore, are not even aware that there may be a disagreement.
Note that this does not yield security with selective abort, since honest parties
accept outputs that are computed using different values for the corrupt input.
In other words, there is no single effective corrupt input (to be extracted by the
‘simulator’ in the ideal execution) that explains all honest outputs. To counter
this attack, we employ the following “view reconstruction trick.”

View reconstruction trick. Essentially this trick tries to reconstruct the (first
round) view of the PSM referee using the views supplied by the PSM clients. Note
that the “view” in the näıve protocol described above consists of additive shares
supplied by the parties. Fortunately, the efficient extendability of linear secret
sharing schemes such as the additive secret sharing and CNF secret sharing,
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enables us to reconstruct the unique share that must be held by the PSM referee.
(For more details see Section 2 and [20].)

To see this trick in action, consider a concrete example. Suppose Pi and
Pj are PSM clients and Pk is the PSM referee. Note that Pk’s view consists
of the shares xi,k sent by Pi and xj,k sent by Pj . Now in the PSM subprotocol
(instantiated in the näıve protocol) suppose party Pi supplies input x′i and party
Pj supplies input x′j . (If Pi (resp. Pj) is not honest then x′i = xi (resp. x′j = xj)
may not hold.) In the PSM protocol, we now ask Pi to supply in addition to its
input x′i = xi also the shares obtained in round 1, namely x′j,i = xj,i obtained
from Pj and x′k,i = xk,i obtained from Pk. We ask Pj to do the same as well, i.e.,
Pj supplies x′j = xj , x

′
i,j = xi,j , x

′
k,j = xk,j . Of course, a malicious party, say

Pi, may not supply the correct inputs or shares as it obtained from the honest
parties (i.e., it may be the case that x′i 6= xi or x′j,i 6= xj,i or x′k,i 6= xk,i). Anyway,
we can compute the values that ought to be held by Pk using the values supplied
by Pi and Pj . For instance, the values xk,i, xk,j can directly be obtained from
Pi, Pj since they supplied x′k,i, x

′
k,j (respectively) to the PSM subprotocol. The

values xi,k (resp. xj,k) can be reconstructed as x′i⊕x′i,j where x′i was supplied by
Pi and x′i,j was supplied by Pj .

In our modified protocol, we let the PSM referee, say Pk to accept the final
output only if the reconstructed view from the PSM protocol matches its first
round view, i.e., only if x′k,i = xk,i, x

′
k,j = xk,j , x

′
i,k = xi,k, and x′j,k = xj,k all

hold. We prove the following theorem.

Theorem 2. There exists a 2-round 3-party secure-with-selective-abort protocol
for secure function evaluation over point-to-point channels that tolerates a single
malicious party. The protocol provides statistical security for functionalities in
NC1 and computational security for general functionalities by making a black-box
use of a pseudorandom generator.

Proof. The formal protocol is described in Figure 1. We provide a sketch of the
simulation and the analysis below. See Appendix C for the full proof.

Simulation sketch. Denote the corrupt party by P`. Let Pi, Pj be the remaining
(honest) parties. The simulator begins by sending random additive shares to
the corrupt party on behalf of the honest parties. It also sends and receives
randomness to be used in the PSM executions in the next round. Note that the
simulator also receives additive shares from the corrupt party. Using the additive
shares, the simulator computes the effective input say x̂` of the corrupt party
(i.e., by simply xor-ing the additive shares). Then, the simulator sends x̂` to the
trusted party first, and obtains the output z`.

Next the simulator invokes the PSM simulator Stransπi,j
(guaranteed by the

privacy property) on inputs z` and the additive shares sent on behalf of the
honest parties. Denote the output of the Stransπi,j

by τi,` and τj,`. Acting as the
honest party Pi (resp. Pj), the simulator sends τi,` (resp. τj,`) to the corrupt
party. It remains to be shown how the simulator decides which uncorrupted
parties learn the output and which receive ⊥. To do this, the simulator does
the following. First, acting as the honest party Pi the simulator receives the
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PSM message τ`,i that P` sends to Pi as part of PSM execution π`,j . Similarly,
acting as Pj , the simulator also receives τ`,j . Next, the simulator invokes the
PSM simulator Sextπ`,i

on the PSM message τ`,i (and also the PSM randomness)
to decide what effective input P` used in PSM subprotocol π`,j . Depending on
this input, the simulator then decides whether Pi will accept the output of π`,j or
not. Specifically as in the real execution, the simulator checks if the shares input
by P` are consistent with those held by Pi. If this is indeed the case, then the
simulator asks the trusted party to deliver output to Pi, else it asks the trusted
party to deliver ⊥ to Pi. Whether Pj gets the output or not is also handled
similarly by the simulator.

Analysis sketch. We first consider a hybrid experiment which is exactly the same
as the real execution except that the PSM messages sent by the honest parties
to P` are replaced by the simulated PSM transcripts generated by Stransπi,j

. To
generate these transcripts we first extract the input x̂` by xor-ing the additive
shares sent by P`, and then compute the output of πi,j using inputs provided
by honest parties and x̂`. We then supply this output to Stransπi,j

to generate the
simulated PSM transcripts. The privacy property of the PSM protocol implies
that the joint distribution of the view of the adversary and honest outputs in
the real protocol is indistinguishable from the corresponding distribution in the
hybrid execution.

Note that the distribution of the additive shares and the PSM randomness
sent by the simulator in the ideal execution is identical to the distribution of the
corresponding values in the hybrid execution. Thus, to prove indistinguishability
of the hybrid execution and the ideal execution it suffices to focus on the distri-
bution of honest outputs. Note that in the ideal execution the honest outputs
are generated using the true honest inputs and extracted input x̂`.

We first show that honest party Pi (resp. Pj) that accepts a non-⊥ output in
the hybrid execution is ensured that this output is computed using the true hon-
est inputs and the corrupt input x̂`. It is here that we use the view reconstruction
trick. Specifically now, (1) if P` supplied incorrect input, then the reconstructed
share x′`,i (which is revealed as part of the output of π`,j) does not equal x`,i
possessed by Pi and thus the final output is rejected, and (2) if P` supplied
inconsistent share x′i,` 6= xi,` inside π`,j , then since this value is revealed as part
of the output of π`,j , the final output will be rejected by Pi.

Given the above it remains to be shown that the set of honest parties that
receive ⊥ in the ideal execution equals the set of honest parties that output ⊥
in the hybrid execution. To prove the above, we use the fact that for all j ∈ T`,
with all but negligible probability the PSM simulator Sextπ`,j

extracts the input
supplied by P` in the PSM execution π`,j . It follows by simple inspection that
the criterion used to add i to S` in the simulation is essentially the same as the
criterion used by Pi to reject the final output of π`,j in the hybrid execution. ut

Concrete efficiency. Robust PSM subprotocols can be based on Yao garbled
circuits [12, 28]. The concrete cost of such a robust PSM protocol is essentially
the same as a single Yao garbled circuit and incurs an additional cost propor-
tional to the length of the inputs (and is otherwise independent of the complexity
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Round 1.

For i ∈ [3], each Pi additively shares its input xi into xi,j and xi,k, and sends
xi,j to Pj , and xi,k to Pk for distinct j, k ∈ [3] \ {i}.
Every pair of parties Pi, Pj , i, j ∈ [3] and i < j, exchange randomness rpsmi,j .
(For instance, by letting Pi pick rpsmi,j and send rpsmi,j to Pj .)

Round 2.

Every pair of parties Pi and Pj , i, j ∈ [3] and i < j, use shared randomness
ri,j to execute a robust PSM protocol πi,j , that

– takes input x̃i = (x′k,i, x
′
i, x

′
j,i) from Pi where x′k,i = xk,i, x

′
i = xi, x

′
j,i = xj,i,

– takes input x̃j = (x′k,j , x
′
j , x

′
i,j) from Pj where x′k,j = xk,j , x

′
j = xj , x

′
i,j = xi,j ,

– reconstructs x′k = xk,i⊕xk,j ,
– computes z′k = fk(x′1, x

′
2, x

′
3), x′i,k = x′i⊕xi,j , x′j,k = x′j⊕xj,i, and

– delivers output (z′k, x
′
i,k, x

′
j,k, x

′
k,i, x

′
k,j) to Pk for k ∈ [3] and k 6∈ {i, j}.

Output. Each Pk outputs z′k if x′i,k = xi,k, x′j,k = xj,k, x′k,i = xk,i, and x′k,j = xk,j
hold, else it outputs ⊥.

Fig. 1. 2-round 3-party secure-with-selective-abort protocol.

of f). Thus our 3-party protocol costs essentially the same as cost of transmitting
and evaluating 3 garbled circuits, i.e., thrice the cost of semi-honest 2-party Yao.
Contrast this with the concrete cost of realizing state-of-the-art malicously secure
two-party protocols which is essentially the cost of transmitting and evaluating
roughly σ garbled circuits where σ denotes the statistical security parameter. We
previously argued that 3-party protocols provide more redundancy and stability
compared to 2-party protocols. Now by settling for just security-with-selective-
abort, our three-party protocol provides a much better alternative from a cost
perspective as well. All this is in addition to the fact that our 3-party protocol
requires only two rounds over point-to-point channels. In contrast, current im-
plementations of 3-party protocols [6, 7] require rounds proportional to the depth
of the circuit, provide only semi-honest security, or require use of broadcast.

4 4-Party Statistical VSS in a Total of 2 Rounds

Let the set of parties be {D,P1, P2, P3}. First, let us look at a näıve protocol
that assumes the existence of a broadcast channel. Here, the dealer CNF shares
its input in the sharing phase. Then in the reconstruction phase, parties simply
broadcast the CNF shares they obtained from the dealer. To decide on the
output, parties construct an “inconsistency graph” G which tells which parties
broadcasted consistent CNF shares.

Sharing Phase. The dealer CNF shares (according to a 1-private 3-party CNF
scheme) its secret s among P1, P2, P3. That is, it chooses random s1, s2, s3 subject
to
⊕

i=1,2,3si = s, and sends CNF share {sj}j 6=i to party Pi for i ∈ [3].

Reconstruction Phase. Each party Pi broadcasts its share {s(i)j = sj}j 6=i.
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Local Computation. D outputs s and terminates the protocol. For every j, k ∈
[3], define recj,k = s

(k)
j ⊕

⊕
i6=js

(j)
i (i.e., secret reconstructed from CNF shares

possessed by Pj and Pk). Let G denote the 3-vertex inconsistency graph which

contains an edge between vertices i, j ∈ [3] iff ∃k ∈ [3]\{i, j} such that s
(i)
k 6= s

(j)
k .

(That is, Pi and Pj disagree on the share sk.)

(Single-edge case) If G contains exactly one edge, output ⊥.

(Even-edge case) Else, if ∃(j, k) 6∈ G, then each party outputs recj,k.

(Triple-edge case) If there is no such j, k, then output default value say ⊥.

It can be easily shown that the above protocol works as long as G does not
contain exactly one edge. (See Appendix D.) The difficulty in handling the single-
edge case comes because parties do not know which of the inconsistent CNF

shares to trust, i.e., which of s
(i)
k 6= s

(j)
k when (i, j) ∈ G. In the computational

setting, this is solved by a trivial use of signatures. In the information-theoretic
setting, we can substitute signatures with information-theoretic MACs, but this
is not sufficient since such MACs do not have public verification. Fortunately, a
combination of MACs with a cut-and-choose technique helps us in this case.

Protocol overview. The high level idea is to use MACs and then apply the cut-
and-choose technique to ensure that (1) parties reveal their true share when D is
honest, and (2) detect an inconsistent sharing by a dishonest D. In more detail,
now we require D to send, in addition to the CNF shares, also authentication
information in the form of information-theoretic MACs (such that a forgery is
possible only with probability negl(σ)). Specifically for each CNF share sj , the

dealer D sends sj along with σ MAC values {M (i)
j,` }`∈[σ]to each party Pi for each

j 6= i, while each party Pj receives the corresponding keys {K(i)
j,`}`∈[σ] for each

i 6= j. Each share is authenticated multiple times to allow application of the
cut-and-choose technique.

The reconstruction phase is modified to handle, in particular, the case when
the inconsistency graph contains exactly one edge. (All other cases are han-
dled exactly as in the näıve attempt described above.) Now we ask each Pi to

broadcast its CNF share {s(i)j }j 6=i (as in the näıve construction), and in addition

broadcast its MAC values {M (i)
j,` }j 6=i,`∈[σ]. Also we ask each party Pj to pick for

every i 6= j, a random subset Sj,i ⊂ [σ] (this corresponds to the check set for the

cut-and-choose step), and send (1) keys K
(i)
j,` for ` ∈ Sj,i to Pi, and (2) all keys

(i.e., K
(i)
j,` for all ` ∈ [σ]) to Pk where k ∈ [3] \ {i, j}.

Now we explain in more detail how the cut-and-choose technique helps to
resolve the single-edge case. Let (i, j) ∈ G and let k 6∈ {i, j}. We consider two
cases depending on whether D is honest or not. Note that in either case, we are
assured that Pk is honest, and in fact, our protocol will use MAC keys held by
Pk to anchor the parties’ output towards the correct output. First consider the
case when D is honest. Wlog assume Pi is dishonest, and that Pi disagrees with
Pj on the value sk that is supposed to be held by both of them. Note that while

Pk does not hold sk, it does hold the keys {K(i)
k,`}`∈[σ] to verify the MACs that Pi

possesses. Note that the protocol asks Pi to broadcast all its MACs on sk, and Pk
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to send half its keys, say corresponding to some subset Sk,i ⊂ [σ], to Pi and all
its keys to Pj . While a rushing Pi can wait to receive (half) the keys from Pk to
allow forging the corresponding MACs, note that it cannot forge the MACs for
the remaining half (except with negligible probability) for which it simply does
not know the keys. In other words, when Pi tries to reveal s′k 6= sk along with

MACs {M̃ (i)
k,`}`∈[σ], then with high probability the MAC verification will fail for

all keys that Pi does not know. Thus, by asking honest Pj and Pk to accept Pi’s

reveal only if MACs revealed by Pi is consistent with all keys in {K(i)
k,`}`∈Sk,i

(i.e., those that were sent to Pi) and at least one key in {K(i)
k,`}` 6∈Sk,i

(i.e., those
that were not sent to Pi), we are ensured (except with negligible probability)
that Pi’s reveal s′k 6= sk will be rejected by Pj and Pk. Finally note that honest
Pj ’s share sk is always accepted by the honest parties.

Next, consider the case when D is dishonest. In this case, a single-edge in
the inconsistency graph is induced by the inconsistent shares dealt to Pi, Pj .
Therefore, the main challenge here is to ensure that all parties agree that D
dealt inconsistent shares (as opposed to suspecting that one of the honest par-
ties is deviating from the protocol). Once again, the keys held by Pk serve to
anchor all honest parties’ decisions on whether to accept or reject reveals made
by Pi, Pj . The crux of the argument is the following: except with negligible prob-
ability, all parties Pi, Pj , Pk unanimously agree on their decision to accept/reject
each of Pi, Pj ’s reveals. Before we show this, observe that this suffices to achieve
resilience against a malicious D. For e.g., suppose both parties’ reveals get ac-
cepted then if they revealed inconsistent values then all parties agree to output
some default value. The case when both parties’ reveals get rejected is handled
similarly. Finally, when only one of Pi, Pj ’s reveal is accepted, then all parties can
simply agree to output the value corresponding to the reveal that got accepted.

Now we argue that except with negligible probability, all parties will unani-
mously agree on whether to accept or reject reveals made by Pi, Pj . First observe
that the reveals made by a party, say Pj , are either unanimously accepted or
unanimously rejected by both Pi and Pk. This is because both Pi and Pk make
decisions using the same algorithm on the same values. Next, in our protocol,
Pj will accept or reject its own reveal by checking whether its reveal is consis-
tent with the keys that Pk sent to it (i.e., those corresponding to the subset
Sk,i). Thus, if Pj ’s reveal is rejected by Pj itself, then obviously it will also be
rejected by Pi and Pk. Therefore, by way of contradiction, wlog assume that
Pj ’s reveal is rejected by Pi, Pk while it is accepted by Pj . Clearly this hap-
pens only if Pk chooses its random subset Sk,j such that all the MAC values
held by Pj corresponding to Sk,j are consistent with the keys held by Pk, while
all the MAC values held by Pj corresponding to [σ] \ Sk,j are not consistent
with the keys held by Pk. Obviously such an event happens with probability(
σ
σ/2

)−1
= negl(σ). Hence we have that with all but negligible probability, all

parties Pi, Pj , Pk unanimously agree whether to accept/reject reveals made by
Pi and Pj . As explained before, this suffices to prove that agreement holds even
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when D is dishonest. Fortunately, we can remove the use of broadcast channel
in the above protocol. In Appendix D, we prove the following theorem.

Theorem 3. There exists a 4-party statistically secure protocol for VSS over
point-to-point channels that tolerates a single malicious party and requires one
round in the sharing phase and one round in the reconstruction phase.

5 2-Round 4-Party Statistically Secure Computation for
Linear Functions Over Point-to-Point Channels

Overview. In the first round of the protocol parties verifiably secret share their
inputs (using the protocol from the previous section), and also exchange ran-
domness for running pairwise (robust) PSM executions. Loosely speaking, the
PSM executions serve two purposes: (1) parties can evaluate the function on
their inputs while preserving privacy, and (2) parties can learn the inconsistency
graph corresponding to each VSS sharing. To do (1), the PSM protocol first
attempts to reconstruct parties’ inputs from the CNF shares held by the PSM
clients, and if successful, evaluates the function on these inputs. To do (2), the
PSM protocol makes use of the “view reconstruction trick.” Note that in the
case of VSS, learning the inconsistency graphs was trivial, since parties would
broadcast their shares during the reconstruction phase. Unlike VSS, here it is
important to protect privacy of these shares throughout the computation. The
view reconstruction trick enables us to construct the inconsistency graphs while
preserving privacy of the shares.

Recall that each party could potentially receive PSM outputs from three
PSM executions. Computing the final output from these PSM outputs is not
straightforward, and we will need the inconsistency graphs (generated using
outputs of the PSM protocols) to help us. To explain how this is done, we
will adopt the perspective of the simulation extraction procedure. Let m ∈ [4]
denote the index of the corrupt party. The extraction procedure constructs the
inconsistency graph G′ adding edges between vertices if the CNF shares held by
corresponding parties are not consistent. If the graph contains all three edges,
then the effective input used in this case is 0. We call this the identifiable triple-
edge case since it is clear that Pm is corrupt. Next, if the graph contains two edges
or no edges (i.e., an even number of edges), then we are now assured that there
exists a pair of (honest) parties that hold consistent CNF shares of Pm’s input.
In this case, we can extract the effective input as the secret reconstructed from
these consistent CNF shares. We call this case the resolvable even-edge case. As
was the case in VSS, if G′ contains a single-edge then the procedure performs a
vote computation step using the MAC values and the corresponding keys. This is
to find out which of the two parties is supported by Pm. If there is a unique party
that is supported by Pm, then the inconsistency in CNF shares is resolved by
using the CNF share possessed by this party. We call this the resolvable single-
edge case. On the other hand if there is no unique party supported by Pm, then
it is clear that Pm is corrupt. We call this the identifiable single-edge case. In this
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case, we extract the effective input used for Pm as the xor of all unique shares
(including the inconsistent CNF shares) possessed by all remaining parties.

Observe that the extraction procedure is identical to the VSS extraction
procedure except in the identifiable single-edge case. In VSS, it was possible
to simply output 0 in the identifiable single-edge case. Here we are not able
to replace the corrupt party’s input by 0 and then evaluate the function while
simultaneously preserving privacy of honest inputs. However, if we use the effec-
tive input extracted as described above, then we can exploit the linearity of f
to force parties’ outputs to be consistent with the extracted input.

Clearly we are done if we force honest parties’ outputs in the real protocol to
be consistent with the corrupt input extracted by the simulator while preserving
privacy of honest parties’ inputs. The main obstacle in the implementation is
that different honest parties’ may hold different inconsistency graphs. The chal-
lenge therefore is to design an output computation procedure that allows honest
parties’ to end up with the same correct output even though they may possess
different inconsistency graphs. Also, unlike VSS, here we do not have the luxury
of a reconstruction phase where parties can freely disclose their secret shares.

Our output computation procedure makes use of the view reconstruction
trick to help each party compute its inconsistency graph, and adapts the cut-
and-choose idea from our VSS protocol to help compute the votes (which we
can ensure whp that parties agree on). In addition, our procedure exploits the
linearity of f to compute the correct output in the identifiable single-edge case.
To ensure parties’ compute the same output in the resolvable cases, we make use
of an “accusation graph” which parties use to determine a pair of honest parties
that hold consistent shares of the corrupt input extracted by the simulation
procedure described above. Our actual protocol is somewhat nontrivial, and we
give a detailed step-by-step overview of the protocol along with the intuition
behind the design in Appendix E.2. In Appendix E.3 we prove the following:

Theorem 4. There exists a 2-round 4-party statistically secure protocol for se-
cure linear function evaluation over point-to-point channels that tolerates a single
malicious party.

5.1 Impossibility of 2-Round Statistically Secure 4-Party
Computation

In this section, we prove the following:

Theorem 5. There exists a function which cannot be information-theoretically
realized by a 2-round 4-party protocol over point-to-point channels that tolerates
a single corrupt party.

Proof. Assume by way of contradiction that there exists a 2-round statistically
secure 4-party protocol π for general secure computation. Let us further set up

some notation related to protocol π. Let A
(r)
i,j denote the algorithm specified by

protocol π that is to be executed by (honest) party Pi to generate its r-th round
message to Pj . We use the notation
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m
(r)
i,j ←A

(r)
i,j (xi, {{m(s)

k,i}k∈K(s)
i
}s : 0<s<r;ωi)

where xi (resp. ωi) represents Pi’s input (resp. internal randomness), and m
(r)
i,j

represents Pi’s message to Pj in round r, andK
(s)
i represents the subset of parties

from which Pi receives a message in round s. Wlog, we assume that algorithm

A
(3)
i,i computes the final output of honest Pi.

The function that we consider is a simple non-linear function and is inspired
by the oblivious transfer functionality. Let f be such that f(b,⊥,⊥, (y0, y1)) =
(yb,⊥,⊥,⊥). That is, f takes as input a bit b ∈ {0, 1} from P1 and a pair of
bits y0, y1 ∈ {0, 1} from P4, and returns yb to P1. The parties P2, P3 supply no
inputs, and parties P2, P3, P4 receive no outputs.

The high level strategy is to launch an attack on the real protocol that
cannot be simulated in the ideal execution. We let P1 be the corrupt party, and
show that it can obtain both y0 and y1 in the real protocol with non-negligible
probability. Clearly, no ideal process adversary can do the same, and hence the
negative result is establised. At a high level, the adversarial strategy of P1 is to
set things up such that the joint view of P2 and P4 would infer that P1’s input is
0, while the joint view of P3 and P4 would infer that P1’s input is 1. To do this, P1

chooses internal randomness ω1 and computes its first round messages m̃
(1)
1,2, m̃

(1)
1,4

to send to P2 and P4 assuming that its input equals 0. Then, it samples uniform
randomness ω̃ such that its first round message to P4 computed assuming input

1 and randomness ω̃ matches m̃
(1)
1,4. Since we are in the information-theoretic

regime, note that we can allow P1 to perform arbitrary computations. Then
it will follow from the privacy property of π that P1 will be able to sample ω̃
with all but negligible probability. P1 then computes its first round message to
P3 assuming input 1 and internal randomness ω̃. It then sends its first round
messages to the parties, and accepts messages from them. In the second round,
it does not send any messages and only accepts messages from other parties.
Next, P1 computes a value y′0 by invoking its output computation algorithm
on input 0, internal randomness ω1, round 1 messages received from all parties,
and round 2 messages received from P2 and P4. Similarly, P1 computes y′1 by
invoking its output computation algorithm on input 1, internal randomness ω̃,
round 1 messages from all parties, and round 2 messages from P3 and P4. Finally,
P1 outputs the values y′0, y

′
1 as part of its view. We will show that with all but

negligible probability it will hold that y′0 = y0 and y′1 = y1. Since an ideal-process
adversary has access to P4’s input only via the trusted party implementing f ,
it is clear that it can obtain either y0 or y1 but not both. Thus, this suffices to
establish the theorem. This is the high level idea; we now proceed to the formal
details. Formally, P1 does the following:

Choose randomness ω1 and compute m̃
(1)
1,2←A

(1)
1,2(0,⊥, ω1), and

m̃
(1)
1,4←A

(1)
1,4(0,⊥, ω1).

Choose random ω̃ such that A
(1)
1,4(1,⊥, ω̃) = m̃

(1)
1,4. If no such ω̃ exists, output

fail1 and terminate.
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Compute m̃
(1)
1,3←A

(1)
1,3(1,⊥, ω̃).

For j = 2, 3, 4, send message m̃
(1)
1,j to Pj in round 1.

Receive round 1 messages m
(1)
2,1, m

(1)
3,1, m

(1)
4,1, from other parties. Do not send

any round 2 messages to any party. Receive round 2 messages m
(2)
2,1, m

(2)
3,1,

m
(2)
4,1, from other parties and terminate the protocol.

Compute and output y′0←A
(3)
1,1(0, {{m(1)

k,i}k∈T1 , {m
(2)
k,i}k∈{2,4}};ω1),

y′1←A
(3)
1,1(1, {{m(1)

k,i}k∈T1
, {m(2)

k,i}k∈{3,4}}; ω̃).

First, we claim that corrupt P1 does not output fail1 with all but negligible
probability, i.e., P1 will be able to successfully find ω̃ satisfying the conditions
above. To show this, we rely on the privacy property of π against an (all-powerful)

P4. Clearly, if there exists no ω̃ such that the output of A
(1)
1,4 on input 1 and

internal randomness ω̃, it is obvious to P4 that P1’s input is 0, and thus privacy
is violated. Therefore, it must hold with all but negligible probability (over the
choice of ω) that such ω̃ exists.

Next, we first assert that y′0 = y0 holds with all but negligible probability. The

key observation is that messages input to A
(3)
1,1 that are distributed identically to

an execution where P1 holds input 0 and a corrupt P3 behaves honestly except
it does not send its round 2 messages (i.e., aborts after round 1). Thus, it follows
from the correctness of π that y0 = y′0 holds with all but negligible probability.
Similarly, we assert that y′1 = y1 holds with all but negligible probability. This

is because the messages input to A
(3)
1,1 are distributed identically to an execution

where P1 holds input 1 and a corrupt party P2 behaves honestly except it does
not send its round 2 messages. Thus it follows from the correctness of π that
y′1 = y1 holds with all but negligible probability.

Finally we claim that no ideal-process adversary can generate a view with
(y′0, y

′
1) such that these equal P4’s inputs with probability greater than 1/2. The

key observation is that an ideal-process adversary has access to P4’s input only
via the trusted party implementing f , it is clear that it can obtain either y0 or
y1 but not both. In such a case, the best strategy for the ideal process adversary
is to obtain one of them, and then simply try and guess the value of the other
(thereby succeeding with probability 1/2). ut

It is instructive to note why the above impossibility does not apply to linear
functions. Specifically for a linear function f , if the adversary P1 can obtain
an evaluation of f on input x1 and honest inputs, then it can trivially obtain
an evaluation of f on input x′1 6= x1 and the same honest inputs. Finally, we
note that our negative result can be easily extended to hold in a setting with
broadcast.

