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Abstract. Motivated by the goal of improving the concrete efficiency of
secure multiparty computation (MPC), we study the possibility of imple-
menting an infrastructure for MPC. We propose an infrastructure based
on oblivious transfer (OT), which would consist of OT channels between
some pairs of parties in the network. We devise information-theoretically
secure protocols that allow additional pairs of parties to establish secure
OT correlations using the help of other parties in the network in the
presence of a dishonest majority. Our main technical contribution is an
upper bound that matches a lower bound of Harnik, Ishai, and Kushile-
vitz (Crypto 2007), who studied the number of OT channels necessary
and sufficient for MPC. In particular, we characterize which n-party OT
graphs G allow t-secure computation of OT correlations between all pairs
of parties, showing that this is possible if and only if the complement of
G does not contain the complete bipartite graph Kn−t,n−t as a subgraph.

Keywords: Secure multiparty computation, oblivious transfer, infrastructure.

1 Introduction

Protocols for secure multiparty computation [65,31,8,16] allow a set of mutu-
ally distrusting parties to carry out a distributed computation without com-
promising the privacy of inputs or the correctness of the end result. As a re-
search area, secure computation has witnessed several breakthroughs in the last
decade [66,47,43,59,54,53,40,57,41,52]. However, despite a wide array of potential
game-changing applications, there is nearly no practical adoption of secure com-
putation today (with the notable exceptions of [11,12]). Computations wrapped
in a secure computation protocol do not yet deliver results efficiently enough
to be acceptable in many cloud-computing applications. For instance, state-of-
the-art semihonest 2-party protocols incur a factor ≈ 100 slowdown even for
simple computations. As we move into the world of wearables, such a slowdown
would effectively close down many important avenues for application of secure
computation.

In the absence of practical real-world protocols for secure computation which
are secure in the presence of any number of dishonest parties, there is a need for
relaxations that are meaningful and yet provide significant performance benefits.
As an example, classic protocols for secure computation [8,16,62] (with subse-
quent improvements e.g., [19,9,4,23,21,20]) offer vastly better efficiency at the
cost of tolerating only a small constant fraction of adversaries. The resilience
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offered is certainly acceptable when the number of participating parties is large,
e.g., the setting of large-scale secure computation [13,25,67,14]. Although large-
scale secure computation is well-suited for several interesting applications (such
as voting, census, surveys), we posit that typical settings involve computations
over data supplied by a few end users. In such cases, the overhead associated
with interaction among a large number of helper parties is likely to render these
protocols more expensive than a standard secure computation protocol among
the end users. If the number of helper parties is small, security against a small
fraction of corrupt parties may be a very weak guarantee, since a handful of
corrupt parties could render the protocol insecure.

An orthogonal approach for reducing the online cost of secure computation
protocols is the use of preprocessing [3,24,10,1]. This approach can dramatically
reduce the cost of secure computation: for instance, given preprocessing [3],
the ≈ 100 factor slowdown for simple computations no longer applies. Recent
theoretical research has shown that many primitives can even be made reusable
(e.g. [34]). Perhaps the most important drawback of this approach (other than
the fact that the preprocessing phase is typically very expensive) is that the
preprocessing is not transferable. Clearly, a pair of parties that want to perform
a secure computation cannot benefit from this approach without performing the
expensive preprocessing step. Moreover, this seems to hold even if each of the two
parties have set up the preprocessing with multiple others. Typically, the cost
of the preprocessing phase is quite high, presenting a barrier for the practical
use of preprocessed protocols. This is especially true in settings where parties
are unlikely to run many secure computations which would amortize the cost of
preprocessing.

Motivated by the discussion above, we conclude that some directions that
seem to offer efficiency benefits for secure computation are (1) highly resiliant
protocols that use only a small number of helper parties, and (2) a preprocessing
procedure that allows a notion of transferability between users. Taken together,
these two ideas have the potential to provide an infrastructure for efficient se-
cure computation. Some sets of parties might run a preprocessing phase among
themselves. These parties can then act as helper parties and “transfer” their
preprocessing to help users who want to run a secure computation protocol. We
informally describe some desiderata for such an infrastructure:

– Reusability/Amortization. Setting up an infrastructure component could be
expensive, but using it and maintaining it should be inexpensive relative to
setting up a new component.

– Transferability/Routing. It should be possible to combine different compo-
nents of the infrastructure to deliver benefits to the end users.

– Robustness/Fault-tolerance. Failure or unavailability of some components of
the infrastructure should not nullify the usefulness of the infrastructure.

It is not hard to see that the above criteria are fulfilled for infrastructures
that we use in daily life, for e.g., the infrastructure for online communication (e-
mail, instant messaging, etc.) consisting of transatlantic undersea cables, routers,
wireless access points, etc. What cryptographic primitives would be good can-
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didates for a secure computation infrastructure? In this work, we explore the
possibility of using oblivious transfer [61,27] for this purpose.

1.1 Our Model: Network Oblivious Transfer

Oblivious transfer (OT) is a fundamental building block of secure computa-
tion [46,45]. As discussed in [45], some of the benefits of basing secure compu-
tation on OT include:

– Preprocessing. OT enables precomputation in an offline stage before the
inputs or the function to be computed are known. The subsequent online
phase is extremely efficient [3].

– Amortization. The cost of computing OTs can be accelerated using efficient
OT extension techniques [2,43,45,59].

– Security. OTs can be realized under a wide variety of computational assump-
tions [60,27,61,58,18] or under physical assumptions.

In this work, we consider n parties connected by a synchronous network
with secure point-to-point private communication channels between every pair
of parties. In addition, some pairs of parties on the network have established OT
channels between them providing them with the ability to perform arbitrarily
many OT operations. We represent the OT channel network via an OT graph
G. The vertices of G represent the n parties, and pairs of parties that have
an established OT channel are connected by an edge in G. Since OT can be
reversed unconditionally [63], we make no distinction between the sender and
the receiver in an OT channel. This OT graph represents the infrastructure
we begin with. The OT channels could either represent poly(λ) 1-out-of-2 OT
correlations for a computational security parameter λ, or a physical channel (e.g.,
noisy channel) that realizes, say δ-Rabin OT [61].1 We are interested in obtaining
security against adaptive semihonest adversaries. We also discuss security against
adaptive malicious adversaries under computational assumptions.

Two parties that are connected by an edge can use the corresponding ex-
isting OT channel to run a secure computation protocol between themselves.
What about parties that are not connected by an edge? Clearly, they can estab-
lish an OT channel between themselves via an OT protocol [60,18] or perhaps
using a physical channel. The latter option, if possible, is likely to be expensive
and the costs of setting up a physical channel may be infeasible unless the two
parties are likely to execute many secure computation protocols. The former
option is also expensive as it involves use of public-key cryptography which is
somewhat necessary in the light of [42].2 This motivates the question of whether
additional parties can use an existing OT infrastructure to establish an OT

1 Recall that λ 1-out-of-2 OT correlations can be extended to poly(λ) 1-out-of-2 OT
correlations via OT extension using just symmetric-key cryptography (e.g. one-way
functions [2] or correlation-robust hash functions [43]).

2 As a rule of thumb, use of public-key cryptography is computationally around 4-6
orders of magnitude more expensive than using symmetric-key cryptography [7].
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channel between themselves unconditionally or relying only on the existence of
symmetric-key cryptography. A positive result to this question would show that
expensive cryptographic operations are not required to set up additional OT
channels which could be used for efficient secure computation. In this work we
construct OT protocols with information-theoretic security against a threshold
adversary. See Appendix A for more discussion.

1.2 Related Work and Our Contributions

Related work. As mentioned previously, there is a large body of work on se-
cure computation in the offline/online model (cf. [51,50,24,10,59] and references
therein). These protocols exhibit an extremely fast online phase at the expense
of a slow preprocessing phase (sometimes using MPC [51] or more typically, OT
correlations [59] or a somewhat homomorphic encryption scheme [24]). To the
best of our knowledge, the question of transferability of preprocessing has not
been explicitly investigated in the literature with the notable exception of [36],
which we will discuss in greater detail below. There is a large body of work
on secure computation against a threshold adversary (e.g. [8,16,62,31]). Popular
regimes where secure computation against threshold adversaries have been in-
vestigated are for t < n/3, t < n/2, or t = n− 1. In this work we are interested
in threshold adversaries for a dishonest majority, that is, adversaries which can
corrupt t out of n parties for n/2 ≤ t < n.3 Such regimes were investigated
in other contexts such as authenticated broadcast [29] and fairness in secure
computation [6,39,44]. Infrastructures for perfectly secure message transmission
(PSMT) were investigated in the seminal work of [26] (see also [28] and ref-
erences therein). While the task of PSMT is similar to our question regarding
OT channels, there are inherent differences. For example, our protocols can im-
plement OT even between two parties that are isolated in the OT graph (i.e.,
not connected to any other party via an OT channel).4 In PSMT, on the other
hand, there is no hope of achieving secure communication with a node that is
not connected by any secure channel.

Most relevant to our results is the work of Harnik, Ishai, and Kushilevitz [36].
The main question in their work is an investigation of the number of OT chan-
nels sufficient to implement a n-party secure computation protocol. In a nutshell,
they show against an adaptive t-threshold adversary for t = (1− δ)n, an explicit

construction of an OT graph consisting of (n + o(n))
(d1/δe

2

)
OT channels that

suffices to implement secure computation among the n parties. They note further
that against a static adversary,

(ds/δe
2

)
OT channels suffice, where s denotes a

statistical security parameter. On the negative side, they show that a complete
OT graph is necessary for secure computation when dealing with an adversary
that can corrupt t = n− 1 parties. They derive this result by showing that in a

3 When t < n/2, there is no need to rely on an OT infrastructure [62].
4 Recall that the model considered in this work, we assume a full network of secure

private communication channels.
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3-party OT graph with two OT channels, it is not possible to obtain OT corre-
lations between the third pair of parties with security against two corruptions.
Moreover they generalize their 3-party negative result to any OT graph whose
complement contains the complete bipartite graph Kn−t,n−t as a subgraph. In
our paper we extend and generalize the results of [36], characterizing the net-
works for which it is possible to obtain OT correlations between a designated
pair of parties. We now proceed to explain our contributions in more detail.

Our contributions. We introduce our main result:

Theorem (informal). LetG be an OT graph on n parties P1, . . . Pn, so that any
pair of parties Pi, Pj which are connected by an edge may make an unbounded
number of calls to an OT oracle. Let A be the class of semihonest t-threshold
adversaries which may adaptively corrupt at most t parties.5 Then two parties
A and B with A,B ∈ {P1, . . . , Pn} can information-theoretically emulate an OT
oracle while being secure against all adversaries A ∈ A if and only if

1. (honest majority) it holds that t < n/2; or

2. (trivial) A and B are connected by an edge in G; or

3. (partition) there exists no partition V1, V2, V of G such that all of the fol-
lowing conditions are satisfied: (a) |V1| = |V2| = n − t and |V | = 2t − n;
(b) A ∈ V1 and B ∈ V2; and (c) for every A′ ∈ V1 and B′ ∈ V2 it holds that
(A′, B′) 6∈ G.

Our main theorem gives a complete characterization of networks for which
a pair of parties can utilize the OT network infrastructure to execute a secure
computation protocol. The first two conditions in our theorem are straightfor-
ward: (1) if t < n/2, then we are in the honest majority regime, and thus it is
possible to implement secure computation (or emulate an OT oracle) using the
honest majority information-theoretically secure protocols of [62]; (2) clearly if
A and B are connected by an OT edge then by definition they can emulate an
OT oracle.

