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Abstract

We study the complexity of realizing the “worst” functions in several standard models of information-
theoretic cryptography. For each of these models, we obtain the first solution whose complexity is sublinear
in the relevant domain size. In particular, for the case of security against passive adversaries, we obtain the
following main results.

• OT complexity of secure two-party computation. Every function f : [N ] × [N ] → {0, 1} can be
securely evaluated using Õ(N2/3) invocations of an oblivious transfer oracle. A similar result holds for
securely sampling a uniform pair of outputs from a set S ⊆ [N ]× [N ].

• Correlated randomness complexity of secure two-party computation. Every function f : [N ] ×
[N ]→ {0, 1} can be securely evaluated using 2Õ(

√
logN) bits of correlated randomness.

• Communication complexity of private simultaneous messages. Every function f : [N ] × [N ] →
{0, 1} can be securely evaluated in the non-interactive model of Feige, Kilian, and Naor (STOC 1994)
with messages of length O(

√
N).

• Share complexity of forbidden graph access structures. For every graph G on N nodes, there is a
secret-sharing scheme for N parties in which each pair of parties can reconstruct the secret if and only
if the corresponding nodes in G are connected, and where each party gets a share of size Õ(

√
N).

For all of these problems, the worst-case complexity of the best previous solutions was Ω(N/ logN). The
above results are obtained by applying general transformations to variants of private information retrieval
(PIR) protocols from the literature, where different flavors of PIR are required for different applications.
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1 Introduction
How bad are the worst functions? For most standard complexity measures of boolean functions, the answer
to this question is well known. For instance, the circuit complexity of the worst function f : [N ] → {0, 1} is
Θ(N/ logN) [56, 51] and the two-party communication complexity of the worst function f : [N ] × [N ] →
{0, 1} is Θ(logN) in every standard model of communication complexity [50].1 In sharp contrast, this ques-
tion is wide open for most natural complexity measures in information-theoretic cryptography that involve
communication or randomness rather than computation. Standard counting techniques or information in-
equalities only yield very weak lower bounds, whereas the best known upper bounds are typically linear in the
size of the input domain (and exponential in the bit-length of the inputs).

The only exceptions to this state of affairs are in the context of secure multiparty computation, where
it is known that when a big majority of honest parties is guaranteed, the communication and randomness
complexity can always be made sublinear in the input domain size [4, 41] (see Section 1.2 for discussion of
these and other related works). However, no similar results were known for secure computation with no honest
majority, and in particular in the two-party case.

In the present work we study the complexity of the worst-case functions in several standard models for
information-theoretic secure two-party computation, along with a related problem in the area of secret sharing.

We restrict our attention to security against passive (aka semi-honest) adversaries. We will usually also
restrict the attention to deterministic two-party functionalities captured by boolean functions f : [N ]× [N ]→
{0, 1}, where the output is learned by both parties.2 In the following, the term “secure” will refer by default
to perfect security in the context of positive results and to statistical security in the case of negative results. In
this setting, we consider the following questions.

OT COMPLEXITY. The first model we consider is secure two-party computation in the OT-hybrid model,
namely in a model where an ideal oracle implementing 1-out-of-2 oblivious transfer [54, 29] (of bits) is
available. Secure computation in this model is motivated by the possibility of realizing OT using noisy com-
munication channels [22], the equivalence between OT and a large class of complete functionalities [47, 48],
and the possibility of efficiently precomputing [3] and (in the computational setting) extending [2, 37] OTs.
See [44] for additional motivating discussion.

Viewing OT as an “atomic currency” for secure two-party computation, it is natural to study the minimal
number of OT calls required for securely computing a given two-party functionality f . We refer to this
quantity as the OT complexity of f . Special cases of this question were studied in several previous works
(e.g., [25, 2, 60]), and a more systematic study was conducted in [10, 53].

The GMW protocol [32, 33, 31] shows that the OT complexity of any function f is at most twice the size
of the smallest boolean circuit computing f . For most functions f : [N ] × [N ] → {0, 1}, this only gives an
upper bound of O(N2/ logN) on the OT complexity.3

A simpler and better upper bound can be obtained by using 1-out-of-N OT (denoted
(
N
1

)
-OT). Concretely,

the first party P1, on input x1, prepares a truth-table of the function fx1
(x2) obtained by restricting f to its

own input, and using
(
N
1

)
-OT lets the second party P2 select the entry of this table indexed by x2. Since(

N
1

)
-OT can be reduced to N − 1 instances of standard OT [16], we get an upper bound of N − 1 on the OT

complexity of the worst-case f . This raises the following question:

Question 1.1. What is the OT complexity of the worst function f : [N ] × [N ] → {0, 1}? In particular, can
every such f be securely realized using o(N) OTs?

Given the existence of constant-rate reductions between OT and any finite complete functionality [35, 43],
the answer to Question 1.1 remains the same, up to a constant multiplicative factor, even if the OT oracle
is replaced by a different complete functionality, such as binary symmetric channel. In particular, the OT
complexity of f is asymptotically the same as the “AND complexity” of f considered in [10].

We will also be interested in a sampling variant of Question 1.1, where the goal is to securely sample
from some probability distribution over output pairs from [N ] × [N ] using a minimal number of OTs. This

1Here and in the following, we let [N ] denote the set {1, 2, . . . , N} and naturally identify an input x ∈ [N ] with a dlog2Ne-bit
binary representation.

2Using standard reductions (cf. [31]), our results can be extended to general (possibly randomized or even reactive) functionalities that
may deliver different outputs to the two parties. While some of our results can also be extended to the case of k-party secure computation,
we focus here on the two-party case for simplicity.

3The GMW protocol can handle XOR and NOT gates for free, but it is not clear if this can be used to significantly lower the complexity
of the worst-case functions. A negative result in a restricted computation model is given in [19].
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captures the rate of securely reducing complex correlations to simple ones, a question which was recently
studied in [53].

CORRELATED RANDOMNESS COMPLEXITY. The second model we consider is that of secure two-party
computation with an arbitrary source of correlated randomness. That is, during an offline phase, which takes
place before the inputs are known, the two parties are given a pair of random strings (r1, r2) drawn from some
fixed joint distribution, where ri is known only to Pi. During the online phase, once the inputs (x1, x2) are
known, the parties can use their correlated random inputs, possibly together with independent secret coins, to
securely evaluate f . This model can be viewed as a relaxation of the OT-hybrid model discussed above, since
each OT call is easy to realize given correlated randomness corresponding to a random instance of OT [3]. The
model is motivated by the possibility of generating the correlated randomness using semi-trusted servers or a
secure interactive protocol, thus capturing the goal of minimizing the online complexity of secure computation
via offline preprocessing. See [13, 42, 24] for additional discussion.

General correlations have several known advantages over OT correlations in the context of secure com-
putation. Most relevant to our work is a result from [42], showing that for any f : [N ] × [N ] → {0, 1}
there is a source of correlated randomness (r1, r2) given which f can be realized using only O(logN) bits
of communication. However, the correlated randomness complexity of this protocol, namely length of the
random strings r1, r2, is O(N2). Minimizing the correlated randomness complexity is desirable because the
correlated randomness needs to be communicated and stored until the online phase begins. The simple OT
complexity upper bound discussed above also implies an O(N) upper bound on the correlated randomness
complexity of the worst functions. No better bound is known. This raises the following question:

Question 1.2. What is the correlated randomness complexity of the worst function f : [N ]× [N ]→ {0, 1}?
In particular, can every such f be securely realized using o(N) bits of correlated randomness?

COMMUNICATION COMPLEXITY OF PRIVATE SIMULTANEOUS MESSAGES PROTOCOLS. Feige,
Kilian, and Naor [30] considered the following non-interactive model for secure two-party computation. The
two parties simultaneously send messages to an external referee, where the message of party Pi depends on
its input xi and a common source of randomness r that is kept secret from the referee. From the two messages
it receives, the referee should be able to recover f(x1, x2) but learn no additional information about x1, x2.
Following [38], we refer to such a protocol as a private simultaneous messages (PSM) protocol for f . A PSM
protocol for f can be alternatively viewed as a special type of randomized encoding of f [39, 1], where the
output of f is encoded by the output of a randomized function f̂((x1, x2); r) such that f̂ can be written as
f̂((x1, x2); r) = (f̂1(x1; r), f̂2(x2; r)). This is referred to as a “2-decomposable” encoding in [36].

It was shown in [30] that every f : [N ] × [N ] → {0, 1} admits a PSM protocol with O(N) bits of
communication. While better protocols are known for functions that have small formulas or branching pro-
grams [30, 38], this still remains the best known upper bound on the communication complexity of the worst-
case functions, or even most functions, in this model. We thus ask:

Question 1.3. What is the PSM communication complexity of the worst function f : [N ]× [N ]→ {0, 1}? In
particular, does every such f admit a PSM protocol which uses o(N) bits of communication?

SHARE COMPLEXITY OF FORBIDDEN GRAPH ACCESS STRUCTURES. A longstanding open question
in information-theoretic cryptography is whether every (monotone) access structures can be realized by a
secret-sharing scheme in which the share size of each party is polynomial in the number of parties. Here we
consider a “scaled down” version of this question, where the access structure only specifies, for each pair of
parties, whether this pair should be able to reconstruct the secret from its joint shares or learn nothing about
the secret.4 This type of graph-based access structures was considered in [58] under the name “forbidden
graph” access structures.

A simple way of realizing such an access structure is by independently sharing the secret between each
authorized pair. For most graphs, this solution distributes a share of length Ω(N) to each party. This can
be improved by using covers by complete bipartite graphs implying that every graph access structure can
be realized by a scheme in which the share size of each party is O(N/ logN) [17, 15, 28]. This raises the
following question:

4In contrast to the more standard notion of graph-based access structures, we make no explicit requirement on bigger or smaller sets
of parties. However, one can easily enforce the requirement that every single party learns nothing about the secret and every set of 3
parties can reconstruct the secret.
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Question 1.4. What is share length required for realizing the worst graphs G? In particular, can every
forbidden graph access structure on N nodes be realized by a secret-sharing scheme in which each party
receives o(N/ logN) bits?

1.1 Our Results
For each of the above questions, we obtain the first o(N/ logN) complexity upper bound. Our upper bounds
are obtained by applying general transformations to variants of information-theoretic private information re-
trieval (PIR) protocols from the literature (see Section 1.2), where different flavors of PIR are required for
different applications. At a high level, our results exploit new connections between 2-server PIR and OT com-
plexity, between 3-server PIR and correlated randomness complexity, and between a special “decomposable”
variant of 3-server PIR and PSM complexity. The secret sharing result is obtained by applying a general
transformation to the PSM result, in the spirit of a transformation implicit in [8].

More concretely, we obtain the following main results.

OT COMPLEXITY OF SECURE TWO-PARTY COMPUTATION. We show that every function f : [N ] ×
[N ]→ {0, 1} can be securely evaluated using Õ(N2/3) invocations of an oblivious transfer oracle. In fact, the
total communication complexity and randomness complexity of the protocol are also bounded by Õ(N2/3).
We also obtain a similar result for securely sampling a uniform pair of outputs from a set S ⊆ [N ] × [N ].
More generally and precisely, for any joint probability distribution (U, V ) over [N ]× [N ] and any ε > 0, we
obtain an ε-secure protocol for sampling correlated outputs from (U, V ) using N2/3 · poly(logN, log 1/ε)
OTs. This can be viewed as a nontrivial secure reduction of complex correlations (or “channels”) to simple
ones. These results apply the 2-server PIR protocol from [20].

CORRELATED RANDOMNESS COMPLEXITY OF SECURE TWO-PARTY COMPUTATION. We show
that every function f : [N ] × [N ] → {0, 1} can be securely evaluated using 2Õ(

√
logN) bits of correlated

randomness. In fact, the same bound holds also for the total randomness complexity of the protocol (counting
private independent coins as well) and also for the communication complexity of the protocol. This result
applies the 3-server PIR protocol of [27]. It was previously observed in [30, 42] that secure two-party com-
putation with correlated randomness gives rise to a 3-server PIR protocol. Here we show a connection in the
other direction.

COMMUNICATION COMPLEXITY OF PRIVATE SIMULTANEOUS MESSAGES. We show that every
function f : [N ] × [N ] → {0, 1} can be realized by a PSM protocol with messages of length O(

√
N). The

construction is based on a special “decomposable” variant of 3-server PIR which we realize by modifying
a PIR protocol from [20]. In the hope of improving the O(

√
N) upper bound, we reduce the problem of

decomposable 3-server PIR to a combinatorial question of obtaining a decomposable variant of matching
vector sets [61, 26]. We leave open the existence of decomposable matching vector sets with good parameters.

In the terminology of randomized encoding of functions, the above result shows that every f : [N ]×[N ]→
{0, 1} admits a 2-decomposable randomized encoding of length O(

√
N). It is instructive to note that whereas

previous PSM protocols from [30, 38] employ a universal decoder (i.e., referee algorithm), which does not
depend on the function f other than on a size parameter, the decoder in our construction strongly depends on
f . It follows by a simple counting argument that this is inherent.

SHARE COMPLEXITY OF FORBIDDEN GRAPH ACCESS STRUCTURES. We show that for every graph
G with N nodes, the corresponding forbidden graph access structure can be realized by a secret-sharing
scheme in which each party gets a share of size Õ(

√
N). This result is obtained by applying a general

transformation to our new PSM protocols. Curiously, while our secret-sharing scheme is not linear, a simple
generalization of a result of Mintz [52] implies a lower bound of Ω(

√
N) on the share complexity of any linear

scheme realizing the worst forbidden graph access structure. This extends a previous lower bound from [5]
that applies to the stricter notion of graph-based access structures. The existence of linear secret-sharing
schemes meeting this lower bound is left open.
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1.2 Related Work
Prior to our work, the only previous context in which sublinear communication that of secure multiparty
computation in the presence of an honest majority. While the complexity of standard protocols [11, 18] grows
linearly with the circuit size, it is possible to do much better when there is a sufficiently large majority of honest
parties. Beaver et al. [4] have shown that when only log n parties are corrupted, any function f : {0, 1}n →
{0, 1} can be securely evaluated using only poly(n) bits of communication and randomness, namely the
complexity is polylogarithmic in the input domain size. Their technique makes an ad-hoc use of locally
random reductions, which are in turn related to the problem of information-theoretic private information
retrieval (PIR) [20]. A k-server PIR protocol allows a client to retrieve an arbitrary bit Di from a database
D ∈ {0, 1}N , which is held by k servers, while hiding the selection i from each individual server. The main
optimization goal for PIR protocols is their communication complexity, which is required to be sublinear in
N .

Ishai and Kushilevitz [41] present a general method for transforming communication-efficient PIR proto-
cols into communication-efficient secure multiparty protocols in which the number of parties is independent
of the total input length n. In contrast to our constructions, which require the underlying PIR protocols to sat-
isfy additional computational and structural requirements, the transformation from [41] is completely general.
On the down side, it does not apply in the two-party case and it requires PIR protocols with polylogarithmic
communication, which are not known to exist for a constant number of servers k.

Beimel and Malkin [10] put forward the general goal of studying the minimal number of OTs/ANDs
required for securely realizing a given two-party functionality f , observe that this quantity can be smaller in
some cases than the circuit size of f , and obtain several connections between this question and communication
complexity. These connections are mainly useful for proving lower bounds that are logarithmic in the domain
size N or upper bounds for specific functions that have low communication complexity. More results in this
direction are given in [46]. Prabhakaran and Prabhakaran [53] put forward the question of characterizing the
rate of secure reductions between sampling functionalities, and strengthen previous negative results from [60]
on the rate of secure reductions between different OT correlations. None of the above results give nontrivial
upper bounds for the worst (or most) functions f . Winkler and Wulschlegger [60] prove an Ω(logN) lower
bound on the correlated randomness complexity of secure two-party computation. Except for very few func-
tions, this lower bound is very far from the best known upper bounds even when considering the results of this
work.