6 2-Round Computationally Secure 4-Party Computation

Protocol overview. For simplicity let us assume the existence of a broadcast
channel. Our protocol proceeds by letting each party to broadcast a commitment
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of its input, and then CNF share the corresponding decommitment among the
remaining parties. In the second round, parties execute pairwise PSMs that first
attempts to reconstruct the inputs of all parties, and then compute the output
from the reconstructed inputs. Unfortunately the general framework described
as-is does not suffice for secure computation. For one, it may not always be possi-
ble to reconstruct input from shares distributed by a malicious party. Further, it
may be the case that one pair of honest parties may hold consistent CNF shares
from the malicious party while a different pair of honest parties may not. This
is exacerbated by the fact that an honest party is guaranteed to receive output
from only one PSM instance. In other words, even guaranteeing agreement on
output seems somewhat nontrivial.

To circumvent the problems mentioned above, our protocol first detects
whether the joint view of honest parties suffices to reconstruct the input of
all parties. We do this by enhancing the PSM functionality in a way that lets
parties ascertain if for every broadcasted commitment, there exists some pair of
parties that hold (consistent) shares of the corresponding decommitment. (In-
deed, this is our strategy for extracting the adversary’s input in the simulation.)
If a pair of parties do not hold consistent shares of a valid decommitment for
some party’s commitment, then the pairwise PSM in which the parties act as
clients delivers as outputs the first round views of the honest clients. This in turn
lets the referee to determine if its own shares coupled with shares from one of
the clients suffices to reconstruct valid decommitments for all commitments. If
this is indeed the case, then the referee can reconstruct all inputs from the joint
views and then evaluate the function from scratch. On the other hand if there
is some party whose commitment cannot be decommitted using the joint views,
then the referee simply substitutes that party’s input with 0, and evaluates the
function from scratch using this new set of inputs. Of course, care must be taken
not to reveal honest inputs to a malicious referee. We achieve this by letting the
PSM check if the referee’s commitment can be decommitted using shares held
by honest clients, and then revealing the client views only if this check passes.

The ideas described above still do not suffice to address the somewhat sub-
tler issue of agreement on output. We describe this issue in more detail below.
Note that a malicious party that distributed shares of an invalid decommitment
can ensure that all inputs are reconstructed successfully in exactly one of the
PSM instances where it participated as a client and supplied shares of a valid
decommitment. Thus, in this PSM instance the function will be evaluated on the
reconstructed inputs. Note that this strategy lets exactly one honest party (that
acted as referee in the PSM instance described above) to obtain directly the
output of the function, while all other honest parties evaluate the function from
scratch after substituting the malicious party’s input with 0. In other words, the
adversary can succeed in forcing different honest parties to obtain evaluations
of the function on different sets of inputs. We use a somewhat counterintuitive
idea to counter this adversarial strategy. Namely, we force the honest referee in
the PSM instance to disregard the output of the function, and instead evaluate
the function from scratch (using honest clients’ views output in a different PSM
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instance) after substituting the malicious party’s input with 0. To do this, we
design the PSM functionality in a way that allows an honest referee to infer
whether the joint view of the honest parties indeed contains a valid decommit-
ments to all broadcasted commitments. In more detail, the PSM functionality
will attempt to reconstruct the first round view of the referee from the views
of the participating clients. (Note that this is possible due to the efficient ex-
tendability property of CNF sharing schemes.) Upon receiving this reconstructed
view, the referee outputs the PSM output only if its view agrees with the recon-
structed views. A formal description of the protocol appears in Appendix F. In
Appendix F.3, we show how to remove the use of broadcast:

Theorem 6. Assuming the existence of one-way permutations (alternatively,
one-to-one one-way functions), there exists a 2-round 4-party computationally
secure protocol over point-to-point channels for secure function evaluation that
tolerates a single malicious party.
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A Summary of Our Results

We summarize our results in Table 1. As noted there, none of our positive results
require a broadcast channel, and our negative result holds even when parties have
access to a broadcast channel.

n Primitive Security? Output delivery? Assump.? Possible? Broadcast? Reference

3 SFE stat. selective abort none yes no Thm. 2
4 VSS stat. guaranteed none yes no Thm. 3
4 Linear FE stat. guaranteed none yes no Thm. 4
4 SFE stat. guaranteed none no yes Thm. 5
4 SFE comp. guaranteed OWP/1-1 OWF yes no Thm. 6
4 SFE/PP stat. guaranteed none yes no Thm. 7

Table 1. All results are for 2-round protocols. “SFE” stands for secure function evalu-
ation, “Linear FE” stands for secure linear function evaluation, and “SFE/PP” stands
for secure function evaluation in the preprocessing model.

B More Preliminaries and Related Work

Security for VSS. We give “simulation style” proofs for VSS, where we treat
VSS essentially as a multi-receiver commitment scheme. Thus, when we simulate
the view of a corrupt Pi this corresponds to proving privacy. When we simulate a
corrupt D (and in particular extract its input), this corresponds to proving com-
mitment. We chose to give simulation style proofs since it will become convenient
to give intuition behind our design of protocols for secure function evaluation
which as we will see build upon VSS protocols. In any case, our proofs can be
trivially modified to give proofs of each VSS property separately.

Secure computation. We consider n-party protocols for n = 3 or 4, that
involve two rounds of synchronous communication over secure point-to-point
channels. All of our protocols are secure against rushing, adaptive adversaries,
who may corrupt at most a single party. See [17] for more complete definitions.
In addition to the standard simulation-based notions of full security (with guar-
anteed output delivery) and security with abort, we also consider security with
selective abort. This notion, introduced in [18], differs from the standard notion
of security with abort in that it allows the adversary (after learning its own
outputs) to individually decide for each uncorrupted party whether this party
will obtain its correct output or will output “⊥”. Indeed, it was shown in [18]
that two rounds of communication over point-to-point channels are sufficient
to realize broadcast under this notion, with an arbitrary number of corrupted
parties. Our notions of “security with abort” and “security with selective abort”
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correspond to the notions of “security with unanimous abort and no fairness”
and “security with abort and no fairness” from [18]. To reiterate, security with
selective abort is defined similarly to security with abort [17], except that the
simulator can decide for each uncorrupted party whether this party will receive
its output or ⊥.

Secret sharing. An (n, t)-threshold secret sharing scheme, also referred to as
a t-private secret sharing scheme, is an n-party secret sharing scheme in which
every t parties learn nothing about the secret, and every t+ 1 parties can jointly
reconstruct it. For formal definitions of secret sharing schemes see [3].

One property of secret sharing schemes that we exploit is efficient extendabil-
ity. A secret sharing scheme is efficiently extendable, if for any subset T ⊆ [n], it
is possible to efficiently check whether the (purported) shares to T are consistent
with a valid sharing of some secret s. Additionally, in case the shares are consis-
tent, it is possible to efficiently sample a (full) sharing of some secret which is
consistent with that partial sharing. This property is satisfied, in particular, by
the schemes that we use, as well as any so-called “linear” secret sharing scheme.
In this work, we rely on variants of standard linear secret sharing schemes, such
as additive scheme and the CNF scheme which we describe below.

Additive sharing. Let G be any finite Abelian group. Additive sharing over G
is the following k-out-of-k secret sharing scheme. To share s ∈ G, choose k − 1
random elements r1, . . . , rk−1 from G, each element is chosen independently with

uniform distribution. Compute rk = s− (
∑k−1
i=1 ri). The share of Pi is ri.

We will be mostly interested in 2-out-of-2 additive sharing over F2. Obviously,
given both the shares r1, r2, we will be able to reconstruct the secret s = r1⊕r2.
On the other hand, given the secret s and one of the shares r1, we can determine
the remaining share r2 = s⊕r1.

CNF sharing [21]. Let G be any finite Abelian group. The t-private CNF sharing
overG is a generalization of additive sharing where each party gets more than one
group element. To share s ∈ G, additively share s into

(
k
t

)
shares rA, A ∈

(
[k]
t

)
.

The share of Pi consists of the
(
k−1
t

)
group elements 〈rA : i 6∈ A〉.

For each set T ∈
(
[k]
t

)
, the parties in T do not get rT and thus have no information

about s. This implies that the scheme is t-private. We will be mostly interested
in 1-private 3-party CNF sharing over F2; in this case we will write ri instead
of r{i}. Obviously, given two of the three CNF shares, say 〈r1, r2〉, 〈r2, r3〉 we
can reconstruct the secret s = r1⊕r2⊕r3. On the other hand, given the secret s
and one of the shares say 〈r1, r2〉, we can determine the remaining shares; e.g.,
by first computing r3 = s⊕r1⊕r2, and setting the remaining shares as 〈r2, r3〉
and 〈r3, r1〉. When considering 1-private 3-party CNF sharing, we say that CNF
shares held by Pi, i.e., r(i) = 〈rA : i 6∈ A〉 are “consistent” with CNF shares
held by Pj , i.e., r(j) = 〈r′A : j 6∈ A〉 iff for every A such that i, j 6∈ A, it holds
that rA = r′A, i.e., Pi and Pj agree on the additive shares held by both of them.

Non-interactive commitments. Our computationally secure 4-party protocol
requires the use of non-interactive commitments which we define below. Note
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that such commitments can be constructed from one-way permutations (or even
one-to-one one-way functions) (see [27] and references therein).

Definition 2. A (non-interactive) commitment scheme for message space
{Mκ} is a pair of ppt algorithms Com,Dec such that for all κ ∈ N, all mes-
sages m ∈Mκ, and all random coins ω it holds that Dec(m,Com(1κ,m;ω), ω) =
1. A commitment scheme for message space {Mκ} is secure if it satisfies the
following:

Binding For all ppt algorithms A the following is negligible in κ:

Pr

[
(c, (m,ω), (m′, ω′))← A(1κ) :

(m,ω) 6= (m′, ω′)
∧
Dec(m, c, ω) = 1

∧
Dec(m′, c, ω′) = 1

]
Hiding For all ppt algorithms A (that maintain state throughout their execu-

tion) the following is negligible in κ:∣∣∣∣Pr
[

(m0,m1)← A(1κ); b← {0, 1}; c← Com(1κ,mb) : A(c) = b
]
− 1

2

∣∣∣∣ .
♦

Other related work. The round complexity of secure computation has been a
subject of intense study. Constant-round 2-party protocols with security against
malicious parties were given in several previous works; see e.g., [26] and references
therein. In [24] it was shown that the optimal round complexity for secure 2-
party computation without setup is 5 (where the negative result is restricted to
protocols with black-box simulation). More relevant to our work is previous work
on the round complexity of MPC with an honest majority and guaranteed output
delivery. In this setting, constant-round protocols were given in several previous
works; see e.g., [22] and references therein. In particular, it was shown in [15] that
3 rounds are sufficient for general secure computation with t = Ω(n) malicious
parties, where one of the rounds requires broadcast. The question of minimizing
the exact round complexity of MPC over point-to-point networks was explicitly
considered in [22, 23], however the focus of these works was on obtaining nearly
optimal resilience. Two-round protocols with guaranteed output delivery were
given in [16] for specific functionalities. The round complexity of verifiable secret
sharing (VSS) was initiated in [15] and subsequently studied in several works; see
e.g., [1] and references therein. Finally, secure computation in the preprocessing
model was studied in several previous works [5, 19, 10, 11, 4].

C More Details on 2-Round 3-Party Secure-with-
Selective-Abort Protocol

C.1 Proof of Theorem 2

We first provide an informal overview of the simulator.
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Overview. Denote the corrupt party by P`. Let Pi, Pj be the remaining (honest)
parties. The simulator begins by sending random additive shares to the corrupt
party on behalf of the honest parties. It also sends and receives randomness to
be used in the PSM executions in the next round. Note that the simulator also
receives additive shares from the corrupt party. Using the additive shares, the
simulator computes the effective input say x̂` of the corrupt party (i.e., by simply
xor-ing the additive shares). Then, the simulator sends x` to the trusted party
first, and obtains the output z`.

Next the simulator invokes the PSM simulator Stransπi,j
(guaranteed by the

privacy property) on inputs z` and the additive shares sent on behalf of the
honest parties. Denote the output of the Stransπi,j

by τi,` and τj,`. Acting as the
honest party Pi (resp. Pj), the simulator sends τi,` (resp. τj,`) to the corrupt
party. It remains to be shown how the simulator decides which uncorrupted
parties learn the output and which receive ⊥. To do this, the simulator does
the following. First, acting as the honest party Pi the simulator receives the
PSM message τ`,i that P` sends to Pi as part of PSM execution π`,j . Similarly,
acting as Pj , the simulator also receives τ`,j . Next, the simulator invokes the
PSM simulator Sextπ`,i

on the PSM message τ`,i (and also the PSM randomness)
to decide what effective input P` used in PSM subprotocol π`,j . Depending on
this input, the simulator then decides whether Pi will accept the output of π`,j or
not. Specifically as in the real execution, the simulator checks if the shares input
by P` are consistent with those held by Pi. If this is indeed the case, then the
simulator asks the trusted party to deliver output to Pi, else it asks the trusted
party to deliver ⊥ to Pi. Whether Pj gets the output or not is also handled
similarly by the simulator. This completes the sketch of the simulation.

We now formally describe the simulation for corrupt party, say P` below.

Simulating corrupt P`. For each m ∈ T`, the simulator acting as Pm does the
following:

Choose random xm,` and send it to P`.

Send PSM randomness rpsmm,` to P` if m < `.

Receive from P` values x`,m.

Receive from P` PSM randomness rpsm`,m if m > `.

Next, the simulator extracts P`’s input in a straightforward way:

Subroutine Extract`({x`,m}m∈T`
)

Output x̂` =
⊕

m∈T`
x`,m.

Next the simulator sends x̂` to the trusted party. Let z` denote the output
received from the trusted party. In the next step, the simulator prepares to send
the second round messages to P` by executing the following for the pair (i, j)
with i < j and ` 6∈ {i, j}.
Subroutine PsmTrans`(xi,`, xj,`, x`,i, x`,j , z`)

Set ẑ` = (z`, xi,`, xj,`, x`,i, x`,j).

Invoke PSM simulator Stransπi,j
(1σ, ẑ`) to obtain transcript τi,`, τj,`.

For all m ∈ {i, j} acting as Pm sends τm,` to P` over point-to-point channels.
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For each i ∈ T`, the simulator S receives PSM messages τ̃`,i from the adversary
for execution π`,j where j ∈ [3] \ {`, i}. (Recall that rpsm`,j denotes the PSM
randomness used in execution π`,j .) S then executes the following subroutine.

Subroutine PsmExtract`({rpsm`,j }j∈T`
, {τ̃`,i}i∈T`

, (xi,`, xj,`, x`,i, x`,j))

For each i ∈ T`: let j ∈ [3] \ {`, i}, and invoke PSM simulator
Sextπ`,j

(1σ, rpsm`,j , τ̃`,i) to obtain output x̃`,i.

If ∃i ∈ T` such that x̃`,i = ⊥ (i.e., Sextπ`,j
failed where j ∈ [3] \ {`, i}), then

output psm-fail and terminate.

Initialize S` = ∅. For each i ∈ T` do:

Parse x̃`,i = (x′i,`, x
′
`, x
′
j,`).

If x′` 6= x`,i⊕x`,j or x′i,` 6= xi,` or x′j,` 6= xj,`, then add i to S`.

Output S`.

If the output is psm-fail, then S outputs psm-fail and terminates. Else the sim-
ulator S sends (abort, S`) to the trusted party, outputs whatever the adversary
outputs, and terminates the simulation.

Analysis. In order to show indistinguishability of the real and ideal executions,
we first consider a hybrid experiment which is exactly the same as the real execu-
tion except that the PSM messages sent by the honest parties to P` are replaced
by the simulated PSM transcripts generated by Stransπi,j

. To generate these tran-
scripts we first extract the input x̂` by xor-ing the additive shares sent by P`,
and then compute the output of πi,j using inputs provided by honest parties and
x̂`. We then supply this output to Stransπi,j

to generate the simulated PSM tran-
scripts. Now, we claim that the corrupt party’s output in the hybrid execution
is computed exactly as in the real execution. This follows from (1) the extracted
input of the adversary x̂` = x`,i⊕x`,j equals the value x′` used by honest parties
inside each PSM protocol that delivers output to P`, and (2) the correctness
property of the PSM protocol in the real execution. Given this, it follows from
the security (more precisely, the privacy property) of the PSM protocol that the
joint distribution of the view of the adversary and honest outputs in the real
protocol is indistinguishable from the corresponding distribution in the hybrid
execution.

Next it is easy to see that the distribution of {xm,`}m∈T`
is identical to

the distribution in the real world, and further does not leak any information
about the true inputs {xm}m∈T`

. It is also easy to see that the distribution of
{rpsmm,` }m : 0<m<` in the ideal execution is identical to the same in the hybrid
execution. Thus, we conclude that the view of the adversary in the hybrid ex-
ecution is indistinguishable from the view of adversary in the ideal execution.
Thus, to prove indistinguishability of the hybrid execution and the ideal execu-
tion it suffices to focus on the distribution of honest outputs. Note that in the
ideal execution the honest outputs are generated using the true honest inputs
and extracted input x̂`.

First, we claim that each honest party that accepts a non-⊥ output in the
hybrid execution is ensured that this output is computed using the correct honest
inputs and the corrupt input x̂`. To show the above, consider wlog how honest
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party Pi computes its output in the real execution from the output of the PSM
execution π`,j .

– Consider the corrupt input used to compute value z′i inside π`,j . Obviously
if P` supplied input x̂` = x`,i⊕x`,j then this is used to compute z′i. Else if P`
supplied a different input x′` 6= x̂`, then z′i is computed using x′` but in this
case, x′`,i computed inside the PSM satisfies x′`,i = x′`⊕x`,j 6= x̂`⊕x`,j = x`,i
and therefore z′i is not accepted by Pi.

– Obviously honest Pj supplies the correct input xj and this is used to compute
z′i in π`,j .

– The input of Pi is first reconstructed using shares provided by P` and Pj .
Obviously honest Pj supplies the correct share xi,j . If P` also supplies the
correct share, then the value z′i is computed using the correct input of Pi,
i.e., xi. On the other hand, if P` supplied an incorrect share say x′i,`, then
the key observation is that this value x′i,` will be revealed to Pi by π`,j , and
thus Pi will not accept this z′i value.

Given the above it remains to be shown that the set of honest parties that
receive ⊥ in the ideal execution equals the set of honest parties that output ⊥
in the real execution. To prove the above, we use the fact that for all j ∈ T`,
with all but negligible probability the PSM simulator Sextπ`,j

extracts the input
supplied by P` in PSM execution π`,j . The above follows from the robustness
property of the PSM protocol (which guarantees the existence of such a Sextπ`,j

),
and in particular, we have that S outputs psm-fail with negligible probability. It
then follows by simple inspection that the criterion used to add i to S` in the
simulation is essentially the same as the criterion used by Pi to reject the output
z′i of the PSM protocol π`,j in the hybrid execution. With this we conclude that
the joint distribution of the view of the adversary and the outputs of the honest
parties in the ideal execution is indistinguishable from the joint distribution of
the view of the adversary and the outputs of the honest parties in the hybrid
execution. This completes the analysis of the simulation.

D More Details on 2-Round 4-Party Statistical VSS

D.1 Analysis of the Näıve Protocol

Analysis. Clearly the protocol satisfies the privacy requirement. Since D does
not send messages after the sharing phase, the commitment property also holds.
Next we show that except under specific adversary strategies, the protocol also
satisfies correctness.

Claim. Unless G contains exactly one edge, the protocol described is correct.
Proof. Let i, j, k ∈ [3] be distinct indices. Wlog, let Pi, Pj be honest parties.
Note that if D is honest, then (i, j) 6∈ G, and it holds that s = reci,j = recj,i.
Now if ∃k such that (i, k) 6∈ G, then since G does not contain exactly one edge,
it must hold that (j, k) 6∈ G, and therefore reci,k = recj,k = reci,j = s (i.e., all
parties broadcasted consistent CNF shares). Thus all honest parties reconstruct
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s. On the other hand if for k ∈ Ti,j it holds that (i, k) ∈ G and (j, k) ∈ G, then
honest parties reconstruct s = reci,j = recj,i (since (i, j) 6∈ G). Therefore we
have shown that if D is honest, then honest parties reconstruct D’s input s. ut

D.2 2-Round 4-Party VSS with a Broadcast Channel

Protocol description. We show how to modify the protocol from our first
attempt to solve the problem of 2-round 4-party VSS in Figure 2. The modified
steps are highlighted with a “?” symbol next to them.

Sharing Phase. The dealer CNF shares its secret s among the remaining parties.
That is, it chooses random s1, s2, s3 subject to

⊕
i=1,2,3si = s, and sends CNF

share {sj}j 6=i to party Pi for i ∈ [3].

? D also creates σ information-theoretic MACs for each share sj as

{M (i)
j,` ,K

(i)
j,`}i 6=j,`∈[σ], and sends {M (i)

j,` }`∈[σ] to Pi for each i 6= j, and

{K(i)
j,`}i 6=j,`∈[σ] to Pj .

Reconstruction Phase.

? Each Pj sends (Sj,i, {K(i)
j,`}`∈Sj,i) to Pi for every i 6= j, for randomly chosen

Sj,i ⊂ [σ] of size σ/2, and (Sj,i, {K(i)
j,`}`∈[σ]) to Pk for k 6= i.

? Each Pi broadcasts {s(i)j = sj}j 6=i and {M (i)
j,` }j 6=i,`∈[σ].

Local Computation. D outputs s and terminates the protocol. For every j, k ∈ [3],

define recj,k = s
(k)
j ⊕

⊕
i 6=js

(j)
i . For each m ∈ [3], party Pm reconstructs output as

follows:

– Let G denote the 3-vertex inconsistency graph such that (i, j) ∈ G iff ∃k ∈
[3] \ {i, j} such that s

(i)
k 6= s

(j)
k .

– If G contains exactly one edge, say (i, j) with k ∈ [3] \ {i, j} such that s
(i)
k 6=

s
(j)
k , then

for every m′ ∈ {i, j}, initialize c
(m)

m′ = 0.

if m ∈ {i, j}: set c
(m)
m = 1 if ∀` ∈ Sk,m it holds that M

(m)
k,` is a MAC on

s
(m)
k consistent with K

(m)
k,` .

for m′ ∈ {i, j} \ {m}, set c
(m)

m′ = 1 if (1) ∀` ∈ Sk,m′ it holds that M
(m′)
k,`

is a MAC on s
(m′)
k consistent with key K

(m′)
k,` , and (2) ∃` ∈ [σ] \ Sk,m′

such that M
(m′)
k,` is a MAC on s

(m′)
k consistent with key K

(m′)
k,` .

Pm outputs ⊥ if c
(m)
i = c

(m)
j , else outputs reci,k if c

(m)
i = 1, else outputs

recj,k if c
(m)
j = 1.

– Else if ∃(j, k) 6∈ G, then party Pm outputs recj,k. If there is no such j, k, then
Pm outputs ⊥.

Fig. 2. 4-party statistical VSS protocol with 1-round sharing and 1-round reconstruc-
tion.

In Appendix D.3, we prove the following lemma.
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Lemma 1. There exists a 4-party statistically secure protocol for verifiable se-
cret sharing that tolerates a single malicious party and requires one round in the
sharing phase and one round (which includes use of broadcast channel) in the
reconstruction phase.

D.3 Proof of Lemma 1

We split the analysis depending on whether D is corrupt or not.

Simulating a corrupt D. The simulator obtains {s(i)j }j 6=i for each i ∈ [3]. Then,

for each share sj , it obtains {M (i)
j,` }`∈[σ] acting as Pi for each i 6= j, and

{K(i)
j,`}i 6=j,`∈[σ] acting as Pj . It then constructs a 3-vertex inconsistency graph G′

which contains an edge between vertices i, j ∈ [3] iff ∃k ∈ [3] \ {i, j} such that

s
(i)
k 6= s

(j)
k . It then extracts the dealer input as follows:

If G′ contains exactly one edge, say (i, j), then for each m ∈ {i, j}, initialize
cm = 0, then pick random Sm ⊂ [σ] of size σ/2, and set cm = 1 if (1) ∀` ∈ Sm
it holds that M

(m)
k,` is a MAC on s

(m)
k that is consistent with key K

(m)
k,` , and

(2) ∃` ∈ [σ] \ Sm such that M
(m)
k,` is a MAC on s

(m)
k that is consistent with

key K
(m)
k,` . If ci = cj , send ⊥ to the trusted party, else send recm,k to the

trusted party where m ∈ {i, j} such that cm = 1.

Else, if there exists (j, k) 6∈ G′, then it sends recj,k to the trusted party.

Else, it sends ⊥ to the trusted party.

Then, it simulates the reconstruction phase of the protocol by sending messages
as computed by honest P1, P2, P3. Finally, it outputs whatever the adversary
outputs, and terminates.

Analysis. First, consider the case when G′ contains exactly one edge, say (i, j).
Let k ∈ [3] \ {i, j}. Observe that the view of the adversary in the real execution
is indistinguishable from its view in the ideal execution. On the other hand, we
will show that the output of the honest parties in the ideal execution and the
real execution differ only with probability negligible in σ. First, observe that
the distribution of Si, Sj in the simulation is identical to the distribution of
Sk,i, Sk,j in the real execution. Given this, it follows that the distribution of ci

(resp. cj) is identical to the distribution of c
(k)
i as well as c

(j)
i (resp. c

(k)
j as well

as c
(i)
j ). Note in particular that c

(k)
i = c

(j)
i , and that c

(k)
j = c

(i)
j . Next, we claim

that the distribution of ci (resp. cj) is statistically indistinguishable from the

distribution of c
(i)
i (resp. c

(j)
j ). This is because the two distributions differ only

if for some m ∈ {i, j}, (1) ∀` ∈ Sm it holds that M
(m)
k,` is a MAC on s

(m)
k that is

consistent with K
(m)
k,` , and (2) ∀` ∈ [σ] \Sm it holds that M

(m)
k,` is not a MAC on

s
(m)
k that is consistent with key K

(m)
k,` . It is easy to see that this event happens

with probability negl(σ) over random choice of Sm in the ideal execution. Thus,
conditioned on this event not happening, we have that the distribution of ci (resp.

cj) is identical to the distribution of c
(i)
i = c

(j)
i = c

(k)
i (resp. c

(i)
j = c

(j)
j = c

(k)
j ).
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Given this, it follows that distribution of (honest) outputs in the real and ideal
executions are statistically indistinguishable.

Next, consider the case when G′ does not contain exactly one edge. As before
it is easy to see that the view of the adversary in the real execution is distributed
identically to its view in the ideal execution. We claim that the outputs of
the honest parties in the real execution and the ideal execution are distributed
identically. This is because (1) when there exists unique (j, k) 6∈ G′ then recj,k =
reck,j holds and all parties output recj,k, and (2) when G′ contains all three
edges, then all parties output ⊥, and (3) when G′ contains no edges, then for
every unique i, j, k ∈ [3], it holds that reci,j = recj,k = reci,k, and thus all parties
output recj,k for some distinct j, k ∈ [3]. In all cases, it is easy to see that the
simulation is perfectly indistinguishable from the real execution.