Condition (3) applies when t ≥ n/2 and when A and B do not have an OT
edge between them. This condition is effectively the converse of the impossibil-
ity result of [36], which states that any n-party OT graph whose complement
contains Kn−t,n−t as a subgraph cannot allow a n-party secure computation
that tolerates t semihonest corruptions. Condition (3) implies that any n-party
OT graph whose complement does not contain Kn−t,n−t as a subgraph can run
n-party secure computations tolerating t semihonest corruptions.

Applying our main theorem. We first compare our positive results to those
of [36]. They investigate how to construct an OT graph with the minimum num-
ber of edges allowing n parties to execute a secure computation protocol. They
show a construction for a graph with (n+ o(n))

(d1/δe
2

)
edges which they prove is

sufficient for resilience against an adversary that corrupts (1− δ)n parties. Our

5 Combining our work with results from [35], we can also obtain computational security
against nonadaptive malicious adversaries.
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result provides a complete, simple characterization of which OT graphs on n ver-
tices are sufficient to run a t-secure protocol generating OT correlations between
all pairs of vertices for any t ≥ n/2, which is sufficient to obtain a protocol for
secure computation among the n parties [46,45]. Our main theorem also implies
that determining the minimum number of OT edges needed to execute a secure
computation protocol for general n, t ≥ n/2 is equivalent to an open problem in
graph theory posed by Zarankiewicz in 1951 [48].

Our results immediately imply that for some values of t, extremely simple
sparse OT graphs suffice for achieving secure multiparty computation. For n
even and t = n/2, we have that the t-claw graph (cf. Fig. 4(a)) has t edges and
suffices to achieve t-secure multiparty computation. For n odd and t = (n+1)/2,
the (t + 1)-cycle has t + 1 edges and suffices to achieve t-secure multiparty
computation. We show in Appendix F that these examples are the sparsest
possible graphs which can achieve b(n+ 1)/2c-secure multiparty computation.

Next, our results are also well-suited to make use of an OT infrastructure for
secure computation. Specifically, let GI denote the OT graph consisting of exist-
ing OT edges between parties that are part of the infrastructure. Now suppose
a pair of parties A,B not connected by an OT edge wish to execute a secure
computation protocol. Then they can find a subgraph G of GI with A,B ∈ G
and |G| = n such that they agree that at most t out of the n parties can be
corrupt and the partition condition in our main theorem holds for G. Since it is
possible to handle a dishonest majority, parties do not have to settle for a lower
threshold and can enjoy increased confidence in the security of their protocol by
making use of the infrastructure. Surprisingly, it turns out the OT subgraph G
need not even contain t OT edges to offer resilience against t corruptions (cf.
Fig. 2(c) with n = 4, t = 2).

A pair of parties may use the OT correlations generated as the base OTs
for an OT extension protocol and inexpensively generate many OT correlations
that can be saved for future use or to add to the OT infrastructure. In any case,
it should be clear that our protocols readily allow load-balancing across the OT
infrastructure and are also abort-tolerant in the sense that if some subgraph G
ends up not delivering the output, then one can readily use a different subgraph
G′. Thus we believe that our results can be used to build a scalable infrastructure
for secure computation that allows (1) amortization, (2) routing, and (3) is
robust.

An important caveat regarding efficiency. In the special cases t = n/2 +
O(1) and t = n − O(1), determing whether a graph satisfies the partition con-
dition requires at most poly(n) time. However, in general the problem is coNP-
complete, since it can be restated in the graph complement as subgraph isomor-
phism of a complete bipartite graph [30]. Our protocols are efficient in n only for
t = n/2 +O(1) and t = n−O(1).6 Computing OT correlations in the presence

6 For t = n/2+O(1), we achieve efficiency using computationally-secure OT extension
(e.g. [2,43]). Our protocol with information-theoretic security is quasipolynomial-
time for t = n/2 +O(1). We do, however, achieve information-theoretic security in
polynomial time for t = n−O(1).
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of a dishonest majority may, in particular, be useful in practice for small values
of n, for which our protocol is very efficient.

Organization After discussing preliminaries in Section 2, we give an overview
of some of our techniques in Section 3, where we show solutions for the simple
case when n = 4 and t = 2. Following this we briefly sketch the lower bound
in Section 4 and describe the building blocks required for our upper bounds in
Section 5. The rest of the paper is devoted to proving the upper bound first for
the specific cases of t = n/2 (Section 6) and t = n− 2 (Section 7). We then use
each of these protocols in two different solutions for the general case of t ≥ n/2
in Section 8 which are efficient for different values of t.

2 Preliminaries

2.1 Notation and definitions

Let X ,Y be two probability distributions over some set S. Their statistical dis-
tance is

SD (X ,Y)
def
= maxT⊆S{Pr [X ∈ T ]− Pr [Y ∈ T ]}

We say that X and Y are ε-close if SD (X ,Y) ≤ ε and this is denoted by
X ≈ε Y. We say that X and Y are identical if SD (X ,Y) = 0 and this is denoted
by X ≡ Y.

All graphs addressed in this work are undirected. We denote a graph as
G = (V,E) where V is a set of vertices and E is a set of edges. We denote an
edge e as e = {v1, v2}, where v1, v2 ∈ V .

Let Kn denote the complete graph on n vertices for any n ∈ N. Let Λsa
denote the graph G = (V,E) on 2a+ s vertices with V = VA

⋃̇
VS
⋃̇
VB , where

|VA| = |VB | = a and |VS | = s, and

E = {{v1, v2} : v1 6∈ VA ∨ v2 6∈ VB}

We will sometimes consider subgraphs of Λsa which preserve labels of vertices.
In this case we will always label the vertices so that vertex A ∈ VA and vertex
B ∈ VB .

For two graphs G1 = (V,E1) and G2 = (V,E2) with the same vertex set V ,
we say that G1 and G2 are (v1, . . . , v`)-isomorphic, denoted by G1 'v1,...,v` G2, if
the two graphs are isomorphic to one another while fixing the labelings of vertices
v1, . . . , v` ∈ V , that is, there exists an isomorphism σ such that σ(vi) = vi for
all i ∈ [`].

Similarly, given graphs G1 = (V2, E1) and G2 = (V2, E2) with V1 ⊆ V2
and v1, . . . , v` ∈ V1, we say that G1 is a (v1, . . . , v`)-subgraph of G2, denoted
G1 ⊆v1,...,v` G2, if G1 is (v1, . . . , v`)-isomorphic to some subgraph of G2.

In particular, in the special case that graph G = (V,E) contains vertices
A,B ∈ V , we say that G is an (A,B)-subgraph of Λsa (or that G ⊆A,B Λsa)
if there is an isomorphism σ between G and a subgraph of Λsa such that A is
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mapped into set VA and B is mapped into set VB (that is, σ(A) ∈ VA and
σ(B) ∈ VB).

Call an n-vertex graph G = (V,E) k-unsplittable for k ≤ n/2 if any two dis-
joint sets of k vertices have some edge between them. That is, G is k-unsplittable
if for all partitions of the vertices V into three disjoint sets V1, V2, V3 of sizes
|V1| = |V2| = k and |V3| = n − 2k, there exists some edge (u, v) ∈ E with
u ∈ V1, v ∈ V2. It is immediate from this definition that G is k-unsplittable if
and only if G 6⊆ Λn−2kk .

Similarly, call G (k,A,B)-unsplittable for k ≤ n/2 and A,B ∈ V if any
two disjoint sets of k vertices containing A and B, respectively, have some edge
between them. That is, G is (k,A,B)-unsplittable if for all partitions of the
vertices of V into three disjoint sets V1, V2, V3 of sizes |V1| = |V2| = k and
|V3| = n − 2k such that A ∈ V1 and B ∈ V2, there exists some edge (u, v) ∈ E
with u ∈ V1, v ∈ V2. From this definition we have immediately thatG is (k,A,B)-
unsplittable if and only if G 6⊆A,B Λn−2kk .

2.2 Secure Computation

Consider the scenario of n parties P1, . . . , Pn with private inputs x1, . . . , xn ∈ D
computing a function f : Dn → Dn. Let Π be a protocol computing f . We
consider security against adaptive t-threshold adversaries, that is, adversaries
who corrupt a set of t parties, where 0 ≤ t < n.7 We assume the adversary to
be semihonest or honest-but-curious. That is, the corrupted parties follow the
prescribed protocol, but the adversary may try to infer additional information
about the inputs of the honest parties. As noted in [36], in the computational
setting, using zero-knowledge proofs, it is possible to generically compile a pro-
tocol which is secure against semihonest adversaries into another protocol which
is secure against adaptive malicious adversaries [32].8 This justifies our focus on
the semihonest setting here.

For a PPT adversary A, let random variable REALx1,...,xn

Π,A consist of the
views of the corrupted parties when the protocol Π is run on parties P1, . . . , Pn
with inputs x1, . . . , xn respectively. In the ideal world, the honest parties are
replaced with a simulator S which does not receive input values and knows only
the output value of each corrupted party in an honest execution of the protocol.
We define the random variable IDEALx1,...,xn

Π,A,S as the output of the adversary A
in the ideal game with the simulator when the inputs to parties P1, . . . , Pn are
x1, . . . , xn respectively.

Definition 1. A protocol Π is said to t-securely compute the function f if

– For all x1, . . . , xn ∈ Dn, party Pi receives yi, where (y1, . . . , yn) =
f(x1, . . . , xn), at the end of the protocol.

7 Note that when t = n, there is nothing to prove.
8 We note that in the computational setting, it is also possible to transform, in a
black-box way, a protocol which is secure against semihonest adversaries into another
protocol which is secure against static malicious adversaries [35].
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– For all adaptive semihonest PPT t-threshold adversaries A, there exists a
PPT simulator S such that for all x1, . . . , xn ∈ Dn{

REALx1,...,xn

Π,A

}
≡
{
IDEALx1,...,xn

Π,A,S

}
This definition is for secure computation with perfect information-theoretic se-
curity and a nonadaptive adversary. By [15], in the semihonest setting with
information-theoretic security, any protocol which is nonadaptively secure is
also adaptively secure. Consequently, satisfying this definition suffices to achieve
adaptive security.

In the discussion below, we will sometimes relax security to statistical or com-
putational definitions. A protocol is statistically t-secure if the random variables
REALx1,...,xn

Π,A and IDEALx1,...,xn

Π,A,S are statistically close, and computationally
t-secure if they are computationally indistinguishable.

2.3 Oblivious Transfer

In this work, by OT, we refer to 1-out-of-2 oblivious transfer defined as follows.

Definition 2. We define 1-out-of-2 oblivious transfer fOT for a sender A = P1

with inputs x0, x1 ∈ {0, 1}m, a receiver B = P2 with input b ∈ {0, 1} and n− 2
parties P3, . . . , Pn with input ⊥ as

fOT((x0, x1), b,⊥, . . . ,⊥) = (⊥, xb,⊥, . . . ,⊥)

Note that while OT is typically defined as a 2-party functionality, the definition
above adapts it our setting and formulates OT as an n-party functionality where
only two parties supply non-⊥ inputs.

Definition 3. We define a t-secure OT protocol, ΠG,t
A→B, for an n-party network

G with parties A = P1, B = P2, P3, . . . , Pn as one which t-securely computes the
function fOT on the inputs of the parties with A as the sender and B as the
receiever.

We note that OT is symmetric, in the sense described below [63].