The complexity of secret sharing for graph-based access structures was extensively studied in a setting
where the edges of the graph represent the only minimal authorized sets, that is, any set of parties that does
not contain an edge should learn nothing about the secret. The notion of forbidden graph access structures we
study, originally introduced in [58], can be viewed as a natural “promise version” of this question, where one
is only concerned about sets of size 2.

It is known that every graph access structure can be realized by a scheme in which the share size of each
party is O(N/ logN) [17, 15, 28]. (This scheme is linear.) The best lower bound for the total share size
required to realize a graph access structure by a general secret-sharing scheme is Ω(N logN) [59, 14, 23].
The best lower bound for total share size required to realize a graph access structure by a linear secret-sharing
scheme is Ω(N3/2) [5]. The problem of secret sharing for dense graphs was studied in [7]. More works on
secret sharing of graph access structures can be found in [7].

2 Preliminaries
2.1 Models and Definitions

Notation. Let [n] denote the set {1, 2, . . . , n}. Let FN denote the set of all boolean functions from [N ]× [N ]
to {0,1}. We will interpret f ∈ FN as a 2-party function from [N ]× [N ] to {0,1}.

For an algorithm B, let τ(B) denote the size of a boolean circuit (measured as the number of AND gates,
in particular ignoring the number of XOR and NOT gates) that represents B. Formally,

Definition 2.1. Let B be an arbitrary (randomized) algorithm that takes inputs of length ` and produces
output of length `′. A boolean circuit realizing B over basis {∧,⊕,¬}, denoted by C(B) is an `-input, `′-
output boolean circuit over the basis {∧,⊕,¬} (i.e., the logical operations AND, XOR, and NOT) such that
the input-output behavior of C(B) is identical to the input-output behavior of B. Define τ(C(B)) as the
number of AND gates (ignoring XOR and NOT gates) in the circuit C(B). Define τ(B) as minC(B) τ(C(B)).
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Computational model. Since our results refer to perfect security, we incorporate perfect uniform sampling
of [m], for an arbitrary positive integer m, into the computational model as an atomic computation step.

Protocols. A k-party protocol can be formally defined by a next message function. This function on input
(i, xi, j,m) specifies a k-tuple of messages sent by party Pi in round j, when xi is its input and m describes
all the messages Pi received in previous rounds. The next message function may also instruct Pi to terminate
the protocol, in which case it also specifies the output of Pi.

Protocols with preprocessing. In the preprocessing model, the specification of a protocol also includes a
joint distribution D over R1 × R2 . . .× Rk, where the Ri’s are finite randomness domains. This distribution
is used for sampling correlated random inputs (r1, . . . , rk) that the parties receive before the beginning of
the protocol (in particular, the preprocessing is independent of the inputs). The next message function, in
this case, may also depend on the private random input ri received by Pi from D. We assume that for every
possible choice of inputs and random inputs, all parties eventually terminate.

OT correlations and the OT-hybrid model. We will be interested in the special case of the 2-party setting
when the correlated random inputs (X,Y ) given to the two parties are random OT correlations, corresponding
to a random instance of oblivious transfer, in which the receiver obtains one of two bits held by the sender.
That is, X = (X0, X1) is uniformly random over {0, 1}2 and Y = (b,Xb) for a random bit b. We refer to
a model in which the correlated randomness given to the parties consists of random OT correlations, as the
OT preprocessing model. Alternatively, we may consider a setting where (each pair of) parties have access
to an ideal (bit) OT functionality that receives from one of the parties, designated as the sender, a pair of bits
(x0, x1), and a choice bit b from the other party, designated as the receiver, and sends back to the receiver the
value xb. We call this model the OT-hybrid model.

Security definition. We use the standard ideal-world/real-world simulation paradigm. We restrict our atten-
tion to the case of semi-honest (passive) corruptions. Using the standard terminology of secure computation,
the preprocessing model can be thought of as a hybrid model where the parties have a one-time access to an
ideal randomized functionality D (with no inputs) providing them with correlated, private random inputs ri.
For lack of space, we omit the full security definitions (see, e.g., [42, App. A] adapted to the semi-honest
setting).

2.2 Private Information Retrieval
The following is a somewhat non-standard view of PIR protocols, where the index is thought of as a pointer
into a two-dimensional table, which in turn is thought of as a two-argument function.

Definition 2.2 (Private Information Retrieval). Let FN be the set of all boolean functions f : [N ] × [N ] →
{0, 1}. A k-server private information retrieval (PIR) scheme P = (Q,A,R) for FN is composed of three
algorithms: a randomized query algorithm Q, an answering algorithm A, and a reconstruction algorithmR.
At the beginning of the protocol, the client has an input x ∈ [N ]× [N ] and each server has an identical input
f representing a function in FN . Using its private randomness r ∈ {0, 1}γ(N), the client computes a tuple of
k queries (q1, . . . , qk) = Q(x, r), where qi ∈ {0, 1}α(N), for all i ∈ [k]. The client then sends the query qj to
server Sj , for every j ∈ [k]. Each server Sj responds with an answer aj = A(j, qj , f), with aj ∈ {0, 1}β(N).
Finally, the client computes the value f(x) by applying the reconstruction algorithm R(x, r, a1, . . . , ak). We
ask for the following correctness and privacy requirements:

Correctness. The client always outputs the correct value of f(x). Formally, for every function f ∈ FN ,
every input x ∈ [N ] × [N ], and every random string r, if (q1, . . . , qk) = Q(x, r) and aj = A(j, qj , f), for
j = 1, . . . , k, thenR(x, r, a1, . . . , ak) = f(x).

Client’s privacy. Each server learns no information about x. Formally, for every two inputs x, x′ ∈ [N ]×[N ],
every j ∈ [k], and every query q, the server Sj cannot know if the query was generated with input x or with
input x′; that is, Pr[Qj(x, r) = q] = Pr[Qj(x′, r) = q], where Qj denotes the jth query in the k-tuple that
Q outputs and the probability is taken over a uniform choice of the random string r.

The communication complexity of a protocol P is the total number of bits communicated between the
client and the k servers (i.e.,

∑
j(|qj |+|aj |) = k(α(N)+β(N))), maximized over the choice of x ∈ [N ]×[N ],

f ∈ FN , and the random string r ∈ {0, 1}γ(N).

Every function f ∈ FN is represented by an N2-bit string y = (y1,1, . . . , yN,N ), where f(i, j) = yi,j .
The string y is also called a database, and we think of the client as querying a bit yi,j from the database.
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Observe that the query received by each server is independent of the client’s input x. In particular, this
holds for the first query q1, which therefore, may be thought of as depending only on the private randomness,
say r, of the client, and not on the client input x. That is, we may assume that the query generation algorithm
Q is expressed as the combination of two algorithms Q1,Q−1 such that query q1 is generated by Q1(r)
while the remaining queries q2, . . . , qk are generated by algorithm Q−1(x, r). In other words, we assume
that the client with private randomness r, computes a tuple of k queries (q1, . . . , qk) as q1 = Q1(r), and
q2, . . . , qk = Q−1(x, r).

2.3 Private Simultaneous Messages
The Private Simultaneous Messages (PSM) model was introduced by [30] as a minimal model for secure
computation. It allows k players P1, . . . , Pk with access to shared randomness, to send a single message each
to a referee Ref , so that the referee learns the value of a function f(x1, . . . , xk) (where xi is the private input
of Pi) but nothing else. It is formally defined as follows:

Definition 2.3 (Private Simultaneous Messages). Let X1, . . . , Xk, Z be finite domains, and let X = X1 ×
· · ·×Xk. A private simultaneous messages (PSM) protocol P , computing a k-argument function f : X → Z,
consists of:

• A finite domain R of shared random inputs, and k finite message domains M1, . . . ,Mk.

• Message computation function µ1, . . . , µk, where µi : Xi ×R→Mi.

• A reconstruction function g : M1 × · · · ×Mk → Z.

Let µ(x, r) denote the k-tuple of messages (µ1(x1, r), . . . , µk(xk, r)). We say that the protocol P is correct
(with respect to f ), if for every input x ∈ X and every random input r ∈ R, g(µ(x, r)) = f(x). We say
that the protocol P is private (with respect to f ), if the distribution of µ(x, r), where r is a uniformly random
element of R, depends only on f(x). That is, for every two inputs x, x′ ∈ X such that f(x) = f(x′), the
random variables µ(x, r) and µ(x′, r) (over a uniform choice of r ∈ R) are identically distributed. P is a
PSM protocol computing f if it is both correct and private.

The communication complexity of the PSM protocol P is naturally defined as
∑n
i=1 log |Mi|. The ran-

domness complexity of the PSM protocol P is defined as log |R|.

Appendix A includes some additional definitions related to secret sharing.

3 Our Results

Secure computation in the OT-hybrid model. We show a connection between secure computation in the
(bit) OT-hybrid model and 2-server PIR. More formally, we show:

Theorem 3.1. Let P = (Q,A,R) be a 2-server PIR scheme for FN as described in Definition 2.2. Let τ(·)
be as in Definition 2.1. Then, for any 2-party functionality f : [N ] × [N ] → {0, 1}, there is a protocol π
which realizes f in the (bit) OT-hybrid model, and has the following features:

• π is perfectly secure against semi-honest parties;

• The total communication complexity, and in particular the number of calls to the OT oracle isO(τ(Q)+
τ(R)).

Plugging in parameters from the best known 2-server PIR protocol [20] (cf. Appendix B) in Theorem 3.1,
we obtain:

Corollary 3.2. For any 2-party functionality f : [N ] × [N ] → {0, 1}, there is a protocol π that realizes
f in the (bit) OT-hybrid model; this protocol is perfectly secure against semi-honest parties, and has total
communication complexity (including communication with the OT oracle) Õ(N2/3).

Prior to our work, the best upper bound on the communication complexity of an information-theoretically
secure protocol in the OT-hybrid model for evaluating arbitrary functions f : [N ]× [N ]→ {0, 1} was Ω(N).
This can, for instance, be achieved by formulating the secure evaluation of f : [N ]× [N ]→ {0, 1} as a 1-out-
of-N OT problem between the two parties, where party P1 participates as sender with inputs {f(x1, i)}i∈[N ]

and party P2 participates as receiver with input x2. An instance of 1-out-of-N OT can be obtained information
theoretically from O(N) instances of 1-out-of-2 OT by means of standard reductions [16].
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Secure computation in the preprocessing model. Since OTs can be precomputed [3], the protocol implied
by Theorem 3.1 yields a perfectly secure semi-honest protocol in the OT-preprocessing model where the
communication complexity of the protocol and number of OTs required are both O(τ(Q) + τ(R)).

Our next theorem shows that it is possible to obtain much better communication complexity in a setting
where we are not restricted to using precomputed OT correlations alone. We show this by demonstrating a
connection between secure computation in the preprocessing model and 3-server PIR. More formally,

Theorem 3.3. Let P = (Q,A,R) be a 3-server PIR scheme for FN as described in Definition 2.2. Let τ(·)
be as in Definition 2.1. Then, for any 2-party functionality f : [N ]× [N ]→ {0, 1}, there is a protocol π that
realizes f in the preprocessing model, and has the following features:

• π is perfectly secure against semi-honest parties;

• The total communication complexity is O(τ(Q) + τ(R));

• The total correlated randomness complexity is O(τ(Q) + τ(R)).

Remark 3.4. We point out that a transformation in the other direction (i.e., constructing 3-server PIR protocols
from protocols in the preprocessing model) was shown in [42]. In more detail, they show that a semi-honest
secure protocol in the preprocessing model for f : [N ]×[N ]→ {0, 1}with correlated randomness complexity
s(N) implies the existence of a 3-server, interactive PIR protocol, with communication complexity s(N̂1/2)+

O(log N̂), where N̂ is the size of the database held by the servers. Taken together with our Theorem 3.3,
this shows a two-way connection between the communication complexity of 3-server PIR protocols and the
correlated randomness complexity of protocols in the preprocessing model.

Plugging in parameters from the best known 3-server PIR protocols [27, 9] (cf. Appendix C) in Theo-
rem 3.3, we obtain:

Corollary 3.5. For any 2-party functionality f : [N ] × [N ] → {0, 1}, there is a protocol π that realizes
f in the preprocessing model; this protocol is perfectly secure against semi-honest parties, and has total
communication complexity and correlated randomness complexity 2Õ(

√
logN).

The protocols implied by Corollaries 3.2 and 3.5 can be realized using 4 rounds of interaction (while
preserving their communication and correlated randomness complexity). We point out that it is possible to
obtain 2-round perfectly secure protocols in the preprocessing model but known constructions [16, 42] require
correlated randomness complexity at least O(N). In Appendix D, we show an upper bound of O(N1/2)
on the communication and correlated randomness complexity of 3-round perfectly secure protocols in the
preprocessing model against semi-honest parties.

Private simultaneous messages (PSM) model. We obtain the following upper bound for 2-party protocols
in the PSM model.

Theorem 3.6. For any 2-party functionality f : [N ]× [N ]→ {0, 1}, there is a PSM protocol π that realizes
f , and has the following features:

• π is perfectly secure against semi-honest parties;

• The total communication complexity and the complexity are O(N1/2).

This improves upon the best known upper bound of O(N) on the communication and randomness com-
plexity of PSM protocols [30].

Secret sharing for forbidden graph access structures. Consider a graph G = (V,E). We are interested in
the following graph access structure AG in which the parties correspond to the vertices of the graph and (1)
every vertex set of size three or more is authorized, and (2) every pair of vertices that is not connected by an
edge in E is authorized. Such an access structure is called a forbidden graph access structure [58] since pairs
of vertices connected by an edge in G are forbidden from reconstructing the secret. We obtain the following
upper bound on the share size for a secret-sharing scheme realizing AG, for all G.

Theorem 3.7. Let G = (V,E) be a graph with |V | = N , and let AG be the corresponding access structure.
Then, there exists a perfect secret-sharing scheme realizing AG with total share size O(N3/2 logN).
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Preliminaries: Let P = (Q,A,R) be a 2-server PIR protocol where servers hold as database the truth table of a function f :
[N ] × [N ] → {0, 1}. Parties P1, P2 have inputs x1, x2 ∈ [N ] respectively. At the end of the protocol, both parties learn
z = f(x1, x2).

Protocol:
1. P1, P2 choose uniformly random r(1), r(2) ∈ {0, 1}γ(N), respectively (where γ(N) is the size of the randomness required by

algorithmQ). Let Q̃ denote an algorithm that takes as input (x1, r(1)), (x2, r(2)) and runs algorithmQ(x1‖x2, r(1)⊕r(2)).
Party P1 with inputs (x1, r

(1)) and P2 with inputs (x2, r
(2)) run a 2-party semi-honest secure GMW protocol in the OT-

hybrid model to evaluate circuit C(Q̃). Let q1, q2 denote their respective outputs.

2. P1 and P2 locally compute a1 = A(1, q1, f) and a2 = A(2, q2, f) respectively.

3. Let R̃ denote an algorithm that takes as input (a1, x1, r(1)), (a2, x2, r(2)) and runs algorithmR(x1‖x2, r(1)⊕r(2), a1, a2).
Party P1 with inputs (a1, x1, r(1)) and P2 with inputs (a2, x2, r(2)) run a 2-party semi-honest secure GMW protocol in the
OT-hybrid model to evaluate circuit C(R̃), where z denotes their common output. Both parties output z and terminate the
protocol.

Figure 1: A perfectly secure protocol in the OT-hybrid model.