Simulating a corrupt Pi. Acting as D, the simulator sends random shares {sj}j 6=i
to Pi. Then for j 6= i, it samples random (but consistent) {M (i)

j,` ,K
(i)
j,`}j 6=i,`∈[σ]

on value sj . In addition it samples a random set of keys (for the unknown

share si) {K̃(j)
i,` }j 6=i,`∈σ. It then sends {M (i)

j,` }`∈[σ],j 6=i and {K̃(j)
i,` }j 6=i,`∈[σ] to Pi.

At the beginning of the reconstruction phase, the simulator receives secret s
from the trusted party. It then sets si = s⊕

⊕
j 6=isj , and creates MACs on

si, say {M̃ (j)
i,` }j 6=i,`∈[σ] that are consistent with keys {K̃(j)

i,` }j 6=i,`∈[σ]. For each
j ∈ [3] \ {i}, the simulator acting as Pj sends the following to (corrupt) Pi:

– values {sm}m 6=j , (Sj,i, {K(i)
j,`}`∈Sj,i), (Sj,k, {K(k)

j,` }`∈[σ]) for k ∈ [3] \ {i, j}
and randomly chosen Sj,i, Sj,k ⊂ [σ] each of size σ/2 over the point-to-point
channel.

– values {M̃ (j)
i,` }`∈[σ] and {M̃ (j)

k,`}`∈[σ] where k ∈ [3] \ {i, j} over the broadcast
channel.

(Throughout the protocol, the simulator ignores values sent by Pi.) Finally, it
outputs whatever the adversary outputs, and terminates.

Analysis. First, note that the view of the adversary in the real execution is
indistinguishable from its view in the ideal execution. Therefore, the simulation
is indistinguishable as long as the honest parties output the dealer’s input s in
the real execution. Let j, k be distinct indices in [3] \ {i}. Note that when D is
honest, all edges in G′ involve i since honest Pj , Pk agree on their common share
si. Thus, (j, k) 6∈ G′ and further, recj,k = reck,j = s also holds. Clearly, when
G′ contains two edges (i.e., both involving i), then correctness holds since all
parties reconstruct recj,k. Next, when G′ contains no edges, this means that for
all m′ ∈ {j, k}, it holds that reci,m′ = recm′,i = recj,k, and once again correctness
holds since all parties reconstruct recj,k.

The remaining case is when G contains a single edge, say (i, j). Note that c
(j)
i

always equals c
(k)
i for honest Pj , Pk. Then, it is easy to see that correctness holds

as long as c
(j)
i = c

(k)
i = 0, and in particular, parties reconstruct recj,k. On the

other hand, if for some m ∈ {j, k} such that c
(m)
i = 1, then correctness does not

hold. It remains to be shown that this event happens with negligible probability.
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Indeed such an event happens only if corrupt Pi can produce some M
(i)
k,` such

that ` 6∈ Sk,i, and M
(i)
k,` is a MAC on s

(i)
k 6= sk that is consistent with the key

K
(i)
k,`. Note that the values {K(i)

k,`}` 6∈Sk,i
are completely hidden from Pi since it

is generated by honest D, and sent to Pk via point-to-point channels, which
Pk then sends it to Pj again via point-to-point channels. Since corrupt Pi can
forge this MAC only with probability negl(σ), it follows that correctness holds
with all but negligible probability. Therefore, we conclude that the simulation is
statistically indistinguishable from the real execution.

D.4 2-Round 4-Party Statistical VSS Protocol Over Point-to-Point
Channels

We now show how to remove the use of broadcast channel from our VSS protocol
in Section 4. We provide an overview of our protocol.

Protocol overview. Note that in our VSS construction in Section 4 (henceforth
referred to as the “original protocol”), the broadcast channel was used only in
the reconstruction phase. Our idea to remove the use of broadcast channel in the
reconstruction phase is simple: we just let parties transmit their broadcast values
over each point-to-point channel. It is easy to see that the round complexity of
the protocol (as well as its privacy) is preserved. The non-triviality is in showing
that the resulting protocol is still a VSS protocol. The main challenge is that
now parties do not hold the same inconsistency graph.

Suppose that D is honest. Assume wlog that Pi is corrupt. Let j, k ∈ [3]\{i}
be distinct indices. As pointed out above, we cannot assume that parties Pj
and Pk hold the same inconsistency graph. The only thing we are guaranteed
is that (j, k) will not be an edge in inconsistency graphs Gj (resp. Gk) held by
Pj (resp. Pk). Thus our goal will be to anchor the parties’ decision to output
recj,k = reck,j = s. We will focus on the local view of Pj . (The case involving
Pk is handled similarly.) When Gj contains no edge, it must hold that values

s
(i)
j , s

(i)
k received from Pi must equal the true values sj , sk, and therefore for any

m ∈ {j, k} it must hold that reci,m = recm,i = recj,k = s. Next, if Gj contains
two edges (i.e., (i, j) and (i, k)), then Pj will output recj,k as in the original
protocol, and therefore correctness holds. Finally suppose there is exactly one
edge in Gj . If the edge is (i, j), then as in the analysis of the original protocol,
(1) Pj will conclude that Pk is honest, (2) Pj ’s reveal will be accepted by Pj
itself, and (3) with all but negligible probability, Pi’s reveal will be rejected by
Pj . On the other hand, if the edge is (i, k), then (1) Pk’s reveal will be accepted
by Pj , and (3) with all but negligible probability, Pi’s reveal will be rejected by
Pj . Thus in either case, Pj outputs recj,k as in the original protocol, and thus
correctness holds.

Next consider the case when D is corrupt. Observe that (1) the original pro-
tocol uses the broadcast channel only in the reconstruction phase, and (2) D
does not act during the reconstruction phase of the protocol. Next, note that
when the sender of a broadcast is honest, the broadcast channel can be safely
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replaced by use of point-to-point channels. This combined with the two observa-
tions above immediately provides intuition as to why we essentially obtain the
same guarantees as the original protocol (i.e., which uses a broadcast channel)
when D is corrupt.

We now proceed to the formal protocol description. The modified steps are
highlighted with a “?” symbol next to them.

Sharing Phase. The dealer CNF shares its secret s among the remaining par-
ties. More precisely, it chooses random s1, s2, s3 subject to

⊕
i=1,2,3si = s, and

sends CNF share {sj}j 6=i to party Pi for i ∈ [3]. D also creates σ information-

theoretic MACs for each share sj as {M (i)
j,` ,K

(i)
j,`}i 6=j,`∈[σ], and sends {M (i)

j,` }`∈[σ]
to Pi for each i 6= j, and {K(i)

j,`}i6=j,`∈[σ] to Pj .

Reconstruction Phase. Each Pj sends (Sj,i, {K(i)
j,`}`∈Sj,i) to Pi for every i 6= j,

for randomly chosen Sj,i ⊂ [σ] of size σ/2, and (Sj,i, {K(i)
j,`}`∈[σ]) to Pk for k 6= i.

? Each party Pi sends {s(i)j }j 6=i, {M
(i)
j,` }j 6=i,`∈[σ] over point-to-point channels to

each Pk for k 6= i. Let Pk receive these values as {s(i,k)j }j 6=i, {M (i,k)
j,` }j 6=i,`∈[σ].

? Local Computation. D outputs s and terminates the protocol. For every (pos-

sibly non-distinct) i, j, k ∈ [3], define rec
(i)
j,k = s

(k,i)
j ⊕

⊕
i6=js

(j,i)
i . For each m ∈ [3],

party Pm reconstructs output as follows:

– Let Gm denote the 3-vertex inconsistency graph which contains an edge

between vertices i, j ∈ [3] iff ∃k ∈ [3] \ {i, j} such that s
(i,m)
k 6= s

(j,m)
k .

– If Gm contains exactly one edge, say (i, j) with k ∈ [3] \ {i, j} such that

s
(i,m)
k 6= s

(j,m)
k , then

• for every m′ ∈ {i, j}, party Pm initializes c
(m)
m′ = 0.

• if m ∈ {i, j}, then party Pm sets c
(m)
m = 1 if ∀` ∈ Sk,m it holds that

M
(m)
k,` is a MAC on s

(m)
k consistent with key K

(m)
k,` .

• for m′ ∈ {i, j} \ {m}, party Pm sets c
(m)
m′ = 1 if (1) ∀` ∈ Sk,m′ it holds

that M
(m′,m)
k,` is a MAC on s

(m′,m)
k consistent with key K

(m′)
k,` , and (2)

∃` ∈ [σ] \ Sk,m′ such that M
(m′,m)
k,` is a MAC on s

(m′,m)
k consistent with

key K
(m′)
k,` .

• Pm outputs ⊥ if c
(m)
i = c

(m)
j , else outputs rec

(m)
i,k if c

(m)
i = 1, else outputs

rec
(m)
j,k if c

(m)
j = 1.

– Else if ∃(j, k) 6∈ Gm, then party Pm outputs rec
(m)
j,k . If there is no such j, k,

then Pm outputs ⊥.

Theorem 3. (restated) There exists a 4-party statistically secure protocol for
verifiable secret sharing over point-to-point channels that tolerates a single ma-
licious party and requires one round in the sharing phase and one round in the
reconstruction phase.
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Proof. We split the analysis depending on whether D is corrupt or not.

Simulating a corrupt D. The simulator obtains {s(i)j }j 6=i for each i ∈ [3]. Then,

for each share sj , it obtains {M (i)
j,` }`∈[σ] acting as Pi for each i 6= j, and

{K(i)
j,`}i 6=j,`∈[σ] acting as Pj . It then constructs a 3-vertex inconsistency graph G′

which contains an edge between vertices i, j ∈ [3] iff ∃k ∈ [3] such that s
(i)
k 6= s

(j)
k .

It then extracts the dealer input as follows:

– If G′ contains exactly one edge, say (i, j), then for each m ∈ {i, j}, initialize
cm = 0, then pick random Sm ⊂ [σ] of size σ/2, and set cm = 1 if (1) ∀` ∈ Sm
it holds that M

(m)
k,` is a MAC on s

(m)
k that is consistent with key K

(m)
k,` , and

(2) ∃` ∈ [σ] \ Sm such that M
(m)
k,` is a MAC on s

(m)
k that is consistent with

key K
(m)
k,` . If ci = cj , send ⊥ to the trusted party, else send recm,k to the

trusted party where m ∈ {i, j} such that cm = 1.
– Else, if there exists (i, j) 6∈ G′, then it sends recj,k to the trusted party.
– Else, it sends ⊥ to the trusted party.

Then, it simulates the reconstruction phase of the protocol by sending messages
as computed by honest P1, P2, P3. Finally, it outputs whatever the adversary
outputs, and terminates.

Analysis. Note that the description of the simulator is exactly the same as in
the case when we were allowed use of broadcast channel. This is because in the
previous construction only parties other than D used the broadcast channel.
Therefore, when D is corrupt, the parties whose broadcast was replaced by
transmissions point-to-point channels were all honest. That is, in this case, there
is absolutely no difference between the use of broadcast channels or the use of
point-to-point channels. In particular, all honest parties P1, P2, P3 hold the same
inconsistency graph, say G′. Furthermore since all parties P1, P2, P3 are honest,

we have that for all m,m′,m′′ ∈ [3], it holds that s
(m′,m′′)
m = s

(m′)
m . Consequently,

we also have that for all m,m′,m′′ ∈ [3], it holds that rec
(m)
m′,m′′ = recm′,m′′ . Thus,

in this case, the analysis of the simulation is the same as that of the original
protocol. For the sake of completeness, we describe the analysis below.

First, consider the case when G′ contains exactly one edge, say (i, j). (As
we will see below, this case is handled exactly as in the original protocol. This
is because in this case, decisions made by the parties in the original protocol
are based on values received over point-to-point channels.) Let k ∈ [3] \ {i, j}.
Observe that the view of the adversary in the real execution is indistinguishable
from its view in the ideal execution. On the other hand, we will show that the
output of the honest parties in the ideal execution and the real execution differ
only with probability negligible in σ. First, observe that the distribution of Si, Sj
in the simulation is identical to the distribution of Sk,i, Sk,j in the real execution.
Given this, it follows that the distribution of ci (resp. cj) is identical to the

distribution of c
(k)
i as well as c

(j)
i (resp. c

(k)
j as well as c

(i)
j ). Note in particular

that c
(k)
i = c

(j)
i , and that c

(k)
j = c

(i)
j . Next, we claim that the distribution of
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ci (resp. cj) is statistically indistinguishable from the distribution of c
(i)
i (resp.

c
(j)
j ). This is because the two distributions differ only if for some m ∈ {i, j}, (1)

∀` ∈ Sm it holds that M
(m)
k,` is a MAC on s

(m)
k that is consistent with K

(m)
k,` , and

(2) ∀` ∈ [σ] \ Sm it holds that M
(m)
k,` is not a MAC on s

(m)
k that is consistent

with key K
(m)
k,` . It is easy to see that this event happens with probability negl(σ)

over random choice of Sm in the ideal execution. Thus, conditioned on this
event not happening, we have that the distribution of ci (resp. cj) is identical

to the distribution of c
(i)
i = c

(j)
i = c

(k)
i (resp. c

(i)
j = c

(j)
j = c

(k)
j ). Given this, it

follows that distribution of (honest) outputs in the real and ideal executions are
statistically indistinguishable.

Next, consider the case when G′ does not contain exactly one edge. As before
it is easy to see that the view of the adversary in the real execution is distributed
identically to its view in the ideal execution. We claim that the outputs of
the honest parties in the real execution and the ideal execution are distributed
identically. This is because (1) when there exists unique (j, k) 6∈ G′ then recj,k =
reck,j holds and all parties output recj,k, and (2) when G′ contains all three
edges, then all parties output ⊥, and (3) when G′ contains no edges, then for
every unique i, j, k ∈ [3], it holds that reci,j = recj,k = reci,k, and thus all parties
output recj,k for some distinct j, k ∈ [3]. In all cases, it is easy to see that the
simulation is perfectly indistinguishable from the real execution.

Simulating a corrupt Pi. Acting as D, the simulator sends random shares {sj}j 6=i
to Pi. Then for j 6= i, it samples random (but consistent) {M (i)

j,` ,K
(i)
j,`}j 6=i,`∈[σ]

on value sj . In addition it samples a random set of keys (for the unknown

share si) {K̃(j)
i,` }j 6=i,`∈σ. It then sends {M (i)

j,` }`∈[σ],j 6=i and {K̃(j)
i,` }j 6=i,`∈[σ] to Pi.

At the beginning of the reconstruction phase, the simulator receives secret s
from the trusted party. It then sets si = s⊕

⊕
j 6=isj , and creates MACs on

si, say {M̃ (j)
i,` }j 6=i,`∈[σ] that are consistent with keys {K̃(j)

i,` }j 6=i,`∈[σ]. For each
j ∈ [3] \ {i}, the simulator acting as Pj sends the following to (corrupt) Pi:

– values {sm}m 6=j , (Sj,i, {K(i)
j,`}`∈Sj,i), (Sj,k, {K(k)

j,` }`∈[σ]) for k ∈ [3] \ {i, j}
and randomly chosen Sj,i, Sj,k ⊂ [σ] each of size σ/2 over the point-to-point
channel.

– values {M̃ (j)
i,` }`∈[σ] and {M̃ (j)

k,`}`∈[σ] where k ∈ [3] \ {i, j} over the point-to-
point channel.

(Throughout the protocol, the simulator ignores values sent by Pi.) Finally, it
outputs whatever the adversary outputs, and terminates.

Analysis. Note that the description of the simulator is almost identical to the
case when we were allowed use of broadcast channel. The only difference is that
in the reconstruction phase, the simulator has to send the MAC values through
point-to-point channels (instead of the broadcast channel). It is easy to see that
the view of the adversary in the ideal execution is indistinguishable from its
view in the real execution. The analysis below shows that with overwhelming
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probability, output of honest parties in the real execution is the same as in the
ideal execution, i.e., it equals the input of the dealer.

Let j, k ∈ [3] \ {i} be distinct indices. Note that Pj and Pk are honest. We
prove that Pj outputs s with high probability. (The argument is identical for
Pk.) Let Gj be the inconsistency graph in the view of Pj . Note that since D is
honest, honest parties have consistent shares, and therefore, (j, k) 6∈ Gj (and in
particular, Gj has less than three edges). We first analyze the case when Gj is
empty. In this case, (corrupt) Pi’s shares received by Pj must equal the shares
sent to Pi by D, else either Pj or Pk will have a conflict with Pi in Gj . Therefore,

in this case, Pj reconstructs rec
(j)
j,k = s. Next, we consider the case when Gj has

2 edges. Since we have (j, k) 6∈ Gj , the edges must be (i, j) and (i, k). Therefore,

Pj reconstructs rec
(j)
j,k = s.

Finally, we consider the case when Gj contains exactly one edge. There are
two subcases to handle, namely, the edge could be (i, j) or (i, k). Suppose the

edge is (i, k). Then, it is easy to see that Pj will set c
(j)
k = 1 when D and Pk

are honest. Next we claim that with overwhelming probability c
(j)
i will be set

to 0. Indeed, in order to force c
(j)
i to be 1, a corrupt Pi must send some M

(i,j)
j,`

such that ` 6∈ Sj,i, and M
(i,j)
j,` is a MAC on s

(i,j)
j 6= s

(k,j)
j = sj that is consistent

with key K
(i)
j,` . Note that {K(i)

j,`}` 6∈Sj,i
is unknown to Pi since it is generated by

honest D, and sent to Pj via point-to-point channels, which Pj then sends it
to Pk again via point-to-point channels. Since corrupt Pi can forge this MAC
only with probability negligible in σ, the claim follows. Finally, we consider the

subcase when the edge is (i, j). Clearly, in this case, the value c
(j)
j is set to 1.

(Note c
(j)
j ’s value depends only on the MACs and keys sent by honest D to

honest Pk.) Next we claim that with overwhelming probability c
(j)
i will be set to

0. As before, in order to force c
(j)
i to be 1, a corrupt Pi must send some M

(i,j)
k,`

such that ` 6∈ Sk,i, and M
(i,j)
k,` is a MAC on s

(i,j)
k 6= s

(j)
k = sk that is consistent

with the key K
(i)
k,`. Note that {K(i)

k,`}` 6∈Sk,i
is unknown to Pi since it is generated

by honest D, and sent to Pk via point-to-point channels, which Pk then sends
it to Pj again via point-to-point channels. Since corrupt Pi can forge this MAC
only with probability negligible in σ, the claim follows. Thus we conclude that
the simulation is statistically indistinguishable from the real execution.

E More Details on 2-Round 4-Party Statistically Secure
Protocol for Linear Functions

For simplicity, and without loss of generality, we assume that all parties wish to
evaluate the same function f on their joint inputs. Let f =

⊕
k∈[4]αksk where

sk is party Pk’s input, and αk ∈ {0, 1} are the (publicly known) coefficients.
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E.1 Protocol Description

Description of subroutines. Our protocol makes use of a variety of subrou-

tines that we describe below. The first subroutine LinRecInput
(i,j)
k reconstructs

Pk’s input from the CNF shares v
(i)
k , v

(j)
k possessed respectively by parties Pi

and Pj . As with all our subroutines, this will be executed inside a PSM protocol
for which Pi and Pj act as clients. Since we are dealing with malicious parties,
the subroutine may get as inputs inconsistent CNF shares. In this case, the sub-
routine simply outputs ⊥. If this is not the case, then the subroutine reconstructs
Pk’s input by xor-ing the individual shares. Thus, this subroutines serves two
purposes: (1) first it reconstructs the parties’ inputs on which the function can
then be evaluated, and (2) it reveals whether parties received/supplied consistent
shares (i.e., depending on whether the output is ⊥ or not).

Subroutine LinRecInput
(i,j)
k (v

(i)
k , v

(j)
k )

Inputs: v
(i)
k = {(k, t, s(i)k,t)}t∈Ti,k

and v
(j)
k = {(k, t, s(j)k,t)}t∈Tj,k

.

Let m ∈ [4] \ {i, j, k}. If s
(i)
k,m 6= s

(j)
k,m, output ⊥ and terminate.

Output s
(j)
k,i⊕

⊕
t∈Tk,i

s
(i)
k,t.

The next subroutine LinRecView
(i,j)
k is useful in applying the view reconstruc-

tion trick (that we previously employed in Section 3). Since parties verifiably
secret share their inputs in the first round, each party possesses 1-private 3-
party CNF shares of every other parties’ inputs. Given two such CNF shares
it is not only possible to reconstruct the secret (this is what was done by the
subroutine LinRecInput described above) but also allows reconstructing the other

CNF share. This is exactly what LinRecView
(i,j)
k does. It obtains CNF shares of

each parties’ input from Pi and Pj . As we are dealing with malicious parties,
the subroutine first performs a sanity check as to whether Pi and Pj supply
consistent shares. If not, then it simply aborts. Else, it reconstructs the shares
that ought to be held by party Pk. As we will see later, this subroutine will be
immensely helpful in allowing parties to construct the inconsistency graphs. Re-
call that each party Pk could potentially receive PSM outputs from three PSM
executions. As we will see, computing the final output from these outputs is a
nontrivial task. We will need the inconsistency graphs (generated using outputs
of the PSM protocols) to help us in computing the final output.

Subroutine LinRecView
(i,j)
k (vi, vj)

Inputs: vi = {(m, t, s(i)m,t)}m∈[4],t∈Ti,m
and vj = {(m, t, s(j)m,t)}m∈[4],t∈Tj,m

.

For all m ∈ [4] and t ∈ Tm,k, do the following:

If t ∈ Tm,i ∩ Tm,j and s
(i)
m,t = s

(j)
m,t, then set shm,t = s

(i)
m,t.

Else if t ∈ Tm,i ∩ Tm,j and s
(i)
m,t 6= s

(j)
m,t, then output ⊥ and terminate.

Else if t ∈ Tm,j , then set shm,t = s
(i)
m,t.

Else if t ∈ Tm,i, then set shm,t = s
(j)
m,t.
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Output v
(i,j)
k = {(m, t, shm,t)}m∈[4],t∈Tm,k

.

The final subroutine SimExtract that we use in our protocol is also the subroutine
that the simulator uses to extract the corrupt party’s input. Let m ∈ [4]. In the
simulation, the simulator will set m to be the index of the corrupt party. In the
real protocol, a party will invoke this procedure when it is clear that Pm is the
corrupt party. The procedure SimExtractm takes as input all values that were
received from Pm by the remaining parties in round 1 of the protocol. Then, it
constructs the inconsistency graph G′ adding edges between vertices if the CNF
shares held by them are not consistent. If the graph contains all three edges,
then the effective input used in this case is 0. We call this the identifiable triple-
edge case since it is clear that Pm is corrupt. Next, if the graph contains two
edges or no edges (i.e., an even number of edges), then we are now assured that
there exists a pair of parties that hold consistent CNF shares of Pm’s input. In
this case, the effective input extracted equals the secret reconstructed from these
consistent CNF shares. Since it is possible that Pm may behave honestly, we call
this case the resolvable even-edge case. As was the case in VSS, if G′ contains a
single-edge then the procedure performs a vote computation step using the MAC
values and the corresponding keys. This is to find out which of the two parties
is supported by Pm. If there is a unique party that is supported by Pm, then
the inconsistency in CNF shares is resolved by using the CNF share possessed
by this party. We call this the resolvable single-edge case. On the other hand if
there is no unique party supported by Pm, then it is clear that Pm is corrupt. We
call this the identifiable single-edge case. In this case, the effective input used for
Pm equals the xor of all unique shares (including the inconsistent CNF shares)
possessed by all remaining parties.

We remark that the extraction procedure is identical to the VSS extraction
procedure except in the identifiable single-edge case. While in VSS, it was possi-
ble to simply output 0 in the identifiable single-edge case, things are a bit more
trickier in the linear function evaluation setting. Specifically we were not able to
replace the corrupt party’s input by 0 and then evaluate the function while si-
multaneously preserving privacy of honest inputs. Fortunately though, if we use
the effective input extracted as described above, then we can force all parties to
compute their output that is consistent with the extracted corrupt input.

Subroutine SimExtractm({wp,m}p∈Tm
)

Inputs: For all p ∈ Tm, value wp,m = ({sm,t}t∈Tm,p
, {M (p)

m,t,`}t∈Tm,p,`∈[σ],

{K(t)
m,p,`}t∈Tm,p,`∈[σ]).

Construct inconsistency graph G′ such that it contains an edge between

vertices i, j ∈ Tm iff ∃k ∈ [4] \ {m, i, j} such that s
(i)
m,k 6= s

(j)
m,k.

If G′ contains exactly one edge, say (i, j): Let k ∈ [4] \ {m, i, j}. For each
t ∈ {i, j}, initialize ct = 0, then pick random St ⊂ [σ] of size σ/2, and set

ct = 1 if (1) ∀` ∈ St it holds that M
(t)
m,k,` is a MAC on s

(t)
m,k that is consistent

with key K
(t)
m,k,`, and (2) ∃` ∈ [σ] \ St such that M

(t)
m,k,` is a MAC on s

(t)
m,k

that is consistent with key K
(t)
m,k,`.
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(Identifiable single-edge) If ci = cj then output s′m = s
(k)
m,i⊕s

(k)
m,j⊕s

(i)
m,k⊕

s
(j)
m,k.

(Resolvable single-edge) Else output s′m = s
(k)
m,i⊕s

(k)
m,j⊕s

(t)
m,k where t ∈

{i, j} such that ct = 1.

(Resolvable even-edge) Else if ∃(i, j) 6∈ G′, output s′m = s
(j)
m,i⊕s

(j)
m,k⊕s

(i)
m,j

where k ∈ [4] \ {m, i, j}.
(Identifiable triple-edge) Else (i.e., G′ contains all three edges), output s′m =
0.

We are now ready to describe the complete protocol for 2-round 4-party statisti-
cally secure linear function evaluation. (See Appendix E.2 for a detailed overview
and intuition behind the design of the protocol.)

Protocol. Let Ti denote the set [4]\{i}, and let Ti,j denote the set [4]\{i, j}. Let
f =

⊕
k∈[4]αksk where sk is party Pk’s input, and αk ∈ {0, 1} are the (publicly

known) coefficients.

Round 1. For each m ∈ [4], party Pm does the following:

– Pm holding private input sm performs a 1-private 3-party CNF sharing of sm
among the remaining 3 parties. More precisely, it chooses random {sm,j}j 6=m
such that

⊕
j 6=msm,j = sm, and sends CNF share {s(j)m,t = sm,t}t∈Tm,j to party

Pj for each j 6= m.
– Pm creates σ information-theoretic MACs for each value sm,j as

{M (i)
m,j,`,K

(i)
m,j,`}i∈Tm,j ,`∈[σ] and sends {M (i)

m,j,`}`∈[σ] to Pi for each i ∈ Tm,j ,

and {K(i)
m,j,`}i∈Tm,j ,`∈[σ] to Pj .

– Pm exchanges randomness with each Pj for a 2-client PSM protocol described
below.

Round 2.

– Each pair of parties (Pi, Pj) runs the following PSM protocol πki,j that delivers
output to Pk:

Inputs: wp = {({s(p)m,t}t∈Tm,p , {M
(p)
m,t,`}t∈Tm,p,`∈[σ], {K(t)

m,p,`}t∈Tm,p,`∈[σ])}m∈[4]

from Pp for p = i, j.