Lemma 1. [63] If there exists a t-secure OT protocol ΠG,t
A→B for an n-party

network G with n parties A = P1, B = P2, P3, . . . , Pn with A as the sender and
B as the receiever, then there exists a t-secure OT protocol Π̂G,t

B→A for the same
n parties with B as the sender and A as the receiever.

We represent parties as nodes of a graph G where an edge {A,B} indicates
that parties A and B may run a 1-secure OT protocol with A as the sender
and B as the receiver. By Lemma 1, the roles of the sender and receiver may be
reversed, so it makes sense to define G as an undirected graph.

We note the following result regarding the completeness of OT for achieving
arbitrary secure multiparty computation.

Lemma 2. [46,33,45] Consider a network G = (V,E) with |V | = n such that
G ' Kn. Then, for any function f : Dn → Rn, there exists a protocol Π which
(n − 1)-securely computes the function f , where party i receives the ith input
xi ∈ D and produces the ith output (f(x))i ∈ R.
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3 Warm-ups

Consider a network described by graph G = (V,E) where the vertex set V has
size n and represents n parties and each edge {Pi, Pj} ∈ E indicates that parties
Pi and Pj may run a 1-secure 2-party OT protocol with Pi as the sender and
Pj as the receiver. Let t < n be an upper bound on the number of corruptions
made by the adversary. For which pairs of parties A,B ∈ V does there exist a
t-secure n-party OT protocol with A as the sender and B as the receiver?

For t < n/2 this is possible for all pairs of parties, since we can perform
secure multiparty computation without any pre-existing OT channels if there is
an honest majority [62]. Therefore, we focus on the setting where t ≥ n/2. We
initiate the study by looking at some known results.

A′ B′

(a) GCK

A′ B′

C′

(b) GHIK

Fig. 1. Known impossibility results. Securely computing fOT between A′ and B′ is
impossible for t = 1 in GCK and is impossible for t = 2 in GHIK.

For n = 2, t = 1, we have from [17,49] that a 1-secure OT protocol (with
perfect security) between the vertices of the two-vertex graph G does not exist
unless the parties were already connected by an OT channel. This result is
illustrated in Figure 1(a).

For n = 3, t = 2, we have from [36] that we can obtain a 2-secure OT protocol
between a pair of vertices A,B only if those vertices are already connected by
an OT channel, even if there are OT channels from both A and B to the third
vertex C as depicted in Figure 1(b). More generally, [36] show that for any n ≥ 2
and t = n− 1, there exists a t-secure OT protocol with sender A and receiver B
only if those vertices are already connected by an OT channel, even if all other(
n
2

)
−1 pairs of vertices are connected by OT channels. This resolves the question

for n = 4, t = 3. Thus, we begin our discussion with the case n = 4, t = 2.
In Figure 2 we present the key cases for the setting n = 4, t = 2. We will

show below that these cases are sufficient to completely resolve the four-party
setting. In the following discussion, vertex A will always be the sender in the
OT protocol, and vertex B will always be the receiver.

3.1 Case 1 : Figure 2(a)

We show that for any network G such that G 'A,B G1 there does not exist a
2-secure OT protocol with A as the sender and B as the receiver.9 This is a

9 Recall that H 'A,B H ′ for two graphs H,H ′ if there exists an isomorphism between
H and H ′ preserving the labels of vertices A and B.
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A B

P3

P4

(a) G1

A B

P3

P4

(b) G2

A B

P3

P4

(c) G3

A B

P3

P4

(d) G4

Fig. 2. Sufficient cases for 4 parties and 2 corruptions.

consequence of the impossibility result of [17,49]. The outline of the argument is
as follows.

Consider components C1 = {A,P3} and C2 = {B,P4} of G, and let Π be a 2-
secure protocol computing fOT in G with A as the sender and B as the receiver.
Then we can use Π to construct a 2-secure protocol Π ′ for the 2-party network
in Figure 1(a) with A′ as the sender and B′ as the receiver. In protocol Π ′, party
A′ runs Π for both parties of component C1 of G, and B′ runs Π for both parties
of component C2. OT channel invocations can be handled locally, since all OT
channels in G are between parties in the same component. Since protocol Π is 2-
secure, in particular it is secure against corruptions of parties in C1 or the parties
in C2. Consequently Π ′ is a 1-secure OT protocol for a network G′ 'A′,B′ GCK

with A′ as the sender and B′ as the receiver. However, from [17,49], we know that
no such protocol exists with perfect security. Consequently there is no 2-secure
protocol Π for a network G 'A,B G1.

Note that this impossibility holds not only for G 'A,B G1 but for any (A,B)-
subgraph of G1. In particular, any four-vertex graph G = (V,E) with |E| ≤ 1
cannot have a 2-secure protocol computing fOT between vertices A and B except
in the trivial case when there is already an edge {A,B} ∈ E. This technique of
reducing to the known impossiblity results of [17,49,36] to obtain lower bounds
is described formally in Section 4.

3.2 Case 2 : Figure 2(b)

In this example we obtain a positive result, showing that there exists a 2-secure
OT protocol with A as the sender and B as the receiver. Let the degree of party
P denote the degree of the corresponding vertex in the OT network. Since B
has degree 2 in G2, we have that either B or at least one of its OT neighbors
must be honest, and so one of the two OT channels must contain an honest
party. This suggests the idea of using secret-sharing to ensure security against 2
corruptions.

Consider the following OT protocol where sender A has inputs x0, x1 ∈
{0, 1}m and receiver B has input b ∈ {0, 1}. A computes 2-out-of-2 shares (x10, x

2
0)

and (x11, x
2
1) of its inputs x0, x1, respectively. A then sends shares x10 and x11 to

party P3 and x20 and x21 to party P4. Parties P3 and B invoke their secure OT
channel with inputs (x10, x

1
1) and b, and parties P4 and B invoke their secure
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OT channel with inputs (x20, x
2
1) and b respectively. B uses the obtained shares

x1b , x
2
b to reconstruct xb.

We informally argue the 2-security of this protocol assuming that exactly one
of A and B is corrupt.10 Consider the case where A is corrupt and B is honest.
The input of B is only used over secure OT channels, so by the 1-security of the
OT channels with P3 and P4, the corrupt parties can learn nothing about B’s
input bit b. Now consider the case where B is corrupt and A is honest. Either P3

or P4 must be honest. If P3 is honest then the security of OT channel {P3, B}
implies that B learns nothing about share x11−b, so the security of the secret
sharing scheme implies that the corrupt parties do not use x1−b. By symmetry,
the same argument applies if P4 is honest. This completes the argument.

Note that by Lemma 1, we can also obtain a 2-secure OT protocol from A to
B whenever A has degree 2 in OT network. Furthermore, we can extend this idea
to construct a t-secure OT protocol whenever either the sender or the receiver
has degree at least t. We call this protocol the t-claw protocol and describe it in
detail in Section 5.1.

3.3 Case 3 : Figure 2(c)

Somewhat surprisingly, we can also show a positive result for graphs G 'A,B
G3 even though the OT network has no edges involving either the sender A
or the receiver B. The protocol is as follows. Since parties P3 and P4 have
an OT channel between them, by Lemma 2, they can perform 1-secure MPC
between them. They P3 and P4 use an MPC to compute 2-out-of-2 shares of OT
correlations with uniformly random inputs and send corresponding shares to A
and B who can then reconstruct the correlations. More concretely, the MPC
protocol computes 2-out-of-2 shares (r10, r

2
0), (r11, r

2
1) of two randomly sampled

m-bit strings r0, r1, 2-out-of-2 shares (c1, c2) of a random bit c ∈ {0, 1}, and
independent 2-out-of-2 shares (s1, s2) of the string rc. Party P3 receives the first
share of each secret, and party P4 receives the second share. Party P3 then sends
shares r10, r

1
1 to A and s1, c1 to B, while P4 sends shares r20, r

2
1 to A and s2, c2

to B. A can then reconstruct r0 and r1, and B can reconstruct c and rc. Parties
A and B have now established a random OT correlation, which they can use to
perform OT with their original inputs using OT correction [3].11

We now informally argue the 2-security of this protocol. If A and B are both
honest, then the corrupt parties receive no information about their inputs, while
if A and B are both corrupt then there is nothing to prove. Consequently we
can assume that exactly one of A and B is corrupt and that either P3 or P4 is

10 An additional step is needed to address the case in which A and B are both honest.
Then P3 and P4 can both be corrupt and learn x0 and x1, the inputs of A. This can
be handled with the technique of OT correction, using a one-time pad and the secure
point-to-point channel between A and B. Equivalently, we could run the protocol
on random inputs, and then use method of [3] to obtain 1-out-of-2 OT from random
OT. If A and B are both corrupt then there is nothing to prove.

11 This OT correction step can be performed as follows. Party B sends b′ = b⊕ c to A.
A responds with y0 = x0⊕rb′ and y1 = x1⊕r1−b′ . Finally, B computes yb⊕rc = xb.
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honest. If A is corrupt and P3 or P4 is honest, then the adversary learns nothing
about c and rc, since it only sees one of the two shares of each. The OT correc-
tion phase uses these strings as one-time pads for inputs which are unknown to
the adversary, and consequently are information-theoretically hidden from the
adversary. Consequently A learns nothing about B. The case where B is corrupt
and P3 or P4 is honest follows from the same argument.

This construction can be extended to obtain a t-secure OT protocol whenever
the OT graph contains a t-clique consisting of t parties which are not the OT
sender or receiver. We call this protocol the t-clique protocol and describe it in
detail in Section 5.2.

3.4 Case 4 : Figure 2(d)

We also obtain a positive result for graphs G 'A,B G4. We introduce here a
technique we call cascading. The idea is as follows. Using the protocol described
in Section 3.2 for network G2 of Figure 2(b), we have 2-secure OT protocol with
P3 as the sender and P4 as the receiver. This effectively gives us an OT channel
between P3 and P4. Applying the protocol from Section 3.3 on augmented net-
work, we now have a 2-secure OT protocol with A as the sender and B as the
receiver. We describe this pictorially in Figure 3.

The 2-security of the protocol follows from the 2-security of the underlying
protocols of Sections 3.2 and 3.3. The technique of cascading for combining t-
secure protocols is described in detail in Section 5.3.

A B

P3

P4

(a)

A B

P3

P4

(b)

A B

P3

P4

(c)

Fig. 3. Illustrating the cascading protocol for Case 4 : Figure 2(d); (a) → (b) → (c)

3.5 Cases 1–4 are exhaustive

Note that a t-secure OT protocol with sender A and receiver B in an OT network
G trivially yields a t-secure protocol for any network G′ such that G ⊆A,B G′.
From cases 1 and 4, we can securely compute fOT in a network G containing
at most a single edge if and only if the edge is {A,B} or {P3, P4}. From cases
1, 2, and 3, we can compute fOT in a network G containing two or more edges
including neither of {A,B} or {P3, P4} if and only if there is some vertex with
degree at least 2 in the OT graph. This completes the characterization of 4-party
networks with 2 corruptions.
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4 Lower Bound

We now describe a family of impossibility results by a generic reduction to the
impossiblity result in [36], which we restate in our language below.

Lemma 3. [36] Consider any three party network G with G 'A′,B′ GHIK, the
graph in Figure 1(b). Then any 2-secure OT protocol with A′ as the sender and
B′ as the receiver can be used (as a black box) to obtain a 1-secure OT protocol
for a network G′ with G′ 'A′,B′ GKus, the graph in Figure 1(a), with A′ as the
sender and B′ as the receiver.