4 Secure computation in the OT-hybrid model
In this section, we construct a 2-party secure computation protocol realizing f : [N ] × [N ] → {0, 1} in the
(bit) OT-hybrid model from a 2-server PIR protocol P = (Q,A,R). The resulting protocol will have commu-
nication complexity Õ(N2/3) and makes Õ(N2/3) calls to the ideal OT functionality, improving over prior
work whose worst-case complexity (both in terms of communication and calls to the ideal OT functionality)
was Ω(N) [16, 25].

Let P = (Q,A,R) be a 2-server PIR protocol. Let the truth table of the function f : [N ]× [N ]→ {0, 1}
that we are interested in, serve as the database (of length N2). The high level idea behind our protocol is that
the two parties P1 and P2, with their respective inputs x1, x2, securely emulate a virtual client with input x =
x1‖x2, and two virtual servers holding as database the truth table of f , in the PIR protocol P . In more detail,
parties P1 and P2, with inputs x1 ∈ [N ], r(1) ∈ {0, 1}γ(N) and x2 ∈ [N ], r(2) ∈ {0, 1}γ(N) respectively,
emulate a PIR client by securely evaluating the query generation algorithm Q on input x = x1‖x2 ∈ [N2]
and randomness r = r(1)⊕r(2), such that party P1 obtains query q1 and party P2 obtains query q2. Then,
using the PIR queries as their respective inputs, the parties locally emulate the PIR servers by running the PIR
answer generation algorithm A and obtaining PIR answers a1 and a2, respectively. Finally, using the answers
a1, a2, the inputs x1, x2, and the randomness r(1), r(2), parties P1 and P2 once again participate in a secure
computation protocol to securely evaluate the PIR reconstruction algorithmR to obtain the final output z. The
protocol is described in Figure 1. It is easy to see that the communication complexity as well as the number
of calls to the ideal OT functionality is O(τ(Q) + τ(R)), that is, the complexity is proportional to the circuit
size of the query and reconstruction algorithms. For a detailed proof, see Appendix K.1.

Intuitively, the protocol is private because (1) each individual PIR query does not leak any information
about the query location and the reconstruction algorithms outputs nothing but the desired bit (both follow
from the definition of PIR schemes); and (2) emulation of the algorithms run by the PIR client is done via
secure computation protocols.

Instantiating the protocol in Figure 1 with the 2-server PIR protocol of Chor et al. [20] yields a perfectly
secure protocol in the OT-hybrid model whose communication complexity is Õ(N2/3) and which makes
Õ(N2/3) calls to the ideal OT functionality. See Appendix B, for a description of the 2-server PIR protocol
and analysis of its efficiency. This proves Corollary 3.2.

5 Secure Computation in the Preprocessing Model
In this section, we construct a 2-party secure computation protocol realizing f : [N ] × [N ] → {0, 1} in
the preprocessing model from a 3-server PIR protocol P = (Q,A,R). The resulting protocol will have
communication and correlated randomness complexity 2Õ(

√
logN) improving over prior work whose worst-

case complexity was Ω(N) [16, 25]. Note that we manage to emulate a protocol with 3 servers and one client
by a protocol with 2 parties.
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Let P = (Q,A,R) be a 3-server PIR protocol. We assume that the database represents the truth table
of the function f : [N ] × [N ] → {0, 1} that we are interested in. The high level idea behind our protocol
is that the two parties P1 and P2 with their respective inputs x1, x2 securely emulate a virtual client with
input x = x1‖x2, and two of the three virtual servers, say S2 and S3, holding as database the truth table
of f , in the PIR protocol P . The key observation is that server S1’s inputs and outputs can be precomputed
and shared between P1 and P2 as preprocessed input. This is possible because S1’s input, namely the PIR
query q1, is distributed independently of the client’s input, and thus can be computed beforehand. Similarly,
a1, the answer of S1, is completely determined by q1 and the truth table of the function f , and thus can be
precomputed as well. Thus, the preprocessed input along with the emulation done by P1 and P2 allow them
to securely emulate all PIR algorithms Q, A, R of the 3-server PIR protocol P . We provide a more detailed
description of the protocol below.

Parties P1 and P2, are provided as preprocessed input, values (r(1),a(1)1 ) and (r(2), a(2)1 ) respectively along
with sufficient OT correlations (whose use we will see later). The values r(1) and r(2) together determine
the randomness used in PIR query generation algorithm Q as r = r(1)⊕r(2). Given randomness r, the first
server’s query q1 (resp. answer a1) is completely determined asQ1(r) (resp.A(1, q1, f)). The values a(1)1 and
a
(2)
1 together form a random additive sharing of a1.

In the online phase, when parties obtain their respective inputs x1 and x2, they proceed to emulate the PIR
client by securely evaluating the query generation algorithm on input x = x1‖x2 ∈ [N2] and randomness
r = r(1)⊕r(2), such that party P1 obtains query q2 and party P2 obtains query q3. Then, using the PIR queries
as their respective inputs, the parties locally emulate the PIR servers by running the PIR answer generation
algorithm A and obtain PIR answers a2 and a3 respectively. Recall that a random sharing of answer a1 is
already provided to the parties as preprocessed input. Using this random sharing of answer a1, the locally
computed answers a2, a3, the inputs x1, x2, and the randomness r = r(1)⊕r(2), parties P1 and P2 once again
participate in a secure computation protocol to securely evaluate the PIR reconstruction algorithmR to obtain
the final output z. The protocol is described in Figure 2. It is easy to see that the communication and correlated
randomness complexity of the protocol equals O(τ(Q) + τ(R)).

Intuitively, the protocol is private because (1) each party knows at most one PIR query, and (2) each
individual PIR query does not leak any information about the query location (follows from the definition of
PIR properties), and (3) emulation of the algorithms run by the PIR client is done via secure computation
protocols. For a detailed proof, see Appendix K.2.

Instantiating the protocol in Figure 2 with the best known 3-server PIR protocol [61, 27, 9] we obtain
a perfectly secure protocol in the preprocessing model whose communication and correlated randomness
complexity is 2Õ(

√
logN). See Appendix C for a description of the concrete 3-server PIR protocol that we use

for the instantiation, and also an analysis of efficiency of the protocol in Figure 2.

6 Private Simultaneous Messages
In this section, we provide a new framework for constructing PSM protocols (cf. Definition 2.3). Our pro-
posed framework is based on a new variant of PIR protocols that we call decomposable PIR protocols. We
define decomposable PIR in Section 6.1. We construct a 2-party PSM protocol using 3-server decomposable
PIR protocols in Section 6.2, and we present a concrete decomposable 3-server PIR protocol in Section 6.3.
The PSM protocol of Section 6.2, instantiated with this concrete decomposable 3-server PIR protocol, has
communication (and randomness) complexity O(N1/2), for all f : [N ]× [N ]→ {0, 1}.

6.1 Decomposable PIR Schemes
A k-server decomposable PIR protocol allows a client with input x = (x1, . . . , xk−1) ∈ [N ]k−1 to query k
servers, each holding a copy of a database of size Nk−1 and retrieve the contents of the database at index
x while offering (possibly relaxed) privacy guarantees to the client. Loosely speaking, decomposable PIR
protocols differ from standard PIR protocols (cf. Definition 2.2) in two ways: (1) the query generation and
reconstruction algorithms can be decomposed into “simpler” algorithms that depend only on parts of the
entire input. (2) We change the privacy requirement and require that the query of server Sk together with
some information about the answers of the first k− 1 servers does not disclose information about the input of
the client. We note that the privacy of the first k − 1 queries follows from the decomposability of the query
generation algorithm. We provide the formal definition below.

Definition 6.1 (Decomposable PIR). Let FN,k−1 be the set of all boolean functions f : [N ]k−1 → {0, 1}. A
k-server decomposable PIR protocol P = (Q,A,R) for FN,k−1 consists of three algorithms: a randomized
query algorithm Q, an answering algorithm A, and a reconstruction algorithm R. At the beginning of the
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protocol, the client has an input x = (x1, . . . , xk−1) ∈ [N ]k−1 (i.e., x is from the input domain of FN,k−1)
and each server has an identical input f representing a function in FN,k−1. Using its private randomness
r ∈ {0, 1}γ(N), the client computes a tuple of k queries (q1, . . . , qk) = Q(x, r), where each qi ∈ {0, 1}α(N).
The client then sends the query qj to server Sj , for every j ∈ [k]. Each server Sj responds with an answer aj =

A(j, qj , f), with aj ∈ {0, 1}β(N). Finally, the client computes the value f(x) by applying the reconstruction
algorithmR(x, r, a1, . . . , ak). The query generation algorithmQ and the reconstruction algorithmR satisfy
the following “decomposability” properties.

Decomposable query generation algorithm. The randomized query generation algorithm Q can be decom-
posed into k algorithmsQ1, . . . ,Qk−1,Qk = (Q1

k, . . . ,Q
k−1
k ), such that for every input x = (x1, . . . , xk−1) ∈

[N ]k−1, and for every random string r ∈ {0, 1}γ(N), the queries (q1, . . . , qk) = Q(x, r) are computed by the
client as qj = Qj(xj , r) for j ∈ [k − 1], and qk = (q1k, . . . , q

k−1
k ) = (Q1

k(x1, r), . . . ,Qk−1k (xk−1, r)).

Decomposable reconstruction algorithm. There exists algorithms R′,R′′ such that for every input x =
(x1, . . . , xk−1) ∈ [N ]k−1, and for every random string r ∈ {0, 1}γ(N), if (q1, . . . , qk) = Q(x, r), and
aj = A(j, qj , f) for j ∈ [k], then the output of the reconstruction algorithm R(x, r, a1, . . . , ak) equals
R′′(ak,R′(x, r, a1, . . . , ak−1)).

We ask for the following correctness and privacy requirements:

Correctness. The client always outputs the correct value of f(x). Formally, for every function f ∈ FN,k−1,
every input x ∈ [N ]k−1, and every random string r, if (q1, . . . , qk) = Q(x, r) and aj = A(j, qj , f), for
j ∈ [k], thenR(x, r, a1, . . . , ak) = f(x).

Privacy. We require that ak, the answer of Sk, and R′(x, r, a1, . . . , ak−1) do not disclose information not
implied by f(x). Formally, for every f ∈ FN,k−1, for every two inputs x, x′ ∈ [N ]k−1 such that f(x) =
f(x′), and every values q, b, letting aj = A(j,Qj(x, r), f) and a′j = A(j,Qj(x′, r), f) for j ∈ [k − 1], and
qk = Qk(x, r), q′k = Qk(x′, r)

Pr
r

[qk = q ∧ R′(x, r, a1, . . . , ak−1) = b] = Pr
r

[q′k = q ∧ R′(x′, r, a′1, . . . , a′k−1) = b],

where the probability is taken over a uniform choice of the random string r.

As usual, the communication complexity of such a protocol P is the total number of bits communicated
between the client and the k servers (i.e.,

∑
j(|qj |+ |aj |) = k(α(N) + β(N))).

6.2 From 3-Server Decomposable PIR to 2-Party PSM
Given a function f : [N ] × [N ] → {0, 1}, we construct a 2-party PSM protocol for f using a 3-Server
Decomposable PIR protocol. The protocol is formally described in Figure 3. We next give an informal
description of the protocol. The shared randomness of the two parties is composed of two strings, one string
for the decomposable PIR protocol and one for a PSM protocol for computingR′. In the protocol, P1, holding
x1, f , computes the query q1 and its part of the query of server S3, namely q13 (Party P1 can compute these
queries by the decomposability of the query generation). P1 also computes a1. Similarly, P2, holding x2, f ,
computes q2, its part of the query of server S3, namely q23 , and a2. Parties P1 and P2 send q13 and q23 to the
referee, who uses this information and f to compute a3. Furthermore, P1 and P2 execute a PSM protocol
that enables the referee to compute z′ = R′((x1, x2), r, a1, a2). The referee reconstructs f(x) by computing
R′′(a3, z′), where a3 is the answer computed by the referee for query q3 = (q13 , q

2
3).

The correctness of the protocol described in Figure 3 follows immediately from the definition of decom-
posable PIR. Furthermore, the information that the referee gets is q3 and the messages of a PSM protocol
computing R′. By the privacy of the PSM protocol, the referee only learns the output of R′ from this PSM
protocol. Thus, the referee only learns q3 and the output of R′; by the privacy requirement of the decom-
posable PIR protocol the referee learns only f(x). We summarize the properties of our PSM protocol in the
following lemma.

Lemma 6.2. Let P be a 3-server decomposable PIR protocol where the query length is α(N) and the ran-
domness complexity is γ(N). Furthermore, assume that R′ can be computed by a 2-party PSM protocol
with communication complexity α′(N) and randomness complexity γ′(N). Then, every function f ∈ FN
can be computed by a 2-party PSM protocol with communication complexity α(N) +α′(N) and randomness
complexity γ(N) + γ′(N).
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6.3 A 3-Server Decomposable PIR Protocol
In this section, we show how to construct a decomposable 3-server PIR protocol. Our construction is inspired
by the cubes approach of [20]. We start with a high level description of this approach, specifically for the
case of 4-dimensional cubes (see also the 3-dimensional case in Appendix B), and of its adaptation to the
decomposable case. The formal description of the protocol is deferred to Appendix I.

The starting point of the CGKS cubes approach (restricted here to dimension 4) is viewing the n-bit
database as a 4-dimensional cube (i.e., [n1/4]4). Correspondingly, the index that the client wishes to retrieve
is viewed as a 4-tuple i = (i1, . . . , i4). The protocol starts by the client choosing a random subset for each
dimension, i.e. S1, . . . , S4 ⊆R [n1/4]. It then creates 16 queries of the form (T1, . . . , T4) where each Tj is
either Sj itself or Sj ⊕ {ij} (we often use vectors in {0, 1}4 to describe these 16 combinations; e.g., 0000
refers to the query (S1, . . . , S4) while 1111 refers to the query (S1 ⊕ {x1}, . . . , S4 ⊕ {x4}). If there were 16
servers available, the cliebt would send each query (T1, . . . , T4) to a different server (4 · n1/4 bits to each),
who will reply with a single bit which is the XOR of all bits in the sub-cube T1 ⊗ . . . ⊗ T4. The observation
made in [20] is that each element of the cube appears in an even number of those 16 sub-cubes, and the only
exception is the entry i = (i1, . . . , i4) that appears exactly once. Hence, taking the XOR of the 16 answer
bits, all elements of the cube are canceled out except for the desired element in position i.

The next observation of the cubes approach is that a server who got a query (T1, . . . , T4) can provide a
longer answer (but still of length O(n1/4) bits) from which the answers to some of the other queries can be
derived (and, hence, the corresponding servers in the initial solution can be eliminated). Specifically, it can
provide also the answers to the queries (T1 ⊕ {`}, T2, T3, T4), for all possible values ` ∈ [n1/4]. One of these
is the bit corresponding to ` = i1 which is the desired answer for another one of the 16 queries; and, clearly,
the same can be repeated in each of the 4 dimensions. Stated in the terminology of 4-bit strings, a server that
gets the query represented by some b ∈ {0, 1}4 can reply with O(n1/4) bits from which the answer to the 5
queries of hamming distance at most one from b can be obtained; further, it can be seen that 4 servers that will
answer the queries corresponding to {1100, 0011, 1000, 0111} provide all the information to answer the 16
queries in the initial solution (this corresponds also to the notion of “covering codes” from the coding theory
literature).