For all ` ∈ {i, j}: (1) For all m ∈ [4], set v
(`)
m = {(m, t, s(`)m,t)}t∈Ti,m . (2) Set

v` = ∪m∈[4]v
(`)
m .

For all m ∈ [4], compute s′m = LinRecInput(i,j)m (v
(i)
m , v

(j)
m ).

If s′m = ⊥ for m ∈ {i, j, k} then output ⊥.

Else if s′m = ⊥ for m 6∈ {i, j, k} then output (wi, wj).

Else, output (z
(k)
i,j , v

(i,j)
k ), where z

(k)
i,j = f(s′1, . . . , s

′
4) and v

(i,j)
k =

LinRecView
(i,j)
k (vi, vj).

– For m ∈ [4] and for each j ∈ Tm, party Pj does the following for each i ∈ Tm,j :
Pj chooses a random subset Sm,j,i ⊂ [σ] of size σ/2, and sends

(Sm,j,i, {K(i)
m,j,`}`∈Sm,j,i) to Pi, and (Sm,j,i, {K(i)

m,j,`}`∈[σ]) to Pk for k ∈
[4] \ {i, j,m}.
Pj sends {M (j)

m,i,`}`∈[σ] to Pi over point-to-point channels.
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Output Computation. For k ∈ [4], party Pk reconstructs its output as follows.

1. For m ∈ Tk: Initialize the inconsistency graph G
(m)
k to the empty graph. Let

i, j ∈ Tm,k with i 6= j.

Add edge (i, j) to G
(m)
k iff πki,j outputs (wi, wj) (i.e., with s

(i)
m,k 6= s

(j)
m,k).

Add edge (j, k) to G
(m)
k iff πki,j outputs either (1) (wi, wj) with s

(j)
m,i 6= s

(k)
m,i,

or (2) (zki,j , v
(i,j)
k ) with s

(j)
m,i 6= s

(k)
m,i, where (m, i, s

(j)
m,i) ∈ v

(i,j)
k .

Add edge (i, k) to G
(m)
k iff πki,j outputs either (1) (wi, wj) with s

(i)
m,j 6= s

(k)
m,j ,

or (2) (zki,j , v
(i,j)
k ) with s

(i)
m,j 6= s

(k)
m,j , where (m, j, s

(i)
m,j) ∈ v

(i,j)
k .

2. If ∃m ∈ Tk such that G
(m)
k contains 3 edges, say (i, j), (j, k), (i, k), then

Assert that output of πki,j equals (wi, wj).

Parse wi, wj to obtain for all p ∈ Tm and ` ∈ {i, j} the set v
(`)
p =

{(p, t, s(`)p,t)}t∈T`,p .

Set s′m = 0. For each p ∈ Tm, set s′p = LinRecInput(i,j)p (v
(i)
p , v

(j)
p ).

Output zk = f(s′1, . . . , s
′
4) and terminate.

3. For each m ∈ Tk such that G
(m)
k contains exactly one edge, say (i, j) with

m′ ∈ [4] \ {i, j,m} (note that it is possible that k ∈ {i, j}), then:

Initialize c
(k)
m,i = c

(k)
m,j = 0.

If k ∈ {i, j}, then set c
(k)
m,k = 1 if ∀` ∈ Sm,m′,k it holds that M

(k)

m,m′,` is a

MAC on s
(k)

m,m′ consistent with key K
(k)

m,m′,`.

For m′′ ∈ {i, j} \ {k}, set c
(k)

m,m′′ = 1 if (1) ∀` ∈ Sm,m′,m′′ it holds that

M
(m′′,k)
m,m′,` is a MAC on s

(m′′)
m,m′ consistent with key K

(m′′)
m,m′,`, and (2) ∃` ∈

[σ] \ Sm,m′,m′′ such that M
(m′′,k)
m,m′,` is a MAC on s

(m′′)
m,m′ consistent with key

K
(m′′)
m,m′,`.

4. If ∃m ∈ Tk such that G
(m)
k contains exactly one edge, say (i, j), and if c

(k)
m,i =

c
(k)
m,j , then

If k ∈ {i, j}: Let m′ ∈ [4] \ {i, j,m} and m′′ ∈ {i, j} \ {k}.
Assert that output of πkm′,m′′ equals (zkm′,m′′ , v

(m′,m′′)
k ). If not output

fail1 and terminate.

Output z′k = zkm′,m′′⊕αms(k)m,m′ and terminate.

Else if k 6∈ {i, j}:
Assert that output of πki,j equals (wi, wj). If not output fail1 and ter-
minate.

Parse wi, wj to obtain for all p ∈ Tm and ` ∈ {i, j} the set v
(`)
p =

{(p, t, s(`)p,t)}t∈T`,p .

For all p ∈ Tm, set s′p = LinRecInput(i,j)p (v
(i)
p , v

(j)
p ).

Compute s′m = s
(k)
m,i⊕s

(k)
m,j⊕s

(i)
m,k⊕s

(j)
m,k.

Output z′k =
⊕

p∈[4]αps
′
p and terminate.

5. Construct the accusation graph Ak as follows: Initialize Ak as the 4-vertex
empty graph.

For each m ∈ Tk, if there are two edges (i,m′), (j,m′) in G
(m)
k , then add

edge (m,m′) to Ak.
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For each m ∈ Tk, if there is exactly one edge (i, j) in G
(m)
k , then add edge

(i,m) to Ak if c
(k)
m,i = 0, else add edge (j,m).

6. If Ak contains no edges, then:

Assert that there exists i, j ∈ Tk such that πki,j outputs (zki,j , v
(i,j)
k ) for

some zki,j , v
(i,j)
k .

Let i, j be from the previous step. Output z′k = zki,j and terminate.
7. Else if Ak contains exactly one edge (m, i) for some m, i ∈ Tk, then let j ∈

[4] \ {m, i, k}.
If ∃m′ ∈ {m, i} s.t. πkm′,j outputs (wm′ , wj), then

Parse wj to obtain for all p ∈ [4] the set v
(j)
p = {(p, t, s(j)p,t)}t∈Tj,p .

For each p ∈ [4], set s′p = LinRecInput(j,k)p (v
(j)
p , v

(k)
p ).

Output z′k = f(s′1, . . . , s
′
4), and terminate.

Else assert that there exists m′,m′′ ∈ {m, i} with m′ 6= m′′ such that

the output of πkm′,j equals (zkm′,j , v
(m′,j)
k ) and further that v

(m′,j)
k satisfies

v
(m′,j)
k \ {(m′′, j, shm′′,j)} = vk \ {(m′′, j, s

(k)

m′′,j)}.
Output zkm′,j⊕αm′′(shm′′,j⊕s(k)m′′,j).

8. Else if Ak contains the edge (m, k) for some m ∈ Tk, or Ak contains two edges
(m, i) and (m, j) for some i, j,m ∈ Tk, then:

If πki,j outputs (wi, wj), then:

Parse wj to obtain for all p ∈ [4] the set v
(j)
p = {(p, t, s(t)p,t)}t∈Tj,p .

For each p ∈ Tm, set s′p = LinRecInput(j,k)p (v
(j)
p , v

(k)
p ).

Set wk,m = ({s(k)m,t}t∈Tm,k , {M
(k)
m,t,`}t∈Tm,k,`∈[σ], {K(t)

m,k,`}t∈Tm,k,`∈[σ]).

For p ∈ {i, j}, parse wp to obtain wp,m = ({s(p)m,t}t∈Tm,p ,

{M (p)
m,t,`}t∈Tm,p,`∈[σ], {K(t)

m,p,`}t∈Tm,p,`∈[σ]).

Compute s′m = SimExtractm({wp,m}p∈Tm).

Output z′k = f(s′1, . . . , s
′
4), and terminate.

Else assert that the output of πki,j is (zki,j , v
(i,j)
k ) for some zki,j , v

(i,j)
k .

If both (i, k) and (j, k) are contained in G
(m)
k , then output zki,j .

Else if ∃m′,m′′ ∈ {i, j} with m′ 6= m′′ such that (m′, k) ∈ G(m)
k , then

If c
(k)

m,m′ = 1, output zki,j .

Else output zki,j⊕αm(s
(m′)
m,m′′⊕s(k)m,m′′).

Else output zki,j .

E.2 Detailed Overview and Intuition

In the first step of the protocol, each party essentially runs Step 1 of the VSS
protocol (of Section 4) as the dealer, and secret shares its input. In addition,
each party exchanges randomness for PSM protocols to be executed in round 2.
That is:

Round 1.

– For each m ∈ [4], party Pm does the following:
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• Pm holding private input sm performs a 1-private 3-party CNF sharing
of sm among the remaining 3 parties. More precisely, it chooses random

{sm,j}j 6=m such that
⊕

j 6=msm,j = sm, and sends CNF share {s(j)m,t =
sm,t}t∈Tm,j

to party Pj for each j 6= m.
• Pm creates σ information-theoretic MACs for each value sm,j as

{M (i)
m,j,`,K

(i)
m,j,`}i∈Tm,j ,`∈[σ] and sends {M (i)

m,j,`}`∈[σ] to Pi for each i ∈
Tm,j , and {K(i)

m,j,`}i∈Tm,j ,`∈[σ] to Pj .
• Pm exchanges randomness with each Pj for a 2-client PSM protocol

described below.

Simulation extraction. Next we describe the simulation extraction based on the
first round messages of the adversary corrupting party Pq. We do this first since
this extraction procedure will later serve as the guiding light in the design of the
rest of the protocol (i.e., the second round, and the output computation phase).
In particular, the simulation extraction procedure will dictate what outputs the
honest parties receive in the ideal execution. Obviously, we will need to design the
remaining steps of our protocol in a way that allows honest parties to compute
the exact same output (i.e., one that’s consistent with the input extracted by
the simulator) in the real execution. The simulation extraction procedure will
help us in identifying what values are needed to compute the final output in the
real execution. and will guide the design of the PSM executions and the 2nd
round messages such that the honest parties indeed obtain these values (while
preserving privacy against the adversary). We defer further discussion, and focus
now on the simulation extraction procedure itself. Focusing on the corrupt party,
say Pq, (ignoring the randomness exchanged for executing the PSM protocols)
we have that Pq sends the following in round 1:

1. Pq sends {s(j)q,t = sq,t}t∈Tq,j
to party Pj for each j 6= q.

2. ∀j ∈ Tq, party Pq sends {M (i)
q,j,`}`∈[σ] to Pi for each i ∈ Tq,j , and

{K(i)
q,j,`}i∈Tq,j ,`∈[σ] to Pj .

We describe the simulation extraction procedure below. In the simulation, the
simulator will invoke SimExtractq, i.e., with m = q.

Subroutine SimExtractm({wp,m}p∈Tm
)

Inputs: For all p ∈ Tm, value wp,m = ({sm,t}t∈Tm,p ,

{M (p)
m,t,`}t∈Tm,p,`∈[σ], {K

(t)
m,p,`}t∈Tm,p,`∈[σ]).

Construct inconsistency graph G′ such that it contains an edge between

vertices i, j ∈ Tm iff ∃k ∈ [4] \ {m, i, j} such that s
(i)
m,k 6= s

(j)
m,k.

If G′ contains exactly one edge, say (i, j): Let k ∈ [4] \ {m, i, j}. For each
t ∈ {i, j}, initialize ct = 0, then pick random St ⊂ [σ] of size σ/2, and set

ct = 1 if (1) ∀` ∈ St it holds that M
(t)
m,k,` is a MAC on s

(t)
m,k that is consistent

with key K
(t)
m,k,`, and (2) ∃` ∈ [σ] \ St such that M

(t)
m,k,` is a MAC on s

(t)
m,k

that is consistent with key K
(t)
m,k,`.
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(Identifiable single-edge) If ci = cj then output s′m =

s
(k)
m,i⊕s

(k)
m,j⊕s

(i)
m,k⊕s

(j)
m,k.

(Resolvable single-edge) Else output s′m = s
(k)
m,i⊕s

(k)
m,j⊕s

(t)
m,k where t ∈

{i, j} such that ct = 1.

(Resolvable even-edge) Else if ∃(i, j) 6∈ G′, output s′m = s
(j)
m,i⊕s

(j)
m,k⊕s

(i)
m,j

where k ∈ [4] \ {m, i, j}.
(Identifiable triple-edge) Else (i.e., G′ contains all three edges), output s′m =
0.

In the simulation, the simulator will set m = q, i.e, to the index of the corrupt
party. The procedure SimExtractm takes as input all values that were received
from Pm by the remaining parties in round 1 of the protocol. Then, it constructs
the inconsistency graph G′ adding edges between vertices if the CNF shares
held by them are not consistent. If the graph contains all three edges, then the
effective input used in this case is 0. We call this the identifiable triple-edge case
since in this case it will be clear to the remaining honest parties that Pm is
corrupt. Next, if the graph contains two edges or no edges (i.e., an even number
of edges), then we are now assured that there exists a pair of parties that hold
consistent CNF shares of Pm’s input. In this case, the effective input extracted
equals the secret reconstructed from these consistent CNF shares. Since it is
possible that other honest parties may not be convinced that Pm is corrupt,
we call this case the resolvable even-edge case. As was the case in VSS, if G′

contains a single-edge then the procedure performs a vote computation step
using the MAC values and the corresponding keys. This is to find out which of
the two parties is supported by Pm. If there is a unique party that is supported
by Pm, then the inconsistency in CNF shares is resolved by using the CNF share
possessed by this party. We call this the resolvable single-edge case. On the other
hand if there is no unique party supported by Pm, then it will become clear
to all parties that Pm is corrupt. We call this the identifiable single-edge case.
In this case, the effective input used for Pm equals the xor of all unique shares
(including the inconsistent CNF shares) possessed by all remaining parties.

We remark that the extraction procedure is identical to the VSS extraction
procedure except in the identifiable single-edge case. While in VSS, it was pos-
sible to simply output 0 in the identifiable single-edge case, things are a bit
more trickier in the linear function evaluation setting. Specifically we were not
able to replace the corrupt party’s input by 0 and then evaluate the function
while simultaneously preserving privacy of honest inputs. As we will see later,
fortunately enough, if we use the effective input extracted as described above,
then we can force all parties to compute their output that is consistent with the
extracted corrupt input.

Designing the PSM executions. As described earlier, we will use PSM protocols
to help the parties evaluate the function f . More precisely, party Pk acts as
the PSM referee and obtains the PSM outputs from PSM execution πki,j for
each distinct i, j ∈ Tk, where parties Pi and Pj act as the PSM clients. (I.e.,
each Pk obtains outputs from three PSM executions.) To see why pairwise PSMs
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suffice, observe that the input of each party is 1-private CNF shared between the
remaining parties, and thus, two parties may come together to reconstruct the
secret. Of course, this secret reconstruction cannot be done in the clear since this
violates privacy. However this can be done inside the PSM protocol. Specifically,
the PSM protocol will use the following subroutine:

Subroutine LinRecInput
(i,j)
k (v

(i)
k , v

(j)
k )

– Inputs: v
(i)
k = {(k, t, s(i)k,t)}t∈Ti,k

and v
(j)
k = {(k, t, s(j)k,t)}t∈Tj,k

.

– Let m ∈ [4] \ {i, j, k}. If s
(i)
k,m 6= s

(j)
k,m, output ⊥ and terminate.

– Output s
(j)
k,i⊕

⊕
t∈Tk,i

s
(i)
k,t.

It is easy to see that the above procedure reconstructs a non-⊥ value only if
Pi and Pj supply consistent CNF shares of Pk’s input. In this case, the re-
construction is carried out in the standard way. Thus, if shares are distributed
consistently by the malicious party, then the above subroutine helps to recon-
struct each parties’ inputs after which the function can be evaluated inside the
PSM execution.

In addition to the above, we will also use the PSM protocols to help the
parties construct the inconsistency graphs (analogous to the ones used in the
VSS protocol). Recall that each party Pk could potentially receive PSM outputs
from three PSM executions. As we will see, computing the final output from
these outputs is a non-trivial task. We will need the inconsistency graphs (gen-
erated using outputs of the PSM protocols) to help us in computing the final
output. Towards helping us construct these inconsistency graphs, we will have
the following subroutine executed inside each PSM execution.

Subroutine LinRecView
(i,j)
k (vi, vj)

– Inputs: vi = {(m, t, s(i)m,t)}m∈[4],t∈Ti,m
and vj = {(m, t, s(j)m,t)}m∈[4],t∈Tj,m

.
– For all m ∈ [4] and t ∈ Tm,k, do the following:

• If t ∈ Tm,i ∩ Tm,j and s
(i)
m,t = s

(j)
m,t, then set shm,t = s

(i)
m,t.

• Else if t ∈ Tm,i ∩ Tm,j and s
(i)
m,t 6= s

(j)
m,t, then output ⊥ and terminate.

• Else if t ∈ Tm,j , then set shm,t = s
(i)
m,t.

• Else if t ∈ Tm,i, then set shm,t = s
(j)
m,t.

– Output v
(i,j)
k = {(m, t, shm,t)}m∈[4],t∈Tm,k

.

Note how the efficient extendability of the CNF secret sharing scheme enables
us to reconstruct the shares ought to be held by Pk (i.e., using the CNF shares
held jointly by Pi and Pj). Note however that Pi and Pj may not hold (or

supply) consistent shares, in which case LinRecView
(i,j)
k delivers ⊥ as output

to Pk. (Actually, we will use this subroutine only when the shares jointly held
by both Pi and Pj are consistent.) When all parties are honest, it should be

clear that LinRecView
(i,j)
k only provides Pk what it already knows. (Note in

particular that the MACs associated with the CNF shares are not handled by
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the subroutine.) Further observe that a malicious Pk cannot in any way force to

learn additional information from LinRecView
(i,j)
k .

We are now ready to describe the PSM subprotocol that makes use of the two
subroutines described above, and then how the output of the PSM executions
helps Pk construct the inconsistency graphs. The PSM subprotocol πki,j takes
inputs from Pi and Pj and delivers outputs to Pk in the following way:

– Inputs: wp = {({s(p)m,t}t∈Tm,p
, {M (p)

m,t,`}t∈Tm,p,`∈[σ], {K
(t)
m,p,`}t∈Tm,p,`∈[σ])}m∈[4]

from Pp for p = i, j.

– For all ` ∈ {i, j}: (1) For all m ∈ [4], set v
(`)
m = {(m, t, s(`)m,t)}t∈Ti,m

. (2) Set

v` = ∪m∈[4]v
(`)
m .

– For all m ∈ [4], compute s′m = LinRecInput(i,j)m (v
(i)
m , v

(j)
m ).

– If s′m = ⊥ for m ∈ {i, j, k} then output ⊥.

– Else if s′m = ⊥ for m 6∈ {i, j, k} then output (wi, wj).

– Else, output (z
(k)
i,j , v

(i,j)
k ), where z

(k)
i,j = f(s′1, . . . , s

′
4) and v

(i,j)
k =

LinRecView
(i,j)
k (vi, vj).

Privacy guarantees. Obviously we will need robust PSM protocols to implement
πki,j in order to guarantee security against a malicious client. Next, we claim

that when the PSM referee, party Pk in this case, is malicious, then πki,j does
not violate privacy. Specifically, in this case, it will hold that s′m 6= ⊥ for all
m ∈ Tk (and therefore the output will never be (wi, wj)). If s′k = ⊥, then output
of πki,j is ⊥, and privacy clearly holds. On the other hand, if the output equals

(zki,j , v
(i,j)
k ), then we use the fact that the output v

(i,j)
k from LinRecView

(i,j)
k does

not violate privacy. (Recall that LinRecView
(i,j)
k provides Pk only what it already

knows from the first round.) Now it remains to be shown that value zki,j does
not provide to Pk any information besides the evaluation of the linear function.
The argument is slightly trickier since Pk could potentially set things up (e.g.,
by providing inconsistent shares) in a way such that the three PSM executions
provide it evaluations of the function f on different choices of Pk’s input. It is
here that we rely on the fact that f is a linear function, and make use of the
property that given an evaluation z of f on a set of points {sm}m∈Tk

and sk, it
is possible to obtain an evaluation z′ of f on a set of points {sm}m∈Tk

and s′k
for any choice of s′k. Given the above property of linear functions, it follows that
privacy is preserved against the malicious party.

Constructing the inconsistency graphs. Next, we explain how (an honest) party
Pk can construct the inconsistency graphs. Specifically, party Pk uses the output

of πki,j to construct the inconsistency graph G
(m)
k for m ∈ [4]\{i, j, k} as follows:

– Add edge (i, j) to G
(m)
k iff πki,j outputs (wi, wj) (i.e., with s

(i)
m,k 6= s

(j)
m,k).

– Add edge (j, k) to G
(m)
k iff πki,j outputs either (1) (wi, wj) with s

(j)
m,i 6= s

(k)
m,i,

or (2) (zki,j , v
(i,j)
k ) with s

(j)
m,i 6= s

(k)
m,i, where (m, i, s

(j)
m,i) ∈ v

(i,j)
k .
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– Add edge (i, k) to G
(m)
k iff πki,j outputs either (1) (wi, wj) with s

(i)
m,j 6= s

(k)
m,j ,

or (2) (zki,j , v
(i,j)
k ) with s

(i)
m,j 6= s

(k)
m,j , where (m, j, s

(i)
m,j) ∈ v

(i,j)
k .

As in the VSS protocol, these inconsistency graphs contain edges between
two parties only if they hold inconsistent shares (and in particular, does not
depend on the validity of MACs). It should be clear that two honest parties

will not have an edge between them in G
(m)
k as long as Pm is honest. We also

point out that two different honest parties, say Pi and Pj may hold different

inconsistency graphs G
(m)
i 6= G

(m)
j .

Towards handling the single-edge case. Looking ahead, we will need the parties
to make use of the MAC values to handle the single-edge case (and in particular
to decide whether it is identifiable or resolvable). Note that while in the VSS

protocol, each party Pj would send all its shares {s(j)m,t}t∈Tm,j
and all the MACs

{M (j)
m,t,`}t∈Tm,i

to each Pi with i ∈ Tm,j , it is not a good idea to do so when
parties wish to evaluate a linear function. Doing this, i.e., leaking the CNF
shares would essentially leak each parties input. Further note that if a party
that possesses the keys also learns the (information-theoretic) MACs, then this
once again would violate privacy. (Note that this is acceptable in the case of
VSS as the second round was the “reconstruction phase” in which all parties
are expected to learn the dealer’s secret.) This motivates a careful design of
the step where parties exchange MACs and keys while (1) preserving privacy of
the shares and (2) allowing parties to handle the single-edge case. We formally
describe this step which is run in parallel with the robust PSM executions in
round 2.

– For m ∈ [4] and for each j ∈ Tm, party Pj does the following for each
i ∈ Tm,j :
• Pj chooses a random subset Sm,j,i ⊂ [σ] of size σ/2, and sends

(Sm,j,i, {K(i)
m,j,`}`∈Sm,j,i

) to Pi, and (Sm,j,i, {K(i)
m,j,`}`∈[σ]) to Pk for k ∈

[4] \ {i, j,m}.
• Pj sends {M (j)

m,i,`}`∈[σ] to Pi over point-to-point channels.

This completes the description of round 2. For the sake of clarity, we present
the full description of protocol steps executed in round 2.

Round 2.

– Each pair of parties (Pi, Pj) runs the following PSM protocol πki,j that delivers
output to Pk:

Inputs: wp = {({s(p)m,t}t∈Tm,p
, {M (p)

m,t,`}t∈Tm,p,`∈[σ], {K
(t)
m,p,`}t∈Tm,p,`∈[σ])}m∈[4]

from Pp for p = i, j.

Set vi = ∪m∈[4]v
(i)
m = ∪m∈[4]{(m, t, s

(i)
m,t)}t∈Ti,m

and vj = ∪m∈[4]v
(j)
m =

∪m∈[4]{(m, t, s
(j)
m,t)}t∈Tj,m .

For all m ∈ [4], compute s′m = LinRecInput(i,j)m (v
(i)
m , v

(j)
m ).

If s′m = ⊥ for m ∈ {i, j, k} then output ⊥.
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Else if s′m = ⊥ for m 6∈ {i, j, k} then output (wi, wj).

Else, output (z
(k)
i,j , v

(i,j)
k ), where z

(k)
i,j = f(s′1, . . . , s

′
4) and v

(i,j)
k =

LinRecView
(i,j)
k (vi, vj).

– For m ∈ [4] and for each j ∈ Tm, party Pj does the following for each i ∈ Tm,j :
Pj chooses a random subset Sm,j,i ⊂ [σ] of size σ/2, and sends

(Sm,j,i, {K(i)
m,j,`}`∈Sm,j,i

) to Pi, and (Sm,j,i, {K(i)
m,j,`}`∈[σ]) to Pk for k ∈

[4] \ {i, j,m}.
Pj sends {M (j)

m,i,`}`∈[σ] to Pi over point-to-point channels.

Now it remains to show how to design the output computation phase that
ensures that each party Pk computes the correct output, i.e., one that is consis-
tent with the simulation. The analysis below handles the identifiable cases and
the resolvable cases separately. As pointed out earlier, the identifiable cases are
relatively easier to handle, and so we focus on that first.

Handling the identifiable cases. Recall that in the identifiable cases, the incon-

sistency graph G
(m)
k for corrupt Pm contains either (1) all three edges, or (2) a

single edge with vote parity 0. (Note we show how to compute the votes below.)
We handle the identifiable triple-edge case as follows:

– If ∃m ∈ Tk such that G
(m)
k contains 3 edges, say (i, j), (j, k), (i, k), then

• Assert that output of πki,j equals (wi, wj).

• Parse wi, wj to obtain for all p ∈ Tm and ` ∈ {i, j} the set v
(`)
p =

{(p, t, s(`)p,t)}t∈T`,p
.

• Set s′m = 0. For each p ∈ Tm, set s′p = LinRecInput(i,j)p (v
(i)
p , v

(j)
p ).

• Output zk = f(s′1, . . . , s
′
4) and terminate.

To see why the above works, recall that for an honest Pm, the graph G
(m)
k

will never contain all three edges. This is because there is always a pair
of honest parties Pi and Pj (other than Pm) that hold consistent shares

distributed by Pm, and hence do not have an edge between them in G
(m)
k .

Therefore if there exists m ∈ Tk such that G
(m)
k contains all three edges,

then Pk can be assured that Pm is corrupt. Further, since (i, j) ∈ G(m)
k it

must hold that πki,j output (wi, wj) (i.e., the protocol will never terminate
with output fail3). Next, note that for each t ∈ Tm, party Pt is honest, and

that honest Pi and Pj hold consistent shares of st. Thus LinRecInput
(i,j)
t will

reconstruct the correct output, i.e., s′t = st. Note that we have substituted
the corrupt party’s input with 0, exactly as done in the simulation. Thus the
output of Pk will be zk in both the real and ideal executions.

Next we focus on handling the identifiable single-edge case, i.e., the inconsis-

tency graph G
(m)
k contains a single edge (i, j) with vote parity 0. To set things

up, we first need to ensure that party Pk can indeed compute the votes (and
the vote parity). Thus, we describe how Pk computes the votes first, and then
describe how Pk computes the final output depending on the votes (rather vote
parity) and the output of the PSM executions.
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Computing the votes. Ideally we want the vote calculation procedure to be ex-
actly as in the VSS protocol (and this will also help ensure that the distribution
of the votes is statistically close to the simulation). The main difficulty in this
setting is that Pk may not always explicitly know the secret, say sm (e.g., in
cases where Pm is honest), or even the MACs (since knowing the keys as well as
MACs corresponding to secret sm will reveal sm).