The theorem below describes a family of impossibility results over a corre-
sponding family of networks. We note that this result was observed in [36]; we
restate it our language and provide a formal proof in Appendix B.

Theorem 1. Let n ≥ 2 and n/2 ≤ t < n, and let G be an n party network
such that G ⊆ Λ2t−n

n−t , with P1 ∈ VA and P2 ∈ VB. Any t-secure OT protocol for
G with P1 as the sender and P2 as the receiver can be used (as a black box) to
obtain a 1-secure OT protocol for a network G′ with G′ 'A,B GKus with A′ as
the sender and B′ as the receiver.

5 Building Blocks

In this section, we describe a few key protocols and techniques which we use in
the subsequent sections to prove our main theorem.

A B

P3

P4

.
.
.
.
.

Pt+1

Pt+2

(a) Gt
claw

A B

P3

.
.
.

.
.
.

P4 Pt+1

Pt+2

(b) Gt
clique

A B

P3

P4

(c) G2
2-path

Fig. 4. Building block networks – (a) t-claw graph; (b) t-clique graph; (c) 2-path graph

5.1 The t-claw Protocol

The first protocol we describe is the t-claw protocol, where the graph G describ-
ing the network is such that G 'A,B Gtclaw. The protocol is described in Protocol
1. The protocol is a straightforward generalization of the one described in Section
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3.2. The idea is for A to compute t-out-of-t shares of its inputs and distribute
them among the t parties connected to B. These t parties then perform OT with
B so that B receives the shares to reconstruct his output.

Protocol 1: t-claw Protocol

Preliminaries: Let A,B, P3, . . . , Pt+2 be the t + 2 parties in a network G 'A,B

Gt
claw. A has inputs x0, x1 ∈ {0, 1}m and B has input b ∈ {0, 1}.

Protocol:

1. B chooses a random bit c ∈ {0, 1} and sends b′ = b⊕ c to A.
2. A chooses two random one-time pads r0, r1 ∈ {0, 1}m and sends y0 = x0⊕ rb′

and y1 = x1 ⊕ r1−b′ to B.
3. A then computes t-out-of-t shares (r10, . . . , r

t
0) and (r11, . . . , r

t
1) of r0, r1, re-

spectively.
4. For each i ≥ 3, A sends shares ri0 and ri1 to party Pi.
5. For each i ≥ 3, parties Pi and B execute the OT protocol ΠG,1

Pi→B with inputs

(ri0, r
i
1) and c respectively.

6. B uses the obtained shares r1c , . . . , r
t
c to reconstruct rc.

7. B finally computes yb ⊕ rc = xb.

Lemma 4. Protocol 1 is an efficient t-secure OT protocol for a network G 'A,B
Gtclaw with A as the sender and B as the receiver.

Proof Intuition. The t-security of the procotol can be seen as follows. Steps 1, 2
and 7 perform OT correction, that is, they perform a random OT to 1-out-of-2
OT transformation. This transformation protects against the case that the par-
ties P3, . . . , Pt+2 (that is, all but A and B) are corrupt. Suppose A were corrupt
and B were honest. Clearly, A colluding with any of the parties P3, . . . , Pt+2 pro-
vides A with no additional information since all they possess are shares sent by
A. Next, if A were honest and B corrupt, at least one of the parties P3, . . . , Pt+2

must be honest. B has no information about those shares and hence does not
learn anything. Finally, if both A and B were corrupt, there is nothing to prove.

The full proof is deferred to Appendix C.

5.2 The t-clique Protocol

The next protocol we describe is the t-clique protocol, where the graph G de-
scribing the network is such that G 'A,B Gtclique. The protocol is described in
Protocol 2. The protocol is a straightforward generalization of the one described
in Section 3.3. The idea is for the parties P3, . . . , Pt+2 to compute t-out-of-t
shares of OT correlations and send them to A and B respectively. This is done
via multiparty computation since the parties have a complete network of OT
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channels (Lemma 2). A and B then perform OT correction using their secure
channel.

Protocol 2: t-clique Protocol

Preliminaries: Let A,B, P3, . . . , Pt+2 be the t + 2 parties in a network G 'A,B

Gt
clique. A has inputs x0, x1 ∈ {0, 1}m and B has input b ∈ {0, 1}.

Protocol:

1. Parties P3, . . . , Pt+2 use their pairwise OT channels to run t-secure MPC for
the function f using the protocol from Lemma 2 for the function f described
ahead. The function f is to securely compute t-out-of-t shares (r10, . . . , r

t
0),

(r11, . . . , r
t
1) of two randomly sampled one-time pad keys r0, r1, (c1, . . . , ct) of

a random bit c ∈ {0, 1}, and independent shares (s1, . . . , st) of key rc, so that
party i+ 2 receives only shares ri0, r

i
1, s

i, ci for each i.
2. Each party Pi+2 for i ≥ 1 sends shares ri0, r

i
1 to A and si, ci to B.

3. A uses shares (r10, . . . r
t
0) and (r11, . . . , r

t
1) to reconstruct r0 and r1.

4. B uses shares (c1, . . . , ct) and (s1, . . . , st) to reconstruct c and rc and sends
b′ = b⊕ c to A.

5. A computes y0 = x0 ⊕ rb′ and y1 = x1 ⊕ r1−b′ and sends both to B.
6. B computes yb ⊕ rc = xb.

Lemma 5. Protocol 2 is an efficient t-secure OT protocol for a network G 'A,B
Gtclique with A as the sender and B as the receiver.

Proof Intuition. The t-security of the procotol can be seen as follows. Steps
4, 5 and 6 perform OT correction, that is, they perform a random OT to 1-out-
of-2 OT transformation. This transformation protects against the case that the
parties P3, . . . , Pt+2 (that is, all but A and B) are corrupt. If one of A and B were
corrupt, there exists at least one honest party among the parties P3, . . . , Pt+2.
Hence, even by colluding, A or B would have no information about those shares
and would not learn anything. Finally, if both A and B were corrupt, there is
nothing to prove.

The full proof is deferred to Appendix C.

5.3 Cascading

The following building block is a generalization of the technique described in
Section 3.4. The technique describes a general method of combining protocols
iteratively. In our context, this can be thought of a tool for transforming a
network described by a graph G to one described by a graph G′, where G ⊆V G′

and G and G′ are both graphs on the same vertex set V . In other words, it
describes protocols as adding new edges indicating the establishment of OT
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correlations between new pairs of parties in the network. With this abstraction,
it is easy to view the technique of cascading as one which combines protocols
iteratively to transform the underlying network by adding new edges. This is
described formally below.

Definition 4. Let G = (V,E) and G′ = (V,E′) be two graphs on the same set
of vertices, V , with G ⊆V G′. We say that a protocol Π t-transforms a network
G into the network G′ if for each {Pi, Pj} ∈ E′ \E, Π is a t-secure OT protocol
for a network G with Pi as the sender and Pj as the receiver.12

Lemma 6. If Π1 is a protocol that runs in time T1 and t-transforms network G1

into G2, and Π2 is a protocol that runs in time T2 and t-transforms network G2

into G3, then there exists a protocol Π that runs in time T1T2 and t-transforms
G1 into G3.

Proof. The protocol Π simply runs Π2, running protocol Π1 to obtain corre-
lations whenever Π2 invokes OT on an edge of G2 \ G1. Let S1 and S2 be the
simulators associated with Π1 and Π2 respectively. The simulator for Π simply
runs S2, invoking S1 for OT calls made on edges in G2 \G1. ut

Using OT extension [2,43], we can also obtain a computationally secure ver-
sion of cascading with improved efficiency.

Lemma 7. Let λ be a computational security parameter. Assuming one-way
functions or correlation-robust hash functions, if Π1 is a protocol that runs in
time T1 and t-transforms network G1 into G2, and Π2 is a protocol that runs in
time T2 and t-transforms network G2 into G3, then there exists a computationally
secure protocol Π that runs in time λ ·T1 +T2 ·poly(λ) and t-transforms G1 into
G3.

Proof. First, run protocol Π1 λ times on random inputs to obtain λ independent
OT correlations for each edge of G2 \ G1. Then run Protocol Π2, using OT
extension [2,43] to obtain OT correlations for OT calls made on edges in G2\G1.

ut

5.4 The 2-path graph

The protocol described in this section is a commonly used subroutine in several of
the protocols which follow. It is a particular combination of the tools encountered
in Sections 5.1, 5.2 and 5.3). The subroutine, which we call 2-path, is the same
as the one described in Section 3.4. It is used to obtain OT correlations between
parties who have a common neighbor in a four-party network with at most two
corruptions (see Figure 4(c)).

Lemma 8. Protocol 3 is an efficient 2-secure OT protocol for a network G 'A,B
G2

2-path with A as the sender and B as the receiver.
12 Note that a single protocol Π may set up independent OT correlations for several

pairs of parties {Pi, Pj} ∈ E′ \ E.
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Proof. This follows immediately from Lemma 6 and the 2-security of Protocols
1 and 2 for t = 2 (Lemmata 4 and 5). ut

Protocol 3: 2-path

Preliminaries: Let A,B,C,D be the parties, and let there exist OT channels
(A,C) and (B,C). A has input (x0, x1), and B has input b ∈ {0, 1}.

Protocol:

1. Invoke Protocol 1 (2-claw) on parties (D,C,A,B) to obtain OT correlations
on edge (D,C).

2. By Lemma 6, we have an OT channel between D and C.
3. Invoke Protocol 2 (2-clique) on parties (A,B,C,D).

5.5 Combiners

The notion of OT combiners is one which aims at combining several candidate
protocols for establishing OT correlations between two parties with the property
that a majority of them remain secure in the presence of any adversary A from a
class of adversaries A into a single protocol which remains secure in the presence
of any adversary from the same class A. The following lemma is due to [56,37],
relying on prior work by [38,64] based on a construction by [22].

Lemma 9. [56,37] Let A be an adversary class. Suppose there exist m protocols
Π1, . . . ,Πm for fOT (A,B, P1, . . . , Pn) such that for any adversary A ∈ A a ma-
jority of the protocols are secure. Then, there exists a protocol Π∗(Π1, . . . ,Πm)
for fOT (A,B, P1, . . . , Pn) which is secure against all adversaries A ∈ A. More-
over, if each protocol Πi is efficient and perfectly secure, then so is Π∗.

6 The case t = n/2

We now consider the specific case of t = n/2, that is, at most half the parties
are corrupt. We note that this is the smallest value of t for which the question is
non-trivial. From the lower bounds proven in Theorem 1, we already have that
for all n-party networks G containing A and B such that G ⊆A,B Λ0

n/2, there

exists no n/2-secure OT protocol with A as the sender and B as the receiver.
Quite surprisingly, we show ahead, in Theorem 2, that those networks are the
only ones where there exists no such protocol. In fact, we show an explicit n/2-
secure OT protocol with A as the sender and B as the receiver whenever the
network G is (n/2, A,B)-unsplittable.
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Theorem 2. Consider an n-party network G, which contains A and B as two
of the parties. Protocol 5 is an n/2-secure OT protocol with A as the sender and
B as the receiver if and only if G is (n/2, A,B)-unsplittable.