Next, we informally describe how to turn the above ideas into a decomposable 3-server PIR protocol. We
still view the database as 4-dimensional cube and the client is still interested in obtaining the answers to the
same 16 queries. Moreover, we are allowed to use only 3 servers for this. However, the requirements of
decomposable PIR give us some freedom that we did not have before; specifically, we allow answer of the
first server to depend on x1 = (i1, i2) and the answer of the second server to depend on x2 = (i3, i4). The
query to the third server should still give no information about i. Specifically, we will give the first server the
basic sets S1, . . . , S4 along with the values i1, i2. This server can easily compute the answer to all 4 queries
of the form (T1, . . . , T4) with T1 being either S1 or S1⊕{i1} and T2 being either S2 or S2⊕{i2} (in vectors
notation, those correspond to the queries 0000,0100,1000,1100). Moreover, using the idea described above,
even though the first server does not know the value of i3 it can provide O(n1/4)-bit answer corresponding to
all choices of i3 from which the client can select the right ones (in vectors notation, those corresponding to
the queries 0010,0110,1010,1110). Similarly it can provide O(n1/4)-bit answer corresponding to all choices
of i4 from which the client can select the right ones (in vectors notation, those corresponding to the queries
0001,0101,1001,1101). The query to the second server consists of S1, . . . , S4 along with the values i3, i4.
In a similar way, this server provides an answer of O(n1/4) bits that can be used to answer the queries
0000,0010,0001,0011 directly and 1000,1010,1001,1011, 0100,0110,0101,0111 by enumerating all values of
i1 and then all values of i2 (some queries are answered by both servers; this small overhead can be easily
saved – see below). So, based on a1, a2, the only query that remained unanswered is the 1111 query. For this,
the client asks the third server the query (S1 ⊕ {i1}, . . . , S4 ⊕ {i4}) (which is independent of i) and gets the
missing bit, denoted a3, back. Finally, note that the reconstruction has the desired “decomposable” form: the
client output can be obtained by processing the answers of the first two servers to get the sum v of the first 15
queries (this is the desired R′) and then adding a3 to it. Moreover, the pair (q3, v) gives no information on i
beyond the output: q3 is independent of i (it is just a random sub-cube), and v is just the exclusive-or of the
the output and a3 (which depends only on q3 and hence independent of i).

7 Secret Sharing
We present a generic transformation from any 2-party PSM protocol to secret-sharing schemes for forbidden
graph access structures, and then use the results from Section 6 to obtain efficient secret-sharing schemes for
these access structures. Specifically, we obtain N -party secret-sharing schemes for forbidden graph access
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structures whose total share size is O(N3/2). The best previous constructions for these access structures had
total share size O(N2/ logN) [17, 15, 28].

In Section 7.1, we demonstrate our transformation from PSM protocols to secret-sharing schemes for
forbidden graph access structures for the simple case when the graph is bipartite. In Section J, we generalize
our construction to arbitrary graphs. We start by formally defining forbidden graph access structures.

Definition 7.1. Let G = (V,E) be an arbitrary graph. A forbidden graph access structure, denoted AG, is
an access structure where the parties are the vertices in V and the only unauthorized sets are singletons (i.e.,
sets containing a single vertex in V ), and sets of size 2 corresponding to edges on G (i.e., sets {x, y} with
(x, y) ∈ E).

7.1 Secret Sharing Schemes for Forbidden Bipartite Graph Access Structures
We first show how to realize forbidden graph access structures AG, where the graph G is bipartite.

Definition 7.2. Let G = (L,R,E) be a bipartite graph, where |L| = |R| = N . We label the vertices in L by
1, 2, . . . , N , and similarly, vertices in R by 1, 2, . . . , N . We associate the bipartite graph G = (L,R,E) with
a boolean function fG : [N ] × [N ] → {0, 1}, where f(x, y) equals 0 iff there exists an edge between vertex
x ∈ L and vertex y ∈ R.

Lemma 7.3. Let G = (L,R,E) be a bipartite graph where |L| = |R| = N and fG : [N ]× [N ]→ {0, 1} be
the function associated with G. Let P be a PSM protocol for computing fG with communication complexity
cP(N). Then, there exists a secret sharing realizing AG with domain of secrets {0, 1} and total share size
O(N · cP(N)).

Proof. In a forbidden bipartite graph access structure the sets that can reconstruct the secret are: (1) All sets
of 3 or more parties, (2) all pairs of parties that correspond to vertices from the same “side” of the graph (L
or R), and (3) all pairs of parties that correspond to vertices from different sides of the graph and are not
connected by an edge.

We construct a secret-sharing scheme for AG by dealing with the three types of authorized sets. First,
the dealer shares the secret with Shamir’s 3-out-of-2N threshold secret-sharing scheme among the 2N parties
of the access structure. Next, the dealer independently shares the secret with Shamir’s 2-out-of-N threshold
secret-sharing scheme among the parties in L, and independently among the parties in R.

The interesting case is how to share the secret for sets {x, y} such that x ∈ L, y ∈ R, and (x, y) /∈ E. Let
µ1, µ2 represent the message computation functions of the PSM protocol P (as defined in Definition 2.3). To
share a secret s ∈ {0, 1}, the dealer chooses the randomness r, required for P . Then, depending on the value
of s, it distributes the shares to the parties as follows:

• If s = 0, then the dealer chooses arbitrary x0, y0 ∈ [N ] such that fG(x0, y0) = 0, and gives the share
mx = µ1(x0, r) to each party x ∈ L, and the share my = µ2(y0, r) to each party y ∈ R.

• Else, if s = 1, then the dealer gives the share mx = µ1(x, r) to each party x ∈ L, and the share
my = µ2(y, r) to each party y ∈ R.

Any two parties x ∈ L and y ∈ R that are not connected by an edge in G reconstruct the secret by
returning the output of the PSM reconstruction function s′ = g(mx,my) (cf. Definition 2.3). Correctness of
this reconstruction for (x, y) /∈ E follows from the correctness of the PSM protocol P . Specifically, (1) when
s = 0, the parties x and y reconstruct f(x0, y0) = 0 = s, and (2) when s = 1, the parties x and y reconstruct
fG(x, y) = 1 = s.

For the privacy, consider a pair of parties x, y such that x ∈ L, y ∈ R, and (x, y) ∈ E. When s = 0, these
parties hold shares µ1(x0, r) and µ2(y0, r) respectively. When s = 1, these parties hold shares µ1(x, r) and
µ2(y, r) respectively. Since fG(x, y) = fG(x0, y0) = 0, the shares do not reveal any information about s (by
the privacy of the PSM protocol).

Using the PSM protocols described in Theorem 3.6 in Lemma 7.3, we get the following corollary.

Corollary 7.4. Let G = (L,R,E) be a bipartite graph where |L| = |R| = N . There exists a secret sharing
realizing AG with domain of secrets {0, 1} and total share size O(N3/2).

In Appendix J, we construct secret-sharing schemes realizing AG for general graphs, using the secret-
sharing scheme for forbidden bipartite graph access structures.
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Preliminaries: Let P = (Q,A,R) be a 3-server PIR protocol where servers hold as database the truth table of a function f :
[N ] × [N ] → {0, 1}. Parties P1, P2 have inputs x1, x2 ∈ [N ] respectively. At the end of the protocol, both parties learn
z = f(x1, x2).

Preprocessing:

• Sample random r(1), r(2) ∈ {0, 1}γ(N), a(1)1 ← {0, 1}β(N).

• Compute q1 = Q1(r
(1)⊕r(2)), and a1 = A(1, q1, f).

• Sample (X ′, Y ′) = (X,Y )O(τ(Q)+τ(R)), where (X,Y ) represents a random OT correlation.

• Output (r(1), a(1)1 , X ′) to P1, and (r(2), a
(2)
1 = a1⊕a(1)1 , Y ′) to P2.

Protocol:
1. Let Q̃ denote an algorithm that takes as input (x1, r(1)), (x2, r(2)) and runs algorithm Q−1(x1‖x2, r(1)⊕r(2)). Party P1

with inputs (x1, r(1)) and party P2 with inputs (x2, r(2)) run a 2-party semi-honest secure GMW protocol, using random OT
correlations of size O(τ(Q)) (derived from (X ′, Y ′)), to evaluate circuit C(Q̃). Let q2, q3 denote their respective outputs.

2. P1 and P2 locally compute a2 = A(1, q2, f) and a3 = A(2, q3, f) respectively.

3. Let R̃ denote an algorithm that takes as input (a
(1)
1 , a2, x1, r

(1)), (a
(2)
1 , a3, x2, r

(2)) and runs algorithm
R(x1‖x2, r(1)⊕r(2), a(1)1 ⊕a

(2)
1 , a2, a3). Party P1 with inputs (a

(1)
1 , a2, x1, r

(1)) and party P2 with inputs
(a

(2)
1 , a3, x2, r

(2)) run a 2-party semi-honest secure GMW protocol, using random OT correlations of size O(τ(R))
(derived from (X ′, Y ′)), to evaluate circuit C(R̃). Let z denote their common output. Both parties output z and terminate
the protocol.

Figure 2: A perfectly secure protocol in the preprocessing model.

A Additional Preliminaries
In this Appendix we include some additional preliminaries.

A.1 Secret Sharing
Definition A.1. Let P = {P1, . . . , Pm} be a set of parties. A collection Γ ⊆ 2P is monotone if B ∈ Γ and
B ⊆ C imply that C ∈ Γ. An access structure is a monotone collection Γ ⊆ 2P of non-empty subsets of P .
Sets in Γ are call authorized, and sets not in Γ are called unauthorized. The family of minimal authorized
subsets in Γ is denoted by min Γ.

A distribution scheme Σ = 〈Π, µ〉 with domain of secrets K is a pair, where µ is a probability distribution
on some finite set R called the set of random strings and Π is a mapping from K × R to a set of m-tuples
K1 ×K2 × · · · ×Km, where Kj is called the domain of shares of Pj . A dealer distributes a secret k ∈ K
according to Σ by first sampling a random string r ∈ R according to µ, computing a vector of shares
Π(k, r) = (s1, . . . , sm), and privately communicating each share sj to party Pj . For a set A ⊆ P , we denote
Π(k, r)A as the restriction of Π(k, r) to its A-entries. The (normalized) total share size of a distribution
scheme is

∑
j∈[m] log |Kj |/ log |K|.

Definition A.2 (Secret Sharing). Let K be a finite set of secrets, where |K| ≥ 2. A distribution scheme
〈Π, µ〉 with domain of secrets K is a secret-sharing scheme realizing an access structure Γ if the following
two requirements hold:

Correctness. The secret k can be reconstructed by any authorized set of parties. That is, for any set B =
{Pi1 , . . . , Pi|B|} ∈ Γ, there exists a reconstruction function ReconB : Ki1 × · · · ×Ki|B| → K such that for
every k ∈ K,

Pr
r

[ReconB(Π(k, r)B) = k] = 1.

Privacy. Every unauthorized set cannot learn anything about the secret (in the information theoretic sense)
from their shares. Formally, for any set T 6∈ Γ, for every two secrets a, b ∈ K, and for every possible vector
of shares 〈sj〉Pj∈T ,

Pr
r

[Π(a, r)T = 〈sj〉Pj∈T ] = Pr
r

[Π(b, r)T = 〈sj〉Pj∈T ].
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Preliminaries: Let P = (Q,A,R) be a 3-server decomposable PIR protocol (cf. Definition 6.1) where servers hold as database
the truth table of a function f : [N ] × [N ] → {0, 1}. As in Definition 6.1, we assume that (1) the query generation algorithm Q
can be decomposed into algorithms (Q1,Q2,Q3 = (Q1

3,Q2
3)), and (2) the reconstruction algorithm R can be decomposed using

algorithmsR′ andR′′.
Parties P1, P2 have inputs x1, x2 ∈ [N ] respectively. At the end of the protocol, the referee Ref learns z = f(x1, x2).

Shared randomness: Both parties share uniform randomness:

• r ∈ {0, 1}γ(N) required for the query generation algorithmQ.

• s ∈ {0, 1}∗ required for a 2-party PSM protocol πR′ , where party P1 holds (x1, a1) and party P2 holds (x2, a2), and referee
Ref obtains outputR′((x1, x2), r, a1, a2).

Protocol:
1. Using its input x1 and shared randomness r, party P1 computes q1 = Q1(x1, r), and q13 = Q1

3(x1, r). It then computes
a1 = A(1, q1, f). Using (x1, a1), and shared randomness s, party P1 computes m1 – its message to Ref in πR′ . Finally, it
sends (q13 ,m1) to Ref .
Similarly, using its input x2 and shared randomness r, party P2 computes q2 = Q2(x2, r), and q23 = Q2

3(x2, r). It then
computes a2 = A(2, q2, f). Using (x2, a2), and shared randomness s, party P1 computes m2 – its message to Ref in πR′ .
Finally, it sends (q23 ,m2) to Ref .

2. The referee Ref computes a3 = A(3, q3, f) where q3 = (q13 , q
2
3) (using the values received from P1, P2). Then, using

the PSM messages m1,m2, referee Ref computes z′ = R′((x1, x2), r, a1, a2), from which it computes its final output
z = R′′(a3, z′).

Figure 3: A 2-party perfectly secure PSM protocol.

Definition A.3 (CNF sharing [45]). Let G be a finite Abelian group. The t-private CNF sharing over G is
a generalization of additive sharing, where each party gets more than one group element. To share s ∈ G
among k parties, do the following:

• Additively share s into
(
k
t

)
shares rA, A ∈

(
[k]
t

)
. The share of Pi consists of the

(
k−1
t

)
group elements

{rA : i 6∈ A}.

For each set T ∈
(
[k]
t

)
, the parties in T do not get rT and thus have no information about s. This implies that

the scheme is t-private. We will be mostly interested in 1-private CNF sharing and refer to it simply as CNF
sharing; in this case we will write ri instead of r{i}.

A.1.1 Share Conversion

Definition A.4 (Local share conversion [9]). Let L and L′ be two secret-sharing schemes over the domains of
secrets K1 and K2, respectively, and let C ⊆ K1 ×K2 be a relation such that, for every a ∈ K1, there exists
at least one b ∈ K2 such that (a, b) ∈ C. We say that L is locally convertible to L′ with respect to C if there
exist local conversion functions g1, . . . , gk such that

• If s1, . . . , sk is a valid sharing for some secret s in L, then g1(s1), . . . , gk(sk) is a valid sharing for
some secret s′ in L′ such that (s, s′) ∈ C.

Definition A.5 (The relation CS [9]). Let G and G′ be finite Abelian groups and let S ⊆ G \ {0}. (We will
sometimes view G and G′ as the additive groups of rings and refer to rings instead of groups.) The relation
CS converts s = 0 ∈ G to any nonzero s′ ∈ G′ and every s ∈ S to s′ = 0. There is no requirement when
s 6∈ S ∪ {0}. Formally,

CS = {(s, 0) : s ∈ S} ∪ {(0, s′) : s′ ∈ G′ \ {0}}
∪ {(s, s′) : s 6∈ S ∪ {0}, s′ ∈ G′}

We will be interested in the relation CSm where Sm is the canonical set defined below.
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Definition A.6 (The canonical set Sm [26]). Let m be a product of distinct primes. The canonical set Sm
contains all integers 1 ≤ i ≤ m − 1 that are either 0 or 1 modulo each prime divisor of m. When m is a
product of two distinct primes, we have |Sm| = 3.

We will use the following fact:

Fact A.7 ([9]). There exist m, p, β such that there is a share conversion from 3-party CNF sharing over
Zm to additive sharing over Fβp with respect to CSm

. In particular, such a conversion exists for the setting
m = 6, p = 2, β = 2.

B A 2-Server PIR Protocol
In this section, we provide an overview of a concrete 2-server PIR protocol from [CGKS95]. In the following
we assume that the database of size n is viewed as a cube (of side length n1/3). (Since we let the database to
represent an arbitrary function f : [N ] × [N ] → {0, 1}, we will set n = N2.) Let ej is the n1/3-bit vector
which has 0 everywhere except at position j.