To design the vote computing mechanism, we will need to consider two cases.
First, suppose k ∈ {i, j}. In this case, our protocol’s second round (non-PSM)

messages are designed in a way to enable computation of c
(k)
m,k. More specifically,

Pk receives (Sm,m′,k, {K(k)
m,m′,`}`∈Sm,m′,k) from Pm′ where m′ ∈ [4] \ {i, j,m}.

These values along with M
(k)
m,m′,` that Pk already received from Pm are sufficient

to let Pk to compute c
(k)
m,k. Next, suppose m′′ ∈ {i, j}\{k}. Once again, comput-

ing c
(k)
m,m′′ is made possible by receiving the relevant values from Pm′ (and also

MAC values received from Pm′′ over point-to-point channels), but this works
only if m′ 6= k (which is exactly the case when k ∈ {i, j}). When m′ = k, i.e.,

k 6∈ {i, j}, party Pk would need to know the MAC values M
(m′′)
m,m′,` in order to

compute c
(k)
m,m′′ . Fortunately in this case, we will be able to leverage the output

of the PSM executions. Specifically, when (i, j) ∈ G(m)
k , in this case the output

of the PSM execution πki,j must be (wi, wj) (with s
(i)
m,k 6= s

(j)
m,k). Thus, now Pk

can parse (wi, wj) to learn the relevant MAC values, denoted M
(m′′,k)
m,m′,` (which

equals M
(m′′)
m,m′,` when Pm′′ is honest). We now describe the vote computation

step concretely.

– For each m ∈ Tk such that G
(m)
k contains exactly one edge, say (i, j) with

m′ ∈ [4] \ {i, j,m} (note that it is possible that k ∈ {i, j}), then Pk does the
following:

• Party Pk initializes c
(k)
m,i = c

(k)
m,j = 0.

• If k ∈ {i, j}, then party Pk sets c
(k)
m,k = 1 if ∀` ∈ Sm,m′,k it holds that

M
(k)
m,m′,` is a MAC on s

(k)
m,m′ consistent with key K

(k)
m,m′,`.

• For m′′ ∈ {i, j} \ {k}, party Pk sets c
(k)
m,m′′ = 1 if (1) ∀` ∈ Sm,m′,m′′ it

holds that M
(m′′,k)
m,m′,` is a MAC on s

(m′′)
m,m′ consistent with key K

(m′′)
m,m′,`, and

(2) ∃` ∈ [σ] \Sm,m′,m′′ such that M
(m′′,k)
m,m′,` is a MAC on s

(m′′)
m,m′ consistent

with key K
(m′′)
m,m′,`.

Computing the output. Given that the votes are computed as above, we now
describe how Pk computes its output in the identifiable single-edge case (i.e.,
vote parity equals 0). We begin by first noting that party Pm must be corrupt
in this case. Thus, all the remaining parties will hold the same inconsistency

graph as Pk, i.e., all parties hold the inconsistency graph G
(m)
k (that contains

the single edge (i, j)). Furthermore, the vote computation step above is designed
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in a way such that for all t1, t2, p ∈ Tm, it will hold that c
(t1)
m,p = c

(t2)
m,p with all but

negligible probability. Now the steps required to compute the final output will
take advantage of the above facts to ensure that all parties compute the same
final output. As it turns out, designing these steps is somewhat challenging since
honest parties may not all have access to the corrupt party’s (effective) input.

To better understand this challenge, let us look at the views of all three
parties other than corrupt Pm. Let m′ ∈ [4] \ {i, j,m}, and thus we denote the
three parties as Pi, Pj , and Pm′ . Note that each of Pi, Pj , Pm′ must be in a
position to compute the final output using the output of a single PSM execution
which is guaranteed to deliver output. (The other two PSM executions involve
corrupt Pm as client, and may simply abort.) Somewhat counterintuitively this
simplifies the challenge in the sense that the parties can simply discard the
outcome of PSM executions which involve corrupt Pm as client. We begin the
analysis by looking at the easy case where party Pm′ tries to reconstruct the
output using the output of the PSM execution where Pi and Pj are the clients.

Since (i, j) ∈ G(m)
m′ it must hold that the output of πm

′

i,j equals (wi, wj). Obviously,
(honest) Pm′ can now reconstruct each honest parties’ input in the following way:

for all p ∈ Tm, set s′p = LinRecInput(i,j)p (v
(i)
p , v

(j)
p ). These reconstructed inputs

are guaranteed to be correct since both Pi and Pj are honest parties, and thus
hold consistent shares of every honest parties’ input. Now Pm′ is in a position to
compute the correct output (irrespective of what decision proecedure we finally
use) since it possesses wi, wj , wm′ (which will be used to extract the correct
effective input for corrupt Pm), and also the values {s′p}p∈Tm

. It remains to be
shown how exactly is Pm’s effective input extracted, and for this we will need to
first look at what parties Pi, Pj can reconstruct.

Consider party Pi. We will use the fact that G
(m)
i contains exactly one edge

(i.e., (i, j)), and therefore, the output of πim′,j will not equal (wm′ , wj). In other

words, we are guaranteed that the output of πim′,j equals (zim′,j , v
(m′,j)
i ). Our first

observation is that the value zim′,j is computed using the honest inputs (because
both Pm′ and Pj are honest and thus provide correct shares of all honest inputs).
Next, note that the effective input of corrupt Pm used to compute zim′,j would be

s̃
(i)
m = s

(m′)
m,i ⊕s

(m′)
m,j ⊕s

(j)
m,m′ (i.e., using CNF shares possessed by Pm′ and Pj). That

is, the value zim′,j is computed using values {s′p}p∈Tm
and s̃

(i)
m . By an analogous

argument, we have that Pj receives from πjm′,i output (zjm′,i, v
(m′,i)
j ) where the

value zjm′,i is computed using values {s′p}p∈Tm
and s̃

(j)
m = s

(m′)
m,i ⊕s

(m′)
m,j ⊕s

(i)
m,m′ .

Note that s̃
(i)
m 6= s̃

(j)
m since s

(j)
m,m′ 6= s

(i)
m,m′ (and this is precisely why (i, j) is an

edge in the inconsistency graph). Thus, it remains to be shown how Pi and Pj
can compute the same final output in this case.

A first attempt would be to let Pi and Pj (and also Pm′) to try and substitute
corrupt Pm’s input by 0 in the function evaluation. However, in order to do this,
party Pi (resp. Pj) would first need to cancel out the shares corresponding to

Pm’s input from the value zim′,j (resp. zjm′,i). Unfortunately, in order to protect
privacy against corrupt PSM referees, the protocol is designed in a way such that
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Pi would not learn s̃
(i)
m (in particular the missing share s

(m′)
m,i ) from v

(m′,j)
i , and

therefore cannot cancel out αms̃
(i)
m from zim′,j . This poses a major hindrance to

our plan of computing the final output by simply replacing corrupt Pm’s input
by 0.

We overcome the obstacle by using the following trick. Instead of attempt-
ing to substitute corrupt Pm’s input by 0, we let Pi to locally “correct” the

output zim′,j by XORing it with αms
(i)
m,m′ . (Note party Pi obtains CNF share

s
(i)
m,m′ from corrupt Pm in round 1 of the protocol.) Likewise Pj locally “cor-

rects” zjm′,i by XORing it with αms
(j)
m,m′ . This has the effect of ensuring that

both Pi and Pj agree on the same final output (without knowing what effec-
tive input of corrupt Pm they use). To see why let Γ = (

⊕
p∈Tm

αps
′
p). Then,

observe that zim′,j = Γ⊕αms̃(i)m and that zjm′,i = Γ⊕αms̃(j)m . Thus, to prove

agreement, it suffices to show that s̃
(i)
m ⊕s(i)m,m′ = s̃

(j)
m ⊕s(j)m,m′ . This in fact,

follows immediately upon inspection. (Recall s̃
(i)
m = s

(m′)
m,i ⊕s

(m′)
m,j ⊕s

(j)
m,m′ while

s̃
(j)
m = s

(m′)
m,i ⊕s

(m′)
m,j ⊕s

(i)
m,m′ .) To conclude in this case, the effective corrupt input

used equals s
(m′)
m,i ⊕s

(m′)
m,j ⊕s

(i)
m,m′⊕s(j)m,m′ . Thus, we have the following steps:

– If ∃m ∈ Tk such that G
(m)
k contains exactly one edge, say (i, j), and if

c
(k)
m,i = c

(k)
m,j , then

• If k ∈ {i, j}: Let m′ ∈ [4] \ {i, j,m} and m′′ ∈ {i, j} \ {k}.
∗ Assert that output of πkm′,m′′ equals (zkm′,m′′ , v

(m′,m′′)
k ). If not output

fail1 and terminate.
∗ Output z′k = zkm′,m′′⊕αms(k)m,m′ and terminate.

• Else if k 6∈ {i, j}:
∗ Assert that output of πki,j equals (wi, wj). If not output fail1 and

terminate.
∗ Parse wi, wj to obtain for all p ∈ Tm and ` ∈ {i, j} the set v

(`)
p =

{(p, t, s(`)p,t)}t∈T`,p
.

∗ For all p ∈ Tm, set s′p = LinRecInput(i,j)p (v
(i)
p , v

(j)
p ).

∗ Compute s′m = s
(k)
m,i⊕s

(k)
m,j⊕s

(i)
m,k⊕s

(j)
m,k.

∗ Output z′k =
⊕

p∈[4]αps
′
p and terminate.

Handling the resolvable cases. Now we are in the remaining cases where it is clear
that in the ideal execution, the output of the honest parties, say z′, is computed
using the adversary input, say s′ that is extracted from consistent secret shares
possessed by a pair of honest parties. Obviously now it remains to be shown that
honest parties will output z′ even in the real execution. Towards this, we let
each party Pk construct an accusation graph Ak using the inconsistency graphs

{G(m)
k }m∈Tk

. We will ensure the following property for honest Pk: Graph Ak
contains an edge between two vertices i and j iff one of Pi, Pj is dishonest. The
accusation graph is constructed as follows:
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1. For each m ∈ Tk, if there are two edges (i,m′), (j,m′) in G
(m)
k , then add

edge (m,m′) to Ak.

2. For each m ∈ Tk, if there is exactly one edge (i, j) in G
(m)
k , then add edge

(i,m) to Ak if c
(k)
m,i = 0, else add edge (j,m).

In the first case, clearly one of Pm, Pm′ is corrupt. This is because if Pi (resp.

Pj) was corrupt, then (j,m′) (resp. (i,m′)) cannot be an edge in G
(m)
k . In the

second case, suppose edge (i,m) was added to Ak, then we argue that one of
Pi, Pm is corrupt. (The case when (j,m) is added is handled similarly.) This is
because if Pm′ with m′ ∈ [4] \ {i, j,m} was corrupt then (i, j) cannot be an

edge in G
(m)
k . On the other hand if Pj was corrupt (and therefore Pi, Pm, Pm′

are honest), then c
(k)
m,i = 1 always holds. Thus, we conclude that graph Ak

constructed as above contains an edge between two vertices i, j iff one of Pi, Pj
is corrupt.

Now we describe how the accusation graph is used to ensure that the final
output of Pk is computed as z′. We analyze this case-by-case depending on the
structure of Ak.

1. Ak contains no edges. In this case, Pk outputs zki,j for any i, j ∈ Tk.
Our main claim for handling this case is that for every i, j ∈ Tk, the output

of πki,j equals (zki,j = z′, v
(i,j)
k = vk). (Recall z′ is the output in the ideal

execution.) Our starting observation is that if there are no edges in Ak, then

for every m ∈ Tk there must be no edges in G
(m)
k . (This is true since (1)

the case when G
(m)
k has three edges was already handled, and (2) the case

when G
(m)
k has two edges always results in Ak having at least one edge, and

(3) the case when G
(m)
k has a single edge is either already handled (i.e., in

the identifiable case) or results in Ak having an edge (i.e., in the resolvable
case).) This immediately allows us to show that for every i, j ∈ Tk, the

output of πki,j must be of the form (∗, v(i,j)k = vk), since if v
(i,j)
k 6= vk, then

there would be an edge (either (i, k) or (j, k)) in G
(m)
k for m ∈ [4] \ {i, j, k}.

Now conditioned on v
(i,j)
k = vk, it immediately follows that honest Pk’s

shares for each parties’ input (including the adversary’s) are consistent with
those held by the honest parties among Pi, Pj . Thus, (1) the honest inputs
used to compute zki,j equal the honest parties’ actual inputs, and (2) the

adversary input used to compute the output zki,j equals the value s′ that
can be extracted from consistent shares of Pk and the honest parties among
Pi, Pj . Thus, we conclude that zki,j = z′ must hold.

2. Ak contains exactly one edge (m, i) for some m, i ∈ Tk.
Let j ∈ [4] \ {i,m, k}. Since Ak contains (m, i), it must hold that one of
Pm, Pi is dishonest, and so we have that Pj is honest. The challenge now
is to choose how to compute the final output depending on the outputs of
πkm′,j for m′ ∈ {m, i}. (Note that Pk can safely ignore the output of πki,m.)

First observe that for all m′ ∈ {m, i}, the graph G
(m′)
k does not contain the

edge (j, k). This is because if (j, k) ∈ G
(m′)
k , then either (m′, j) or (m′, k)
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would be an edge in Ak. (Note that either (1) G
(m′)
k contains two edges, or

(2) G
(m′)
k contains a resolvable single-edge. In either case, it holds that either

(m′, j) or (m′, k) would be an edge in Ak.) Since we have that Ak contains
exactly one edge (m, i), the observation follows. Since (j, k) is not an edge

in G
(m′)
k for m′ ∈ {m, i}, we have that Pj and Pk hold consistent shares of

the corrupt party. Thus:
– If for some m′ ∈ {m, i}, protocol πkm′,j outputs (wm′ , wj), then
Pk can compute the correct output simply by setting s′t =

LinRecInput
(j,k)
t (v

(j)
t , v

(k)
t ) for all t ∈ [4] and output z′ = f(s′1, . . . , s

′
4).

The next case to handle is when for all m′ ∈ {m, i} the output of πkm′,j equals

(zkm′,j , v
(m′,j)
k ). How do we decide which output to accept? How do we break

the symmetry? In fact, it is not even clear if the symmetry can be broken.
Luckily as it turns out we don’t have to break the symmetry, and loosely
speaking, we turn the situation on its head and design a procedure such that
it that extracts the same final output (consistent with the ideal execution)

from either πki,j or πkm,j (i.e., even when (zki,j , v
(i,j)
k ) 6= (z

(k)
m,j , v

(m,j)
k )). We

first assert the following:

– Assert that there exists m′,m′′ ∈ {m, i} with m′ 6= m′′ such that the

output of πkm′,j equals (zkm′,j , v
(m′,j)
k ) and further that v

(m′,j)
k satisfies

v
(m′,j)
k \ {(m′′, j, shm′′,j)} = vk \ {(m′′, j, s(k)m′′,j)}.
• Let Pm′ with m′ ∈ {m, i} be honest. We will prove that the assertion

holds for Pm′ . Next, note (1) πkm′,j will not output ⊥ since Pm′ , Pj , Pk
are all honest, and (2) πkm′,j did not output (wm′ , wj) since if it
did then the protocol would have already terminated after being
handled in the case above. Thus, it must be the case that πkm′,j

output (zkm′,j , v
(m′,j)
k ).

Now let us look at what happens inside subroutine LinRecView
(i,j)
k .

Since Pm′ and Pj are both honest, they will obviously agree on
all shares sp,t where p ∈ {m′, j, k} (i.e., the honest parties. When
p = m′′ (i.e., the index corresponding to the corrupt party), note

that the subroutine LinRecView
(i,j)
k does not perform any equal-

ity tests, and therefore does not return ⊥. Therefore, let v
(m′,j)
k =

{(p, t, shp,t)}p∈[4],t∈Tp,k
. Clearly for all p ∈ {m′, j, k}, we have that

(p, t, shp,t) = (p, t, s
(k)
p,t ). Now shm′′,m′ equals s

(j)
m′′,m′ (i.e., is held by

Pj). If s
(j)
m′′,m′ 6= s

(k)
m′′,m′ , then (j, k) ∈ G(m)

k must hold – a contra-

diction. Thus, we have that shm′′,m′ = s
(k)
m′′,m′ . This suffices to prove

that the output of πkm′,j equals (zkm′,j , v
(m′,j)
k ) and further that v

(m′,j)
k

satisfies v
(m′,j)
k \ {(m′′, j, shm′′,j)} = vk \ {(m′′, j, s(k)m′′,j)}.

For the rest of the analysis, assume wlog that m′ = i. That is, from the above

assertion we have that either the output of πki,j equals (zki,j , v
(i,j)
k ) with either

(1) v
(i,j)
k = vk, or (2) v

(i,j)
k differing from vk only in the value s

(k)
m,j .
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– Suppose that output of πki,j equals (zki,j , v
(i,j)
k ), and v

(i,j)
k = vk: Then Pk

outputs zki,j .

• Note already that (j, k) 6∈ G(m)
k . Since πki,j did not output (wi, wj),

it also holds that (i, j) 6∈ G(m)
k . Now if v

(i,j)
k = vk, then even (i, k) 6∈

G
(m)
k . That is, we have thatG

(m)
k is the empty graph. If Pm is corrupt,

then the correct decision is to accept zki,j (since the effective input
used for the corrupt party is indeed constructed using consistent
shares possessed by the honest parties). On the other hand, if Pm
is honest, then we are assured that the true input of Pm is used
to compute zki,j . However, it is not clear if zki,j was computed using
input of (corrupt) Pi that is consistent with the simulation. To show

this we use the fact that (j, k) 6∈ G(i)
k . (Recall that (j, k) is neither

an edge in G
(m)
k nor in G

(i)
k .) Thus the output was computed using

the input of (corrupt) Pi that is consistent with the shares held by
Pj and Pk, and is therefore, consistent with the simulation as well.

– Suppose that output of πki,j equals (zki,j , v
(i,j)
k ), but v

(i,j)
k 6= vk (i.e.,

s
(i)
m,j 6= s

(k)
m,j): If c

(k)
m,k = 0, output zki,j , else output zki,j⊕αm(s

(i)
m,j⊕s

(k)
m,j).

• Recall that Pj is honest. In this case, (i, j) 6∈ G(m)
k since otherwise

the output of πki,j would have been (wi, wj). Also, recall that (j, k) 6∈
G

(m)
k . Note that s

(i)
m,j 6= s

(k)
m,j , and so we conclude that (i, k) ∈ G(m)

k .

Therefore, we have a single-edge in G
(m)
k , and we consider the values

c
(k)
m,i and c

(k)
m,k. If c

(k)
m,i = 1 (and c

(k)
m,k = 0), then the correct decision is

to accept zki,j , since in this case it is clear that Pm is corrupt. Since

Pi and Pj are honest, then it is immediate that zki,j equals the output
computed using the adversary input as extracted by the simulator.

On the other hand if c
(k)
m,k = 1 (and c

(k)
m,i = 0), then the value zki,j is

computed using an adversary input that is different from the one used
in the simulation. Here we take advantage of the fact that f is a linear
function, and that given an evaluation of linear function at a specific
point x, it is possible to obtain an evaluation at a different point x′

as long as x, x′ differ in exactly one coordinate and the difference is
known. Specifically, for f(s′1, . . . , s

′
4) =

⊕
t∈[4]αts

′
t, we now compute

the final output as zk = zki,j+αm(s
(i)
m,j⊕s

(k)
m,j). It remains to be shown

that this step indeed computes the correct output.

∗ We first consider the case when Pi is honest (i.e., Pm is corrupt).
Note that the zki,j = f(s′′1 , . . . , s

′′
4) where for all t ∈ Tm, it holds

that s′′t equals the true input of the honest party Pt, and s′′m =

s
(j)
m,i⊕s

(j)
m,k⊕s

(i)
m,j equals the value reconstructed using the shares

s
(j)
m,i, s

(j)
m,k provided by party Pj , and the share s

(i)
m,j provided by

party Pi. Since c
(k)
m,i = 0 the simulator in the ideal execution will

reconstruct the adversary’s input using the shares held by Pj and
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Pk, i.e., s′m = s
(j)
m,i⊕s

(j)
m,k⊕s

(k)
m,j . I.e., z′ = (

⊕
t∈Tm

αts
′′
t )⊕αms′m

while zki,j = (
⊕

t∈Tm
αts
′′
t )⊕αms′′m. Thus, we let Pk apply the

correction β
(i,k)
m,j = αm(s

(i)
m,j⊕s

(k)
m,j) to zki,j to obtain z′. Note that

it is possible to apply the correction since Pk already possesses

s
(k)
m,j and it obtains s

(i)
m,j, as this is part of v

(i,j)
k .

∗ Finally, we consider the case when Pi is corrupt (i.e., Pm is hon-
est). In this case, we need to show that the procedure outlined
above still produces the correct output z′. More precisely, we
need to show that applying the following steps produces the cor-

rect output: (1) if c
(k)
m,k = 0, then output zki,j , (2) else output

zki,j⊕αm(s
(i)
m,j⊕s

(k)
m,j). Actually, since Pm and Pj are honest, the

event that c
(k)
m,k = 0 never occurs. This allows us to focus only

on the second case. Now, we have c
(k)
m,i = 0, and yet Pi might

somehow ensure that πki,j outputs zki,j = z′. (Note ironically this

is problematic since our procedure applies the correction β
(i,k)
m,j

to zki,j = z′ thereby resulting in incorrect output z′ + β
(i,k)
m,j .)

The key observation is that such an attack cannot be carried
out by corrupt Pi. This follows from our main assertion that the

values vk and v
(i,j)
k can differ only in the CNF share sm,j , i.e.,

s
(i)
m,j 6= s

(k)
m,j , and from the observation that zki,j is computed us-

ing values supplied by Pi that appear in v
(i,j)
k . Fortunately, in

this case, the correction β
(i,k)
m,j applied to zki,j will result in the

correct output z′.

3. Ak contains the edge (m, k) for some m ∈ Tk, or Ak contains two edges
(m, i) and (m, j) for i, j,m ∈ Tk.
In both these cases, it is clear to Pk that Pm is corrupt (i.e., Pi and Pj are
honest), and that the final output has to be extracted from the output of πki,j
(i.e., the other PSM executions can be ignored). Next, it is straightforward
to handle the case when πki,j outputs (wi, wj) since:

– If πki,j outputs (wi, wj), then Pk outputs the output of the simulation
extractor on wi, wj , wk.

It is straightforward to see that Pk produces the output exactly as in the

ideal execution. The harder case is when πki,j outputs (zki,j , v
(i,j)
k ). Clearly

(i, j) 6∈ G(m)
k since otherwise πki,j would have output (wi, wj). Now it appears

that we can simply accept zki,j . However, this is not correct. We additionally

need to check if (i, k) or (j, k) is contained in G
(m)
k .

– If both (i, k) and (j, k) are contained in G
(m)
k , then Pk outputs zki,j .

– Else if only (i, k) ∈ G(m)
k (wlog), then (1) output zki,j if c

(k)
m,i = 1, (2) else

output zki,j⊕β
(i,k)
m,j .

To see why the above works, note that when both (i, k) and (j, k) are con-

tained in G
(m)
k , the simulation extractor would use the view of the honest
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parties Pi and Pj (who are also consistent between themselves since oth-

erwise πki,j wouldn’t output (zki,j , v
(i,j)
k )) to generate the final output. Since

this output would equal zki,j , we can let Pk simply accept zki,j as the final
output. On the other hand, when only one of the two edges, say (i, k) exists

in G
(m)
k , then the simulation extractor would see which of the two parties

Pi, Pk did Pm “support”, i.e., depending on which of c
(k)
m,i, c

(k)
m,k, equals 1.

Following this, Pk decides whether to accept zki,j (i.e., if c
(k)
m,i equals 1), or

apply the correction to zki,j (i.e., if c
(k)
m,k equals 1). As before, applying the

correction has the effect of canceling out the wrong value of share sm,j (i.e.,

s
(i)
m,j) and re-adding the ‘right’ value (i.e., s

(k)
m,j), and therefore ensuring that

the effective input used is consistent with the value extracted in the ideal
process simulation.

Summarizing, we have the following resolution procedure for each party Pk:

1. Construct the accusation graph Ak as follows: Initialize Ak as the 4-vertex
empty graph.

– For each m ∈ Tk, if there are two edges (i,m′), (j,m′) in G
(m)
k , then add

edge (m,m′) to Ak.

– For each m ∈ Tk, if there is exactly one edge (i, j) in G
(m)
k , then add

edge (i,m) to Ak if c
(k)
m,i = 0, else add edge (j,m).

2. If Ak contains no edges, then:

– Assert that there exists i, j ∈ Tk such that πki,j outputs (zki,j , v
(i,j)
k ) for

some zki,j , v
(i,j)
k .

– Let i, j be from the previous step. Output z′k = zki,j and terminate.
3. Else if Ak contains exactly one edge (m, i) for some m, i ∈ Tk, then let
j ∈ [4] \ {m, i, k}.
(a) If ∃m′ ∈ {m, i} s.t. πkm′,j outputs (wm′ , wj), then

– Parse wj to obtain for all p ∈ [4] the set v
(j)
p = {(p, t, s(j)p,t)}t∈Tj,p

.

– For each p ∈ [4], set s′p = LinRecInput(j,k)p (v
(j)
p , v

(k)
p ).

– Output z′k = f(s′1, . . . , s
′
4), and terminate.

(b) Else assert that there exists m′,m′′ ∈ {m, i} with m′ 6= m′′ such that

the output of πkm′,j equals (zkm′,j , v
(m′,j)
k ) and further that v

(m′,j)
k satisfies

v
(m′,j)
k \ {(m′′, j, shm′′,j)} = vk \ {(m′′, j, s(k)m′′,j)}.
– Output zkm′,j⊕αm′′(shm′′,j⊕s(k)m′′,j).

4. Else if Ak contains the edge (m, k) for some m ∈ Tk, or Ak contains two
edges (m, i) and (m, j) for some i, j,m ∈ Tk, then:
– If πki,j outputs (wi, wj), then:

• Parse wj to obtain for all p ∈ [4] the set v
(j)
p = {(p, t, s(t)p,t)}t∈Tj,p

.

• For each p ∈ Tm, set s′p = LinRecInput(j,k)p (v
(j)
p , v

(k)
p ).

• Compute s′m = SimExtract(i,j,k)m (wi, wj , wk).
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• Output z′k = f(s′1, . . . , s
′
4), and terminate.

– Else assert that the output of πki,j is (zki,j , v
(i,j)
k ) for some zki,j , v

(i,j)
k .

• If both (i, k) and (j, k) are contained in G
(m)
k , then output zki,j .

• Else if ∃m′,m′′ ∈ {i, j} with m′ 6= m′′ such that (m′, k) ∈ G
(m)
k ,

then
∗ If c

(k)
m,m′ = 1, output zki,j .

∗ Else output zki,j⊕αm(s
(m′)
m,m′′⊕s(k)m,m′′).

We are now ready to describe the complete protocol for 2-round 4-party statis-
tically secure linear function evaluation.

Protocol. Let Ti denote the set [4] \ {i}, and let Ti,j denote the set [4] \ {i, j}.