We analyze the efficiency of the protocol in Theorem 6 in Appendix D. The
protocol as stated runs in quasi-polynomial time. We can also obtain a com-
putationally secure protocol which runs in polynomial time. The protocol we
describe proceeds in two stages. In the first stage, the protocol transforms every
connected component of the network into a clique. This transformation is very
specific to the case of t = n/2, in particular, that each connected component
can actually function as a clique is true only in this case. This transformation
is carried out by means of repeatedly calling a protocol we call “Completing
Triangles” which obtains OT correlations between parties who have a common
neighbour. We have already seen a special case of this protocol in the analysis
for n = 4 and t = 2 in Section 5.4. In fact, the protocol which achieves the same
goal in the case of general n ≥ 4 and t = n/2 uses the building block Protocol 3
along with the building block of OT combiners described in Section 5.5. Protocol
4 describes the protocol in order to achieve this.

Protocol 4: Completing Triangles

Preliminaries: Let A,B,C, P4, . . . , Pn be the n parties, and let there exist OT
channels (A,C) and (B,C). A has input (x0, x1), and B has input b ∈ {0, 1}.

Protocol:

1. Run a combined protocol Π∗(Π4, . . . , Πn) on the n− 3 protocols Π4, . . . , Πn,
where
– For each i ≥ 4, Πi denotes an invocation of Protocol 3 (2-path) with the

four parties A,B,C, Pi with A as the sender and B as the receiver.

Lemma 10. Let G be an n-vertex OT network with edges {A,C} and {B,C}.
Protocol 4 is an n/2-secure OT protocol for the network G with A as the sender
and B as the receiver.

Proof. We consider cases depending on the number of corrupted parties in the
set T = {A,B,C}. If T contains at most one corrupted party, then each tuple
(A,B,C, Pi) for i ≥ 4 contains at most 2 corrupted parties, so each protocol
Πi in step 1 is secure. If T contains two corrupted parties, then there are at
most t − 2 = (n − 4)/2 corrupted parties among P4, . . . , Pn, so a majority of
these parties are honest. Consequently a majority of the protocols Πi which are
combined in step 1 are secure. Thus, in either case, by Lemma 9 the protocol is
secure. Finally, if all three parties of T are corrupted, then all uncorrupted parties
receive no input, so the simulator S can perfectly simulate the uncorrupted
parties by running the honest protocol. Therefore Protocol 4 is n/2-secure. ut
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Proof Intuition (Theorem 2): It is easy to see that by executing Protocol 4
repeatedly, one can obtain OT correlations between any pair of parties in the
same connected component. In other words, for t = n/2, we can assume that we
are given a network which consists of disjoint cliques (Lemma 6). This is done
in step 1 of Protcol 5. Hence, if A and B were in the same connected component
in G, this process would end up with correlations between A and B and we can
terminate the protocol (step 2).

Assume this is not the case. A natural next step to try is to run the clique
protocol described in Section 5.2 with each of the cliques and parties A and B
with the intent of setting up OT correlations between A and B. The troubling
aspect, however, is that we are unable to fix the parameter t in any of the cliques.
Indeed, in many of these invocations, the number of corrupted parties may be
more than what Protocol 2 can handle in order to guarantee security. However,
for an invocation to be secure, we only require that the clique contains at least
one honest party. This is because we can assume without loss of generality that
at least one of A or B is honest since otherwise we have nothing to prove. But
now, this gives us that a majority of the cliques actually contain at least one
honest party. Hence, if we invoke Protocol 2 for each of the parties on their
respective cliques, a majority of them would be secure and now we can combine
these candidate invocations to obtain a secure protocol following Lemma 9. This
is performed in step 5 of the Protocol 5. Finally, we note that steps 3, 4 and
6 perform OT correction, that is, they perform a random OT to 1-out-of-2 OT
transformation. This describes n/2-security of Protocol 5.

Proof (Theorem 2). The “only if” part of theorem has been proved by virtue of
the lower bound proven in Theorem 1 with t = n/2. We now prove the “if” part.
We note that in the case where A and B are in the same connected component
in the network G, by the n/2-security of Protocol 4 and Lemma 6, we note that
Protocol 5 is an n/2-secure OT protocol with A as the sender and B as the
receiver, thus proving the theorem.

We now proceed to the case where A and B are not in the same connected
component in G. We must show that the protocol is secure against t-threshold
adversaries as long as the vertices cannot be partitioned into two sets VA, VB
each of size t = n/2 with A ∈ VA, B ∈ VB such that there are no edges between
VA and VB . Let A be a t-threshold adversary which corrupts parties T , |T | ≤ t.
We will construct a simulator S which plays the role of the uncorrupted parties.

If {A,B} ⊂ T then the uncorrupted parties receive no input, so the sim-
ulator can perfectly simulate the uncorrupted parties. If {A,B} ∩ T = ∅ then
S chooses arbitrary inputs x0, x1, b and runs the protocol. Since the only steps
which depend on the input at all are on point-to-point channels between A and
B, the view of the adversary in the real and ideal worlds is identical.

Otherwise, we have that the corrupted parties T include exactly one of A,B.
If A ∈ T but B /∈ T , then S chooses an arbitrary bit b and runs the protocol,
invoking the OT simulator for each invocation of Protocol 4. It follows that
as long as the combined protocol Π∗ in step 5 is secure against A, Protocol
5 is secure against A. It remains to show that a majority of the n protocols
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Protocol 5: n/2 corruptions

Preliminaries: Let P1 = A,P2 = B,P3, . . . , Pn be the n parties in a network
G = (V,E). A has input (x0, x1), and B has input b ∈ {0, 1}.

Protocol:

1. While there exist parties Pi, Pj , Pk ∈ V such that {Pi, Pj} ∈ E, {Pj , Pk} ∈ E,
but {Pi, Pk} /∈ E:
(a) Let S be the set of triples of distinct vertices (X,Y, Z) ∈ V 3 with {X,Y } ∈

E, {Y,Z} ∈ E, and {X,Z} /∈ E.
(b) For each triple (X,Y, Z) ∈ S, invoke Protocol 4 with independent random

inputs (ri,k0 , ri,k1 ) and bi,k, to obtain OT correlations along edge {X,Z}.
(c) Invoking cascading (Lemma 6), we can add {X,Z} to the edge set E for

all triples (X,Y, Z) ∈ S.
The OT network G now consists of disjoint cliques C1, . . . , C`.

2. If A and B are in the same clique, then halt.
3. B samples a random bit c and sends b′ = b⊕ c to A.
4. A chooses random one-time pads r0, r1 and sends y0 = x0 ⊕ rb′ and y1 =

x1 ⊕ r1−b′ to B.
5. Let C1 be the clique containing A and C2 be the clique containing B. For

each party Pi, i ≥ 3, let C(i) denote the clique containing party i, and let
Pj1 , . . . , Pj|C(i)| denote the parties in clique C(i).
Run a combined protocol Π∗(Π1, . . . , Πn) on the n protocols Π1, . . . , Πn,
where
– For each i ∈ [n], Πi denotes an invocation of Protocol 2 on the |C(i)|+ 2

parties A,B, Pj1 , . . . , Pj|C(i)| with inputs (r0, r1) and c.a

6. Finally, B computes xb = yb ⊕ rc.

a In the case C(i) = C1, A is both the OT sender and a member of the clique. A
similar condition holds for B in the case C(i) = C2.

Π1, . . . ,Πn are secure against A. Since party B is honest, by Lemma 5, protocol
Πi is secure against A as long as at least one of the parties in clique C(i) is
honest. In particular, if party Pi is honest then protocol Πi is secure against
A. At most t of the parties P1, . . . , Pn are corrupt, so the only protocols which
may be insecure against A are the t protocols Πi corresponding to the corrupted
parties Pi. Assume that all all t of these protocols are insecure against A. We
then have the corrupted parties lie in completely corrupted cliques who sizes sum
up to n/2. This then gives a set VA = T of n/2 parties containing A but not B
such that there are no edges from VA to the remaining vertices VB = T . However,
we know that G possesses no such paritition. Hence, at most t−1 < n/2 of the n
protocols are insecure against A and hence by Lemma 9, the combined protocol
Π∗ in step 5 is secure and hence Protocol 5 is secure against A.

The remaining case that B ∈ T but A /∈ T is similar. Here, the simulator S
is given the output value xb. S runs the protocol with (xb, xb) as the input to
A, again invoking the OT simulator for each invocation of Protocol 4. As above,
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as long as the combined protocol Π∗ in step 5 is secure against A, Protocol 5 is
secure against A. By the same argument, the only protocols Πi which may be
insecure against A are the t protocols corresponding to the corrupted parties Pi.
If all t of these protocols are insecure against A, as above, we have a set VA = T
of n/2 parties containing A but not B such that there are no edges from VA
to the remaining vertices VB = T . However, we know that G possesses no such
paritition. Hence, at most t− 1 < n/2 of the n protocols are insecure against A
and hence by Lemma 9, the combined protocol Π∗ in step 5 is secure and hence
Protocol 5 is secure against A. ut

7 The case t = n− 2

On account of the lower bound proven in [36], we note that t = n − 2 is the
largest value of t which the question is non-trivial. In this section we present an
improved computationally efficient protocol for the special case t = n− 2 for all
networks G with A as the sender and B as the receiver whenever the network G
satisfies G is (2, A,B)-unsplittable.

Theorem 3. Consider an n-party network G, which contains A and B as two
of the parties. Let t = n− 2. Protocol 6 is an efficient t-secure OT protocol with
A as the sender and B as the receiver if and only if G is (2, A,B)-unsplittable.

Protocol 6: n− 2 corruptions

Preliminaries: Let P1 = A,P2 = B,P3, . . . , Pn be the n parties, and let graph
G = (V,E) be the OT network among the parties. A has input (x0, x1), and B
has input b ∈ {0, 1}.

Protocol:

1. For all pairs of parties Pi, Pj ∈ V with i, j ≥ 3 such that {Pi, Pj} /∈ E:
(a) Invoke Protocol 5 (or any 2-secure protocol for n′ = 4) on the induced

OT subgraph Gi,j := G∩ {Pi, Pj , A,B} with independent random inputs
(ri,j0 , ri,j1 ) and bi,j , to obtain OT correlations along edge {Pi, Pj}.

(b) By virtue of cascading (Lemma 6), we can add edge {Pi, Pj} to the graph
G.a

The OT network G now contains a (n− 2)-clique among vertices P3, . . . , Pn.
2. Invoke Protocol 2 (t-clique) with input (x0, x1) and b.

a We will only have OT security over this edge when at least two of the parties
Pi, Pj , A,B are honest, but we obtain the functionality of the edge regardless.
We address security of the overall protocol in the proof.

The protocol is built upon the following structural aspect of the network
G under consideration. We are only concerned with networks G that are
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(2, A,B)-unsplittable. This means that for any two sets vertices VA and VB
such that |VA| = |VB | = 2, A ∈ VA and B ∈ VB , there exists an edge crossing
the sets VA and VB . In particular, by definition, this implies that for any two
parties Pi, Pj where i, j ≥ 3, the sub-network Gi,j induced by the parties A,
B, Pi and Pj is (2, A,B)-unsplittable. Flipping the argument on its head,
this also means that for any two parties Pi, Pj , Gi,j is (2, Pi, Pj)-unsplittable.
Hence, we could try to obtain OT correlations between every pair of vertices
Pi, Pj by running Protocol 5 on every Gi,j for n = 4 parties. Notice that
if these invocations were secure, then we would obtain an (n − 2)-clique in
the network after which we can execute Protocol 2 in order to obtain OT
correlations between A and B. This describes Protocol 6. The only concern
however is that each of the executions of Protocol 5 would be secure only if each
of them contained at most two corrupt parties. While this need not be true in
general, and hence we cannot levergae the security of the executions of Protocol
5, we will argue that Protocol 6 still remains secure against t = n−2 corruptions.