For x, y, z ∈ {0, 1}n1/3

defineGCGKS(x, y, z) :=
⊕

i1,i2,i3∈[n1/3](〈x, ei1〉·〈y, ei2〉·〈z, ei3〉·f(i1, i2, i3)),
where f(i1, i2, i3) is the entry in the database at location (i1, i2, i3) of the cube. That is, GCGKS(x, y, z) is
the exclusive-or of all locations (i1, i2, i3) in the cube satisfying xi1 = yi2 = zi3 = 1.

Let i denote the client’s real query. Let (u, v, w) denote the position of the i-th entry of the database in the
n1/3 × n1/3 × n1/3 cube. The PIR protocol proceeds as follows:

• Query generation algorithm. The client additively shares (eu, ev, ew) ∈ {0, 1}3n1/3

into q1 = (u1, v1, w1)
and q2 = (u2, v2, w2), and sends q1 to S1 and q2 to S2.

• Answering algorithm. Each Sj computes a0j = GCGKS(uj , vj , wj), and for ` ∈ [n1/3], values a1,`j =

GCGKS(uj⊕e`, vj , wj), a2,`j = GCGKS(uj , vj⊕e`, wj), a3,`j = GCGKS(uj , vj , wj⊕e`), and sends
aj = (a0j , {a

c,`
j }c∈[3],`∈[n1/3]) to the client.

• Reconstruction algorithm. The client reconstructs zj = a0j⊕(
⊕

c∈[3]a
c,yc
j ) for j ∈ {1, 2}, where

(y1, y2, y3) = (u, v, w), and outputs z = z1⊕z2.

From the above 2-server PIR protocol, we see that γ(n) = α(n) = 3n1/3, and that β(n) = 3n1/3 + 1. In
other words, γ(n) = α(n) = β(n) = Õ(N2/3).

Efficiency of the construction in Figure 1. Let circuit C(Q̃) take input x1, x2 and form (eu, ev, ew) ∈
{0, 1}3n1/3

, where (eu, ev, ew) represents the 3-dimensional indicator vector of location in the cube (i.e.,
(u, v, w)) corresponding to index x = x1‖x2, and then using randomness r = r(1)⊕r(2) additively share
(eu, ev, ew) into q1 and q2, and finally deliver output q1 to P1, and q2 to P2. It is easy to see that τ(C(Q̃)) =

τ(C(Q)) = Õ(n1/3) = Õ(N2/3).
Let circuit C(R̃) select, for each j ∈ [2] and each c ∈ [3], value ac,ycj from the set {ac,`j }`∈[n1/3], where

(y1, y2, y3) = (u, v, w), and then XOR the selected bits along with a0j , and finally deliver this output to both
P1 and P2. It is easy to see that τ(C(R̃)) = τ(C(R)) = Õ(n1/3) = Õ(N2/3).

In fact, by a more careful analysis, it is possible to further reduce the size of the circuits from Õ(N2/3) to
O(N2/3). We describe this below.

An alternate circuit construction. Let the input of P1 and P2 be x1 and x2 respectively. Let (eu, ev, ew) ∈
{0, 1}3n1/3

represent the 3-dimensional indicator vector of the location in the cube (i.e., (u, v, w)) correspond-
ing to index x = x1‖x2. Note that x1 completely specifies u, and therefore, party P1 can locally generate eu
from index x1. Similarly, x2 completely specifies w, and therefore, party P2 can locally generate ew from
index x2. Also, note that x1 also specifies half the bits of ev , while x2 specifies the remaining half of the
bits of ev . Therefore, using x1, party P1 can locally generate a string v′1 ∈ {0, 1}n

1/3

in the following way:
initialize v′1 to 0n

1/3

, then partition v′1 into n1/6 consecutive chunks each of size n1/6, and set the bx/n1/6c-th
chunk of v′1 to the string 11/6. Similarly, using x2, party P2 can locally generate a string v′2 ∈ {0, 1}n

1/3

such that for j ∈ [n1/3], the j-bit of v′2 is set to 1 iff j ≡ x2 mod n1/6. Given the above, it is easy to see
that ev = v′1 � v′2, where the notation a� b represents the point-wise product (i.e., bit-wise AND) of the two
vectors a, b.
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Consider an algorithm Q′ which takes as input (eu, v
′
1, r1, r2) from P1, and (v′2, ew, r3) from P2, and

computes (1) u1 = r1, u2 = eu⊕r1, and (2) ev = v′1 � v′2, v1 = r2, v2 = ev⊕r2, and (3) w1 = ew⊕r3,
w2 = r3, and finally outputs q1 = (u1, v1, w1) to P1 and q2 = (u2, v2, w2) to P2. It is easy to see that the size
of the circuit is n1/3 = N2/3. Observe that q1 and q2 are distributed identically as in the 2-server PIR scheme
of [20] (in particular, q1, q2 form an additive sharing of (eu, ev, ew)).

Next, consider an algorithm R′ which takes as input (eu, v
′
1, (a

0
1, {a

c,`
1 }c∈[3],`∈[n1/3]), r1, r2) from P1,

and (ew, v
′
2, (a

0
2, {a

c,`
2 }c∈[3],`∈[n1/3]), r3) from P2, and performs the following computation. First, it forms

ev = v′1 � v′2, where � is as defined above. Next, for each c ∈ [3], and for each j ∈ [2], computes

acj = (ac,1j ‖ · · · ‖a
c,n1/3

j ) � eyc , where (y1, y2, y3) = (u, v, w). Finally, it computes z = a01⊕(a11⊕a21⊕a31)

⊕a02⊕(a12⊕a22⊕a32)). It is easy to see that algorithm R′ exactly computes the reconstruction algorithm of the
2-server PIR scheme of [20], and that the size of the circuit required to perform the computations above is
6n1/3 = O(N2/3).

From the above, we conclude that the size of the circuits required to emulate the PIR query generation
algorithm and the reconstruction algorithm of the 2-server PIR scheme of [20] is O(N2/3).

C A 3-Server PIR Protocol
In this section, we provide an overview of a concrete 3-server PIR protocol from [9, 27] which is based on
superpolynomial sized matching vector families.

Let {ui}i∈[n], {vi}i∈[n] with each ui, vi ∈ Zhm for some composite m, denote a S-matching vector fam-
ily [61, 27, 26] with S ⊆ Zm\{0}. That is, we have

• ∀i ∈ [n]: 〈ui, vi〉 = 0

• ∀i, j ∈ [n], with j 6= i: 〈ui, vj〉 ∈ S.

Furthermore, we will use the fact that there is a share conversion procedure from 3-party CNF sharing on
Zm to 3-party additive sharing on Zβp for the relation defined by CS = {(s, 0) : s ∈ S} ∪ {(0, s′) : s′ ∈
Zβp\{0}} ∪ {(s, s′) : s 6∈ S ∪ {0}, s′ ∈ Zβp} (cf. Fact A.7).

Let n denote the size of the database. (Since we let the database to represent an arbitrary function f :
[N ]× [N ]→ {0, 1}, we will set n = N2.) Let i denote U’s real query. The PIR protocol proceeds as follows:

• U shares u′ = ui ∈ Zhm into u′1, u
′
2, u
′
3 ∈ Zhm, and sends CNF share (u′j−1, u

′
j+1) to Sj .

• Each Sj computes aj,j−1,` = 〈u′j−1, v`〉 and aj,j+1,` = 〈u′j+1, v`〉 for each ` ∈ [n]. Then it applies the
share conversion procedure to each CNF share (aj,j−1,`, aj,j+1,`) ∈ Z2

m to obtain a′j,` ∈ Zβp . Finally,
it sends yj =

∑
`∈[n] x` · a′j,` to U . Here, x` ∈ {0, 1} denotes the `-th element in the database, and is

interpreted as an element in Zp.

• U reconstructs z = y1 + y2 + y3, and outputs 0 if z = 0 ∈ Zβp , else outputs 1.

From the above protocol, we see that when m, p, β are small constants (e.g., m = 6, p = β = 2; see
Fact A.7) , we have that γ(n) = α(n) = O(h), and that β(n) = O(1). Since β(n) = O(1), we have
τ(C(R̃)) = O(1). In the following, we will show that h = 2Õ(

√
logn), thereby bounding τ(C(Q̃)) by

2Õ(
√
logn) = 2Õ(

√
logN).

C.1 Parameters of Matching Vector Families
We will be interested in an explicit construction of a S-matching vector family in Zh6 with the goal of demon-
strating that there exists a circuit of size Õ(h) that takes any i ∈ [n] as input and outputs the i-th matching
vector ui ∈ Zh6 .

We will use the following facts:

• There exists a share conversion procedure from 3-party CNF on Z6 to 3-party additive share on Z2
2 with

respect to CS for S = {1, 3, 4} [9].

• There exists a S-matching vector family in Zh6 of size n such that h = 2Õ(
√
logn) [34, 27, 26].

In fact, we will need to show an explicit S-matching vector family in Zh6 . We use the following result
from [26].
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Lemma C.1 (Corollary 41, [26]). Let m = Πt
i=1pi be a product of distinct primes. Let w be a positive

integer. Suppose integers {ei}i∈[t] are such that for all i, we have peii > w1/t. Let d = maxi p
ei
i , and

k ≥ w be arbitrary. Let S be the canonical set modulo m. There is an explicit multilinear polynomial
f(z1, . . . , zk) ∈ Zm[z1, . . . , zk], deg(f) ≤ maxi∈[t] (peii − 1) such that for all x ∈ {0, 1}k, we have

f(x) =

{
0 mod m, if

∑k
`=1 x(`) = w

s mod m, for s ∈ S, if
∑k
`=1 x(`) < w

where coordinates of x are summed as integers.

Following the presentation in [26], we now describe how to derive a S-matching vector family using the
explicit multilinear polynomial f given by Lemma C.1.

For every T ⊆ [k] of size w, define the polynomial fT which is the polynomial f from Lemma C.1 with
zj set to 0 for j 6∈ T . Define xT ∈ {0, 1}k to be the indicator of the set T . Viewing vectors x ∈ {0, 1}k
as indicator vectors xL for sets L ⊆ [k] it is easy to check that for all T, L ∈ [k], fT (xL) = f(xL∩T ).
Combining this with Lemma C.1 gives

• For all T ⊆ [k], where |T | = w, fT (xT ) = f(xT ) ≡ 0 mod m.

• For all T 6= L ⊆ [k], where |T | = |L| = w, fT (xL) = f(xL∩T ) ∈ S mod m.

For i ∈ [n] with n =
(
k
w

)
, let Ti denote the i-th subset of [k] with Hamming weight w. Let ui be the vector

of coefficients of fTi
. Let vi be the evaluation of monomials of f at the point xTi

. Note |ui| = |vi| =
(
k
≤d
)
,

and that for i, j ∈ [n], we have 〈ui, vj〉 = fTi
(xTj

). It is easy to see that {ui}i∈[n] and {vi}i∈[n] form(
k
w

)
-sized family of S-matching vectors in Zhm where h =

(
k
≤d
)
. Now we set t = 2, p1 = 2, p2 = 3,

and let w grow to infinity. Choose e1, e2 to be the smallest integers satisfying 2e1 >
√
w and 3e2 >

√
w.

Clearly, d = max(2e1 , 3e2) ≤ 3
√
w. Setting k = w2, we see that n =

(
w2

w

)
, and h =

(
w2

3
√
w

)
. Thus,

log n = Θ(w logw), and log h = Θ(
√
w logw). We conclude that h = 2Õ(

√
logn).

Efficiency of the construction in Figure 2. We saw earlier that τ(C(R̃)) = O(1). Now we will show that
τ(C(Q̃)) = 2Õ(

√
logN). We first bound the size of the circuit that takes i = (x1, x2) as input and outputs ui,

i.e., the i-th matching vector. From above, we have that ui represents the vector of coefficients of fTi
, where

Ti denotes the i-th subset of [k] with Hamming weight w. We make the following observations:

• Given i, the indicator vector representing Ti, i.e., xTi
, can be computed using a circuit of sizeO(poly(w)) =

O(polylog(h)).

• Given coefficients of f (i.e., the k-variate multilinear polynomial of total degree d specified by Lemma C.1)
and xTi

, the vector of coefficients of fTi
can be computed using a circuit of size O(c(f) · d · k), where

c(f) =
(
k
≤d
)

represents the number of coefficients of f . Rewriting in terms of w, we see that the size of

this circuit is O(
(
w2

3
√
w

)
· 3
√
w · w2) = O(hpolylog(h)).

Therefore, we conclude that the size of the circuit that takes i ∈ [n] as input and outputs the i-th matching
vector ui is of size O(hpolylog(h)) = 2Õ(

√
logn). In other words, τ(C(Q̃)) = τ(C(Q)) = 2Õ(

√
logN).

D 3-Round Secure Computation in the Preprocessing Model
The protocols of Figures 1 and 2 use semi-honest secure GMW as a subroutine and thus their round complexity
equals the sum of the depths of circuits C(Q̃) and C(R̃). If, instead of using GMW protocol as a subroutine,
one uses information-theoretic variants of Yao’s garbled circuit construction [55, 49, 21, 40], then it is possible
to reduce the round complexity to 4 while preserving, up to logarithmic factors, the communication complexity
and the correlated randomness complexity of the protocols of Figures 1 and 2. (In more detail, circuits
C(Q̃) and C(R̃) can each be evaluated in 2 rounds using information theoretic garbled circuits in the OT
hybrid/preprocessing model. In the OT hybrid model, we assume that the call to the OT oracle takes one
round, and the response from the oracle takes another round. In the OT preprocessing model, an ideal OT
oracle can be emulated using precomputed OTs by a 2-round protocol [3].)

We remark that there exists 2-round protocol for secure computation in the preprocessing model [42], but
the correlated randomness complexity of their construction isO(N2). It is also possible to naturally formulate
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the secure evaluation of f : [N ]× [N ]→ {0, 1} as a 1-out-of-N OT protocol between the two parties, which
in turn can be realized byO(N) instances of 1-out-of-2 OT [16]. Such a transformation would yield a 2-round
protocol whose correlated randomness complexity is O(N).

In this section, we show a 3-round protocol whose communication and correlated randomness complexity
is O(N1/2). Our construction is inspired by our PSM protocol presented in Section 6.3, which in turn is
inspired by the 4-server PIR scheme of [20]. Formally, we prove the following theorem.

Theorem D.1. For any 2-party functionality f : [N ] × [N ] → {0, 1}, there is a 3-round protocol π which
realizes f in the preprocessing model, that is perfectly secure against semi-honest parties, and has total
communication complexity and correlated randomness complexity O(N1/2).

Proof. Recall that in the 4-server PIR scheme of [20], the N2-bit database representing the truth table of
f : [N ]×[N ]→ {0, 1} is associated with the 4-dimensional cube [N1/2]4, where each position x = (x1, x2) ∈
[N ] × [N ] in the truth-table is associated with a 4-tuple (x̂1, . . . , x̂4) ∈ [N1/2]4, in a natural manner. The
4-server PIR scheme proceeds by letting the client additively share (ex̂1

, . . . , ex̂4
) into two O(N1/2)-sized bit

vectors (u0, v0, w0, z0) and (u1, v1, w1, z1). For j1, j2, j3, j4 ∈ {0, 1}, the client prepares queries qj1j2j3j4 =
(uj1 , vj2 , wj3 , zj4) to send to a virtual server Sj1j2j3j4 . These 16 virtual servers are in turn emulated by the 4
actual servers.

We now proceed to describe our 2-party secure computation protocol in the preprocessing model that has
communication complexity O(N1/2) and round complexity 3.

• Correlated randomness. Let query q1111 = (u1, v1, w1, z1). Then (u1, v1) is given to P1 and (w1, z1)
is given to P2. The 1-bit answer to that query a1111 = S1111(f, q1111) is additively shared among the
two parties. Further, parties P1 and P2 are provided with OT correlations of size O(N1/2).