Round 1. For each m ∈ [4], party Pm does the following:

– Pm holding private input sm performs a 1-private 3-party CNF sharing of sm
among the remaining 3 parties. More precisely, it chooses random {sm,j}j 6=m
such that

⊕
j 6=msm,j = sm, and sends CNF share {s(j)m,t = sm,t}t∈Tm,j

to
party Pj for each j 6= m.

– Pm creates σ information-theoretic MACs for each value sm,j as

{M (i)
m,j,`,K

(i)
m,j,`}i∈Tm,j ,`∈[σ] and sends {M (i)

m,j,`}`∈[σ] to Pi for each i ∈ Tm,j ,
and {K(i)

m,j,`}i∈Tm,j ,`∈[σ] to Pj .
– Pm exchanges randomness with each Pj for a 2-client PSM protocol described

below.

Round 2.

– Each pair of parties (Pi, Pj) runs the following PSM protocol πki,j that de-
livers output to Pk:

Inputs: wp = {({s(p)m,t}t∈Tm,p , {M
(p)
m,t,`}t∈Tm,p,`∈[σ], {K

(t)
m,p,`}t∈Tm,p,`∈[σ])}m∈[4]

from Pp for p = i, j.

For all ` ∈ {i, j}: (1) For all m ∈ [4], set v
(`)
m = {(m, t, s(`)m,t)}t∈Ti,m

. (2)

Set v` = ∪m∈[4]v
(`)
m .

For all m ∈ [4], compute s′m = LinRecInput(i,j)m (v
(i)
m , v

(j)
m ).

If s′m = ⊥ for m ∈ {i, j, k} then output ⊥.

Else if s′m = ⊥ for m 6∈ {i, j, k} then output (wi, wj).

Else, output (z
(k)
i,j , v

(i,j)
k ), where z

(k)
i,j = f(s′1, . . . , s

′
4) and v

(i,j)
k =

LinRecView
(i,j)
k (vi, vj).

– For m ∈ [4] and for each j ∈ Tm, party Pj does the following for each
i ∈ Tm,j :
• Pj chooses a random subset Sm,j,i ⊂ [σ] of size σ/2, and sends

(Sm,j,i, {K(i)
m,j,`}`∈Sm,j,i

) to Pi, and (Sm,j,i, {K(i)
m,j,`}`∈[σ]) to Pk for k ∈

[4] \ {i, j,m}.
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• Pj sends {M (j)
m,i,`}`∈[σ] to Pi over point-to-point channels.

Output Computation. For k ∈ [4], party Pk reconstructs its output as follows.

1. For m ∈ Tk: Initialize the inconsistency graph G
(m)
k to the empty graph. Let

i, j ∈ Tm,k with i 6= j.

– Add edge (i, j) to G
(m)
k iff πki,j outputs (wi, wj) (i.e., with s

(i)
m,k 6= s

(j)
m,k).

– Add edge (j, k) to G
(m)
k iff πki,j outputs either (1) (wi, wj) with s

(j)
m,i 6=

s
(k)
m,i, or (2) (zki,j , v

(i,j)
k ) with s

(j)
m,i 6= s

(k)
m,i, where (m, i, s

(j)
m,i) ∈ v

(i,j)
k .

– Add edge (i, k) to G
(m)
k iff πki,j outputs either (1) (wi, wj) with s

(i)
m,j 6=

s
(k)
m,j , or (2) (zki,j , v

(i,j)
k ) with s

(i)
m,j 6= s

(k)
m,j , where (m, j, s

(i)
m,j) ∈ v

(i,j)
k .

2. If ∃m ∈ Tk such that G
(m)
k contains 3 edges, say (i, j), (j, k), (i, k), then

– Assert that output of πki,j equals (wi, wj).

– Parse wi, wj to obtain for all p ∈ Tm and ` ∈ {i, j} the set v
(`)
p =

{(p, t, s(`)p,t)}t∈T`,p
.

– Set s′m = 0. For each p ∈ Tm, set s′p = LinRecInput(i,j)p (v
(i)
p , v

(j)
p ).

– Output zk = f(s′1, . . . , s
′
4) and terminate.

3. For each m ∈ Tk such that G
(m)
k contains exactly one edge, say (i, j) with

m′ ∈ [4] \ {i, j,m} (note that it is possible that k ∈ {i, j}), then:

– Initialize c
(k)
m,i = c

(k)
m,j = 0.

– If k ∈ {i, j}, then set c
(k)
m,k = 1 if ∀` ∈ Sm,m′,k it holds that M

(k)
m,m′,` is a

MAC on s
(k)
m,m′ consistent with key K

(k)
m,m′,`.

– For m′′ ∈ {i, j} \ {k}, set c
(k)
m,m′′ = 1 if (1) ∀` ∈ Sm,m′,m′′ it holds

that M
(m′′,k)
m,m′,` is a MAC on s

(m′′)
m,m′ consistent with key K

(m′′)
m,m′,`, and (2)

∃` ∈ [σ] \ Sm,m′,m′′ such that M
(m′′,k)
m,m′,` is a MAC on s

(m′′)
m,m′ consistent

with key K
(m′′)
m,m′,`.

4. If ∃m ∈ Tk such that G
(m)
k contains exactly one edge, say (i, j), and if

c
(k)
m,i = c

(k)
m,j , then

– If k ∈ {i, j}: Let m′ ∈ [4] \ {i, j,m} and m′′ ∈ {i, j} \ {k}.
• Assert that output of πkm′,m′′ equals (zkm′,m′′ , v

(m′,m′′)
k ). If not output

fail1 and terminate.
• Output z′k = zkm′,m′′⊕αms(k)m,m′ and terminate.

– Else if k 6∈ {i, j}:
• Assert that output of πki,j equals (wi, wj). If not output fail1 and

terminate.
• Parse wi, wj to obtain for all p ∈ Tm and ` ∈ {i, j} the set v

(`)
p =

{(p, t, s(`)p,t)}t∈T`,p
.

• For all p ∈ Tm, set s′p = LinRecInput(i,j)p (v
(i)
p , v

(j)
p ).

• Compute s′m = s
(k)
m,i⊕s

(k)
m,j⊕s

(i)
m,k⊕s

(j)
m,k.

• Output z′k =
⊕

p∈[4]αps
′
p and terminate.
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5. Construct the accusation graph Ak as follows: Initialize Ak as the 4-vertex
empty graph.

– For each m ∈ Tk, if there are two edges (i,m′), (j,m′) in G
(m)
k , then add

edge (m,m′) to Ak.

– For each m ∈ Tk, if there is exactly one edge (i, j) in G
(m)
k , then add

edge (i,m) to Ak if c
(k)
m,i = 0, else add edge (j,m).

6. If Ak contains no edges, then:

– Assert that there exists i, j ∈ Tk such that πki,j outputs (zki,j , v
(i,j)
k ) for

some zki,j , v
(i,j)
k .

– Let i, j be from the previous step. Output z′k = zki,j and terminate.

7. Else if Ak contains exactly one edge (m, i) for some m, i ∈ Tk, then let
j ∈ [4] \ {m, i, k}.
(a) If ∃m′ ∈ {m, i} s.t. πkm′,j outputs (wm′ , wj), then

– Parse wj to obtain for all p ∈ [4] the set v
(j)
p = {(p, t, s(j)p,t)}t∈Tj,p

.

– For each p ∈ [4], set s′p = LinRecInput(j,k)p (v
(j)
p , v

(k)
p ).

– Output z′k = f(s′1, . . . , s
′
4), and terminate.

(b) Else assert that there exists m′,m′′ ∈ {m, i} with m′ 6= m′′ such that

the output of πkm′,j equals (zkm′,j , v
(m′,j)
k ) and further that v

(m′,j)
k satisfies

v
(m′,j)
k \ {(m′′, j, shm′′,j)} = vk \ {(m′′, j, s(k)m′′,j)}.

– Output zkm′,j⊕αm′′(shm′′,j⊕s(k)m′′,j).

8. Else if Ak contains the edge (m, k) for some m ∈ Tk, or Ak contains two
edges (m, i) and (m, j) for some i, j,m ∈ Tk, then:

– If πki,j outputs (wi, wj), then:

• Parse wj to obtain for all p ∈ [4] the set v
(j)
p = {(p, t, s(t)p,t)}t∈Tj,p

.

• For each p ∈ Tm, set s′p = LinRecInput(j,k)p (v
(j)
p , v

(k)
p ).

• Set wk,m = ({s(k)m,t}t∈Tm,k
, {M (k)

m,t,`}t∈Tm,k,`∈[σ], {K
(t)
m,k,`}t∈Tm,k,`∈[σ]).

• For p ∈ {i, j}, parse wp to obtain wp,m =

({s(p)m,t}t∈Tm,p
, {M (p)

m,t,`}t∈Tm,p,`∈[σ], {K
(t)
m,p,`}t∈Tm,p,`∈[σ]).

• Compute s′m = SimExtractm({wp,m}p∈Tm
).

• Output z′k = f(s′1, . . . , s
′
4), and terminate.

– Else assert that the output of πki,j is (zki,j , v
(i,j)
k ) for some zki,j , v

(i,j)
k .

• If both (i, k) and (j, k) are contained in G
(m)
k , then output zki,j .

• Else if ∃m′,m′′ ∈ {i, j} with m′ 6= m′′ such that (m′, k) ∈ G
(m)
k ,

then

∗ If c
(k)
m,m′ = 1, output zki,j .

∗ Else output zki,j⊕αm(s
(m′)
m,m′′⊕s(k)m,m′′).

– Else output zki,j .
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E.3 Proof of Theorem 4

In this section, we provide a sketch of the simulation and its analysis.

Simulation sketch. Let Pq denote the corrupt party. Acting as the honest parties,
the simulator first sends random shares, random MAC values and random keys to
corrupt Pq. Next, acting as the honest parties, the simulator receives shares and
MAC values and keys from the corrupt party. Using these values the simulator
computes {wp,q}p∈Tq

, and then invokes SimExtractq({wp,q}p∈Tq
) (described in

the previous section), and obtains the effective input s′q. The simulator submits
this input to the trusted party and obtains the output z′q from the trusted party.
Using this output, the simulator next invokes the PSM simulator Stransπ for each
of the PSM executions π from which Pq obtains output. To supply the inputs to
Stransπ , the simulator takes advantage of the fact that f is a linear function, and
that given an evaluation of linear function at a specific point s′q, it is possible
to obtain an evaluation at a different point s′′q . Recall that the value obtained
from the trusted party, i.e., z′q corresponds to the evaluation of f on corrupt
input s′q and the honest inputs {sp}p∈Tq . Now to obtain an evaluation of f on
a different corrupt input s′′q and the same set of honest inputs {sp}p∈Tq

, we just
compute z′q⊕αq(s′q⊕s′′q ). This has the effect of canceling out αqs

′
q from z′q and

instead adding αqs
′′
q , thereby resulting in an evaluation on the desired set of

points. Given this we claim that the simulator knows all the values that it needs
to invoke Stransπ . To see why, first observe that the output of a PSM execution
delivering output to Pq can never be of the form (wi, wj). This is because honest
parties Pi, Pj will supply consistent CNF shares of each honest party’s input. Let

k ∈ [4]\{q, i, j}. Recall that Pq supplied CNF shares s
(i)
q,j , s

(i)
q,k to Pi and s

(j)
q,i , s

(j)
q,k

to Pj . It follows from the correctness property of the PSM protocol πi,j that if

s
(i)
q,k 6= s

(j)
q,k, then the output of πi,j will be ⊥. Now we only need to handle the case

when the output of πqi,j is of the form (zqi,j , v
(i,j)
q ), i.e., in this case s

(i)
q,k = s

(j)
q,k.

Thus, in this case the value zqi,j would have been computed using the corrupt

input s′′q = s
(j)
q,i⊕s

(i)
q,j⊕s

(i)
q,k. We just showed that the simulator can compute zqi,j

using the value z′q obtained from the trusted party, the extracted input s′q and
the corrupt input s′′q used to compute the value zqi,j . Next, by inspection of the

subroutine LinRecView(i,j)
q which constructs the set v

(i,j)
q it should be clear that

the values contained in the set v
(i,j)
q correspond to values sent by Pq in the first

round of the protocol and to random additive shares sent by the simulator to
Pq on behalf of the honest parties. Thus, we conclude that the simulator is able
to successfully invoke the PSM simulator Strans

πq
i,j

for each PSM protocol πqi,j that

delivers output to Pq. This concludes the description of the simulator.2

2 Note that in the simulation we do not make use of the PSM simulator Sext
πq,p

(guar-
anteed by the robustness property of the PSM protocol) for PSM protocols where
Pq acts as a client. This is because we are concerned with full security and thus
the simulation procedure must not depend on Pq’s second round messages which
for instance may not even be available in case Pq aborts without sending round 2
messages.
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Analysis sketch. Since the corrupt party never obtains both MACs and keys for
the same value, the values obtained from the simulator in the first round are
indistinguishable from those obtained in the real execution. The messages that
Pq receives in round 2 correspond to the PSM executions. In the simulation, these
are messages that were generated by the PSM simulator Stransπ . In the description
of the simulation above we saw how the simulator is able to compute the outputs
that Pq will receive from each of the PSM executions. Given this and the privacy
property of the PSM protocol, it follows that the view of the adversary in the
ideal execution is indistinguishable from the real execution. More formally, in
the analysis, we will consider a hybrid execution which is exactly the same as the
real execution except the round 2 messages corresponding to the PSM protocols
are generated by the PSM simulator Stransπ . From above it is obvious that the
joint distribution of the view of the adversary and the honest outputs in the
real execution is indistinguishable from the joint distribution of the view of the
adversary and the honest outputs in the hybrid execution. Thus it remains to be
shown that the hybrid execution is indistinguishable from the ideal execution.

The crux of the proof lies in showing that in the hybrid execution the output
of the honest parties is generated using the honest inputs and the corrupt input
s′m extracted by the simulator, i.e., using the procedure SimExtractq (since this
is exactly how the honest outputs are generated in the ideal execution). To
show this, we follow the case analysis used in the procedure SimExtractq. In the
following we will focus on how (honest) party Pk computes its output in the
hybrid execution. Let i, j be distinct indices in [4] \ {q, k}. We first consider the
identifiable cases.

– Identifiable triple-edge case. In this case, note that the corrupt party Pq
supplies shares that are pairwise inconsistent. That is every pair of honest
parties holds inconsistent CNF shares of the corrupt party’s input. We first

claim that the inconsistency graph G
(q)
k constructed by Pk will contain all

three edges. Clearly (i, j) belongs to G
(q)
k precisely because they hold in-

consistent CNF shares of the corrupt party’s input, i.e., s
(i)
q,k 6= s

(j)
q,k, and so

the PSM execution πki,j will output (wi, wj). Now observe that wi (resp. wj)

contains value s
(i)
q,j 6= s

(k)
q,j (resp. s

(j)
q,i 6= s

(k)
q,i ) since we are in the case where

Pq supplied inconsistent CNF shares to every pair of honest parties. Thus,
in Step 1 of the output computation procedure, Pk will add both (i, k) as

well as (j, k) to the inconsistency graph G
(q)
k .

Next, we claim that for every p ∈ Tq, the inconsistency graph G
(p)
k does not

contain all 3 edges. Consider p = i, and the inconsistency graph G
(i)
k . We

claim that (j, k) is not an edge in G
(i)
k . Since Pi is honest, clearly both Pj

and Pk hold consistent CNF shares, i.e., s
(j)
i,q = s

(k)
i,q . Thus immaterial of the

output of πkq,j , the edge (j, k) will not be added to G
(i)
k .

Given the above, now in Step 2 of the output computation procedure, Pk
will set m = q. As we saw earlier, the output of the πqi,j equals (wi, wj),
and so the assertion passes. By inspection it follows that LinRecInput will
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reconstruct the honest inputs correctly. Since in Step 2, the effective corrupt
input used is 0, we conclude that in the identifiable triple-edge case, the
hybrid execution is indistinguishable from the ideal execution.

– Identifiable single-edge case. Recall that for every p ∈ Tq, the inconsistency

graph G
(p)
k does not contain all 3 edges. First, we claim that G

(q)
k will contain

exactly one edge. Observe that since we are in the (identifiable) single-edge
case there must be two pairs of honest parties that hold consistent shares.

Let Pi, Pj hold consistent CNF shares of Pq’s input, i.e., s
(i)
q,k = s

(j)
q,k. In this

case, it is easy to see that πki,j will not output (wi, wj), and therefore edge

(i, j) is not added to G
(q)
k . On the other hand suppose Pi, Pk hold consistent

CNF shares of Pq’s input, i.e., s
(i)
q,j = s

(k)
q,j . In this case by inspection it follows

that (i, k) will not be an edge in G
(q)
k . That is, in either case, we have shown

that if parties hold consistent CNF shares then they do not have an edge

between them in G
(q)
k . On the other hand and as we saw earlier, if parties

hold inconsistent CNF shares then there is an edge between them in G
(q)
k .

Therefore, in the output computation procedure, honest Pk will skip Step 2
and go to Step 3 where the votes are computed for the single-edge.

Now we claim that for every p ∈ Tq, if the inconsistency graph G
(p)
k contains

a single-edge then c
(k)
p,q = 0, i.e., Pp does not support Pq. (Note that it is

obvious that q is one endpoint of this edge.) The argument is identical to the

argument in the analysis of our VSS scheme, in that to get c
(k)
p,q = 1, party Pq

has to forge an information-theoretic MAC on a value different from the one
distributed by Pp; it can do so only with negligible probability. For the sake
of clarity, we do not repeat the argument here, but mainly note that except
with negligible probability, all parties agree on the outcome of all voting
procedures. (See proof of Theorem 3 for more details.) In particular, this
allows us to conclude party Pk will execute Step 4 of the output computation
procedure with m = q.

Now we have two cases to handle depending on whether k is a part of this
single edge.

• Suppose k is a part of the single edge. Denote this edge by (m′′, k). Let

Pm′ denote the honest party that is not part of the edge in G
(q)
k . First we

claim that the output of πkm′,m′′ equals (zkm′,m′′ , v
(m′,m′′)
k ). This is because

Pm′ , Pm′′ are both honest and hold consistent CNF shares of Pq’s input
(note: the single edge is (m′′, k)). Now it is easy to see that the value

zkm′,m′′ is computed using corrupt input s
(m′′)
q,m′ ⊕s(m

′)
q,m′′⊕s(m

′)
q,k . The output

computation procedure then corrects this by xor-ing with s
(k)
q,m′ thereby

effectively changing the corrupt input to s
(m′′)
q,m′ ⊕s(m

′)
q,m′′⊕s(m

′)
q,k ⊕s

(k)
q,m′ , i.e.,

xor of all unique CNF shares (including the inconsistent ones). Since this
is exactly the effective input extracted in the procedure SimExtractq, we
conclude that the hybrid execution is indistinguishable from the real
execution in this case.
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• Suppose k is not part of the single edge, i.e., (i, j) is the single edge. Then
clearly the output of πki,j equals (wi, wj) since they hold inconsistent
shares (and that is precisely why there is a single edge between them),
and thus the assertion succeeds. It then follows by simple inspection of
Step 4 that the output is computed exactly as in the ideal execution.

This concludes the analysis of the identifiable single-edge case.

Next, we move to the resolvable cases. Before we begin, we observe that in these
cases, the output computation procedure does not exit before Step 6. This is

because recall that the inconsistency graphs G
(p)
k for p ∈ Tq neither contains 3

edges nor contains an identifiable single-edge.

– Resolvable single-edge case. In this case, it can be verified that the accusation

graph contains at least one edge say (q, m̃) where c
(k)
q,m̃ = 0. Note it is possible

that m̃ = k. In any case the output decision process terminates in either
Step 7 or Step 8.
• Suppose m̃ = k. Then it is clear that the output decision procedure

terminates in Step 8 (since obviously Ak contains at least one edge, and
this edge is of the form (q, k)). Since we are in the resolvable single-edge
case involving k as one of the endpoints of this edge, it is clear that Pi
and Pj for i, j ∈ Tq,k hold consistent CNF shares of the corrupt input.
Therefore, the output of πki,j will not be of the form (wi, wj). In fact

the output will be of the form (zki,j , v
(i,j)
k ). Again since we are in the

(resolvable) single-edge case, at most one of (i, k), (j, k) is contained in

G
(q)
k . Let (m′, k) ∈ G

(q)
k for m′ ∈ {i, j}. Obviously c

(k)
q,m′ = 1 (that is

why it is a resolvable case), and so the output computation procedure
terminates with output zki,j . Now it remains to be shown that the output

in the ideal execution also equals zki,j .

To show this, first let us see what inputs are used to compute output zki,j
in the hybrid execution. Since Pi and Pj are honest parties, inside the
execution πki,j the honest inputs are reconstructed using consistent CNF
shares of honest inputs possessed by Pi and Pj . Likewise the corrupt

input that is used to compute zki,j would be s
(j)
q,i⊕s

(i)
q,j⊕s

(i)
q,k, i.e., using

consistent CNF shares possessed by Pi and Pj . Indeed this are exactly
the inputs used to compute the output in the ideal execution in this case.

• Suppose m̃ 6= k, say m̃ = i. First observe that in the ideal execution,
the output is computed using honest inputs and the corrupt input that
is reconstructed using consistent shares possessed by Pj and Pk. Thus
it suffices to show the same in the hybrid execution. We split into two
cases depending on whether (q, i) is the only edge in Ak or not.

∗ Suppose (q, i) is the only edge in Ak. Then the output computation
procedure terminates in Step 7.
If for somem′ ∈ {q, i}, the protocol πkm′,j outputs (wm′ , wj), then it is
clear from the protocol description that the final output is computed
exactly as in the ideal execution (i.e., using consistent CNF shares
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possessed by Pj and Pk). Else note that the output of πki,j must be

(zki,j , v
(i,j)
k ) since (i, j) is not an edge in G

(q)
k (recall we are in the

resolvable single-edge case where this edge is (i, k)).

Next note that v
(i,j)
k and vk agree on all CNF shares received from

honest parties. Clearly they do not agree on sq,j (which is pre-

cisely why (i, k) is an edge). Since (j, k) 6∈ G(q)
k , it follows that v

(i,j)
k

and vk also agree on CNF share sq,i. Thus, the assertion in Step 7
holds. Note that the output zki,j is computed using corrupt input

s
(j)
q,i⊕s

(j)
q,k⊕s

(i)
q,j . What we need is the output to be computed using

extracted input s
(j)
q,i⊕s

(j)
q,k⊕s

(k)
q,j . This correction step is exactly what

is performed in Step 7 when the assertion holds for m′ = i and
m′′ = q.
However the assertion in Step 7 may also hold in the reverse direc-
tion, i.e., for m′ = q and m′′ = i. Fortunately, it can be verified
that even in this case, the final output (obtained after correction
in Step 7) is computed using honest inputs as well as the extracted
corrupt input reconstructed from consistent CNF shares possessed
by honest Pj and Pk.

∗ Suppose Ak contains other edges besides (q, i). In this case, Step 8 is
executed. First, observe that no two honest parties are connected by
an edge in Ak (see Step 5). Next it can be verified that (q, k) will not
be an edge in Ak in this case (i.e., in the single-edge case where Pq
supports Pk). Thus the only other option that is left is that (q, j) also
belongs to Ak. In this case, we see that if πki,j outputs (wi, wj), then
the procedure SimExtractq is invoked on values received by honest
parties from Pq in round 1, to compute the corrupt input. Therefore
we are assured that the hybrid execution is indistinguishable from
the ideal execution.
On the other hand if the output of πki,j is not (wi, wj), then

it must indeed be (zki,j , v
(i,j)
k ). Then since we are in the single-

edge case with Pq supporting Pk, Step 8 terminates with output

zki,j⊕αq(s
(i)
q,j⊕s

(k)
q,j ). This is perfect since zki,j is computed using cor-

rupt input s
(j)
q,i⊕s

(j)
q,k⊕s

(i)
q,j . What we need is the output to be com-

puted using extracted input s
(j)
q,i⊕s

(j)
q,k⊕s

(k)
q,j , and this is exactly what

the correction in Step 8 does.

– Resolvable double-edge case. In this case, it can be verified that the accusation
graph contains at least one edge say (q, m̃). Note it is possible that m̃ = k.
In any case the output decision process terminates in either Step 7 or Step 8.

• Suppose m̃ = k, i.e., the two edges in G
(q)
k are (i, k) and (j, k). Then it is

clear that the output decision procedure terminates in Step 8 (since ob-
viously Ak contains at least one edge, and this edge is of the form (q, k)).
Since we are in the resolvable double-edge case involving k as one of the
endpoints of both edges, it is clear that Pi and Pj for i, j ∈ Tq,k hold
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consistent CNF shares of the corrupt input. Therefore, the output of
πki,j will not be of the form (wi, wj). In fact the output will be of the

form (zki,j , v
(i,j)
k ). Also both (i, k), (j, k) are contained in G

(q)
k , and so

the output computation procedure terminates with output zki,j . Let us

first see what inputs are used to compute output zki,j in the hybrid exe-

cution. Since Pi and Pj are honest parties, inside the execution πki,j the
honest inputs are reconstructed using consistent CNF shares of honest
inputs possessed by Pi and Pj . Likewise the corrupt input that is used to

compute zki,j would be s
(j)
q,i⊕s

(i)
q,j⊕s

(i)
q,k, i.e., using consistent CNF shares

possessed by Pi and Pj . Indeed this are exactly the inputs used to com-
pute the output in the ideal execution in this case, so we have that the
ideal execution is indistinguishable from the hybrid execution.

• Suppose m̃ 6= k, say m̃ = i, i.e., the two edges in G
(q)
k are (i, k) and

(i, j). First observe that in the ideal execution, the output is computed
using honest inputs and the corrupt input that is reconstructed using
consistent shares possessed by Pj and Pk. Thus it suffices to show the
same in the hybrid execution. We split into two cases depending on
whether (q, i) is the only edge in Ak or not.

∗ Suppose (q, i) is the only edge in Ak. Then the output computation
procedure terminates in Step 7.

In fact, πki,j will output (wi, wj) since (i, j) ∈ G(q)
k . Thus, it is clear

from the protocol description that the final output is computed ex-
actly as in the ideal execution (i.e., using consistent CNF shares
possessed by Pj and Pk).
∗ Suppose Ak contains other edges besides (q, i). In this case, Step 8

is executed. First, observe that no two honest parties are connected
by an edge in Ak (see Step 5). Next it can be verified that (q, k) will
not be an edge in Ak in this case (i.e., in the double-edge case with
edges (i, j) and (i, k)). Thus the only other option that is left is that
(q, j) also belongs to Ak. Since πki,j outputs (wi, wj), the procedure
SimExtractq is invoked on values received by honest parties from Pq in
round 1, to compute the corrupt input. Therefore we are assured that
the hybrid execution is indistinguishable from the ideal execution.

– Resolvable zero-edge case. In this case, all three honest parties hold consistent
CNF shares of the corrupt party’s input. We split the analysis into three cases
depending on the structure of Ak.

• Suppose Ak contains no edges. Clearly, πki,j outputs (zki,j , v
(i,j)
k ) since

both Pi, Pj are honest and hold consistent CNF shares for all parties. In
this case simply accepting zki,j as in Step 6 guarantees that the hybrid
execution is indistinguishable from the ideal execution.