Proof Intuition (Theorem 3): We take off from the description of Protocol 6
above. It is easy to see that in order to analyze the (n− 2)-security of Protocol
6, we need to analyze whether the invocations of Protocol 5 on sub-networks Gi,j
are secure. In particular, we know if at most two of the four parties in Gi,j are
honest, then that particular invocation of Protocol 5 is secure and yields secure
OT correlations between the parties Pi and Pj . And then, appealing to Lemma
6, we have that the network G now possesses the edge {Pi, Pj}.

Note however that each Gi,j has at least one honest party since at most one
of A or B is corrupt (otherwise, there is nothing to prove). We now consider a
sub-network Gi,j in which three of the parties are corrupt. Since at least one of
A or B is honest, this would mean that both Pi and Pj are corrupt. Thus, there
is nothing to prove regarding the security of the invocation of Protocol 5 on Gi,j
since we are looking to establish OT correlations between Pi and Pj and they
are both corrupt. Combining these claims, we have that each of the invocations
of Protocol 5 is secure and yields secure OT correlations between the pairs of
parties Pi, Pj for all i, j ≥ 3. By virtue of Lemma 6, we obtain an (n− 2)-clique
in the network and the (n− 2)-security of Protocol 2 with t = n− 2 proves the
(n− 2)-security of Protocol 6.

The full proof of the theorem is deferred to Appendix E.

8 The General Case: t ≥ n/2

In this section, we investigate the question for general t ≥ n/2. Note that from
the protocols in Sections 6 and 7 we already have tight answers for the cases
t = n/2 and t = n−2. We address the question from both ends of the spectrum,
namely for t larger than n/2 and t smaller than n− 2. These analyses culminate
in the descriptions of two distinct protocols using the protocols from Sections
6 and 7 as their respective base cases. In particular, we note that the protocols
we describe are efficient closer to their respective ends of the spectrum. That
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is, the protocol described in Section 8.1 is quasi-polynomially efficient13 when
t = n/2 +O(1), while the protocol described in Section 8.2 is efficient when t =
n−O(1). We describe these protocols ahead and observe that the combination of
these protocols yields one which is efficient under computational security when
either t = n/2 +O(1) or t = n−O(1). We note that the problem of recognizing
whether there exists a t-secure OT protocol is efficient in these cases, while the
recognition problem for general n, t is coNP-complete.

8.1 General Protocol (Quasi-polynomial for t = n/2 +O(1))

We now describe a t-secure OT protocol for all networks G with A as the sender
and B as the receiver whenever the network G is (n−t, A,B)-unsplittable. Notice
that on account of the lower bound described in Section 4, this result is tight.

Theorem 4. Consider an n-party network G which contains parties A and B.
Let t ≥ n/2. Protocol 7 is a t-secure OT protocol with A as the sender and B as
the receiver if and only if G is (n − t, A,B)-unsplittable. The protocol achieves
perfect security and runs in quasi-polynomial time for t = n/2+O(1). Assuming
one-way functions, we can also obtain a protocol which achieves computational
security and runs in polynomial time for t = n/2 +O(1).

The main idea behind the protocol is recursion, that is, to reduce the problem
of obtaining an OT protocol on an n-vertex graph with t > n/2 corrupted parties
to a number of instances of (n − 1)-vertex graphs, most of which have at most
t − 1 corrupted parties. An important point to note, which we prove ahead,
is that the (n − 1)-vertex sub-graphs, say G′, have structure similar to G, in
the sense that, G′ is (n′− t′, A,B)-unsplittable if G is (n− t, A,B)-unsplittable,
where n′ = n−1 and t′ = t−1. We can now try the natural strategy of recursing
on these smaller problem instances and invoking an OT combiner to obtain the
final protocol.

More precisely, the protocol constructs n − 2 instances of subgraphs on
n − 1 vertices each where each one is obtained by deleting exactly one of
the vertices other than A and B. It is these sub-graphs which preserve the
structure in G, as described above. The candidate n − 2 protocols, each run
on one of the subgraphs, are (t − 1)-secure OT protocols with A as the sender
and B as the receiver. The final protocol is to simply run the protocol which
combines all the candidate protocols. What remains to be proven is that a
majority of the subgraphs defined actually possesses at most t−1 corrupt parties.

Proof Intuition (Theorem 4): We may assume that at least one of A or B is
honest since otherwise there is nothing to prove. As described above, we wish
to argue that a majority of the sub-graphs defined actually possesses at most
t − 1 corrupt parties. Note that this claim combined with the claim that these
specially chosen sub-graphs preserve the structure of G (that is, for any of these

13 or polynomially efficient under computational security
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sub-graphs G′, G′ is (n− t, A,B)-unsplittable if G is (n− t, A,B)-unsplittable)
complete the proof.

However, this claim follows from the following trivial observation. Since
t > n/2, if exactly t parties are corrupt then a majority of the sub-graphs defi-
nitely contain at most t− 1 corrupt parties since A and B are not both corrupt.
If strictly fewer than t parties are corrupt then all of the sub-graphs contain
at most t − 1 corrupt parties. In either case, for a majority of sub-graphs, at
most t−1 of the parties are corrupt. Invoking Lemma 9 completes the argument.

Protocol 7: General Protocol I

Preliminaries: Let A,B, P3, . . . , Pn be the n parties in a network G and let
t ≥ n/2 be the maximum number of corruptions. A has input (x0, x1), and B has
input b ∈ {0, 1}.

Protocol:

1. If t = n/2, then invoke Protocol 5 and halt.
2. Otherwise, run a combined protocol Π∗(Π3, . . . , Πn), where

– For each i ≥ 3, Πi denotes the recursive invocation of this protocol on the
n − 1 parties excluding party Pi with the induced sub-network G \ {Pi}
and t′ = t− 1 corruptions.

We first present a structure lemma which is proven in Appendix E.

Lemma 11. Given graph G = (V,E) and a vertex i, let Gi be the induced graph
on the n − 1 vertices V \ {i}. If G is (n − t, A,B)-unsplittable, then Gi is also
(n− t, A,B)-unsplittable.

Using the lemma, we now prove Theorem 4.

Proof (Theorem 4:). The “only if” part of theorem has been proved by virtue of
the lower bound proven in Theorem 1. The efficiency claim follows immediately
from Theorem 6. We now prove the “if” direction by induction on 2t − n. The
base case of 2t− n = 0 follows from Theorem 2. Now assume for induction that
the statement holds for n′ = n− 1, t′ = t− 1 with t > n/2.

Let A be a t-threshold adversary which corrupts parties T , |T | ≤ t. If
{A,B} ⊂ T then the uncorrupted parties receive no input, so the simulator
can perfectly simulate the uncorrupted parties. Consequently it suffices to con-
sider the case {A,B} ∩ T ≤ 1. By Lemma 11, each sub-network G \ {Pi} is
(n′ − t′, A,B)-unsplittable. For each i ≥ 3, let Ti = T \ {Pi} denote the cor-
rupted parties in sub-network G \ {Pi}. If |T | < t then |Ti| ≤ |T | ≤ t′ for all i.
Otherwise, |T | = t. In this case, since {A,B}∩T ≤ 1, it follows that at least t−1
of the n − 2 parties P3, . . . , Pn are corrupted. Since t > n/2, this is a majority
of the parties P3, . . . , Pn. For each corrupted party Pi, |Ti| = t′.



26 Ranjit Kumaresan, Srinivasan Raghuraman, and Adam Sealfon

Hence, in each case, we have that a majority of the sets T3, . . . , Tn satisfy
|Ti| ≤ t′. Therefore by our inductive assumption, a majority of the protocols
Π3, . . . ,Πn in step 2 are secure against A. Consequently, by Lemma 9, we have
that the combined protocol Π∗ is secure against A. Hence, by induction, the
theorem holds for all n, t with t ≥ n/2. ut

We have the immediate consequence that in order to obtain a complete net-
work and perform secure multiparty computation, for every pair of parties A,B,
the condition described in Theorem 4 is necessary and sufficient.

Corollary 1. Let G be an n-party network. For t ≥ n/2, we can t-securely
generate OT correlations between all pairs of parties (thus, completing the OT
network) if and only if the G is (n− t)-unsplittable.

A proof of the corollary is given in Appendix E.

8.2 General Protocol (Efficient for t = n−O(1))

We now describe another t-secure OT protocol for all networks G with A as the
sender and B as the receiver whenever the network G is (n−t, A,B)-unsplittable.
This protocol uses, in spirit, a reduction in the opposite sense that than the one
described in Section 8.1. The protocol is efficient whenever t = n−O(1).

Protocol 8: General protocol II

Preliminaries: Let P1 = A,P2 = B,P3, . . . , Pn be the n parties in a network
G = (V,E). A has input (x0, x1), and B has input b ∈ {0, 1}. Let k = n− t.

Protocol:

1. Invoke Protocol 6 with t′ = n − 2 on the n′-node network G′ with inputs
(x0, x1) and b, where n′ =

(
n−2
k−1

)
+ 2, and

– Sk−1 is the set of subsets of {P3, . . . , Pn} of size k − 1.
– The n′ vertices of G′ correspond to A,B, and the

(
n−2
k−1

)
subsets of Sk−1.

– The edges of G′ are defined as follows. Two subsets X,Y ∈ Sk−1 will have
an edge if either X ∩ Y 6= ∅ or there exists a pair of parties Pi ∈ X and
Pj ∈ Y with {Pi, Pj} ∈ E.

– Invocation fo OT over an edge {X,Y } in G′ with inputs (z0, z1) and c is
performed as follows.
• If X ∩ Y 6= ∅, then choose some party Pi ∈ X ∩ Y . Pi ∈ X and hence

knows (z0, z1); similarly, Pi ∈ Y and knows c. Consequently Pi knows
zc, and sends it to the other members of set Y .

• If X ∩ Y = ∅, there is a pair of parties Pi ∈ X,Pj ∈ Y such that
{Pi, Pj} ∈ E. Pi knows (z0, z1) and Pj knows c, so they can invoke
OT over the channel (Pi, Pj) in G, and Pj can then send the value zc
to the other members of set Y .
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Theorem 5. Consider an n-party network G, which contains A and B as two
of the parties. Let t ≥ n/2. Protocol 8 is a t-secure OT protocol with A as the
sender and B as the receiver if and only if G is (n − t, A,B)-unsplittable. The
protocol is efficient for t = n−O(1).

The idea behind this protocol is the following. We blow up the network
in order to obtain a large number, N , of parties apart from A and B such
that at least one them is guaranteed to be honest. With this guarantee in
mind, the protocol description is straightforward. We may assume that at
least one of A and B is honest, as otherwise there is nothing to prove. Now,
the total number of parties is n′ = N + 2 and the number of honest parties
is at least 2 since one of A or B and one of the other parties is guaranteed
to be honest. This corresponds to the case that t′ = n′ − 2. We can now
apply the protocol from Section 7. What remains to be discussed is the
construction of these parties, a structural lemma that if the network G we
began with were (n− t, A,B)-unsplittable, then the newly constructed network
G′ is (2, A,B)-unsplittable, and why G′ is guaranteed to have at least two
honest parties, in particular, why one of the parties other than A and B is honest.