• Round 1. Recall that (x̂1, . . . , x̂4) ∈ [N1/2]4 denotes the position in the 4-dimensional cube that is
associated with x = (x1, x2) ∈ [N ] × [N ]. Recall that input x1 completely defines x̂1, x̂2, and in turn
ex̂1 , ex̂2 . Similarly, input x2 completely defines x̂3, x̂4, and in turn ex̂3 , ex̂4 . Using (u1, v1) and x1
(which defines ex̂1

, ex̂2
), P1 can therefore generate (u0, v0) which it then sends to P2. Similarly, using

(w1, z1) and x2 (which defines ex̂3
, ex̂4

), P2 can generate (w0, z0) which it then sends to P1. Thus,
both parties now possess q0000 = (u0, v0, w0, z0). In addition, note that P1 possesses (u1, v1), while P2

possesses (w1, z1).

• Local Simulation of PIR Servers. Using q0000 and values (u1, v1), for each j1, j2 ∈ {0, 1}, party P1 can
locally simulate servers Sj1j200, and also generate locally a list of sizeO(N1/2) for servers Sj1j201 (i.e.,
by iterating over N1/2 possible values of ex̂4

) and Sj1j210 (i.e., by iterating over N1/2 possible values
of ex̂3 ).
Similarly, using q0000 and values (w1, z1), for each j3, j4 ∈ {0, 1}, party P2 can locally simulate S00j3j4
and also generate locally a list of size O(N1/2) for servers S10j3j4 (i.e., by iterating over N1/2 possible
values of ex̂1

) and S01j3j4 (i.e., by iterating over N1/2 possible values of ex̂2
).

Note that at this point, party P1 holds, for each j1, j2 ∈ {0, 1}, values aj1j200, {a`j1j201}`∈[N1/2],

{a`j1j210}`∈[N1/2], while party P2 holds, for each j3, j4 ∈ {0, 1}, values a00j3j4 , {a`01j3j4}`∈[N1/2],

{a`10j3j4}`∈[N1/2].

• Rounds 2-3. In this step, parties engage, via a information theoretic Yao garbled circuit protocol [49,
21, 55, 40], to securely evaluate the following steps: (1) reconstruct a1111 using the shares provided
by P1 and P2, and (2) reconstruct (ex̂1

, ex̂2
, ex̂3

, ex̂4
) = (u0⊕u1, v0⊕v1, w0⊕w1, z0⊕z1), and (3) for

each j1, j2 ∈ {0, 1}, reconstruct aj1j201 = (a1j1j201‖ · · · ‖a
N1/2

j1j201
) � ex̂4

, and aj1j210 = (a1j1j210‖ · · · ‖
aN

1/2

j1j210
)� ex̂3 , and (4) for each j3, j4 ∈ {0, 1}, reconstruct a01j3j4 = (a101j3j4‖ · · · ‖a

N1/2

01j3j4
)� ex̂2 , and

a10j3j4 = (a110j3j4‖ · · · ‖a
N1/2

10j3j4
)� ex̂1

, and (5) compute z =
⊕

j1,j2,j3,j4∈{0,1}aj1j2j3j4 , and deliver z
to both P1 and P2.
Note that this step requires parallel invocations of 2-message OT (which is computed using precomputed
OT correlations [3] provided to both parties), i.e., 2 rounds of interaction. It is easy to see that the
circuit representing the computation above is of depth-1 and consists of O(N1/2) AND gates. Thus,
the information-theoretic Yao garbled circuit construction requires communication (including oblivious
transfer) of O(N1/2) bits.
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A natural open question is whether it is possible to construct 2-round protocol for 2-party secure compu-
tation in the preprocessing model with communication complexity o(N).

E The FKN Construction
In this section, we show how the framework of decomposable PIR captures the PSM scheme of Feige et
al. [30]. We begin with a review of the FKN construction.

The FKN construction:

Preliminaries. Let P1, P2 denote the clients and let R denote the referee. We assume that parties P1, P2 have
inputs x1, x2 ∈ [N ] respectively. At the end of the protocol, we want the referee to learn z = f(x1, x2) for an
arbitrary f : [N ]× [N ]→ {0, 1}.

Shared randomness: Both parties share uniform randomness:

• r = (r1, . . . , rN ) ∈ {0, 1}N .

• s ∈ [N ].

Protocol:
1. Using its input x1 and shared randomness r = (r1, . . . , rN ), party P1 computes cj = f(x1, j)⊕rj for

all j ∈ [N ]. Then using shared randomness s, party P1 computes dj = cj+s for all j ∈ [N ]. (Here j+ s
is computed modulo N .) Finally, P1 sends {dj}j∈[N ] to R.
Similarly, using its input x2 and shared randomness r, party P2 computes r′ = rx2

, and using shared
randomness s, computes s′ = x2 − s (where the subtraction is done modulo N ). Party P2 sends (r′, s′)
to R.

2. The referee R computes z = r′⊕ds′ , and outputs z.

We now present a decomposable PIR scheme that corresponds to the FKN construction described above.

• Decomposable query generation algorithm. Let r = (r1, . . . , rN ) be a uniformly random string of
length N . Let s denote a random element in [N ]. We let u = (r, s) denote the randomness required for
PIR query generation algorithm. The query generation algorithm is described as follows.

1. Algorithm Q1(x1, u): Output q1 = (x1, u).
2. Algorithm Q2(x2, u): Output q2 = 0.
3. Algorithm Q3(x1, x2, u):

– Algorithm Q1
3(x1, u): Output q13 = 0.

– Algorithm Q2
3(x2, u): Output q23 = 0.

• Answering algorithm. The answering algorithm is described as follows:

1. AlgorithmA(1, q1 = (x1, u), f): Parse u as (r, s) where r ∈ {0, 1}N and s ∈ [N ]. Then, perform
the following:

– For all j ∈ [N ], compute cj = f(x1, j)⊕rj .
– For all j ∈ [N ], compute dj = cj+s.
– Output a1 = {dj}j∈[N ].

2. Algorithm A(2, q2, f): Output a2 = 0.
3. Algorithm A(3, q3 = (q13 , q

2
3), f): Output a3 = 0.

• Decomposable reconstruction algorithm.

– AlgorithmR′((x1, x2), u, a1, a2):
∗ Parse a1 as {dj}j∈[N ].
∗ Parse u as (r, s) where r ∈ {0, 1}N and s ∈ [N ].
∗ Compute s′ = x2 − s.
∗ Output z′ = ds′⊕rx2 .

– AlgorithmR′′(a3, z′): Output z = a3⊕z′ = z′.
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F Secure Sampling
We concern ourselves with pairs of correlated finite random variables (X,Y ) with joint distribution pXY . X
and Y shall stand for the (finite) alphabets of X and Y respectively. The definitions we present below are
inspired by the definitions in [53].

Definition F.1 (Ideal Sampler Functionality). For a pair of correlated finite random variables (X,Y ) with
joint distribution pXY , and where X , Y represents the (finite) alphabets of X and Y , a 2-party ideal sampler
functionality for a pair of correlated random variables (X,Y ), denoted by GX,Ysamp interacts with two parties
P1, P2 in the following way: (1) Upon receiving a request from both parties, it chooses (x, y) ∈ X ×Y with
probability pXY (x, y), and (2) sends x to P1 and y to P2.

Definition F.2 (Secure Sampling). We say that a distribution D, consisting of a pair of correlated random
variables (U, V ) can be securely sampled with error at most ε, using a pair of correlated random variables
(X,Y ) as setup if there exists a 2-party protocol π that, except with probability ε (over the random coins of
π), securely realizes GU,Vsamp (cf. Definition F.1) while allowing the two parties to request samples from GX,Ysamp.

Definition F.3. A pair of correlated random variables (X,Y ) is called a random OT correlation if (X,Y ) =
((X0, X1), (b,Xb)) where X0, X1, b are uniformly random variables in {0, 1}.

We prove the following theorem.

Theorem F.4. LetD be a distribution over [N ]× [N ] such that for each (x, y) ∈ [N ]× [N ], the probability of
sampling (x, y) from D can be expressed as a rational number whose denominator equals d. Then, for every
ε > 0, it is possible to securely sample from D with error at most ε using at most O(N2/3poly(logN, log d,
log(1/ε))) random OT correlations (alternatively, calls to an OT oracle).

Proof. Our strategy is to obtain a sample from D in a bit-by-bit fashion. Towards this, we define distributions
{D|i}i∈{0,1,...,logN} derived from D in the following way. For each i ∈ {0, 1, . . . , logN}, let D|i denote
the distribution which is obtained by sampling pairs of strings from distribution D, and then truncating the
sample to contain only the first i bits of each string in the sampled pair. Then, for each possible prefix
x|i, y|i ∈ {0, 1}i, define

gDx|i,y|i
(b1, b2) =

⌊(
Pr
[
(x|i‖b1, y|i‖b2)← D|i+1

]
Pr
[
(x|i, y|i)← D|i

] )
· d2k

⌋
,

where k = log
(

4 logN
ε

)
. Next, consider a function hDi : {0, 1}i × [d2k] × {0, 1}i × [d2k] → {0, 1}2 that

takes x|i, y|i ∈ {0, 1}i, r1, r2 ∈ [d2k], outputs (x|i‖b1, y|i‖b2) such that ∑
c1,c2 : 2b1+b2>2c1+c2

gDx|i,y|i
(c1, c2)

 ≤ (r1 + r2 mod d2k) ≤

 ∑
c1,c2 : 2b1+b2≥2c1+c2

gDx|i,y|i
(c1, c2)

 ,

and if no such (b1, b2) exists, then outputs (x|i‖1, y|i‖1). Loosely speaking, we will show that starting from a
sample (x|i, y|i)← D|i, the function hDi lets us sample from a distribution that is statistically close to D|i+1.

More formally, for i ∈ {0, . . . , logN − 1}, let D′|i+1 denote the distribution which is obtained by (1)

first sampling (x|i, y|i) from distribution D|i, and then (2) choosing a random r
(i)
1 , r

(i)
2 ∈ [d2k], and (3)

outputting hDi ((x|i, r
(i)
1 ), (y|i, r

(i)
2 )) as a sample of D|i+1. For (x|i+1, y|i+1) ∈ {0, 1}i+1 × {0, 1}i+1, let

PD(x|i+1, y|i+1) = Pr[(x|i+1, y|i+1) ← D|i+1]. Similarly, define PD′(x|i+1, y|i+1) as Pr[(x|i+1, y|i+1) ←
D′|i+1], where the probability is over the choice of randomness r(i)1 , r

(i)
2 used in function hDi .

We now claim that the statistical distance between the distributions D|i+1 and D′|i+1 is at most ε/ logN .
First note that by the assumption in the theorem, for all (x, y) ∈ [N ] × [N ], the value Pr[(x, y) ← D] is
a rational number whose denominator is bounded by d. Given this, it is easy to see that for all (x|i, y|i) ∈
{0, 1}i×{0, 1}i, the value Pr[(x|i, y|i)← D|i] is also a rational number whose denominator is bounded by d.

This in turn implies for all b1, b2 ∈ {0, 1}, the value Pr[(x|i‖b1,y|i‖b2)←D|i+1]

Pr[(x|i,y|i)←D|i]
is also a rational number whose

denominator is bounded by d. Thus, for each possible prefix x|i, y|i ∈ {0, 1}i, and for each b1, b2 ∈ {0, 1}, the
value gDx|i,y|i

(b1, b2) approximates the exact probability of sampling (x|i‖b1, y|i‖b2) from D|i+1 conditioned
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on the sample (x, y) from D having x|i (resp. y|i) as the length-i prefix of x (resp. y), up to an additive
error 2−k = ε/4 logN . Therefore, the statistical distance between distributions D|i+1 and D′|i+1 is at most
ε/ logN .

The discussion above naturally motivates the following construction of a secure sampling protocol.

Protocol πDsamp.
1. P1 initializes x0 to be the empty boolean string, and P2 initializes y0 to be the empty boolean string.

2. For i = 0, 1, 2, . . . , logN − 1, parties P1 and P2 perform the following:

(a) P1 chooses random r
(i)
1 ∈ [d2k]. Similarly, P2 chooses random r

(i)
2 ∈ [d2k].

(b) P1 and P2 securely evaluate hDi ((x|i, r
(i)
1 ), (y|i, r

(i)
2 )) to obtain their respective outputs x|i+1, y|i+1

∈ {0, 1}i+1.

3. P1 outputs x′ = x| logN . P2 outputs y′ = y| logN .

For each i ∈ {0, 1, . . . , logN − 1}, let D′′|i+1 denote the distribution of (x|i+1, y|i+1) computed by the
parties in Step 2b of the protocol πDsamp. By a standard application of triangle inequality, we can conclude
that statistical distance between D′′|i+1 and D|i+1 is at most (i+ 1)ε/ logN . Therefore, the statistical distance
between D′′| logN and D| logN = D is at most ε.

Efficiency. Secure evaluation of hDi in Step 2b requires securely evaluating 4 invocations of gDx|i,y|i
(and

then choosing the right value of the bits to be appended based on random values r(i)1 an r(i)2 ). To maximize
efficiency of our sampling protocol, we instantiate the secure evaluation of invocations of gx|i,y|i using the
protocol in Figure 1. Observe that using Theorem 3.1, that Step 2b in the i-th iteration can be performed
using Õ(i2/3 log(d2k)) OT correlations (alternatively calls to an OT oracle). Since i varies from 1 through
logN , we have that the total number of OT correlations (alternatively, calls to the OT oracle) required by the
sampling protocol is bounded by O(N2/3poly(logN, log d, log(1/ε))).

G Computing Functions of a Shared Secret
The work of Beimel et al. [6] introduced threshold (t-out-of-n) secret-sharing schemes for families of functions
F . Such schemes allow any set of at least t parties to compute privately the value f(s) of a (previously
distributed) secret s, for any f ∈ F . Smaller sets of players get no more information about the secret than
what follows from the value f(s). The goal is to make the shares as short as possible. A key feature of such
schemes is that after the computation of f(s) by some set consisting of at least t parties, no information about
s is leaked to any coalition of less than t parties other than what was implied by the value of f(s).

Model and definitions. Let U = {P1, . . . , Pn} denote the set of all parties. In addition to the parties, there is
a dealer who has a secret input s. A distribution scheme is a probabilistic mapping, which the dealer applies to
the secret to generate n pieces of information s1, . . . , sn which are referred to as the shares. The dealer gives
the share si to party Pi. In the scenario we consider, the dealer is active only during the initialization of the
system. After this stage the parties can communicate. We stress that the particular function f ∈ F is chosen
after the initialization of the system by the dealer.

Let B ⊆ U of size at least t as the set of parties that are required to compute the value of f(s). For any
coalition C ⊂ U of size less than t, we denote by MC(〈si〉B , 〈ri〉B) the messages that an eavesdropping
coalition C can obtain during the communication between the parties in B. Here 〈si〉B is the vector of shares
of B and 〈ri〉B the vector of random inputs of B.

Definition G.1 (View of a coalition [6]). LetC ⊆ U be a coalition. The view ofC, denoted V IEWC , after the
execution of a protocol consists of the information that C gains. In a distribution scheme, V IEWC = 〈si〉C ,
the shares of C. In the evaluation of f(s) by a set of parties B ⊆ U the view of C consists of the inputs 〈si〉C ,
the local random inputs 〈ri〉C∩B (only the parties inC∩B are involved in the computation), and the messages
that C obtains from the communication channel during the evaluation by B, i.e., MB∩C(〈si〉B , 〈ri〉B). That
is,

V IEWC = 〈si〉C‖〈ri〉i∈B∩C‖MB∩C(〈si〉B , 〈ri〉B).