• Suppose Ak contains exactly one edge (q, i). If for some m′ ∈ {q, i},
the protocol πkm′,j outputs (wm′ , wj), then it is clear from the protocol
description that the final output is computed exactly as in the ideal
execution (i.e., using consistent CNF shares possessed by Pj and Pk).
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Else note that the output of πki,j must be (zki,j , v
(i,j)
k ) since (i, j) is not

an edge in G
(q)
k (recall we are in the resolvable zero-edge case).

Next note that v
(i,j)
k and vk agree on all CNF shares received from hon-

est parties as well as the corrupt party Pq. Thus, the assertion in Step 7
holds. Note that the output zki,j is computed using corrupt input recon-
structed from consistent shares held by Pi and Pj .

However the assertion in Step 7 may also hold in the reverse direction,
i.e., for m′ = q and m′′ = i. Fortunately, it can be verified that even
in this case, the final output (obtained after correction in Step 7) is
computed using honest inputs as well as the extracted corrupt input
reconstructed from consistent CNF shares possessed by honest Pj and
Pk.

• Suppose Ak contains the edge (q, k) or contains two edges (q, i) and
(q, j). Actually one can verify that (q, k) can never be part of Ak in this

case since there are no edges in G
(q)
k . For the rest of the analysis assume

that Ak contains two edges (q, i) and (q, j) (these could be added after

inspecting the structure of say G
(i)
k , G

(j)
k ).

In this case, Step 8 is executed. Obviously the output of πki,j is not

(wi, wj); it must be (zki,j , v
(i,j)
k ). In this case, it is easy to see that the

protocol terminates with output zki,j . This is indeed the output in the
ideal execution as well. Thus we conclude that the hybrid execution is
indistinguishable from the ideal execution.

This concludes the analysis sketch.

F More Details on 2-Round 4-Party Computationally
Secure Protocol

F.1 Protocol Description

Subroutines. In order to simplify the description of the protocol, we use sub-
routines RecInput and RecView. We start by describing RecInput which is used
to reconstruct inputs from commitments and (possibly inconsistent) shares of
decommitments. Recall that for i, j ∈ [4], Ti,j denotes the set [4] \ {i, j}.

Subroutine RecInput
(i,j)
k (v

(i)
k , v

(j)
k )

Inputs: v
(i)
k = (c

(i)
k , {γ(i)k,t}t∈Ti,k

) and v
(j)
k = (c

(j)
k , {γ(j)k,t}t∈Tj,k

).

If c
(i)
k 6= c

(j)
k , output ⊥ and terminate. Else, set c′k = c

(i)
k .

Find γ′k that is a valid decommitment for c′k s.t. γ′k =
⊕

t∈Tk
γ′k,t with

γ′k,t ∈ {γ
(i)
k,t}t∈Ti,k

∪ {γ(j)k,t}t∈Tj,k
.

If no such γ′k exists, then output ⊥. Else, let γ′k = (s′k, ∗), and output s′k.
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Remark. The third step of RecInput tries at most 2 possibilities for valid de-
commitment. Also if more than one valid decommitment exists, the subroutine
returns the lexicographically smallest decommitment.

Next, we describe subroutine RecView which is used to reconstruct a view of the
referee that is consistent with the views of the PSM clients.

Subroutine RecView
(i,j)
k (vi, vj)

Inputs: vi = {v(i)m = (c
(i)
m , {γ(i)m,t}t∈Ti,m

)}m∈[4] and vj =

{v(j)m = (c
(j)
m , {γ(j)m,t}t∈Tj,m

)}m∈[4].
If ∃m ∈ {i, j, k} such that c

(i)
m 6= c

(j)
m , output ⊥ and terminate.

If γ
(i)
i,k 6= γ

(j)
i,k or if γ

(i)
j,k 6= γ

(j)
j,k , output ⊥ and terminate.

Output v
(i,j)
k = {γ(m)

m,t }m∈{i,j},t∈Tm,k
.

The protocol for 4-party secure computation is described in Figure 3. In Ap-
pendix F.2 we prove:

Protocol. Let (Com,Dec) be a non-interactive commitment scheme.

Round 1. For each i ∈ [4]: Let si denote Pi’s input. Pi chooses random ωi and
computes ci = Com(si;ωi), and sets γi = (si, ωi). Let {γi,j}j∈[4]\{i} denote the
shares corresponding to a 1-private 3-party CNF sharing of γi. Pi sends to each
Pj , the values {γ(j)

i,t = γi,t}t∈Ti,j , and broadcasts ci to all parties. In addition, Pi
also exchanges randomness with each Pj for a 2-client PSM protocol described

below. For i, k ∈ [4], let v
(i)
k denote (c

(i)
k , {γ(i)

k,t}t∈Ti,k ).

Round 2. Each pair of parties (Pi, Pj) runs the following PSM protocol π`i,j that
delivers output to P`:

Inputs: vi = {v(i)k }k∈[4] from Pi, and vj = {v(j)k }k∈[4] from Pj .

For all k ∈ [4], compute s′k = RecInput
(i,j)
k (v

(i)
k , v

(j)
k ).

If ∃k ∈ [4] such that s′k = ⊥, output ⊥ if s′` = ⊥, else output (vi, vj).

Else, output (zi,j , v
(i,j)
` ), where zi,j = f(s′1, . . . , s

′
4) and v

(i,j)
` =

RecView
(i,j)
` (vi, vj).

Output Computation. Each Pk reconstructs its output as follows.

1. If ∃i, j ∈ Tk such that πki,j outputs (zi,j , {γ(k)
m,t}m∈{i,j},t∈Tm,k

), then output
zi,j .

2. Else if ∃i, j ∈ Tk such that πki,j outputs (vi, vj), and for s
(m1,m2)
m

∆
=

RecInput(m1,m2)
m (v

(m1)
m , v

(m2)
m ), it holds that ∀m ∈ {i, j, k}, s(i,k)m = s

(j,k)
m =

s
(i,j)
m 6= ⊥, then (a) ∀m ∈ {i, j, k}, set s′′m = s

(i,j)
m , and (b) for ` 6∈

{i, j, k}, set s′′` = 0, and (c) if ∃m1,m2 ∈ {i, j, k} such that s
(m1,m2)
` =

RecInput
(m1,m2)
` (v

(m1)
` , v

(m2)
` ) 6= ⊥, then set s′′` = s

(m1,m2)
` , and (d) output

f(s′′1 , . . . , s
′′
4 ).

Fig. 3. 2-round 4-party computationally secure protocol.
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Lemma 2. Assuming the existence of one-way permutations (alternatively, one-
to-one one-way functions), there exists a 2-round 4-party computationally secure
protocol for secure function evaluation that tolerates a single malicious party and
uses broadcast in the first round only.

F.2 Proof of Lemma 2

We first provide an informal overview of the simulator.

Overview. The simulator begins by sending commitments on 0 to the corrupt
party on behalf of the honest parties. Then, it chooses random CNF shares and
sends these to the corrupt party as decommitment shares received from honest
parties. At this stage, the simulator is ready to receive the decommitment shares
along with the broadcasted commitment from the corrupt party. Then, it checks
if the joint view of the honest parties contains a unique valid decommitment
to the commitment of the corrupt party, and in this case it extracts the input
of the corrupt party from the valid decommitment. If there is more than one
valid decommitment, then the corrupt party has violated the binding property
of the commitment (which can happen only with negligible probability due to
security of the commitment scheme), and in this case the simulator outputs fail
and terminates the simulation. Else if there is no valid decommitment that can
be reconstructed from the decommmitment shares in the joint view of honest
parties, then the simulator sets the input of the corrupt party to 0. At the end
of the first round, the simulator sends the extracted input to the trusted party
and receives back output from the trusted party. If the joint view of the honest
parties did not contain a valid decommitment to the commitment of the corrupt
party, then the simulator discards the output received from the trusted party
and sets ⊥ as the final output of the protocol.
In the second round, the simulator prepares the PSM client messages to send
to the corrupt party. To generate these messages, the simulator first computes
the output that each of these PSM instances need to deliver, and then it invokes
the PSM simulator (denoted Stransπ for PSM instance π) to obtain transcripts of
the PSM protocols by providing it the corresponding output. The output of the
PSM instances is determined based on whether the joint view of the two PSM
clients contain a valid decommitment to the commitment broadcasted by the
corrupt party. If this is the case, then the output of the PSM is set to the output
received from the trusted party. In the other case, the output of the PSM is set
to ⊥. Then, the simulator receives PSM messages from the corrupt party, and
runs Sextπ to extract the PSM input, which corresponds to its first round view,
supplied by the adversary. If there exists an honest party such that the joint
view of this honest party and the corrupt party contains a valid decommitment
to the commitment broadcasted by the corrupt party that is different from the
simulator’s extracted input, then the simulator outputs fail1 and terminates the
simulation. Else it outputs whatever the adversary outputs and terminates the
simulation. This concludes the informal description of the simulator.

We formally describe the simulation for corrupt party, say P` below.
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Simulating corrupt P`. For each m ∈ T`, the simulator acting as Pm does the
following:

Choose random ωm and send cm = Com(0;ωm) over the broadcast channel.

Send random γm,t for each t ∈ [4]\{m, `} to P` over point-to-point channels.

Send PSM randomness rpsmm,`,t to P` over point-to-point channels for t ∈ Tm,`
if m < `.

Receive from P` values {γ(m)
`,t }t∈Tm,`

over point-to-point channels and c` over
the broadcast channel.

Receive from P` PSM randomness rpsm`,m,t for t ∈ Tm,` if m > `.

Next, the simulator extracts P`’s input in the following way. For each m ∈ T`,
set v

(m)
` = (c`, {γ(m)

`,t }t∈Tm,`
), and run the following subroutine.

Subroutine Extract`({v(m)
` }m∈T`

)

For distinct m1,m2 ∈ T`, compute s
(m1,m2)
` = RecInput

(m1,m2)
` (v

(m1)
` , v

(m2)
` ).

Initialize S` = ∅. For all m1,m2 ∈ T` add s
(m1,m2)
` to S` if s

(m1,m2)
` 6= ⊥.

If |S`| > 1, then output (fail, S`).

Else if |S`| = 0, then output (bad, 0).

Else, let s` denote the unique element in S`, and output (good, s`).

Let (code, y1) denote the output of the Extract subroutine. If code = fail, then the
simulator outputs fail and terminates the simulation. Else, the simulator sends
y1 to the trusted party. Let z` denote the output received from the trusted party.
In the next step, the simulator prepares to send the second round messages to
P` by executing the following for all pairs (m1,m2) with m1 < m2.

Subroutine PsmTrans
(m1,m2)
` (v

(m1)
` , v

(m2)
` , {γm,t}m∈{m1,m2},t∈Tm,`

, z`)

Compute s
(m1,m2)
` = RecInput

(m1,m2)
` (v

(m1)
` , v

(m2)
` ).

Set ym1,m2
= ⊥ if s

(m1,m2)
` = ⊥ else set ym1,m2

=
(z`, {γm,t}m∈{m1,m2},t∈Tm,`

).

Invoke PSM simulator Stransπ`
m1,m2

(1κ, ym1,m2
) to obtain transcript

τ
(m1,m2)
m1 , τ

(m1,m2)
m2 .

For all m ∈ {m1,m2}, acting as Pm sends τ
(m1,m2)
m to P` over point-to-point

channels.

For each i ∈ T`, k ∈ T`,i, S receives PSM messages τ̃
(i,k)
` from the adversary for

execution πk`,i. (Recall that rpsm`,i,k denotes the PSM randomness used in execution

πk`,i. S then executes the following subroutine.

Subroutine PsmExtract`({rpsm`,i,k, τ̃
(i,k)
` }i∈T`,k∈T`,i

, {v(m)
` }m∈T`

)

For each i ∈ T`, k ∈ Ti,`, invoke PSM simulator Sext
πk
`,i

(1κ, rpsm`,i,k, τ̃
(i,k)
` ) to

obtain output ṽ`,i,k = {ṽ(`,i,k)m }m∈[4].
If ∃i ∈ T`, k ∈ T`,i such that ṽ`,i,k = ⊥ (i.e., Sext

πk
`,i

failed), then output

psm-fail and terminate.
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Initialize S̃` = ∅. For each i ∈ T`, k ∈ T`,i, compute s̃
(i,k)
` =

RecInput
(`,i)
` (ṽ

(`,i,k)
` , v

(i)
` ), and add s̃

(i,k)
` to S̃`.

If the output is psm-fail, then S outputs psm-fail and terminates. Else if S̃` 6⊆
{y1,⊥}, then S outputs fail1 and terminates the simulation. Else, S outputs
whatever the adversary outputs and terminates the simulation.

Analysis. We construct a sequence of hybrids starting with the real execution
and ending with the simulated execution and prove that each hybrid is indistin-
guishable from the next.

Hybrid H0. This is identical to the real execution of the protocol. We can re-
state the above hybrid with the simulator as follows. We replace the real world
adversary A with the ideal world adversary S. The ideal adversary S starts by
invoking a copy of A and running a simulated interaction of A and the honest
parties. In this hybrid the simulator S holds the private inputs of the honest
parties and generates messages on their behalf using the honest party strategies
as specified by the protocol.

Hybrid H1. In this hybrid we change how the simulator generates output of the
honest parties. In particular, we let S extract the input of the corrupted party
by running the Extract subroutine. Let (code, y1) be the output of the Extract
subroutine. If code = fail, then S output fail and terminates. Else if code 6= fail,
then S uses y1 as A’s input, and computes output of the honest parties, say z`.
Then S obtains the PSM messages fromA and runs the subroutine PsmExtract as
described above. If the output of PsmExtract is psm-fail, then S outputs psm-fail
and terminates. Otherwise, let S̃` be the output of PsmExtract. If S̃` 6⊆ {y1,⊥},
then S outputs fail1, and terminates the simulation. Else, S outputs whatever
the adversary outputs and terminates the simulation.

First, we claim that the probability that S outputs psm-fail is negligible in κ.
This follows directly from the security (more precisely, robustness property) of
the PSM protocol π. Next, we claim that the probability that S outputs fail or
fail1 is negligible in κ. Indeed, this is the case, since an adversary that makes
S output fail or fail1 can be easily used to break the binding property of the
commitment scheme. Since we use a secure commitment scheme, it follows that
the probability that S outputs fail or fail1 is negligible in κ. We continue the
analysis conditioned on neither event happening.

Suppose code = good, then we argue that the output of honest parties in H0 is
identical to their output in H1. Let i, j ∈ T` be the parties such that their joint
view contains a valid decommitment for c` (i.e., the commitment broadcasted
by A on behalf of P`). In this case, clearly, Pk with k 6∈ {i, j, `} obtains z` as
output of πki,j (i.e., exactly the output computed by S in H1). Further, when

S̃` = {s̃(m)
` }m∈T`

⊆ {y1,⊥}, the output of πk`,i is either (z`, ?) (when s̃
(m)
i = y1),

or (v`, vi) (when s̃
(m)
i = ⊥). Note that in either case, the output of Pk remains

unchanged. It remains to be shown that each of Pi, Pj also obtain the same
output. Below we analyse the output of Pj . (The analysis for Pi is identical
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mutatis mutandis.) Indeed if the joint view of Pk and Pi also contains a valid
decommitment for c`, then Pj obtains as output from πjk,i the value z` since
code = good and so the joint view of honest parties Pi, Pj , Pk contains a unique
decommitment for c`. On the other hand, if the joint view of Pk and Pi does not
contain a valid decommitment for c`, then the output of πjk,i would be (vk, vi),
and party Pj can reconstruct a valid decommitment from the joint view (vi, vj),
and reconstruct input of corrupt P` as well as honest parties Pi, Pj , and Pk.
Then, using these extracted inputs, Pj computes the output of the function. As
before, code = good, and so the output value computed by Pj is the same as the
one computed by Pk.

Now suppose code = bad. Note that the output of Extract is such that if code =
bad, then y1 = 0. Therefore, in H1 the outputs are computed by substituting
the value 0 for the corrupt party’s input. We claim that the outputs of the
honest parties in H0 are computed in an identical manner. This is because,
when code = bad, the joint view of all honest parties, say Pi, Pj , Pk does not
contain a valid decommitment to the commitment broadcasted by the corrupt
party. Consider an honest party Pk. We prove that the output of Pk is computed
by substituting the corrupt party’s input by 0. (The argument is identical for
other honest parties Pi, Pj .) First, note that the output of the PSM protocol πki,j

is (vi, vj) since for s′` = RecInput
(i,j)
` it holds that s′` = ⊥. Next, consider πk`,i.

(The analysis is identical for πk`,j .) If the output of πk`,i is ⊥, then the claim holds.

Else, the output is either of the form (z, v
(i,j)
` ) or of the form (v`, vi). In the first

case, note that s′` = RecInput
(i,j)
` 6= ⊥, i.e., the joint view of Pi and P` contains

a valid decommitment for c`. The subroutine RecView
(i,j)
k recreates the view of

Pk, in particular Pk’s decommitment share consistent with Pi’s decommitment
share such that the shares together define the valid decommitment for c`. Since
code = bad, the recreated share (and therefore the view) does not match with
Pk’s first round view, and therefore Pk rejects z as the final output. Recall
that in the second case, the output is of the form (v`, vi). In this case, the

condition s
(i,k)
` 6= ⊥ does not hold since code = bad and so the joint view of Pk

and Pi does not contain a valid decommitment for c`. In summary, execution
πk`,i is not used for generating Pk’s output. On the other hand, the condition

∀m ∈ {i, j, k}, s(i,k)m = s
(j,k)
m = s

(i,j)
m 6= ⊥ does hold for the pair (vi, vj), i.e., the

output of πki,j . In particular for every m ∈ {i, j, k} the input s′′m is computed
using the views of honest parties Pi, Pj , Pk, and further, for ` 6∈ {i, j, k}, P`’s
input is substituted by 0. The output of the function computed on inputs derived
as described above is then accepted by Pk.

Hybrid H2. In this hybrid instead of generating the PSM messages on behalf of
honest parties, S uses Stransπ (the simulator for the underlying PSM protocol) to
generate simulated messages. In particular, as in H1 the simulator now extracts
A’s input and uses this along with the private inputs of the honest parties and the
extracted input to compute the output z`. Then S computes the PSM messages
that would be delivered to P` via the PsmTrans subroutine using messages that
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it sent to/received from P` and the computed output z`. S sends these simulated
PSM messages to A instead of the honest PSM messages.

Note that the output derived from messages output by PsmTrans
(m1,m2)
` is ex-

actly the same as the output that A receives from π`m1,m2
in H1. It then follows

from (a straightforward hybrid argument involving) the security of the PSM
protocol that the distribution of the messages received from S in H2 is indistin-
guishable from the distribution of the messages received in H1.

Hybrid H3. In this hybrid we change how the simulator S generates the first
round messages on behalf of the honest parties. In particular instead of commit-
ting to the inputs of honest parties S just sends commitments on zero strings of
appropriate length.
Indistinguishability between hybrids H2 and H3 directly follows from (a straight-
forward hybrid argument involving) the hiding property of the commitment
scheme.

Hybrid H4. Observe that in hybrid H3, S uses inputs of honest parties only to
obtain the output of the computation. Instead, S can obtain the same value by
sending extracted input of the adversary to the trusted party.
Note that hyridsH3 andH4 are identical. Also observe that hybridH4 is identical
to the simulation strategy. This concludes the proof.

F.3 2-Round Computationally Secure 4-Party Computation Over
Point-to-Point Channels

Our first observation is that parties use the broadcast channel in protocol de-
scribed only to broadcast their commitments. Our strategy to get rid of broad-
cast is simple: we just let the parties send their commitments over point-to-point
channels instead. This however introduces several subtle problems which we will
need to address.

How to extract. We first design the simulation extraction procedure which will
serve as the guiding light in the design of our protocol Although our procedure
will be quite similar to the extraction procedure Extract` (used in the previous
subsection) in the case where a broadcast channel was available, here we need to
take care of the obvious issue in that parties may hold inconsistent values for the
commitment c`. To resolve this, we use the majority value among the commit-

ments received by the honest parties. That is, we assume ĉ = majority({c(p)` }p∈T`
)

as the commmitment value that was broadcast. Then as before, we try to see
whether a decommitment can be constructed using the (possibly inconsistent)
CNF shares possessed by any pair of parties. If no such decommitment exists,
then we extract the corrupt input as 0. Else, we use the decommitment to ex-
tract the corrupt input in the obvious way. This concludes the description of the
extraction procedure.

Additional subroutines. Now to force parties to accept inputs that are com-
puted only according to the extracted corrupt input, we need to design a new
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subroutine called RecInputNoBC
(i,j)
k . As we will see, this subroutine is used only

in the output computation step (while inside the PSM protocol the subroutine

RecInput
(i,j)
k is executed as before). The main difference between RecInput and

RecInputNoBC is that the latter takes an additional input to ascertain the ma-
jority value among the commitments possessed by various parties.

Subroutine RecInputNoBC
(i,j)
k (c̃, v

(i)
k , v

(j)
k )

Inputs: v
(i)
k = (c

(i)
k , {γ(i)k,t}t∈Ti,k

) and v
(j)
k = (c

(j)
k , {γ(j)k,t}t∈Tj,k

).

If c
(i)
k 6= c

(j)
k 6= c̃k 6= c

(i)
k , output ⊥ and terminate. Else, set c′k =

majority(c
(i)
k , c

(j)
k , c̃).

Find γ′k that is a valid decommitment for c′k s.t. γ′k =
⊕

t∈Tk
γ′k,t with

γ′k,t ∈ {γ
(i)
k,t}t∈Ti,k

∪ {γ(j)k,t}t∈Tj,k
.

If no such γ′k exists, then output ⊥. Else, let γ′k = (s′k, ∗), and output s′k.

We also need to replace the RecView
(i,j)
k subroutine with the subroutine

RecViewNoBC
(i,j)
k described below.

Subroutine RecViewNoBC
(i,j)
k (vi, vj)

Inputs: vi = {v(i)m = (c
(i)
m , {γ(i)m,t}t∈Ti,m)}m∈[4] and vj =

{v(j)m = (c
(j)
m , {γ(j)m,t}t∈Tj,m

)}m∈[4].

If ∃m ∈ {i, j, k} such that c
(i)
m 6= c

(j)
m , output ⊥ and terminate.

If γ
(i)
i,k 6= γ

(j)
i,k or if γ

(i)
j,k 6= γ

(j)
j,k , output ⊥ and terminate.

Output v
(i,j)
k = {c(m)

m , {γ(m)
m,t }t∈Tm,k

}m∈{i,j}.

The main difference between RecView
(i,j)
k and RecViewNoBC

(i,j)
k is that in the

latter, the output also includes the commitments c
(i)
i and c

(j)
j as well. This is

to prevent attacks in which a malicious party P` sends different commitment
values to different parties, and there is no majority among these commitments.
Then inside a PSM subprotocol where the corrupt party is a client, it supplies
the commitment equal to commitment that it earlier sent to the other client
thereby creating an illusion of majority (note inside such a PSM, RecInput` will
succeed, while for every other PSM in which both clients are honest RecInput`
will fail). By including the commitments as part of the output, we ensure that
an honest party accepts the output of this PSM only if the commitment value
that it possesses matches the commitment values present in the output of the
PSM protocol. By doing so, we are ensured that there indeed exists a majority
among the commitments distributed among the honest parties.

We now describe our protocol for 4-party secure computation over point-to-point
channels. In the following, let Ti denote the set [4] \ {i}, and let Ti,j denote the
set [4] \ {i, j}.

Protocol. Let (Com,Dec) be a non-interactive commitment scheme.
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Round 1. For each i ∈ [4]: Let si denote Pi’s input. Pi chooses random ωi and
computes ci = Com(si;ωi), and sets γi = (si, ωi). Let {γi,j}j∈[4]\{i} denote the
shares corresponding to a 1-private 3-party CNF sharing of γi.

? Party Pi sends to each Pj , the values {γ(j)i,t = γi,t}t∈Ti,j
, and the commitment

c
(j)
i = ci to all parties.

In addition, Pi also exchanges randomness with each Pj for a 2-client PSM

protocol described below. For i, k ∈ [4], let v
(i)
k denote (c

(i)
k , {γ(i)k,t}t∈Ti,k

).

Round 2. Each pair of parties (Pi, Pj) runs the following PSM protocol π`i,j
that delivers output to P`:

– Inputs: vi = {v(i)k }k∈[4] from Pi, and vj = {v(j)k }k∈[4] from Pj .

– For all k ∈ [4], compute s′k = RecInput
(i,j)
k (v

(i)
k , v

(j)
k ).

– If ∃k such that s′k = ⊥, output ⊥ if s′` = ⊥, else output (vi, vj).

– Else, output (zi,j , v
(i,j)
` ), where zi,j = f(s′1, . . . , s

′
4) and v

(i,j)
` =

RecViewNoBC
(i,j)
` (vi, vj).

Output Computation. Each Pk reconstructs its output as follows.

1. If ∃i, j ∈ Tk such that πki,j outputs (zi,j , {c(k)m , {γ(k)m,t}t∈Tm,k
}m∈{i,j}), then

output zi,j .

2. Else if ∃i, j ∈ Tk such that πki,j outputs (vi, vj), and for s
(m1,m2)
m

∆
=

RecInput(m1,m2)
m (v

(m1)
m , v

(m2)
m ), it holds that ∀m ∈ {i, j, k}, s(i,k)m = s

(j,k)
m =

s
(i,j)
m 6= ⊥, then (a) ∀m ∈ {i, j, k}, set s′′m = s

(i,j)
m , and (b) for ` 6∈ {i, j, k},

set s′′` = 0, and (c) if ∃ distinct m1,m2,m3 ∈ {i, j, k} such that s
(m1,m2)
` =

RecInputNoBC
(m1,m2)
` (c

(m3)
` , v

(m1)
` , v

(m2)
` ) 6= ⊥, then set s′′` = s

(m1,m2)
` , and

(d) output f(s′′1 , . . . , s
′′
4).

Sketch of simulation and analysis. The main modification to the simulation
proof from the previous subsection is that while simulating the above protocol,
we use the modified extraction procedure described at the beginning of this
subsection. The rest of the simulation is rather straightforward and follows the
simulation procedure described in the previous subsection.

In the analysis, once again we design hybrid executions exactly as in previous
proof. The main difference comes in the proof of indistinguishability of hybrids
H0 and H1. We now look at a few cases. Suppose there is no majority among the
commitment values distributed by the corrupt party, then by inspection of the
protocol (particularly because of the use of RecInputNoBC) it follows that the
honest outputs are computed using extracted corrupt input 0. This is indeed the
case in both hybrids H0 and H1. On the other hand, if there is a majority among
these commitment values, and if there exists a matching decommitment (i.e.,
code = good), then we claim that the honest parties computed using the corrupt
input that is consistent with the matching decommitment. To show this, first
observe that there exists a PSM execution with honest clients from which every
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honest party obtains output. By inspection of the protocol (and particularly
because of the use of RecViewNoBC), it follows that the output computed using
the output of these PSM executions uses a corrupt input that is consistent with
the matching decommitment. Now consider PSM executions in which one of the
clients is malicious. Once again it follows from the use of RecInputNoBC along
with an argument similar to the one in the previous proof, that in these cases as
well, the final output is computed using a corrupt input that is consistent with
the matching decommitment. Finally, when code = bad, we observe that outputs
computed using the outputs of honest PSM executions (i.e., via Step 2) will use
corrupt input equal to 0. Then following an argument similar to the one used
in the previous proof, we have that the PSM executions which involve a corrupt
client will either not be used to generate the final output, and will reconstruct
an output that uses corrupt input 0.