Proof Intuition (Theorem 5): We first describe the new network generated by
Protocol 8. The parties other than A and B in the newly constructed network
are constructed as subsets of the parties in G other than A and B. The sizes of
these subsets are n − t − 1, that is, in G′, the parties other than A and B are
all (n− t− 1)-size subsets of the remaining parties in G. It can be proved that
this new network G′ is (2, A,B)-unsplittable if G is (n − t, A,B)-unsplittable,
where the edges of G′ are as in described in Protocol 8 (Lemma 12). A party
X, which is formed as a (n − t − 1)-size subset will be considered honest if
all constituent parties Pi ∈ X are honest. Now, the reason for there being
one honest party among these (n − t − 1)-size subset parties is the following
trivial observation. Since one of A and B is honest and at most t parties are
corrupt, at least n − t parties are honest and in particular, at least n − t − 1
of the non-A,B parties must be honest. This means that one of the subsets
is completely honest. In particular, one of the parties other than A and
B are honest in G′ and hence G′ is guaranteed to have at least two honest
parties. Combining these facts and invoking Theorem 3 completes the argument.

We will use the following structural lemma about the network G′ constructed
in Protocol 8.

Lemma 12. If G is (n− t, A,B)-unsplittable, then G′ is a (2, A,B)-unsplittable
network on n′ =

(
n−2
n−t−1

)
+ 2 vertices, where G′ is the network produced in

Protocol 8.

The full proofs of Lemma 12 and Theorem 5 are deferred to Appendix E.
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Appendix A Introduction—continued

Remark on the generality of an OT infrastructure. Consider the following candi-
date for an infrastructure. Suppose there is a channel between a pair of parties
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that allows them to securely evaluate any function. It is not hard to see that
such a channel is equivalent to an OT channel. Since OT is complete for secure
computation, one can apply the results of [45,46] to use the OT channel to im-
plement a secure evaluation channel. The same argument extends trivially to
channels that implement any 2-party primitive that is complete for secure com-
putation [55,5]. In the other direction, one can use a secure evaluation channel
to trivially implement OT channels. It is easy to see that the above argument
also applies to the setting where a set of parties have a secure evaluation chan-
nel. Such a channel is equivalent to an OT graph where parties in the set have
pairwise OT channels with everyone in the set.

Remark on the assumption of full network of secure channels. Secure channels
between two parties can be implemented either via non-interactive key exchange
and hybrid encryption or via a physical assumption. We emphasize that the
one-time setup cost of emulating a secure channel (say via Diffie-Hellman key
exchange) is much lower than the one-time setup cost of emulating an OT chan-
nel (that allows unbounded OT calls) via an OT protocol (even with OT exten-
sion). Furthermore, our assumption on secure channels is exactly the same as
the assumptions in [46,33,45] who show that secure computation reduces to OT
under information-theoretic reductions.

Appendix B Proofs for Lower Bound

Theorem 1. Let n ≥ 2 and n/2 ≤ t < n, and let G be an n party network
such that G ⊆ Λ2t−n

n−t , with P1 ∈ VA and P2 ∈ VB. Any t-secure OT protocol for
G with P1 as the sender and P2 as the receiver can be used (as a black box) to
obtain a 1-secure OT protocol for a network G′ with G′ 'A,B GKus with A′ as
the sender and B′ as the receiver.

Proof. Let G be an n party network with G = (V,E) such that G ⊆ Λ2t−n
n−t .

Then, we may write VU = VA
⋃̇
VS
⋃̇
VB , where |VA| = |VB | = n − t and

|VS | = 2t− n, with P1 ∈ VA and P2 ∈ VB and E(VA, VB) = ∅, where E(VA, VB)
represents the set of edges with one endpoint in VA and the other in VB .

Let Π be a t-secure OT protocol for G with P1 as the sender and P2 as the
receiver. If t > n/2, then we can use Π to construct a 2-secure OT protocol
Π ′ for any three party network G′ with G′ 'A′,B′ GHIK with A′ as the sender
and B′ as the receiver below. Combining this with Lemma 3, the conclusion
follows. We describe the construction of Π ′ below. If t = n/2, then we can use
Π to construct a 1-secure OT protocol Π ′′ for any two party network G′′ with
G′′ 'A′′,B′′ GCK with A′′ as the sender and B′′ as the receiver. The construction
of Π ′′ is exactly the same as that of Π ′ and hence we omit its description here.

In protocol Π ′, party A′ simulates the parties of component VA, party C ′

simulates the parties of component VS , and party B′ simulates the parties of
component VB . Executions of 1-secure OT protocols between parties of the same
component are be handled locally and executions of 1-secure OT protocols be-
tween parties in different components is handled as follows:
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– If the parties are in components VA and VS , then executions of 1-secure OT
protocols between the parties are carried out using the OT edge {A′, C ′} in
the network G′.

– If the parties are in components VB and VS , then executions of 1-secure OT
protocols between the parties are carried out using the OT edge {B′, C ′} in
the network G′.

Since G ⊆ Λ2t−n
n−t , there are no executions of 1-secure OT protocols between

parties in components VA and VB in the protocol Π.
Correctness of Π ′ is obvious. We now prove 2-security of Π ′. Intuitively, since

Π is t-secure, in particular, it is secure against corruptions of parties VA ∪ VS
or the parties VB ∪ VS . Consequently protocol Π ′ is secure against corruptions
{A′, C ′} or {B′, C ′} and hence Π ′ is a 2-secure protocol.

Formally, we prove this as follows. Since Π is t-secure, there exists a simulator

S such that for every PPT t-threshold adversary A,
{
REAL

(x0,x1),b,⊥,...,⊥
Π,A

}
≡{

IDEAL
(x0,x1),b,⊥,...,⊥
Π,A,S

}
, where x0, x1 ∈ {0, 1}m and b ∈ {0, 1}. The simula-

tor S ′ for the protocol Π ′ behaves exactly the same as S while simulating the
parties of component VA as A′, those of of component VB as B′ and those of
of component VS as C ′. It is easy to see that for any 2-threshold adversary
A′, namely, one which corrupts {A′, C ′} or the one which corrupts {B′, C ′},{
REAL

(x0,x1),b,⊥
Π′,A′

}
≡
{
IDEAL

(x0,x1),b,⊥
Π′,A′,S′

}
since Π is secure against corrup-

tions of parties VA ∪ VS or the parties VB ∪ VS . ut

Appendix C Proofs for building blocks

In this section we provide the remaining proofs.

Lemma 4. Protocol 1 is an efficient t-secure OT protocol for a network G 'A,B
Gtclaw with A as the sender and B as the receiver.

Proof (Lemma 4). Let A be a t-threshold adversary which corrupts parties T ,
|T | ≤ t. We will construct a simulator S which plays the role of the uncorrupted
parties. If {A,B} ⊂ T then the uncorrupted parties receive no input, so S can
perfectly simulate the uncorrupted parties. If {A,B}∩T = ∅ then S chooses ar-
bitrary inputs x0, x1, b and runs the protocol, invoking the OT simulator for each
OT invocation with an uncorrupted party in step 5. Since corrupted parties only
learn secret shares of independently random values, the view of the adversary is
independent of the choice of x0, x1, b and is identical to the real world.

Otherwise, we have that the corrupted parties T include exactly one of A,B.
If A ∈ T but B /∈ T , then S chooses arbitrary input b and runs the protocol,
invoking the OT simulator for each OT invocation with an uncorrupted party
in step 5. Since the OT simulator does not reveal the input c, and since the
adversary only learns the direct sum of b with the random bit c, the view of the
adversary is identical regardless of the value of b and in particular is identical to
the real world.
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Finally we have the case B ∈ T,A /∈ T . Here the simulator S is given the
output value xb. S runs the protocol with (xb, xb) as the input to A, again invok-
ing the OT simulator for each OT invocation with an uncorrupted party in step
5. Since |T | ≤ t and B ∈ T , at most t − 1 of the t parties P3, . . . , Pt+2 are cor-
rupted. Consequently the adversary observes at most t− 1 shares of the random
one-time pads r0, r1, so by the security of t-out-of-t secret sharing, conditioned
on the remaining shares being hidden, the distribution of the observed shares is
independent of r0, r1. The adversary learns the shares of rc, but by the security of
the OT channels, the view of the adversary in step 3 and onward is independent
of the remaining shares of r1−c and consequently is independent of the choice of
r1−c. Consequently the view of the adversary in step 3 and onward is indepen-
dent of r1−c. In step 2, the adversary sees yb = xb ⊕ rc and y1−b = x1−b ⊕ r1−c,
so by the security of the one-time pad, the view of the adversary is independent
of x1−b. Consequently the overall view of the adversary is identical in the real
and ideal worlds. ut

Lemma 5. Protocol 2 is an efficient t-secure OT protocol for a network G 'A,B
Gtclique with A as the sender and B as the receiver.

Proof (Lemma 5). Let A be a t-threshold adversary which corrupts parties T ,
|T | ≤ t. We will construct a simulator S which plays the role of the uncorrupted
parties. As above, if {A,B} ⊂ T then the uncorrupted parties receive no input,
so S can perfectly simulate the uncorrupted parties. If {A,B} ∩ T = ∅ then
S chooses arbitrary inputs x0, x1, b and runs the protocol. Since the only steps
which depend at all on the inputs are on point-to-point channels between A and
B, the view of the adversary in the real and ideal worlds is identical.

Otherwise, we have that the corrupted parties T include exactly one of A,B.
If A ∈ T but B /∈ T , then S chooses arbitrary input b and runs the protocol,
invoking the MPC simulator for the protocol in step 1 (the existence of this
simulator follows from Lemma 2). Since at least one of the parties P3, . . . , Pt+2

is uncorrupted, the security of the MPC protocol implies that the view of the
adversary is independent of the uncorrupted parties’ shares si and ci, and so by
the security of the secret sharing scheme is independent of the value of the bit
c. The only message received by the adversary which depends on b is the bit
b′ = b⊕ c, so it follows that the view of the adversary is independent of the bit
b and therefore is identical in the real and ideal worlds.

Finally we have the case B ∈ T,A /∈ T . Here the simulator S is given the
output value xb. S runs the protocol with (xb, xb) as the input to A, again invok-
ing the MPC simulator for the protocol in step1. Since at least one of the parties
P3, . . . , Pt+2 is uncorrupted, the security of the MPC protocol implies that the
view of the adversary is independent of the uncorrupted parties’ shares ri0 and
ri1, so by the security of t-out-of-t secret sharing, conditioned on the remaining
shares being hidden, the distribution of the observed shares is independent of
r0, r1. The adversary learns the shares of rc, but by the security of the OT chan-
nels, the view of the adversary through step 4 is independent of the remaining
shares of r1−c and consequently is independent of the choice of r1−c. In step 5,
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the adversary sees yb = xb⊕ rc and y1−b = x1−b⊕ r1−c, so by the security of the
one-time pad, the view of the adversary is independent of x1−b. Consequently
the overall view of the adversary is identical in the real and ideal worlds. ut

Appendix D Efficiency analysis of Protocol 5

Theorem 6. Protocol 5 runs in quasi-polynomial time. Assuming one-way func-
tions, we can obtain a computationally secure protocol which runs in polynomial
time using computationally secure cascading (Lemma D).

Proof. Each iteration of step 1 decreases the length of a path between any pair
of vertices from ` to d`+ 1e/2. Consequently, after O(log n) iterations the graph
will consist of a collection of disjoint cliques, and the protocol will move on to
the next step. By Lemma 6 (Cascading), if each iteration can be performed in
time at most T assuming the augmented graph, then the full cascaded protocol
runs in time at most TO(logn). Since T = poly(n) and each other step of the
protocol is efficient, this implies that Protocol 5 runs in quasi-polynomial time.