Definition G.2 (Secret-sharing schemes for a family of functions [6]). A t-out-of-n secret-sharing scheme for
a family of functions F is a distribution scheme (Π, µ) which satisfies the following two conditions.
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Evaluation: For any set B ⊆ U of size at least t and any function f ∈ F the parties in B can evaluate f(s).
That is, there is a protocol FB,f which, given the shares of B as inputs, will always output the correct value
of f(s).
Security: Let X be a random variable on the set of secrets S and C ⊂ U be any coalition of size less than t.

Prior to evaluation (after the distribution of shares). For any two secrets s, s′ 6∈ S and any shares 〈si〉C
(from Π(s, r)):

Pr[V IEWC = 〈si〉C | X = s] = Pr[V IEWC = 〈si〉C | X = s].

After evaluation. For any f ∈ F , any B ⊆ U of size at least t, any secrets s, s ∈ S with f(s) = f(s),
any shares 〈si〉C , any inputs 〈ri〉B∩C , and any messages MB∩C(〈si〉B , 〈ri〉B) from the computation of f(s)
by B:

Pr[V IEWC = 〈si〉C‖〈ri〉B∩C‖MB∩C(〈si〉B , 〈ri〉B)|X = s]

= Pr[V IEWC = 〈si〉C‖〈ri〉B∩C‖MB∩C(〈si〉B , 〈ri〉B)|X = s].

We say that C gains no information that is not implied by the function f (or simply: gains no additional
information) if in the computation of f(s) we have security after evaluation.

Among other things, Beimel et al. [6] prove that for the class of all functions f : {0, 1}` → {0, 1}, denoted
ALL`, there exists a t-out-of-n (interactive) secret-sharing scheme over private communication channels for
ALL` with shares of length max(2` − 1, log n + 1). They pose as an explicit open question as to whether
there exists a better scheme for the family ALL`.

Our contribution. Loosely speaking, at a very high level, we show that the number of OTs required to evaluate
any function f ∈ ALL` among t parties such that the computation remains private from any coalition of less
than t parties is (up to constant factors) an upper bound on the size of shares of secret-sharing schemes for
ALL`. Then, by a straightforward generalization of our results in Section 4, we obtain improved upper bounds
on the share length of t-out-of-n interactive secret-sharing scheme over private communication channels for
ALL`. The generalization involves use of (t − 1)-private t-server PIR schemes (instead of 1-private PIR
schemes as in Definition 2.2) which, loosely speaking preserves privacy of client input even against coalitions
of t − 1 (or less) out of the t servers. As before, we take a non-standard view of PIR protocols in which the
database held by the servers corresponds to the truth table of some function f : {0, 1}` → {0, 1}.

We obtain, in particular for the simplest case of n = 2, t = 2, a secret-sharing scheme for ALL` whose
share length is at most Õ(2`/3) for ` = ω(polylog(n)). Formally, and more generally, we prove the following
theorem.

Theorem G.3. Let P = (Q,A,R) be a (t−1)-private t-server PIR scheme for the function classALL`. Let
τ(·) be as in Definition 2.1. Further, let Recn,t,`Shamir denote the reconstruction algorithm of the (t− 1)-private
t-reconstructible n-party Shamir secret-sharing that accepts shares from t parties and reconstructs a secret
s ∈ {0, 1}`. Then, there exists a t-out-of-n interactive secret-sharing scheme over private communication
channels for ALL` with shares of length O(n2(τ(Q) + τ(R) + τ(Recn,t,`Shamir))).

Proof. The dealer performs the following:

1. The dealer shares its input secret s ∈ {0, 1}` using the (t− 1)-private t-reconstructible n-party Shamir
secret-sharing scheme.

2. The dealer distributes random OT correlations of size O(τ(Q) + τ(R) + τ(Recn,t,`Shamir)) for each pair
of parties, where Q and R are, respectively, the query generation and reconstruction algorithm of the
given (t− 1)-private t-server PIR scheme P = (Q,A,R).

This completes the description of the initialization of the system.
After this, suppose any set B ⊆ U of size at least t agree on a function f ∈ ALL`. In the following, we

assume that the size ofB is t. This is without loss of generality since for any set of size greater than t, we may
just choose (the lexicographically first) t parties in that set to reconstruct f(s) and then distribute this value
over private point-to-point channels to all other parties.

To compute f(s), parties in B perform the following:

1. Each Pi ∈ B with input share si participates to securely evaluate, using semi-honest secure GMW
protocol, a circuit that

• reconstructs secret s ∈ {0, 1}` using Recn,t,`Shamir on input 〈si〉B , and
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• accepts random ri ∈ {0, 1}γ(N) chosen by each Pi ∈ B, where γ(N) denotes the size of random-
ness required by the query generation algorithm Q, and computes r =

⊕
Pi∈Bri, and

• computes (q1, . . . , qt)← Q(s, r), and
• delivers output qj to party Pj ∈ B.

2. In the next phase, each party Pi ∈ B computes ai ← A(i, qi, f).

3. Each Pi ∈ B with input share si participates to securely evaluate, using semi-honest secure GMW
protocol, a circuit that

• reconstructs secret s ∈ {0, 1}` using Recn,t,`Shamir on input 〈si〉B , and
• accepts ri ∈ {0, 1}γ(N) from each Pi ∈ B, where ri was the value input by Pi in Step 1 above,

and computes r =
⊕

Pi∈Bri, and
• computes output z ← R(s, r, a1, . . . , at), and
• delivers output z to each party Pj ∈ B.

Since all communication between parties in B is via private pairwise point-to-point channels, and since the
query generation algorithm and reconstruction algorithm are emulated by parties in B via semi-honest secure
GMW protocol, it is clear that any coalition C of size less than t learns no more information about s other
than what was revealed by the PIR queries {qi}i∈C and the output z. Since P is a (t − 1)-private PIR
scheme, we thus conclude that any coalition of size less than t learns no more information about s other
than what was implied by f(s). Finally, since the GMW protocol [32, 33] involving t parties requires O(t2)
pairwise random OT correlations to evaluate each AND gate in a circuit, it is easy to see that the total size of
random OT correlations distributed by the dealer in the initialization phase is at most O(n2(τ(Q) + τ(R) +

τ(Recn,t,`Shamir))).

It is easy to see that for the specific case of n = 2 and t = 2, we may use as P the 1-private 2-server
PIR scheme of [20] (cf. Appendixapp2server). In this case, τ(Q) = Õ(2`/3) and τ(R) = Õ(2`/3), and since
Õ(2`/3) dominates τ(Recn,t,`Shamir) when ` = ω(polylog(n)), we conclude that the total share size of the above
2-out-of-2 secret-sharing scheme for ALL` is Õ(2`/3).

H PSM with Universal Reconstruction for a Class of Functions
In this section, we prove a simple lower bound on the size of messages in a 2-party PSM protocol when the
PSM referee’s reconstruction function g is universal (for a class of functions) in that it does not depend on the
specific function that is being computed. We present the formal definition below.

Definition H.1 (Private Simultaneous Messages with Universal Reconstruction for a Class of Functions). Let
X1, . . . , Xk, Z be finite domains, and let X = X1 × · · · ×Xk. Let F denote the class of all functions from
domain X to range Z. A private simultaneous messages (PSM) protocol P with universal reconstruction for
a class of functions F , computing any function f ∈ F , consists of:

• A finite domain R of shared random inputs, and k finite message domains M1, . . . ,Mk.

• For each f ∈ FN , message computation functions µf1 , . . . , µ
f
k , where µfi : Xi ×R→Mi.

• A universal reconstruction function that depends only on F , denoted gF : M1 × · · · ×Mk → Z.

Let µf (x, r) denote the k-tuple of messages (µf1 (x1, r), . . . , µ
f
k(xk, r)). We say that the protocol P is correct

(with respect to F), if for every f ∈ F and every input x ∈ X and every random input r ∈ R, gF (µf (x, r)) =
f(x). We say that the protocol P is private (with respect to F), if for every f ∈ F , the distribution of µf (x, r),
where r is a uniformly random element of R, depends only on f(x). That is, for every f ∈ F and every
two inputs x, x′ ∈ X such that f(x) = f(x′), the random variables µf (x, r) and µf (x′, r) (over a uniform
choice of r ∈ R) are identically distributed. P is a PSM protocol with universal reconstruction for a class of
functions F if it is both correct and private.

The communication complexity of the PSM protocol P is naturally defined as
∑n
i=1 log |Mi|. The ran-

domness complexity of the PSM protocol P is defined as log |R|.

The above definition differs from Definition 2.3 in that the PSM protocol is defined for an arbitrary class
of functions F , and that the referee’s reconstruction function gF is independent of the specific function f ∈ F
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being computed. An example of a PSM protocol with universal reconstruction for the class of functions FN
is the basic truth-table based PSM protocol of [30] (cf. Appendix E).

However, our construction of PSM protocols in Section 6 is not a PSM protocol with universal recon-
struction for FN . Indeed, the referee’s computation depends on the truth table of the specific f ∈ FN being
computed. (Note that in our construction in Figure 3 (see also Section 6.3, the referee computes, for a server
holding as database the truth-table of f , the server’s answer to a decomposable PIR query.) Another ex-
ample of a scheme in the literature that is not a PSM protocol with universal reconstruction for FN is the
(information-theoretic) Yao garbled circuit based PSM protocol of [30].

While the PSM protocols (without universal reconstruction) that we constructed in Section 6 have commu-
nication complexityO(N1/2), all known PSM protocols with universal reconstruction for FN have communi-
cation complexity O(N). Our next theorem shows that this situation is somewhat inherent for PSM protocols
with universal reconstruction for the class of functions FN .

Theorem H.2. Let P be a 2-party PSM protocol with universal reconstruction for function class FN . Then,
the communication complexity of P is at least N .

Proof. Let the domain of messages for party P1 and P2 be M1 and M2 respectively. Let the message com-
putation function for party P1 and P2 for f ∈ FN be µf1 and µf2 respectively. Consider an execution of
the PSM protocol where the shared random input r ∈ R, where R is the finite domain of shared random
inputs, is fixed. Now for f ∈ FN , consider the set of values Mf = {µf1 (x1, r)}x1∈[N ] ∪ {µf2 (x2, r)}x2∈[N ].
Since the referee’s reconstruction procedure is universal, i.e., consists of a single function gFN

for every
f ∈ FN , and the PSM protocol is perfectly correct, it is easy to see that for each f ∈ FN , the set Mf

alone must completely define the values of {f(x1, x2)}(x1,x2)∈[N ]×[N ], i.e., the function f . That is, the size
of Mf , i.e., N · (log |M1|+ log |M2|), must be greater than or equal to the number of bits required to define
f ∈ FN , i.e., log(2N

2

) = N2. Since the total length of the messages in a given PSM execution is equals
log |M1| + log |M2|, we conclude that the communication complexity of an execution of the PSM protocol
with universal reconstruction is least N .

I Private Simultaneous Messages – Additional details
In this appendix, we provide some missing details from Section 6.

We start by a more formal description of the protocol from Section 6.3, for which we will also add some
additional notation. Motivated by the application, the database length is now N2-bit and the obtained com-
plexity will hence be O(N1/2). The truth table of f : [N ] × [N ] → {0, 1} is naturally associated with the
4-dimensional cube [N1/2]4, where each position x = (x1, x2) ∈ [N ] × [N ] in the truth-table is associated
with a 4-tuple (x̂1, . . . , x̂4) ∈ [N1/2]4, in a natural manner. Specifically, we associate (x̂1, x̂2) with x1, and
(x̂3, x̂4) with x2. We also use g(x̂1, . . . , x̂4) to denote the reverse mapping from the 4-dimensional cube
element (x̂1, . . . , x̂4) to the corresponding element (x1, x2) in the database.

The PIR algorithms are defined below. Let the client’s input be x = (x1, x2) ∈ [N ] × [N ]. As described
above, let (x̂1, x̂2, x̂3, x̂4) be the position in the 4-dimensional cube that is associated with x. For any x̂ ∈
[N1/2], let ex̂ denote the N1/2-bit indicator vector which has 1 at location x̂, and 0 elsewhere. Finally, for
any 4-tuple of strings of length N1/2, define a function GCGKS : {0, 1}N1/2 × {0, 1}N1/2 × {0, 1}N1/2 ×
{0, 1}N1/2 → {0, 1} as GCGKS(j1, j2, j3, j4) =

⊕
i1,i2,i3,i4∈[N1/2](〈j1, ei1〉 · 〈j2, ei2〉 · 〈j3, ei3〉 · 〈j4, ei4〉 ·

g(i1, i2, i3, i4)), where g is the mapping defined above. That is, GCGKS(j1, j2, j3, j4) is the exclusive-or of
all locations (i1, i2, i3, i4) in the 4-dimensional cube such that the ik-th bit of jk equals 1 for all 1 ≤ k ≤ 4.

• Decomposable query generation. Let u = (û01, û
0
2, û

0
3, û

0
4) where each of û01, û02, û03, û04 are uniformly

random strings of bit length N1/2.

– Algorithm Q1(x1, u): Output q1 = (x1, u).
– Algorithm Q2(x2, u): Output q2 = (x2, u).
– Algorithm Q3(x1, x2, u): Recall that x1 is associated with the tuple (x̂1, x̂2), and x2 is associated

with the tuple (x̂3, x̂4).
∗ Algorithm Q1

3(x1, u): Output q13 = (û01⊕ex̂1
, û02⊕ex̂2

).
∗ Algorithm Q2

3(x2, u): Output q23 = (û03⊕ex̂3 , û
0
4⊕ex̂4).

• Answering algorithm.
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– Algorithm A(1, q1 = (x1, u), f): Recall x1 is associated with the tuple (x̂1, x̂2). Define û11 =
ex̂1
⊕û01 and û12 = ex̂2

⊕û02. Initialize set A1 = ∅. Do:
∗ For b ∈ {0000, 0100, 1000, 1100}, with b = b1‖b2‖b3‖b4, compute ãb = GCGKS(ûb11 , û

b2
2 ,

ûb33 , û
b4
4 ), and add ãb to A1.

∗ For b ∈ {0101, 1001, 1101}, with b = b1‖b2‖b3‖b4, and for ` ∈ [N1/2], compute ã`b =

GCGKS(ûb11 , û
b2
2 , û

b3
3 , û

b4
4 ⊕e`), and add ã`b to A1.

∗ For b ∈ {0110, 1010, 1110}, with b = b1‖b2‖b3‖b4, and for ` ∈ [N1/2], compute ã`b =

GCGKS(ûb11 , û
b2
2 , û

b3
3 ⊕e`, û

b4
4 ), and add ã`b to A1.

Set a1 = A1, and output a1.
– Algorithm A(2, q2 = (x2, u), f): Recall x2 is associated with the tuple (x̂3, x̂4). Define û13 =

ex̂3
⊕û03 and û14 = ex̂4

⊕û04. Initialize set A2 = ∅. Do:
∗ For b ∈ {0001, 0010, 0011}, with b = b1‖b2‖b3‖b4, compute ãb = GCGKS(ûb11 , û

b2
2 , û

b3
3 ,

ûb44 ), and add ãb to A2.
∗ For b ∈ {0111}, with b = b1‖b2‖b3‖b4, and for ` ∈ [N1/2], compute ã`b = GCGKS(ûb11 ,

ûb22 ⊕e`, û
b3
3 , û

b4
4 ), and add ã`b to A2.

∗ For b ∈ {1011}, with b = b1‖b2‖b3‖b4, and for ` ∈ [N1/2], compute ã`b = GCGKS(ûb11 ⊕e`,
ûb22 , û

b3
3 , û

b4
4 ), and add ã`b to A2.

Set a2 = A2, and output a2.
– Algorithm A3(3, q3 = (q13 , q

2
3), f): Parse q13 as (û11, û

1
2), and q23 as (û13, û

1
4). Compute ã1111 =

GCGKS(û11, û
1
2, û

1
3, û

1
4). Set a3 = ã1111, and output a3.