The rest of the proof is quite straightforward and follows the same steps
(with obvious modifications) as in the previous proof.

G More Details on 2-Round 4-Party Statistically Secure
Protocol in the Preprocessing Model

G.1 2-Round Statistically Secure 4-Party Computation in the
Preprocessing Model

In this section, we present a 2-round statistically secure computation protocol
in the preprocessing model. We first present the simpler variant that uses a
broadcast channel. See Appendix G for the final protocol. Recall Ti denotes the
set [4] \ {i}, and Ti,j denotes the set [4] \ {i, j}. We begin with an overview of
the protocol.

Overview. The correlated randomness that we distribute to the parties is es-
sentially a random pad per party, and a CNF share for each of these random
pads. We stress that our correlated randomness essentially corresponds to a cor-
rect secret sharing of random pads, and in particular does not include MACs of
the shares distributed. Somewhat surprisingly, such a “simple” correlated ran-
domness is sufficient to yield a (relatively simple) protocol for 4-party secure
computation in the preprocessing model. Below we describe the high level idea
of our protocol.

In the online phase, each party simply broadcasts its input masked with the
random pad it possesses. Then as before, parties run pairwise PSM protocols that
essentially tries to reconstruct each party’s input using the broadcasted messages
and the CNF shares of each random pad held by the PSM clients. If everything
is consistent, then the PSM evaluates the function on these reconstructed inputs.
Then as in our 3-party secure-with-selective-abort protocol, we apply the “view
reconstruction trick,” i.e., we allow the PSM to try and reconstruct the correlated
randomness that the PSM referee must possess. Then each party checks to find if
there is a PSM execution that successfully evaluated the function (i.e., one that
has a non-⊥ output), and if the reconstructed correlated randomness matches
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its correlated randomness. If such a PSM exists, then the party outputs the
evaluation and terminates.

We now informally argue the security of our protocol. First, note that for
every honest party, there exists a PSM execution (for e.g., one in which the
two remaining honest parties act as PSM clients) that outputs a reconstructed
correlated randomness that matches the honest party’s correlated randomness.
Further, it is easy to see that the evaluation performed by this PSM execution
is correct. Given this, it remains to be shown that all other PSM executions
produce outputs that either (a) will not be accepted by the honest party, or
(b) will be consistent with the output of the above PSM. Suppose (1) the only
way a malicious PSM client can force its PSM to produce a non-⊥ output is
by supplying values consistent with the other (honest) client, and (2) the only
way the output of a PSM execution in which one of the clients is malicious will
be accepted is if the malicious client inputs correlated randomness as given to
it. It is easy to see that security follows if both the properties hold. We enforce
property (1) explicitly inside the PSM execution. Property (2) is enforced via
use of the “view reconstruction trick.”

We are now ready to formally describe the protocol for 4-party secure computa-
tion in the preprocessing model.

Correlated Randomness.

For each i ∈ [4], choose random ri.

For each ri, let {ri,j}j∈Ti denote the 1-private 3-party CNF sharing of ri.

For each k ∈ [4], send to Pk values (rk, shk = {ri,j}i∈[4],j∈Tk,i
).

Protocol. Let Ti denote the set [4] \ {i}, and let Ti,j denote the set [4] \ {i, j}.
Round 1. Each Pi holding input xi reconstructs ri =

⊕
j∈Ti

ri,j , and broadcasts
yi = xi⊕ri to all parties. In addition, Pi also exchanges randomness with each
Pj for a 2-client PSM protocol described below. For i, k ∈ [4], let w

(i)
k denote

(y
(i)
k = yk, shi = {r(i)k,` = rk,`}k∈[4],`∈Ti,k

).

Round 2. Each pair of parties (Pi, Pj) runs the following PSM protocol π`i,j that
delivers output to P`:

Inputs: wi = {w(i)
k }k∈[4] from Pi, and wj = {w(j)

k }k∈[4] from Pj .

If ∃k ∈ [4] such that (1) y
(i)
k 6= y

(j)
k , or (2) ∃t 6∈ {i, j} such that r

(i)
k,t 6= r

(j)
k,t,

then output ⊥ and terminate.

For each k ∈ [4], t ∈ Tk, set r′k,t to be the unique non-⊥ value in {r(i)k,t, r
(j)
k,t}.

For all k ∈ [4], compute r′k =
⊕

t∈Tk
r′k,t, and set x′k = y′k⊕r′k, where y′k = y

(i)
k .

Output (zi,j , sh
′
`), where zi,j = f(x′1, . . . , x

′
4), and sh′` = {r′k,t}k∈[4],t∈Tk,`

.

Output Computation. Each Pk finds some i, j ∈ Tk such that πki,j outputs
(zi,j , shk) and then outputs zi,j .

Fig. 4. 2-round 4-party protocol in the preprocessing model.

We prove the following lemma in Appendix G.2.
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Lemma 3. There exists a 2-round 4-party fully secure protocol (with guaranteed
output delivery) for secure function evaluation in the preprocessing model that
tolerates a single malicious party and uses broadcast in the first round only and
whose correlated randomness complexity is O(`) where ` is the length of each
parties’ input. The protocol provides statistical security for functionalities in NC1

and computational security for general functionalities by making a black-box use
of a pseudorandom generator.

In Appendix G.3, we show how to remove the use of broadcast and prove the
following theorem:

Theorem 7. There exists a 2-round 4-party fully secure protocol (with guaran-
teed output delivery) for secure function evaluation over point-to-point channels
in the preprocessing model that tolerates a single malicious party and whose
correlated randomness complexity is O(`) where ` is the length of each parties’
input. The protocol provides statistical security for functionalities in NC1 and
computational security for general functionalities by making a black-box use of a
pseudorandom generator.

G.2 Proof of Lemma 3

We formally describe the simulation for corrupt party, say P` below.

Simulating corrupt P`. First, acting as the trusted party distributing cor-
related randomness, the simulator chooses uniformly random ri,j for each i ∈
[4], j ∈ T`,i. Then it sets r` =

⊕
j∈T`

r`,j , and sends (r`, sh` = {ri,j}i∈[4],j∈T`,i
)

to P`. Next, for each m ∈ T`, the simulator acting as Pm does the following:

Pick ym uniformly at random, and send ym to P` over the broadcast channel.

Send PSM randomness rpsmm,`,t to P` over point-to-point channels for t ∈ Tm,`
if m < `.

Receive y` over the broadcast channel from P`.

Receive from P` PSM randomness rpsm`,m,t for t ∈ Tm,` if m > `.

The simulator extracts P`’s input as x` = y`⊕r`, and sends x` to the trusted
party, and receives back z`. Then for all I ∈ T`, j ∈ T`,i, S sets zi,j = (z`, sh`).

In the next step, the simulator prepares to send the second round messages
to P` by executing the following for all pairs (m1,m2) with m1 < m2.

Subroutine PsmTrans
(m1,m2)
` (zm1,m2)

Invoke PSM simulator Stransπ`
m1,m2

(1κ, zm1,m2) to obtain transcript

τ
(m1,m2)
m1 , τ

(m1,m2)
m2 .

For all m ∈ {m1,m2}, acting as Pm sends τ
(m1,m2)
m to P` over point-to-point

channels.

For each i ∈ T`, k ∈ T`,i, S receives PSM message τ̃
(i,k)
` from the adversary

for execution πk`,i delivering output to Pk. (Recall that rpsm`,i,k denotes the PSM

randomness used in execution πk`,i.) S then executes the following subroutine
that extracts the value of r` implicitly used by P` in each PSM execution.
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Subroutine PsmExtract`({rpsm`,i,k, τ̃
(i,k)
` }i∈T`,k∈T`,i

)

For each i ∈ T`, k ∈ Ti,`, invoke PSM simulator Sext
πk
`,i

(1κ, rpsm`,i,k, τ̃
(i,k)
` ) to

obtain output w̃`,i,k = {w̃(`,i,k)
m }m∈[4].

If ∃i ∈ T`, k ∈ T`,i such that w̃`,i,k = ⊥ (i.e., Sext
πk
`,i

failed), then output

psm-fail and terminate.

Parse w̃
(`,i,k)
m as (y

(`,i,k)
m , sh`,i,k = {r(`,i,k)m,t }m∈[4],t∈Tm,`

).

For each i ∈ T`, k ∈ T`,i, set goodi,k = 1 if for all m ∈ [4], t ∈ Tm,` it holds

that r
(`,i,k)
m,t = rm,t, else set goodi,k = 0. Output {goodi,k}i∈T`,k∈T`,i

.

If the output of PsmExtract is psm-fail then S outputs psm-fail and terminates.
Else, S outputs whatever the adversary outputs, and terminates the simulation.

Analysis. First, we claim that the probability that S outputs psm-fail is neg-
ligible in κ. This follows directly from the security (more precisely, robustness
property) of the PSM protocol π. In the following, we condition on the event
that S did not output psm-fail in the simulated execution. Next, we claim that
the corrupt party’s output in the simulated execution is computed exactly as
in the real execution. This follows from the fact that the extracted input of the
adversary x` = y`⊕r` equals the value x′` used by honest parties inside each
PSM protocol that delivers output to P`. Given this, it follows from the security
(more precisely, the privacy property) of the PSM protocol that the simulated
PSM transcript is indistinguishable from the real transcript. Thus, we conclude
that the view of the adversary in the real execution is indistinguishable from the
view of adversary in the ideal execution.

Therefore, the simulated execution is indistinguishable from the real execution
as long as the honest parties output identical values in the simulation and the
real execution. We show that this is indeed the case. First note that for every
honest Pk, there exists honest Pi, Pj such that Pk obtains a non-⊥ output from
πki,j . Furthermore, it is easy to verify that this output equals (zk, shk), where
shk is the set of shares of the random masks obtained from the trusted party
that distributed correlated randomness, and zk equals the output of the function
computed on the extracted input of P` and the inputs of the honest parties. It
remains to be shown that the output obtained from πk`,i, π

k
`,j either equals (1)

(z′k, sh
′
k) for sh′k 6= shk, or (2) (z′k, sh

′
k) with z′k = z` and sh′k = shk, or (3) ⊥.

Observe that this is sufficient since in case (2) party Pk’s output matches the
output from πki,j , while in cases (1) and (3) party Pk rejects this PSM output.

To prove the above we use the output of the subroutine PsmExtract. Let us first
analyze the execution πk`,i. (The analysis is identical for execution πk`,j .) Suppose

goodi,k = 0, then we claim that the output of πk`,i will be ⊥ or (z′k, sh
′
k) with

sh′k 6= shk. This is because the shares of the random masks held by honest Pi
and Pk completely determine the actual shares of the random masks held by
P`. In other words, when P` uses shares different from the ones distributed in
the preprocessing stage, the value of Pk’s shares reconstructed from shares of P`
and Pi must differ from the shares held by Pk. It follows that Pk either obtains
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⊥ as output from πk`,i or simply rejects the output of πk`,i. Therefore, the claim
holds. On the other hand, suppose it holds that goodi,k = 1, then the shares
of Pk recreated from P`’s and Pi’s shares exactly match the shares held by Pk.
This, in particular, implies that the input of P` used in πk`,i equals the value

extracted by the simulator. Therefore, the output will be (z′k, sh
′
k) with z′k = zk

and sh′k = shk. This completes the analysis of the simulation.

G.3 2-Round Statistically Secure 4-Party Computation in the
Preprocessing Model Over Point-to-Point Channnels

Note: We get only statistical security is because the robust PSM can fail with
negligible probability.
Recall Ti denotes the set [4] \ {i}, and Ti,j denotes the set [4] \ {i, j}.

Overview. Observe that the protocol described in the previous section uses
the broadcast channel only to distribute the y` values. A näıve attempt would
simply be to replace this use of broadcast channel by letting the parties distribute
these values over point-to-point channels. Unfortunately, the above variant of the
protocol does not suffice (among other things) to guarantee output delivery to
honest parties. Specifically, an adversary that sends different y` values can make
every PSM execution deliver ⊥ to the honest parties.

A natural next step is to replace the use of the broadcast channel by a
protocol for broadcast (run concurrently with the PSM executions). It is possible
to implement this idea because (1) parties make use of the broadcast channel only
in the first round, and (2) there exists 2-round broadcast protocols tolerating
a single corrupt party [25]. Unfortunately, this proposal also fails to achieve
security.

We are now ready to formally describe the protocol for 4-party secure computa-
tion in the preprocessing model over point-to-point channels.

Correlated Randomness.

For each i ∈ [4], choose random ri.

For each ri, let {ri,j}j∈Ti
denote the 1-private 3-party CNF sharing of ri.

For each k ∈ [4], send to Pk values (rk, shk = {ri,j}i∈[4],j∈Tk,i
).

Protocol. Let Ti denote the set [4] \ {i}, and let Ti,j denote the set [4] \ {i, j}.

Round 1. Each Pi holding input xi reconstructs ri =
⊕

j∈Ti
ri,j .

? Each Pi sends yi = xi⊕ri to every other Pj via point-to-point channels. Let

Pj receive this value as y
(j)
i .

In addition, Pi also exchanges randomness with each Pj for a 2-client PSM

protocol described below. For i, k ∈ [4], let w
(i)
k denote (y

(i)
k = yk, shi = {r(i)k,` =

rk,`}k∈[4],`∈Ti,k
).

Round 2. Each pair of parties (Pi, Pj) runs the following PSM protocol π`i,j
that delivers output to P`:
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– Inputs: wi = {w(i)
k }k∈[4] from Pi, and wj = {w(j)

k }k∈[4] from Pj .

? If ∃k ∈ {`, i, j} such that y
(i)
k 6= y

(j)
k , or if ∃k ∈ [4], t 6∈ {i, j} such that

r
(i)
k,t 6= r

(j)
k,t , then output ⊥ and terminate.

– For each k ∈ [4], t ∈ Tk, set r′k,t to be the unique non-⊥ value in {r(i)k,t, r
(j)
k,t}.

Let sh′` = {r′k,t}k∈[4],t∈Tk,`
.

? For all k ∈ [4], compute r′k =
⊕

t∈Tk
r′k,t. For all k ∈ {`, i, j}, set x′k = y′k⊕r′k,

where y′k = y
(i)
k .

? If for k 6∈ {`, i, j} it holds that y
(i)
k 6= y

(j)
k , then output

{sh′`, y′i, y′j , x′i, x′j , y
(i)
k , y

(j)
k , r′k} and terminate.

? Output (zi,j , sh
′
`, y
′
i, y
′
j), where zi,j = f(x′1, . . . , x

′
4).

? Output Computation. Each Pk does the following:

If ∃i, j ∈ Tk such that πki,j outputs (zi,j , shk, y
(k)
i , y

(k)
j ), then output zi,j .

Else if ∃i, j, ` ∈ Tk such that πki,j outputs {shk, y(k)i , y
(k)
j , x′i, x

′
j , y

(i)
` , y

(j)
` , r′`}

then compute y′` = majority(y
(i)
` , y

(j)
` , y

(k)
` ), set x′` = y′`⊕r′`, and output

f(x′1, . . . , x
′
4).

This completes the description of the protocol.

Intuition. The high level strategy used in the design of the protocol can be best
explained as follows: Suppose party P` is corrupt.

– Let y′` denote the majority value among the y` values distributed by P` over
point-to-point channels. (If no majority exists, then we simply set y′` = 0.)

– Our protocol “extracts” the corrupt party’s input as x` = y′`⊕r`, where r` is
the random pad corresponding to P` obtained from the distributed correlated
randomness.

– Then our protocol will force the final output of the honest parties to be com-
puted using this extracted input for the corrupt party (and honest parties’
inputs).

To show that this is indeed successfully implemented in our protocol, we will
proceed by showing each of the following:

– Every PSM execution involving two honest clients delivering output to hon-
est referee computes the output according to the above.

– There is no ambiguity in the output decision process due to PSM executions
involving a corrupt client.

– The protocol is private.

For any i, j, k we say that PSM execution πki,j is either (1) awesome if its

output is of the form (z′i,j , sh
′
k, y
′
i, y
′
j), or (2) good if its output is of the form

{x′i, x′j , y
(i)
k , y

(j)
k , r′k}, or (3) bad if its output is ⊥. We now show that all three

claims stated above hold.
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Every PSM execution involving two honest clients delivering output to honest
referee computes the output according to the above. Showing this is relatively
straightforward. We split the analysis into two cases depending on whether the
two honest clients agree on the y` value received from P`. Suppose they agree.
Then it is easy to see that (1) the execution is awesome and (2) the output zi,j
is computed using the majority y` value (which equals the value held by the
two honest clients). On the other hand if the honest clients do not agree on the
y` value, then in this case the execution will be good and once again, the final
output computed by the honest party uses the corrupt party’s input extracted
using the majority of the y` values.

There is no ambiguity in the output decision process due to PSM executions
involving a corrupt client. Obviously if the PSM execution involving corrupt
client is bad, then it does not introduce any ambiguity in the output decision
process. Our key observation is that if a PSM execution involving a corrupt party
is not bad, then it must hold that the corrupt party provides a y` value that is
consistent with other honest client’s y` value. Next, note that this y` value is
part of the output of the PSM execution, and further the honest referee discards
the output of the PSM execution unless the y` value in the PSM output matches
the y` value it holds. That is, the output of a non-bad PSM execution involving
a corrupt client is used by the honest referee to compute its final output only
if the honest client and the honest referee hold the same y` value, i.e., there is
a well-defined majority value among the y` values. Furthermore, in this case,
the PSM output is computed using the corrupt input that is extracted using
the majority value. Thus, we conclude that the output of a PSM execution is
used by the honest referee to compute its final output only if the PSM output
is computed using a corrupt input that is extracted as the majority value.

The protocol is private. The key observation is that no PSM execution delivering
output to a corrupt client is good. To see this, note that a PSM execution is good
only if either (1) the party that is not involved in the PSM had sent different
y values to clients, or (2) the clients supplied incorrect y values inside the PSM
protocol. It then follows that when the PSM referee is corrupt neither (1) nor
(2) can hold. Given that no PSM delivering output to corrupt referee is good,
and the fact that a bad PSM does not reveal any information, it remains to only
analyze the case when the PSM execution is awesome. Here, we only need to
show that the output of PSM execution π`i,j , i.e., zi,j , is always computed using
the corrupt party’s input extracted using the majority y` value. Indeed this is
the case since the PSM execution is awesome only if the y` values held by the
honest clients match, and therefore there is a well-defined majority y` value, and
further from the protocol description it is evident that the corrupt input used
in computing the PSM output is extracted using the majority y` value. Finally,
we conclude by noting that the round 1 messages do not leak any information to
the adversary since none of the PSMs leak any information about the random
pads (that are distributed as part of the correlated randomness), and that the
honest parties’ round 1 broadcasts comprise of honest parties’ inputs masked
with these random pads and are hence hidden from the adversary.
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We formalize the intuition described above by proving the following theorem.

Theorem 7. (restated) There exists a 2-round 4-party fully secure protocol
(with guaranteed output delivery) for secure function evaluation over point-
to-point channels in the preprocessing model that tolerates a single malicious
party. The protocol provides statistical security for functionalities in NC1 and
computational security for general functionalities by making a black-box use of
a pseudorandom generator.

Proof. We formally describe the simulation for corrupt party, say P` below.

Simulating corrupt P`. First, acting as the trusted party distributing cor-
related randomness, the simulator chooses uniformly random ri,j for each i ∈
[4], j ∈ T`,i. Then it sets r` =

⊕
j∈T`

r`,j , and sends (r`, sh` = {ri,j}i∈[4],j∈T`,i
)

to P`. Next, for each m ∈ T`, the simulator acting as Pm does the following:

? Pick ym uniformly at random, and send ym to P`.
– Send PSM randomness rpsmm,`,t to P` over point-to-point channels for t ∈ Tm,`

if m < `.
? Receive y

(m)
` from P`.

– Receive from P` PSM randomness rpsm`,m,t for t ∈ Tm,` if m > `.

? To extract P`’s input, S first computes y′` = majority(y
(i)
` , y

(i)
` , y

(i)
` ) where

i, j, k ∈ T` are distinct indices. Then it computes x` = y′`⊕r`, and sends x`
to the trusted party, and receives back z`. For each i ∈ T`, j ∈ T`,i, S sets

zi,j = (z`, sh`, yi, yj) if y′` = y
(i)
` = y

(j)
` , else it sets zi,j = ⊥.

In the next step, the simulator prepares to send the second round messages to
P` by executing the following for all pairs (m1,m2) with m1 < m2.

Subroutine PsmTrans
(m1,m2)
` (zm1,m2

)

Invoke PSM simulator Stransπ`
m1,m2

(1κ, zm1,m2) to obtain transcript

τ
(m1,m2)
m1 , τ

(m1,m2)
m2 .

For all m ∈ {m1,m2}, acting as Pm sends τ
(m1,m2)
m to P` over point-to-point

channels.

For each i ∈ T`, k ∈ T`,i, S receives PSM message τ̃
(i,k)
` from the adversary

for execution πk`,i delivering output to Pk. (Recall that rpsm`,i,k denotes the PSM

randomness used in execution πk`,i.) S then executes the following subroutine
that extracts the value of r` implicitly used by P` in each PSM execution.

Subroutine PsmExtract`({rpsm`,i,k, τ̃
(i,k)
` }i∈T`,k∈T`,i

)

For each i ∈ T`, k ∈ Ti,`, invoke PSM simulator Sext
πk
`,i

(1κ, rpsm`,i,k, τ̃
(i,k)
` ) to

obtain output w̃`,i,k = {w̃(`,i,k)
m }m∈[4].

If ∃i ∈ T`, k ∈ T`,i such that w̃`,i,k = ⊥ (i.e., Sext
πk
`,i

failed), then output

psm-fail and terminate.

Parse w̃
(`,i,k)
m as (y

(`,i,k)
m , sh`,i,k = {r(`,i,k)m,t }m∈[4],t∈Tm,`

).
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For each i ∈ T`, k ∈ T`,i, set goodi,k = 1 if for all m ∈ [4], t ∈ Tm,` it holds

that r
(`,i,k)
m,t = rm,t, else set goodi,k = 0. Output {goodi,k}i∈T`,k∈T`,i

.

If the output of PsmExtract is psm-fail then S outputs psm-fail and terminates.
Else, S outputs whatever the adversary outputs, and terminates the simulation.

Analysis. First, we claim that the probability that S outputs psm-fail is neg-
ligible in κ. This follows directly from the security (more precisely, robustness
property) of the PSM protocol π. In the following, we condition on the event
that S did not output psm-fail in the simulated execution. Next, we claim that
the corrupt party’s output in each simulated PSM execution is computed ex-
actly as in the real execution. Consider the real PSM execution π`i,j . It is easy

to see that if Pi and Pj hold different values for y`, then PSM execution π`i,j
delivers ⊥ as output to P`. On the other hand, when Pi and Pj hold identical
values for y`, then this value equals the majority value, and hence the extracted
value in the simulation is the one used inside π`i,j to compute output. Given the
above, it follows from the security (more precisely, the privacy property) of the
PSM protocol that the simulated PSM transcript is indistinguishable from the
real transcript. Thus, we conclude that the view of the adversary in the real
execution is indistinguishable from the view of adversary in the ideal execution.

Therefore, the simulated execution is indistinguishable from the real execution as
long as the honest parties output identical values in the simulation and the real
execution. We show that this is indeed the case. For any i, j, k we say that PSM
execution πki,j is either (1) awesome if its output is of the form (z′i,j , sh

′
k, y
′
i, y
′
j), or

(2) good if its output is of the form {x′i, x′j , y
(i)
k , y

(j)
k , r′k}, or (3) bad if its output

is ⊥. First note that for every honest Pk, there exists honest Pi, Pj such that πki,j
is either awesome or good. We now split the analysis into two cases depending
on the output of πki,j .

Suppose πki,j is awesome. Since for honest Pi, Pj it holds that y′i = y
(k)
i

and y′j = y
(k)
j and sh′k = shk, party Pk outputs zi,j unless there is another

awesome execution say πk`,i whose output is z′i,j 6= zi,j . Suppose such πk`,i
exists. First, note that shk and shj together completely determine the value
of the random masks distributed in the preprocessing phase. Further, P` has
to input {y′m}m∈[4] that is consistent with Pj ’s view, otherwise the execution

πk`,i would not be awesome. In other words, both the random masks and

values {y′m}m∈[4] used inside πk`,i are identical to the ones used inside πki,j .
Since these values completely determine the output, it must hold that z′i,j =
zi,j . It remains to be shown that zi,j equals the output computed in the
simulated execution as well. To prove this, first we note that since πki,j is

awesome, it must hold that y
(i)
` = y

(j)
` = y′`. In particular, this means that

y′` = majority(y
(i)
` , y

(j)
` , y

(k)
` ), and x′` = r`⊕y′`. It is easy to see that the input

value extracted by the simulator is identical to x′` and therefore, Pk’s output
in the real and simulated executions are identically distributed.
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Suppose πki,j is good. Let the output of πki,j be {sh′k, y′i, y′j , x′i, x′j , y
(i)
` , y

(j)
` , r′`}

and let y′` = majority(y
(i)
` , y

(j)
` , y

(k)
` ), x′` = y′`⊕r′`, x′k = xk, and z′k =

f(x′1, . . . , x
′
4). First note that sh′k = shk, y′i = y

(k)
i , and y′j = y

(k)
j all hold.

Next, observe that z′k is identical to the output of Pk in the simulated execu-
tion. Thus, it is sufficient to prove that output of PSM executions π`,i, π`,j
is either discarded or results in final output z′k. In the following we analyze
the PSM execution πk`,i. (The analysis of πk`,j is identical.) There are three

cases to handle depending on whether πk`,i is awesome, good, or bad. It is

easy to see that when πk`,i is bad, the output is discarded. Next, it is easy to

see if πk`,i is awesome, then the output of πk`,i is discarded unless it is of the

form (z`,i, shk, y
(k)
` , yi). Thus, it is sufficient to prove that z`,i = z′k. Indeed

this is case since the P` input y
(k)
` as its input value, and further since πk`,i

is awesome, it must hold that y
(i)
` = y

(k)
` , i.e., majority(y

(k)
` , y

(i)
` , y

(j)
` ) = y

(i)
` .

Since the value y
(i)
` is used for computing P`’s input inside πk`,i it follows

that the output z`,i must necessarily equal z′k. Finally we analyze the case
when πk`,i is good. It is easy to see that the output of πk`,i is discarded un-

less it equals (shk, y
(k)
` , y

(k)
i , x′`, x

′
j , y

(i)
j , y

(`)
j , r′j). Since πk`,i is good, it must

also hold that y
(k)
` = y

(i)
` . This in turn implies that value x′` must equal

the majority value extracted in the simulation execution. Next, note that

yj = y′j = majority(y
(`)
j , y

(i)
j , y

(k)
j ) holds since y

(i)
j = y

(k)
j . This in turn com-

bined with the fact πk`,i output sh′k = shk implies that xj = x′j = r′j⊕y′j also
holds. Thus we conclude that the output f(x′1, . . . , x

′
4) must equal z′k since

identical inputs were used to evaluate f in both cases. This completes the
analysis of the simulation.