Replacing the cascading of step 1 with the more efficient but computation-
ally secure cascading of Lemma , we have the cascaded protocol runs in time
O(T poly(λ) · log n). Since each other step of the protocol is efficient, this implies
that assuming one-way functions, we have a computationally-secure version of
Protocol 5 that runs in quasi-polynomial time. ut

Appendix E Proofs for Protocols

Theorem 3. Consider an n-party network G, which contains A and B as two
of the parties. Let t = n− 2. Protocol 6 is an efficient t-secure OT protocol with
A as the sender and B as the receiver if and only if G is (2, A,B)-unsplittable.

Proof (Theorem 3). The “only if” part of theorem has been proved by virtue of
the lower bound proven in Theorem 1 with t = n − 2. We now prove the “if”
part. Let A be a t-threshold adversary which corrupts parties T , |T | ≤ t = n−2.
If A and B are both corrupt then the uncorrupted parties receive no input, so
the simulator S can perfectly simulate the uncorrupted parties.

Otherwise we have that at least one of A or B is uncorrupted. We first show
how to simulate step 1. Since G is (2, A,B)-unsplittable, for each pair of parties
Pi, Pj considered in step 1, we have that Gi,j is (2, A,B)-unsplittable. Since
{Pi, Pj} /∈ E, this implies that some vertex among A,B, P3, and P4 has degree
at least 2 in Gi,j . In particular, we have Gi,j 6⊆P3,P4

Λ0
2, where Λ0

2 is labeled so
that P3 and P4 are in separate components. Consequently, by Theorem 2, we
securely obtain OT correlations between P3 and P4 whenever at most two of the
parties A,B, P3, P4 are corrupt.

We have that A and B are not both corrupt. Therefore, if P3 and P4 are not
both corrupt, then at most two of the parties A,B, P3, P4 are corrupt. Conse-
quently we securely obtain OT correlations between P3 and P4. On the other
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hand, P3 and P4 are both corrupted, then there is nothing to prove. More for-
mally, there is a simulator which can perfectly simulate the invocation of Protocol
5 in step 1a by executing the protocol of the honest parties, since the honest
parties receive no input. Consequently we securely obtain OT correlations be-
tween the corrupted parties P3 and P4. In both cases, by Lemma 6, we have
an OT simulator which can simulate subsequent invocations of the OT channel
between P3 and P4.

Therefore, by the end of step 1 we t-securely obtained an OT channel between
every pair of parties Pi, Pj for i, j ≥ 3. Then by Lemma 5, the invocation of
Protocol 2 in step 2 is a t-secure OT protocol with A as the sender and B as the
receiver, as desired. ut

Lemma 12. If G is (n− t, A,B)-unsplittable, then G′ is a (2, A,B)-unsplittable
network on n′ =

(
n−2
n−t−1

)
+ 2 vertices, where G′ is the network produced in

Protocol 8.

Proof (Lemma 12). We prove the contrapositive. Assume that G′ ⊆A,B Λn
′−2

2 .
Then there exist vertices X,Y ∈ Sk−1 such that there are no edges in G′ between
any of the parties in {A,X} and any of the parties in {B, Y }. In particular,
X ∩Y = ∅, since otherwise {X,Y } would be an edge of G′. This implies that we
have 2k = 2(n − t) parties {A,B} ∪X ∪ Y such that 0there are no edges in G
from the n− t parties {A}∪X to any of the n− t parties {B}∪Y . By definition,
this means that G ⊆A,B Λ2t−n

n−t , which is a contradiction. ut

Theorem 5. Consider an n-party network G, which contains A and B as two
of the parties. Let t ≥ n/2. Protocol 8 is a t-secure OT protocol with A as the
sender and B as the receiver if and only if G is (n − t, A,B)-unsplittable. The
protocol is efficient for t = n−O(1).

Proof (Theorem 5). As before, we only need to prove the “if” part. Let A be
a t-threshold adversary which corrupts parties T , |T | ≤ t. If A and B are both
corrupt, then the honest parties have no input, so the simulator S can perfectly
simulate the uncorrupted parties. If A and B are both honest, then S chooses
arbitrary inputs x0, x1, b and runs the protocol. Since the only steps which de-
pend at all on the inputs are on point-to-point channels between A and B, the
view of the adversary in the real and ideal worlds is identical.

Otherwise, we have that at most t − 1 of the parties P3, . . . , Pn are corrupt
and that either A or B is honest. In particular, for k = n− t, there are at least
k− 1 uncorrupted parties among P3, . . . , Pn. Consequently, Sk−1 contains some
set X consisting only of honest parties. We treat a party X in G′ as honest if all
constituent parties Pi ∈ X are honest. Since A and B are not both corrupt, we
have that G′ contains at least two honest parties. By Lemma 12, G′ is (2, A,B)-
unsplittable. Consequently by Theorem 3 there is a simulator S ′ which simulates
the roles of the honest parties in the invocation of Protocol 6 on G′ in step 1.
We define a simulator S for Protocol 8 which behaves exactly as an honest
party for communication within each party X ∈ Sk−1 and invokes S ′ for any
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communication between parties in G′. The behavior of this protocol is identical
to the behavior of S ′. Hence, by the correctness of simulator S ′, we have that
the view of the adversary is identical in the real and ideal worlds. ut

Lemma 11. Given graph G = (V,E) and a vertex i, let Gi be the induced graph
on the n − 1 vertices V \ {i}. If G is (n − t, A,B)-unsplittable, then Gi is also
(n− t, A,B)-unsplittable.

Proof. We will prove the contrapositive. Suppose that Gi ⊆A,B Λ2t−n−1
n−t . This

means there exists a partition of the vertex set of Gi as V \{i} = VA
⋃̇
VS
⋃̇
VB

where A ∈ VA, B ∈ VB , |VA| = |VB | = n− t and |VS | = 2t−n− 1. Now, we note

that there exists a partition of the vertex set of G as V = VA
⋃̇
V ′S
⋃̇
VB where

A ∈ VA, B ∈ VB , V ′S = VS ∪{i} and hence |VA| = |VB | = n− t and |V ′S | = 2t−n.
This implies that G ⊆A,B Λ2t−n

n−t , which is a contradiction. ut

Corollary 1. Let G be an n-party network. For t ≥ n/2, we can t-securely
generate OT correlations between all pairs of parties (thus, completing the OT
network) if and only if the G is (n− t)-unsplittable.

Proof. If G is (n− t)-unsplittable, then for all pairs of vertices A,B, G is (n−
t, A,B)-unsplittable and hence from Theorem 4, we can generate OT correlations
between A and B.

Conversely, if G ⊆ Λ2t−n
n , then choosing vertics A ∈ VA and B ∈ VB , we

have that G ⊆A,B Λ2t−n
n−t and hence Theorem 4 rules out the existence of such a

protocol. Hence, there exist a pair of vertices between whom we cannot t-securely
generate OT correlations. This completes the proof. ut

Appendix F Bounding the number of edges in
≈ n

2
-unsplittable graphs.

In this section we discuss the minimum number of edges in a graph which is
(n− t)-unsplittable for t = b(n+ 1)/2c. We show that the minimum edge count
is n/2 if n is even and t = n/2, and (n+3)/2 if n is odd and t = (n+1)/2. These
bounds give the minimum number of OT channels required to obtain t-secure
MPC among n parties in a network for t = b(n + 1)/2c. They constitute the
first nontrivial cases, since no OT channels are needed in the case of an honest
majority.

Theorem 7. Let n be even and t = n/2. Then any (n − t)-unsplittable graph
must contain at least t edges. This bound is tight.

Proof. To show that the bound is tight, note that the t-claw graph (Figure 4(a))
(or any graph with a tree on t+ 1 vertices and no other edges) has t edges and
contains a connected component consisting of t + 1 = n/2 + 1 vertices, so it is
(n/2)-unsplittable. We now show that every graph with fewer edges can be split.
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Let G be a graph containing t− 1 edges. Let m be the number of connected
components of G, let C1, C2, . . . , Cm be the components in nonincreasing order
of size, and let αi = |Ci|, so that α1 ≥ α2 ≥ · · · ≥ αm and

∑m
i=1 αi = n.

G is (n − t)-splittable if and only if there is some subset I ⊂ [n] such that∑
i∈I αi = n/2, that is, some subset of the values αi sum to n/2.
For all natural numbers x, let ax = |{i : αi ≥ x}| denote the number of

connected components with size at least x, and let bx = |{i : αi < x}| denote the
number of vertices in connected components with size smaller than x. Note that
ax counts the components of certain sizes, while bx counts the vertices contained
in components of certain sizes. Since a component of size s must contain at least
s − 1 edges, for any x > 1 we have that ax ≤ (t − 1)/(x − 1) < n/(2x − 2). In
particular, we have that a2 < n/2, a3 < n/4, and a4 < n/6.

Since G has at most n/2− 1 edges, at least two vertices have degree zero, so
α1 = α2 = 1. Consequently b2 ≥ 2. A set of c components containing at most
t− 1 edges can include at most c+ t− 1 vertices. Consequently, for any x > 1,
we have that

bx ≥ n− (ax + t− 1) =
n

2
+ 1− ax.

In particular, we have that b3 >
n
4 + 1 and b4 >

n
3 + 1.

Since α1 ≥ α2 ≥ α3, the third largest component has size α3 ≤ n/3. There
are only n/2− 1 edges, so αi ≤ n/2 for all i.

Consider the following greedy algorithm. Initially let S2 = C2. For i from 3
to n, if |Si−1 ∪ Ci| ≤ n/2 then set Si = Si−1 ∪ Ci, and otherwise set Si = Si−1.
We show that at the end of this loop, the set Sm will always have size n/2.

Since |Cm| ≤ n/2, the sum of the sizes of the other components is at least
n/2, so if |Si+1∪Ci| ≤ n/2 for every i considered in the loop then the loop must
terminate with |S1| = n/2. Otherwise there is some i such that |Si−1∪Ci| > n/2.
Choose the last iteration i for which this is true. Since i ≥ 3, we must have that
αi ≤ α3 ≤ n/3. If αi > 3, then since n/2 − |Si| ≤ αi − 1 ≤ n/3 − 1 and
b4 >

n
3 + 1, we reach a contradiction with the assumption that i is the last such

iteration, since there are enough vertices in components Ci+1, . . . , Cm to make
some subsequent |Sj−1 ∪ Cj | > n/2. Otherwise αi ≤ 3, so since n/2 − |Si| ≤
αi − 1 ≤ 2, so since b2 ≥ 2, we must have that |Sm| = n/2.

Consequently at the end of the loop we always have that |Sm| = n/2. Since
Sm consists only of entire connected components, Sm consists of n/2 vertices with
no edges to the rest of the graph, so G ⊂ Λ0

n/2 cannot be (n/2)-unsplittable. ut

Theorem 8. Let n be odd and t = (n+1)/2. Then any (n−t)-unsplittable graph
must contain at least t+ 1 edges. This bound is tight.

Proof. To show that the bound is tight, note that the (t+1)-edge graph consisting
of a cycle on t+ 1 vertices is (n− t)-unsplittable, since removing any vertex still
leaves a connected component of size t− 1. We now show that every graph with
fewer edges can be split.

Let G = (V,E) be a graph containing |E| = t edges. If the maximum degree
is 1, then G contains at most n/2 < t edges, a contradiction. Let v be a vertex
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of maximal degree ≥ 2. The induced subgraph on vertex set V \ {v} contains
n− 1 vertices and at most t− 2 < (n− 1)/2 edges. By Theorem 7 it cannot be
((n− 1)/2)-unsplittable, so G cannot be ((n− 1)/2)-unsplittable either. ut
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