• Decomposable reconstruction algorithm.
– Algorithm R′((x1, x2), r, a1, a2): Recall x1 is associated with the tuple (x̂1, x̂2), and x2 is asso-

ciated with the tuple (x̂3, x̂4).
∗ Compute z̃ =

(⊕
b∈{0000,0100,1000,1100}ãb

)
⊕
(⊕

b∈{0001,0010,0011}ãb
)
.

∗ Set z̃1 = ãx̂1
1011, and z̃2 = ãx̂2

0111.
∗ Compute z̃3 =

⊕
b∈{0110,1010,1110}ã

x̂3

b .

∗ Compute z̃4 =
⊕

b∈{0101,1001,1101}ã
x̂4

b .
∗ Output z′ = z̃⊕z̃1⊕z̃2⊕z̃3⊕z̃4.

– AlgorithmR′′(a3, z′): Output z = a3⊕z′.

Efficiency of the resulting PSM protocol in Figure 3. First observe that the length of each of r, a1, a2,q13 ,q23
in the 3-server decomposable PIR protocol described above is O(N1/2). Next, in algorithm R′, each of
the values z̃1, z̃2, z̃3, z̃4 can be computed by a multiplicative depth-1 circuit of size O(N1/2). Given this,
we conclude that there exists a PSM protocol πR′ (e.g., based on information theoretic Yao garbled circuits)
whose communication (and randomness) complexity isO(N1/2). Thus |m1|+ |m2|+ |q13 |+ |q23 | = O(N1/2),
and so the communication complexity is O(N1/2). The randomness complexity of πR′ is O(N1/2) and so
the randomness complexity of the resulting PSM protocol is also O(N1/2).

I.1 Decomposable Matching Vectors and Decomposable PIR Schemes
Motivated by the possibility of constructing decomposable 3-server PIR protocols that are as efficient as
the best known 3-server PIR protocols of [61, 27, 9] (whose communication complexity is subexponential
in logN ), we attempt to construct decomposable 3-server PIR protocols using (appropriate variants of) the
machinery employed in these 3-server PIR protocols. This machinery includes share conversion (cf. Sec-
tion A.1.1), and the so-called matching vectors family which we define below.

Definition I.1 (Matching vectors family [61, 27]). Let S ⊆ Zm \ {0}. We say that U = {ux}x∈[N ]×[N ]

and V = {vx}x∈[N ]×[N ] in Zhm form an S-matching family of size N2 if the following conditions hold: (1)
〈ux, vx〉 = 0 for every x ∈ [N ]× [N ], and (2) 〈ux, vx′〉 ∈ S for every x 6= x′.

For our purposes we will need a variant of matching vectors family Unfortunately, we do not know how
to construct decomposable matching vectors family, and leave it as an open question to find decomposable
matching vectors family such that h is subexponential in logN , or even asymptotically better than N1/2.
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Definition I.2 (Decomposable matching vectors family). Let S ⊆ Zm\{0}. We say thatU (1) = {u(1)x1 }x1∈[N ],

U (2) = {u(2)x2 }x2∈[N ], and V = {vx}x∈[N ]×[N ], in Zhm form a decomposable S-matching family of size N2

if the following conditions hold: (1) 〈u(1)x1 + u
(2)
x2 , vx〉 = 0, for every x = (x1, x2) ∈ [N ] × [N ], and (2)

〈u(1)x1 + u
(2)
x2 , vx〉 ∈ S, for every x such that x 6= (x1, x2).

Let U (1), U (2), V be a decomposable S-matching family for S = Sm. Further let m, p, β be such that
there exists a share conversion from 3-party CNF sharing over Zm to additive sharing over Zβp with respect to
CSm

(cf. Fact A.7). Given the above, we show how to construct a decomposable 3-server PIR protocol.

• Decomposable query generation algorithm. Let the matching vectors corresponding to the client’s input,
say x = (x1, x2) ∈ [N ] × [N ], be (u

(1)
x1 , u

(2)
x2 ) ∈ Zhm × Zhm. Let the client’s randomness be r =

(r1, r2), where r1, r2 are interpreted as vectors in Zhm. Then (1) algorithm Q1(x1, r) outputs q1 =

(u
(1)
x1 − r1, r1 + r2), (2) algorithm Q2(x2, r) outputs q2 = (r1 + r2, u

(2)
x2 − r2), and (3) algorithm

Q1
3(x1, r) outputs q13 = u

(1)
x1 − r1, and Q2

3(x2, r) outputs q23 = u
(2)
x2 − r2, i.e., algorithm Q3(x, r)

outputs (u
(1)
x1 − r1, u

(2)
x2 − r2).

Observe that the matching vector (u
(1)
x1 + u

(2)
x2 ) corresponding to input x = (x1, x2) is effectively 3-

CNF shared among the 3 servers by the decomposable query generation algorithm. To see this, denote
u′1 = u

(2)
x2 − r2, u′2 = u

(1)
x1 − r1, and u′3 = r1 + r2. Then, {u′2, u′3} can be derived from q1, and

{u′3, u′1} can be derived from q2, and {u′1, u′2} can be derived from q3 = (q13 , q
2
3). It is easy to verify

that {u′2, u′3}, {u′3, u′1}, {u′1, u′2} is a 3-party CNF sharing of u(1)x1 + u
(2)
x2 .

• Answering algorithm. The answering algorithm is similar to the answering algorithms of the 3-server
PIR protocols of [27, 9]. Each server Sj performs the following:

– Sj derives {u′j−1, u′j+1} from qj as described above.
– Sj computes aj,j−1,` = 〈u′j−1, v`〉 and aj,j+1,` = 〈u′j+1, v`〉 for each ` ∈ [N ]× [N ].
– Sj applies the share conversion procedure (corresponding to share conversion from 3-party CNF

sharing to additive sharing over Zβp ) to each CNF share {aj,j−1,`, aj,j+1,`} ∈ Z2
m to obtain a′j,` ∈

Zβp .
– Finally, Sj sends aj =

∑
`∈[N ]×[N ] y` ·a′j,` to the client, where y` ∈ {0, 1} denotes the `th element

of the database (i.e., y` = f(`)), and is interpreted as an element in Zβp .

• Decomposable reconstruction algorithm. LetR′((x1, x2), r, a1, a2) be an algorithm that computes a1+
a2, where addition is over Zβp . Let R′′(c1, c2) be an algorithm that outputs 0 if c1 + c2 = 0 ∈ Zβp ,
and outputs 1 if c1 + c2 6= 0. The client obtains answers a1, a2, a3 from the servers, and computes
a = a3 +R′((x1, x2), r, a1, a2) = a1 + a2 + a3 ∈ Zβp , and outputs z = R′′(a).

Efficiency of the resulting PSM protocol. We consider the setting where values m, p, β are constants inde-
pendent of N . In this case, it is easy to see that the PSM messages for realizing R′ will be of length O(1).
On the other hand, the lengths of q13 , q

2
3 ∈ Zhm will be O(h) (once again assuming m is a constant), and will

dominate the PSM cost. Finally, we note that the randomness complexity of the PSM protocol is also O(h).
Unfortunately, we do not know how to construct decomposable matching vectors family, and leave it as an

open question to find decomposable matching vectors family such that h is subexponential in logN , or even
asymptotically better than N1/2.

J Secret Sharing Schemes for Forbidden Graph Access Structures
In this section, we construct secret-sharing schemes realizing AG for general graphs, using the secret-sharing
scheme for forbidden bipartite graph access structures, presented in Section 7.

Theorem J.1. Let G = (V,E) be a graph where |V | = N . There exists a secret sharing realizing AG with
domain of secrets {0, 1} and total share size O(N3/2 logN).

Proof. To construct a scheme realizing AG, we rely on the fact that an arbitrary graph G = (V,E), with
|V | = N , can be covered by logN graphs G1, . . . , GlogN , such that (1) for every i, the graph Gi is a bipartite
subgraph of G, and (2) an edge (u, v) ∈ E iff there exists some j ∈ [logN ] such that (u, v) is an edge in Gj .
Such a cover can, for instance, be obtained by defining Lj as the set of all vertices in V whose label contains
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0 in its jth bit, Rj as the remaining set of vertices in V whose label contains 1 in its jth bit, and having an
edge (x, y) ∈ Ej if and only if x ∈ Lj , y ∈ Rj , and (x, y) ∈ E. As for every (x, y) ∈ E (where x 6= y) there
exists at least one bit where x and y differ, then (x, y) is an edge in at least one Gj .

We claim that AG is equal to ∩logNi=1 AGi . On one hand, a set is authorized in AG if it is of size at least 3
or it is a set {x, y} such that (x, y) /∈ E and, therefore, (x, y) /∈ Ej for every j. On the other hand, if a set
{x, y} is not authorized in AG, then (x, y) ∈ Ej for some j and, thus, not in AGi .

We next describe a secret-sharing scheme realizingAG. The dealer, with input s ∈ {0, 1}, picks at random
s1, . . . , slogN such that s = s1⊕ · · ·⊕slogN , and shares each si with a scheme realizing AGi with total share
size O(N3/2) (such scheme exists by Corollary 7.4). For the correctness and privacy, note that a set A can
reconstruct s if and only if A can reconstruct every si, which happens if and only if A ∈ AGi , for every i,
which is equivalent to A ∈ AG.

Remark J.2. We can also construct a secret sharing realizing AG with domain of secrets {0, 1}O(logN) and
total share size O(N3/2 logN), that is, the information ratio of the scheme (the ratio between the length of
the shares and the length of the secret) is improved by a factor of logN . To achieve this, we start with a
cover of G with O(logN) bipartite graphs G1, . . . , GO(logN) such that every edge in G is an edge in at least
a constant fraction β of the the bipartite graphs (for example, rename the vertices in G to random numbers in
[N2] and use the above construction with the new names). On one hand, if a set is authorized inAG, then it is
authorized inAGi for every i. On the other hand, if a set is unauthorized inAG, then it is unauthorized inAGi

for at least a constant fraction β of the access structures. We can, thus, use the decomposition construction of
Stinson [57] to get the desired scheme.

K Proofs
In this section, we provide formal proofs of Theorems 3.1 and 3.3 stated in Section 3.

K.1 Secure Computation in the OT-hybrid Model

Proof of Theorem 3.1. The protocol of Figure 1, denoted π, is the desired protocol. We will prove that this
protocol is information theoretically secure in the OT-hybrid model and has the desired efficiency.

• Privacy. First, note that in the OT-hybrid model (alternatively, OT-preprocessing model), the 2-party
GMW protocol is information-theoretically secure against passive adversaries [32, 33, 3]. Given this, the
security of the protocol of Figure 1 can be reduced information theoretically to the security of a protocol
π′ in which instead of running the GMW protocol in Step 1 (resp. Step 3), parties simply provide their
input to the GMW protocol for evaluating Q̃ (resp. R̃) to an ideal functionality that directly evaluates
Q̃ (resp. R̃) over the provided inputs and delivers to the parties their corresponding output. It is easy to
see that in protocol π′ the view of the passively corrupted party Pi equals its input xi, randomness r(i),
a single PIR query qi, and the final output z. First, note that the value r(i) is information theoretically
independent of the randomness used in the algorithm Q̃. Next, note by the client privacy of the PIR
scheme P , the distribution of query qi is independent of x = (x1, x2), and in particular, is independent
of the input x3−i of the honest party P3−i. Given the above, it is easy to see that the corrupt party
learns no information about the honest party’s input (i.e., x3−i) other than what is revealed by the value
z = f(x1, x2).

• Correctness. Correctness follows immediately from the correctness of the 2-server PIR protocol P and
the correctness of the GMW protocol (employed in Steps 1 and 3).

• Efficiency. From the description of the protocol π, we have that the GMW protocol is used to securely
evaluate C(Q̃) and C(R̃). To evaluate a circuit containing s1 AND gates and s2 XOR gates, the GMW
protocol requires O(s1) calls to an OT oracle, and has communication complexity O(s1 + s2) [33].
Since τ(Q̃) = τ(Q), and τ(R̃) = τ(R) hold (C(Q̃) (resp. C(R̃)) has the same number of AND gates
as C(Q) (resp. C(R)) and differs in the number of XOR gates), and since the number of XOR gates is
bounded, up to constant factors, by the number of bits of the random input to circuits C(Q̃) and C(R̃),
we conclude that the communication complexity (including calls to an OT oracle) of the protocol of
Figure 1 is O(τ(Q) + τ(R)) bits.
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K.2 Secure Computation in the Preprocessing Model

Proof of Theorem 3.3. The protocol of Figure 2, denoted π, is the desired protocol. We will prove that this
protocol is information theoretically secure in the preprocessing model and has the desired efficiency.

• Privacy. First, note that given precomputed oblivious transfers, the 2-party GMW protocol is information-
theoretically secure against passive adversaries [32, 33, 3]. Given this, the security of the protocol of
Figure 2 can be reduced information theoretically to the security of a protocol π′ in which instead of
running the GMW protocol in Step 1 (resp. Step 3), parties simply provide their input to the GMW
protocol for evaluating Q̃ (resp. R̃) to an ideal functionality that directly evaluates Q̃ (resp. R̃) over the
provided inputs and delivers to the parties their corresponding output. It is easy to see that in protocol
π′ the view of the passively corrupted party Pi equals its input xi, randomness r(i), a random share a(i)1

(of a1 = A(1, q1, f)), a single PIR query qi+1, and the final output z. First, note that the value r(i) is
information theoretically independent of the randomness used in the algorithm Q̃. Similarly, the value
a
(i)
1 is information theoretically independent of the value a1 and also of the input of the honest party
P3−i (i.e., x3−i). Next, note by the client privacy of the PIR scheme P , the distribution of query qi+1

is independent of x = (x1, x2), and in particular, is independent of the input x3−i of the honest party
P3−i. Given the above, it is easy to see that the corrupt party learns no information about the honest
party’s input (i.e., x3−i) other than what is revealed by the value z = f(x1, x2).

• Correctness. Correctness follows immediately from the correctness of the 3-server PIR protocol P and
the correctness of the GMW protocol (employed in Steps 1 and 3).

• Efficiency. From the description of the protocol π, we have that the GMW protocol is used to se-
curely evaluate C(Q̃) and C(R̃). To evaluate a circuit containing s1 AND gates and s2 XOR gates, the
GMW protocol requires (random) OT correlations of size O(s1) [3], and has communication complex-
ity O(s1 + s2) [33]. Since τ(Q̃) = τ(Q−1) ≤ τ(Q), and τ(R̃) = τ(R) hold (C(Q̃) (resp. C(R̃)) has
the same number of AND gates as C(Q−1) (resp. C(R)) and differs in the number of XOR gates), and
since the number of XOR gates in C(Q̃) and C(R̃) is bounded, up to constant factors, by the number of
bits of the random input (in circuitsC(Q̃) andC(R̃)) and by the length of input a1 (in circuitC(R̃)), we
conclude that the communication complexity of the protocol of Figure 2 is O(τ(Q) + τ(R)) bits. It is
easy to see that the size of the random OT correlations required is indeed bounded by O(τ(Q) + τ(R))

(which is in fact the number of AND gates in circuits C(Q̃) and C(R̃)). Finally note that the lengths of
r(1) and r(2) are bounded, up to constant factors, by τ(Q) (since r = r(1)⊕r(2) is an input to C(Q)),
and that the lengths of a(1)1 and a(2)1 are bounded, up to constant factors, by τ(R) (since a1 = a

(1)
1 ⊕a

(2)
1

is an input to C(R)). Thus, we conclude that the correlated randomness complexity (including the size
of the random OT correlations) is O(τ(Q) + τ(R)) bits.
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